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This paper proposes two new estimators for determining the number of factors (r) in 

static approximate factor models. We exploit the well-known fact that the r largest 

eigenvalues of the variance matrix of N response variables grow unboundedly as N 

increases, while the other eigenvalues remain bounded.  The new estimators are obtained 

simply by maximizing the ratio of two adjacent eigenvalues.  Our simulation results 

provide promising evidence for the two estimators. 
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1.  INTRODUCTION 

Recently, many estimation methods have been developed for the number of common factors 

in economic or financial data with both large numbers of cross-section units (N) and time series 

observations (T).  Examples are Bai and Ng (2002), Onatski (2006, 2010), and Alessi, Barigozzi, 

and Capasso (2010) for static approximate factor models; and Forni, Hallin, Lippi, and Reichlin 

(2000), Hallin and Liska (2007), Amengual and Watson (2007), Bai and Ng (2007), and Onatski 

(2009) for dynamic factor models, among others.  In this paper, we propose two alternative 

estimators for static factor models.  

 Bai and Ng (2002; hereafter BN) proposed to estimate the number of factors (r) by 

minimizing one of the two model selection criterion functions, named PC and IC.  The BN 

estimators are linked to the eigenvalues of the second-moment matrix of N response variables 

(see, e.g., Onatski (2006)).  Specifically, the PC estimator equals the number of the eigenvalues 

larger than a threshold value specified by a penalty function.  An important contribution, among 

many, of BN is their finding that the convergence rates of the eigenvalues depend on min(N,T), 

and, therefore, the threshold value should be adjusted depending on both N and T. 
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 There are, however, two issues that need to be addressed to improve the finite-sample 

properties of the BN estimators.  The first issue is that the prespecified threshold functions are 

not unique (Hallin and Liska (2007)).  Any finite multiple of a threshold function is also an 

asymptotically valid threshold function for consistent estimation of the number of factors.  

However, the finite-sample properties of the estimators could depend on the threshold function 

chosen among many alternatives.  The second issue is that the BN estimators need to prespecify 

a maximum possible number of factors (kmax) to compute threshold values.  Obviously, there 

are many possible choices for kmax.  Thus, ideally, the estimators should not be overly sensitive 

to the choice of kmax.  However, our simulation results indicate that the BN estimators are quite 

sensitive to the choice of kmax. 

 The first issue is related to the use of pre-specified threshold functions.  Some recent studies 

have developed data-dependent methods for threshold values.  An ideal threshold value would be 

a value slightly greater than the (r+1)th largest eigenvalue.  Onatski (2006) developed a 

consistent estimator of the (r+1)th eigenvalue under the assumption that the idiosyncratic 

components of response variables are either autocorrelated or cross-sectionally correlated, but 

not both.  Onatski (2010) also proposed an alternative estimator, named “Edge Distribution” (ED) 

estimator, which estimates the number of factors using differenced eigenvalues.  Instead of 

estimating an asymptotically valid threshold for consistent estimation of the number of factors, 

Hallin and Liska (2007) proposed an alternative data-dependent method for general dynamic 

factor models that consists of two steps: tuning and stability checkup.  They suggested estimating 

the number of factors using different subsamples and different multiples of the BN penalty 

functions (tuning).  The final estimate is the estimate that is invariant to the subsamples used and 

the changes in the multiplicative constant of the penalty function in a certain range (stability 

checkup).  Alessi, Barigozzi, and Capasso (2010) reported that the BN estimators obtained by 

this tuning-stability checkup procedure outperform the original estimators in finite samples.  

In this paper, we propose two alternative estimators, which we name “Eigenvalue Ratio” (ER) 

and “Growth Ratio” (GR) estimators, respectively.  They are easy to compute.  In particular, the 

ER estimator is obtained simply by maximizing the ratio of two adjacent eigenvalues arranged in 

descending order.  Our simulation results indicate that the finite-sample performances of the two 

estimators are promising.  In most of the cases we consider, they outperform other competing 

estimators.  One exception is the case in which one factor has extremely strong explanatory 

power for response variables.  Even for this case, the GR estimator shows performances 
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comparable to those of other competing estimators.  In addition, the performances of the two 

estimators are not sensitive to the choice of kmax unless it is too large or too small. 

This paper is organized as follows. Section 2 presents the assumptions consistent with 

approximate static factor models and shows that the proposed estimators are consistent.  Section 

3 reports our Monte Carlo experiments.  Concluding remarks are given in Section 4. 

 

2.  ASSUMPTIONS AND ASYMPTOTIC RESULTS 

 We begin by defining the approximate factor model of Chamberlain and Rothschild (1983).  

Let 
it

x  denote the response variable i (= 1,… , N) at time t (= 1,… , T).  The variables are 

generated by an r×1 vector of factors, 
t

f : o

t t t
x f ε= Λ +
i i

, where 1 2( , ,..., )
t t t Nt

x x x x ′=
i

, oΛ  = 

1 2( , ,..., )o o o

N
λ λ λ ′ , o

i
λ is the r×1 vector of factor loadings for variable i, and 

t
ε
i

 = 1( , ..., )
t N t

ε ε ′  is 

the vector of the idiosyncratic components of response variables.  The factors, factor loadings, 

and idiosyncratic components are not observed.  We can describe the model for the complete 

panel data by 

(1) 
o

X F ′= Λ +Ε , 

where 1( ,..., )
T

X x x′ =
i i

, 1( ,..., )
T

F f f′ = , and 1 2( , ,..., )
T

ε ε ε′Ε =
i i i

.  Following Bai and Ng (2002), 

we treat the entries in oΛ  as parameters and those in F  as random variables.  

 We introduce some notation.  We denote the norm of a matrix A  as 
1/2[trace( )]A A A′= .  

Two scalars, 1c  and 2c , denote generic positive constants.  For any real number z, [z] denotes the 

integer part of z.  We use ( )
k

Aψ  to denote the k
th

 largest eigenvalue of a positive semidefinite 

matrix A.  With this notation, we define   

 [ ] [ ], / ( ) / ( )NT k k kXX NT X X NTµ ψ ψ′ ′≡ =� . 

Finally, we use m  = min( , )N T  and M  = max( , )N T .  

 Our assumptions on the factor model (1) are as follows.  

 

 Assumption A:  (i) Let , [( / )( / )]o o

NT k k N F F Tµ ψ ′ ′= Λ Λ  for 1,...,k r= .  Then, for each k  = 

1, 2, ... , r, ,lim
m NT k k

p µ µ→∞ = , and 0 kµ< < ∞ .  (ii) r is finite. 
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 Assumption B: (i) 
4

1t
E f c<  and 1

o

i
cλ <  for all i and t.  (ii) ( )2

1/2
1

o

i it i
E cN ε λ− <Σ  for all 

t.  (iii)  ( )2
1 1/2

1 1

N T

i t it t
E N T fε− −

= =Σ Σ  = 
21( )E NT F

− ′Ε
 

 1c< . 

 

 Assumption C:  (i) 0 lim / 1
m

y m M→∞< ≡ ≤ .  (ii) 1/2 1/2

T N
R UGΕ = , where [ ]

it N T
U u ×

′ = , and 

1/2

T
R  and 1/2

N
G  are the symmetric square roots of T T×  and N N×  positive semidefinite matrices 

T
R  and 

N
G , respectively.   (iii) The 

it
u  are independent and identically distributed (i.i.d.) 

random variables with uniformly bounded moments up to the 4
th

 order.  (iv) 1 1( )
T

R cψ <  and 

1 1( )
N

G cψ < , uniformly in T and N, respectively. 

 

 Assumption D: (i) 2( )
T T

R cψ >  for all T .  (ii)  Let * lim / min( ,1)
m

y m N y→∞= = .  Then, 

there exists a real number *
d  ∈ 

*(1 ,1]y−  such that  * 2[ ]
( )

Nd N
G cψ >  for all N .   

 

 Assumptions A–C are the same assumptions as those in Bai and Ng (2006) and Onatski 

(2010).  Although Assumption C(ii) restricts covariance structure of the errors, it allows both 

autocorrelation and cross-sectional correlation in the errors. 

 Assumption D is a new assumption we impose.  The matrix 
N

G  governs the cross-section 

correlations among the errors, while 
T

R  determines the structure of serial correlations.  

Assumption D(i) states that none of the idiosyncratic components and their linear functions can 

be perfectly predicted by their past values.  Assumption D(ii) states that an asymptotically non-

negligible number of the eigenvalues of N
G  are bounded below by a positive number.  

Assumption D(ii) holds with * 1d =  if response variables are not perfectly multicollinear and if 

none of them have zero idiosyncratic variances.  

 For macroeconomic or financial data, some variables may be perfectly or almost perfectly 

correlated with the others or may be factors themselves.  An example is the macroeconomic data 

that contain detailed consumption data such as total consumption expenditure and categorized 

consumption expenditures for durable and nondurable goods and services.  The total expenditure 

is the sum of the other categorized expenditures.  For such data, the smallest eigenvalue of N
G  

may be close to zero (if logarithms of expenditures are analyzed) or exactly equal to zero (if 
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level data are used).  Another example is the financial data covering both portfolio returns and 

individual stock returns.  If a portfoilo is constructed with the individual stocks included in the 

data, or if a portfolio return itself is a factor, the smallest eigenvalue of 
N

G  should be zero.  

Assumption D(ii) permits such cases so long as an asymptotically non-negligible portion ( *
d ) of 

the eigenvalues of 
N

G  are bounded below by a positive number. 

 For the data with N T≤  (so that m N=  and * 1y = ), Assumption D(ii) only requires that 

*
d  > 0.  However, for the data with T N<  (so that m T=  and * 1y < ), *

d  needs to be 

sufficiently large so that 
* * 1d y+ > .  This condition is likely to hold unless the ratio T/N is 

extremely small or a majority of variables are almost perfectly correlated (or their idiosyncratic 

components have near zero variances).  For example, Assumption D(ii) holds if the number of 

time series observations (T) is more than a half of the number of cross-section units ( * 0.5y > ) 

and if more than 50% of the cross-section variables are linearly independent and have non-

negligible idiosyncratic components ( * 0.5d > ). 

 We note that Assumptions C and D are sufficient, but not necessary, conditions for our main 

results.  Weaker conditions sufficient for our results are   

(2) 1( / ) (1)
p

M Oψ ′ΕΕ = , 

(3) 
[ ]

( / ) (1)c pd m
M c oψ ′ΕΕ ≥ + , 

for some positive and finite real number c  and some (0,1]cd ∈ .  The condition (2) rules out the 

possibility that the error matrix Ε  contains common factors.  Bai and Ng (2006) have shown that 

Assumption C implies (2).  The condition (3) indicates that the first largest [ ]cd m  eigenvalues of 

/ M′ΕΕ  are bounded away from zero.  In the Appendix (Lemma A.9), it is shown that 

Assumptions C and D are sufficient for both (2) and (3).  

 We now turn to our estimators.  A criterion function we use to estimate the number of factors 

( r ) is simply the ratio of two adjacent eigenvalues of / ( )XX TN′ : 

 
,

, 1

( )
NT k

NT k

ER k
µ

µ +

≡
�

�
, 1,2, ..., ,k kmax= ,  

where “ER” refers to “eigenvalue ratio”.   Another criterion function we consider is given by 

 

*

,

*

, 1

ln(1 )ln[ ( 1) / ( )]
( ) ,

ln[ ( ) / ( 1)] ln(1 )

NT k

NT k

V k V k
GR k

V k V k

µ

µ +

+−
≡ =

+ +

�

�
 1,2, ..., ,k kmax= , 
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where 1 ,( ) m

j k NT jV k µ= += Σ �  and *

, , / ( )NT k NT k V kµ µ=� � .  Here, ( )V k  equals the sample mean of the 

squared residuals from the time series regressions of individual response variables on the first k 

principal components of / ( )XX TN′  (see Onatski (2006)).  The term GR refers to “Growth 

Ratio” because both the numerator and denominator of GR(k) are the growth rates of residual 

variances as one fewer principal component is used in the time series regressions.  The 

estimators of r  we propose are simply the maximizers of ( )ER k  and ( )GR k , which we call 

“ER” and “GR” estimators, respectively: 

 1max ( )ER k kmaxk ER k≤ ≤=� ; 1max ( )GR k kmaxk GR k≤ ≤=� . 

Our main result follows. 

 

 Theorem 1:  Suppose that Assumptions A–D hold with 1r ≥ .  Then, there exists c
d  (0,1]∈  

such that ( ) ( )lim Pr lim Pr 1
m ER m GR

k r k r→∞ →∞= = = =� � , for any kmax ( ,[ ] 1]cr d m r∈ − − .
2
 

 

 While a formal proof of the theorem is given in the Appendix, a brief sketch of proof 

provides some explanation.  As discussed above, Assumptions C and D are sufficient for the two 

conditions (2) and (3) to hold.  That is, the first [ ]cd m  largest eigenvalues of / ( )NT′ΕΕ  are 

1( )
P

O m
− , and the ratios of two adjacent eigenvalues are (1)

p
O .  The first r eigenvalues of 

/ ( )XX NT′  are asymptotically determined by the eigenvalues of / ( )o oF F NT′ ′Λ Λ  and other 

eigenvalues by the eigenvalues of / ( )NT′ΕΕ .  Accordingly, 
, , 1

/
NT j NT j

µ µ +
� �  = (1)

p
O  for j r≠ , 

and 
, , 1

/ ( )
NT r NT r p

O mµ µ + =� � .  That is, while the ratio of the r
th

 and (r+1)
th

 eigenvalues of 

/ ( )XX TN′  diverges to infinity, all other ratios of two adjacent eigenvalues are asymptotically 

bounded.   

The possibility of zero factor (r = 0) can be allowed by using slightly modified ER(k) and 

GR(k) criterion functions.  Let us define a mock eigenvalue ,0NTµ�   = ( , )w N T  such that ( , )w N T  

→ 0 and ( , )w N T m → ∞  as m → ∞ .  Then, we obtain the following result: 

 

                                                 
2
The ER estimator can be viewed as a BN estimator using an estimated threshold value, 

, 1NT k
µ +
�  with 

ER
k k= � .  

We thank an anonymous referee for providing this interpretation. 
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Corollary 1:  Redefine 
ERk�  and 

GRk�  using 
,0NT

µ�  for 0k = .  Then, under Assumptions A – D 

with 0r ≥ , lim Pr[ ] lim Pr[ ] 1m ER m GRk r k r→∞ →∞= = = =� � .  

 

 This corollary holds for any multiple of ( , )w N T .  Accordingly, the finite-sample properties 

of the modified ER and GR estimators depend on the choice of the multiple and the functional 

form of ( , )w N T .  Fortunately, our simulation experiments show that estimation results are not 

excessively sensitive to the choice of the mock eigenvalue.  The mock eigenvalue used for our 

simulations is 

(4) 
,0 1 ,

(0) / ln( ) / ln( )m

NT k NT k
V m mµ µ== = Σ� � . 

We have found that while the ER and GR estimators perform better with some other choices of 

the mock value, the improvement is not substantial.          

 Theorem 1 and Corollary 1 indicate that kmax can be chosen to increase with m = min( , )T N .  

This requirement is less restrictive than the condition, kmax/m  → 0 as m → ∞ , that is required 

for the ED estimator of Onatski (2010).  In practice, however, we do not recommend that 

researchers use an excessively large value for kmax so as to avoid the danger of choosing a value 

smaller than r.  We suggest two possible choices for kmax.  First, Theorem 1, as well as our 

finding from simulations, suggests that it should not be a problem to choose much a larger kmax 

than r.  Thus, if one has a priori information about a possible maximum (fixed) number of 

factors, say 
max

r , she could use kmax1 = 
max

2r  for kmax.  So long as 
max

r  is fixed, the ER and GR 

estimators computed with kmax1 must be consistent.  Second, when such information is not 

available, one may consider using a sequence, kmax2 = min(kmax
*
, 0.1m), where kmax

*
 = 

,
#{ | (0) / , 1}

NT k
k V m kµ ≥ ≥� .  As shown in the Appendix, (0)V  = (1)

p
O  and 

,NT k
mµ�  = ( )

p
O m  

for k = 1, ... , r.  Thus, *Pr( )kmax r≤  → 0 as m → ∞ .  Accordingly, if 0.1c
d > , kmax2 satisfies 

all of the conditions that warrant the consistency of the ER and GR estimators.  

 Our results apply to a factor model with time and/or individual effects: 

(5) o

it i t t i it
x fα δ λ ε′= + + + , 

where αi is an individual-specific effect and δt is a time-specific effect.  The two effects can be 

controlled by subtracting from the xit their time and individual means and adding their overall 

mean.  The ER and GR estimators applied to these demeaned data are still consistent with a 

small adjustment for the possible range of kmax. 
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 Even for the data without time or individual effects, we suggest that practitioners estimate the 

number of factors using demeaned data.  Brown (1989) has found that for the data (with small N 

and large T) generated by four factors of the same explanatory power, the tests based on 

eigenvalues tend to predict only one factor.  To obtain an intuition for his result, consider a 

simple case in which /F F T′  = /o o N′Λ Λ� �  = r
I  for all T  and N , where oλ  = 1 o

i i
N λ−= Σ , 

1o o o

N
λ ′Λ = Λ −� , and 1

N  is an N-vector of ones.  Observe that o oF F′ ′Λ Λ  = o o
NF Fλ λ ′ ′  + 

o oF F′ ′Λ Λ� � .  For this case, we can easily show (using Lemmas A.5 and A.6 in the Appendix) that 

(6) 1 / ( ) 1o o o o o o
F F NTλ λ ψ λ λ ′ ′ ′′≤ Λ Λ ≤ +
 

, 

(7) / ( ) / ( ) 1o o o o

k k
F F NT F F NTψ ψ   ′ ′′ ′Λ Λ = Λ Λ =
   

� �  , 2,...,k r= . 

The first r  eigenvalues of XX ′  mainly depend on the eigenvalues of o oF F′ ′Λ Λ .  Thus, (6) 

implies that the first eigenvalue of / ( )XX NT′  must be asymptotically bounded below by o oλ λ′ , 

while the probability limits of the next ( 1)r −  eigenvalues are all ones.  Thus, we can expect that 

the ER and GR estimators are likely to predict one factor in small samples when the means of 

factor loadings deviate from zeros substantially.  This problem is alleviated if demeaned data are 

used.  To see why, suppose we use demeaned data 1( )
it i it

x N x−− Σ  for X  instead of raw data it
x .  

Then, the ER and GR estimators are obtained from the eigenvalues of / ( )
N

XQ X NT′ , where 

11 1
N N N N

Q I N
− ′= − .  The first r  eigenvalues of / ( )NXQ X NT′  now depend on the eigenvalues 

of / ( ) / ( )o o o o

N
F Q F NT F F NT′ ′′ ′Λ Λ = Λ Λ� � , which are all ones. 

 The one-factor bias problem identified by Brown (1989) also arises when the factor means 

deviate from zeros by a large margin.  Thus, it is recommended to use doubly demeaned data, 

that is, 1 1 1

,( )it t it i it i t itx T x N x NT x
− − −− Σ − Σ + Σ , for better results from our estimation methods.  By 

some unreported simulations, we have found that the ER and GR estimators often predict one 

factor in small samples when the means of factor loading and/or the means of factors are large in 

absolute value.  This problem disappears if demeaned data are used.
3
 

                                                 
 

3
The time effect δt itself can be viewed as a factor with constant loadings.  The time effect can be estimated by 

the time mean of response variables, 1

t i it
x N x

−= Σ .  If the mean has significant explanatory power for individual 

response variables, it should be used as an estimated factor.  
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   Finally, we note two cases in which use of the ER and GR estimators may be inappropriate.  

The first is the case in which some factors are I(1) while the others are I(0), and the second is the 

case in which some factors have dynamic factor loadings of infinite order (generalized factor 

model).  The first case is a case violating Assumption A(i).  For this case, the ER or GR 

estimators may pick up only the I(1) factors.  Thus, when some factors are suspected to be I(1), 

the number of factors can be estimated with first differenced data as suggested by Bai and Ng 

(2004).  The second case violates Assumption A(ii).  Hallin and Liska (2007) estimated the 

number of dynamic factors applying the BN estimation methods (with a tuning-stability checkup 

procedure) to the spectral density matrix of response variables.  Although not pursued here, it 

might be interesting to investigate whether the ER and GR methods can be generalized to 

estimation of the number of dynamic factors.  

  

3.  SIMULATIONS AND RESULTS 

The foundation of our simulation exercises is the following model: 

 
2

1 2

1
;

1 2

r

it j ij jt it it it
x f u u e

J

ρ
λ θ

β=

−
= Σ + =

+
,

 

where 1 min( , )

, 1 max( ,1) 1

i i J N

it i t it h i J ht h i hte e v v vρ β β− +
− = − = += + + Σ + Σ , and the 

ht
v  and 

ij
λ  are all drawn from 

(0,1)N .  The factors 
jt

f  are drawn from normal distributions with zero means.  Bai and Ng 

(2002) and Onatski (2010) have used the same data generating process.  The only exception is 

that we normalize the idiosyncratic components (errors) 
it

u  so that their variances are equal to 1 

for most of the cross-section units (more specifically, 1J i N J+ ≤ ≤ − ).  

 The control parameter θ  is the inverse of the signal to noise ratio (SNR) of each factor when 

var( ) 1
jt

f =  because 1 / var( ) / var( )
jt it

f uθ θ= .  When it is necessary to change SNRs of all 

factors, we adjust the value of θ  while fixing variances of factors at 1.  To change SNR of a 

single factor, we adjust the variance of the factor with θ  fixed at 1.  The magnitude of the time 

series correlation is specified by the control parameter ρ. Cross-sectional correlation is governed 

by two parameters: β specifies the magnitude of cross sectional correlation and J specifies the 

number of cross-section units correlated. 

 Our simulations are categorized into four parts.  The first part is designed to investigate how 

error covariance structure influences the finite-sample performances of the ER and GR 

estimators.  Data are generated with errors of four different covariance structures: (a) i.i.d. errors 
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( 0Jρ β= = = ); (b) serially correlated errors ( 0.7ρ =  and 0Jβ = = ); (c) cross-sectionally 

correlated errors ( 0ρ = , 0.5β = , and max(10, / 20)J N= ); and (d) both serially and cross-

sectionally correlated errors ( 0.5ρ = , 0.2β = , and max(10, / 20)J N= ).   

 In the second part, we examine the effects of weak factors on the estimators.  We consider 

two cases.  The first is the case in which all three factors have weak explanatory power (SNR = 

0.17).  The second is the case in which two factors are strong (SNR = 1) and one factor is weak 

(SNR < 1). 

 In the third part, we investigate how the use of large kmax may influence estimation results 

when the eigenalues ,NT k
µ�  are close to zero for some large k (< m).  As discussed in Section 2, 

this could happen if many response variables are highly multicollinear or if many response 

variables have very small idiosyncratic variations.  These cases are related to the case in which 

*
d  in Assumption D is smaller than 1.  If too large a value of kmax is used for such data, the ER 

and GR estimators may over estimate the true number of factors because the ratios ( )ER k  and 

( )GR k  may explode for some k r> .  We examine this possibility using the data generated with 

heteroskedastic errors.   

 The fourth and final part of our simulations considers the case in which one factor has a 

dominantly strong explanatory power.  For such a case, the value of ER(k) and GR(k) may peak 

at k = 1.  We examine how large a difference in the explanatory power of two factors is needed 

to make the ER and GR estimators underestimate the true number of factors.  To do so, we 

generate data using two factors with different SNRs.     

 For each case we consider, we compute root mean squared errors (RMSEs) or frequencies of 

incorrect estimation by estimators, from 1,000 simulated data sets.  The modified ER and GR 

estimators introduced in Corollary 1 are used for our simulations.  Although the means of factors 

and factor loadings are all zero in our data generating process, we use doubly demeaned data to 

compute ER and GR estimators, to be consistent with our suggestions in Section 2.  The 

performances of the two estimators are compared with those of the BIC3 estimator of BN and the 

ED estimator of Onatski (2010).
4
  We also consider the estimator by Alessi, Barigozzi, and 

Capasso (2010; hereafter, ABC), which is the IC1 estimator of BN with the tuning-stability 

                                                 
 

4
Professor Jushan Bai kindly suggested that we consider the BIC3 estimator in simulations.  We only report the 

performances of the BIC3 estimator, because the estimator outperforms the other BN estimators in our simulations.   
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checkup procedure of Hallin and Liska (2007).  The BIC3, ED, and ABC estimators are 

computed with raw data (not with demeaned data).   

 Figure 1 reports the results from the first part of our simulations.  Three factors (r = 3) are 

drawn from (0,1)N  and θ  is fixed at 1.  Thus, all factors have SNRs equal to 1.  Sample size 

(N,T) increases from (25,25) to (200,200).  Panel A shows the results from the data generated 

with i.i.d. errors.  The results from the BN and ED estimators are essentially the same as the 

benchmark results reported in both Bai and Ng (2002) and Onatski (2010).  The BIC3 estimator 

outperforms other estimators for the data with 50N T= ≤ , and shows perfect accuracy for the 

data with N = T ≥ 50.  For the data with 25N T= = , the ED and ABC estimators outperform the 

ER and GR estimators, but the latter two estimators perform better for the data with 50N T= ≥ .  

Panels B, C and D report the estimation results from the data with serially or/and cross-

sectionally correlated errors.  For the cases with 75N T= ≥ , the ER and GR estimators perform 

equally to or better than the other estimators.  When the errors are cross-sectionally correlated, 

the BIC3 estimator overestimates the correct number of factors even if large samples are used.  It 

appears that the performance of the BIC3 estimator is much more sensitive to cross-sectional 

correlation than autocorrelation in the errors.  The ABC estimator clearly outperforms the BIC3 

estimator when errors are cross-sectionally correlated.  

Figure 2 reports the results from the second part of our simulations.  The figure shows the 

finite-sample performance of each estimator when all or some factors have weak explanatory 

power (low SNRs).  Comparing Panel A of Figure 2 and Panel D of Figure 1, we can see that all 

of the estimators have lower power to detect weak factors.  The ER and GR estimators no longer 

show perfect accuracy for the sample sizes reported, but they still outperform the other 

estimators.  Panel B of Figure 2 reports the estimation results from data with 100N T= =  and 

with two strong factors and one weak factor.  The first two factors are drawn from (0,1)N , and 

the other, from (0, 3)N SNR , where 0 < SNR3 < 1.  The value of θ  is set at 1.  Thus, the SNRs of 

the first two factors are equal to 1, while that of the third factor equals SNR3.  We try many 

different values for 3SNR  (0.45 - 0.10).  As in Panel A, the ER and GR estimators outperform 

other estimators for any value of SNR3.  

So far, we have reported the estimation results obtained using kmax = 8.  Figure 3 shows how 

the choice of kmax may influence the performances of the estimators.  Six different values are 

used for kmax.  The data generating process is the same as the one used for Panel D of Figure 1 

with 150N T= = .  Figure 3 shows that the performances of the ER and GR estimators are not 
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sensitive to kmax.  In contrast, the RMSE of the BIC3 estimator increases with kmax.  This is 

because the bias in the BIC3 estimator increases with kmax (although not shown in the figure).  

The RMSE of the ABC (ED) estimator also increases until kmax = 12 (16).  The ED and ABC 

estimators are less sensitive to kmax than the BIC3 estimator.   

The third part of our simulations examines how the use of a large kmax may influence the 

finite-sample properties of the ER and GR estimators when many response variables have small 

idiosyncratic variations.  As before, the data are generated from a three-factor model (r = 3) with 

both serially and cross-sectionally correlated errors and with N = T = 150.  For the first half of 

the cross-section units, we fix their error variances at 1; var( ) 1
it

u = , for i ≤ 75.  However, for the 

second half, error terms are generated with variances equal to 2V  ( var( ) 2
it

u V= , for i  ≥   76), 

where 2V  varies from 0.5 to 0.001.  In our setup, 2 0.001V =  means that the idiosyncratic 

variances of the first half of response variables are 1,000 times greater than those of the second 

half.  We also vary the explanatory power of three factors by using six different values for θ, 

from 1 to 6.  We choose kmax = 100 to make sure that the heteroskedasticity structure we use for 

simulations can influence the performances of the ER and GR estimators.  

 For each possible combination of V2 and θ, we compute the frequency of incorrect 

estimation by each estimator.  The results are reported in Figure 4.  Panels A and B show that the 

accuracies of the ER and GR estimators remain fairly stable when V2 changes.  Panels C and D 

show that the ED and ABC estimators miss the correct number of factors in every case when 

2 0.5V < .  In contrast, as θ increases, the accuracies of the ER and GR estimators fall for any 

level of 2V .  These results indicate that using too large a value for kmax can hurt the 

performances of the ER and GR estimators when some response variables have very small 

idiosyncratic variations.  The seriousness of this problem, however, depends on the explanatory 

power of factors.  When factors are reasonably strong (e.g., θ  ≤ 3), use of large kmax would 

have only limited effects on the ER and GR estimators, unless too many response variables (or 

linear combinations of them) have extremely small idiosyncratic variations.  Intuitively, however, 

if a larger value of kmax is used for actual data analysis, it is increasingly more likely that the 

value of an eigenvalue ,NT k
µ�  drops substantially at some value of k  greater than r.  To mitigate 

this possibility, it is important to avoid choosing an excessively large value for kmax. 

 We now turn to the fourth and final part of our simulations.  We consider a two-factor model 

(r = 2) in which both factors have strong explanatory power, but one factor’s power is 
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increasingly dominant.  The two factors are drawn from N(0,1) and N(0,SNR2), respectively, 

where SNR2 is an integer between 1 and 20.  The simulation results are reported in Figure 5. 

 The GR estimator performs better than the ER estimator, especially when SNR2 is large.  For 

example, although not shown clearly in Figure 5, when N = T = 150, the ER estimator captures 

the true number of factors more than 90% until SNR2 ≤ 5,  while the GR estimator does until 

SNR2 = 20.  In our simulation setup, when SNR2 = 20, the average R-squared from regressions 

of individual response variables on the second factor alone is about 0.90.  This is an extreme case 

that is unlikely to happen in actual data analysis.  For less extreme cases (SNR2 < 20), the GR 

estimator performs quite well when data are sufficiently large (N = T ≥ 150). 

 Figure 5 shows that the accuracies of the ED and ABC estimators are not affected by 

difference in explanatory power between the two factors.  This is an expected result because both 

the estimators determine the number of factors comparing the eigenvalues ,NT k
µ�  with given 

threshold values. Large differences among the first r eigenvalues have little impact on these 

estimators.  In addition, the ED and ABC estimators outperform the ER estimator when SNR2 is 

very large.  Indeed, the cases with large differences in the explanatory power of factors are the 

only cases we found from all of our reported and unreported simulations in which the ED and 

ABC estimators outperform the ER estimator.  However, the performance of the GR estimator is 

comparable to, if not better, those of the ED and ABC estimators, unless one factor is 

unrealistically dominant.  The GR estimator uses logarithmic functions of eigenvalues, not 

eigenvalues directly.  It appears that use of logarithmic functions mitigates the effect of the 

dominant factor.         

 Figures 1–5 show that the ER and GR estimators are generally better estimators when the 

same kmax is used for all estimators.  The last but important question is what kmax should be 

used for the ER and GR estimators if the information about a possible maximum number of 

factors ( maxr ) is not available.  We have suggested using kmax2 in the previous section.  When 

we repeat the simulations reported in Figure 1 with kmax2 (not reported here), the performances 

of the two estimators remain the same.  When the simulations reported in Figure 3 are repeated, 

the two estimators are perfectly accurate.  However, we found from some unreported simulations 

that with kmax2, the estimators tend to overestimate the number of factors when factors’ SNRs 

are low ( rθ > ) and (not or) the degree of cross-sectional correlation is high ( 0.2β ≥ ).  For such 

cases, the estimation results are sensitive to the choice of kmax.  Fortunately, applying the ER 
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and GR estimators to the macro data of Bernanke, Boivin, and Eliaz (2005) and other stock 

return data, we found that the estimation results were insensitive to kmax.  This result is 

consistent with the notion that idiosyncratic components in the data we analyzed are not too 

highly cross-sectionally correlated or factors are relatively strong.  Overall, the results from our 

simulations and actual data analysis provide positive evidence for the use of kmax2. 

 

4.  CONCLUDING REMARKS 

In this paper, we have introduced two new estimators, ER and GR, for the number of 

common factors in approximate factor models.  The estimators are easy to compute.  Some 

simulation experiments are conducted to compare the performances of the estimators with those 

of the estimators by Bai and Ng (2002), Onatski (2010), and Alessi, Barigozzi, and Capasso 

(2010).  The simulation results indicate that the ER and GR estimators generally outperform 

these competing estimators, especially when the idiosyncratic components of response variables 

are both cross-sectionally and serially correlated.  When a dominant factor (in terms of 

explanatory power) exists, the ER estimator might not perform well.  However, the GR estimator 

performs well unless a dominant factor has unrealistically high explanatory power.   
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APPENDIX 

The following lemmas are useful to prove Theorem 1. 

 

 Lemma A.1: Under Assumption C,  

 ( ) ( )
2

1lim / 1
m

p UU M yψ→∞
′ = + ; ( ) ( )

2

mlim / 1mp UU M yψ→∞
′ = − . 

Proof:  See Bai and Yin (1993).  
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Lemma A.2:  For a given b  ∈ (0,1] , let [ ]bm
U  be the [ ]bm N× major submatrix (upper block) 

of U .  Then, under Assumption C,  

 ( ) ( )
2

*

[ ] [ ] [ ]lim / 1
m bm bm bm

p U U N byψ→∞
′ = − . 

Proof:  The result follows by Lemma A.1 and the fact that lim [ ] /
m

bm N→∞  = 
*by .  

 

Lemma A.3:  Let n
W  be an n n×  symmetric matrix; and 

n kW −  be an ( ) ( )n k n k− × −  major 

submatrix of n
W , where k p≤ .  Then, ( ) ( )

n p n p n p n
W Wψ ψ− − −≤ . 

Proof:  1 1( ) ( ) ... ( ) ( )
n p n p n p n p n p n n p n

W W W Wψ ψ ψ ψ− − − − + − − −≤ ≤ ≤ ≤ , where each inequality is due 

to Sturmian Separation Theorem (Rao (1973), p. 64). 

 

Lemma A.4:  Suppose that A  and B  are p p×  positive definite and positive semi-definite 

matrices, respectively.  Then, for any 1j k i+ − ≤ ,  

 ( ) ( ) ( )
i j k

AB A Bψ ψ ψ≤ ;  1 1 1( ) ( ) ( )
p j p k p i

A B ABψ ψ ψ− + − + − +≤ . 

Proof:  See Theorem 2.2 of Anderson and Dasgupta (1963). 

 

Lemma A.5:  If A and B are p p×  symmetric matrices,  

 1( ) ( ) ( )
j k j k

A B A Bψ ψ ψ+ − + ≤ + , 1j k p+ ≤ + .  

Proof:  See Onatski (2006) or Rao (1973, p. 68). 

 

Lemma A.6:  If A and B are p p×  positive semi definite matrices,   

 
( ) ( )

j j
A A Bψ ψ≤ + , 1, ... ,j p= . 

Proof:  First, consider the case of 1j = .  Let 1

A
ξ  be the eigenvector corresponding to 1( )Aψ .  

Then, 1 1 1 1 1 1 1 1

1 1( ) / ( ) / ( )
A A A A A A A A

A A A B A Bψ ξ ξ ξ ξ ξ ξ ξ ξ ψ′ ′ ′ ′= ≤ + ≤ + , where the first inequality is due 

to B  being positive semi definite.  We now consider the cases with 1j > .  Let 1j−Ξ  be the 

matrix of the orthonormal eigenvectors corresponding to the first ( 1)j −  largest eigenvalues of 

A B+ .  Let z  be a p×1 nonzero vector.  Then,  

 
1 10 0

( ) sup / sup ( ) / ( )
j jj jz z

A z Az z z z A B z z z A Bψ ψ
− −′ ′Ξ = Ξ =

′ ′ ′ ′≤ ≤ + = + , 
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where the first inequality comes from Rao (p. 62). 

 

Lemma A.7:  Under Assumptions C and D, choose real numbers b  and v  such that b , v  ∈  

(0,1)  and c
d ≡  *

d  + *( ) 1b y v− −  > 0.  Then, for sufficiently large m , 

 ( )2 2

2 [ ] [ ] [ ] 1 1 1[ ]
( / ) / ( / ) ( / ) ( / )cbm bm bm d m

c N M U U N M M c UU Mψ ψ ψ ψ′ ′ ′ ′≤ ΕΕ ≤ ΕΕ ≤ . 

Proof :  Lemma A.4 and Assumption C imply 

 2

1 1 1 1 1 1( / ) ( / ) ( ) ( ) ( / )
N T

M UU M G R c UU Mψ ψ ψ ψ ψ′ ′ ′ΕΕ ≤ ≤ . 

For a moment, assume that for sufficiently large m ,  

(8) [ ]cd m  ≤ *[ ]d N  + [ ]bm  - N  ≤ m. 

Under this assumption, using Lemmas A.4 and A.3, we can show that 

 

( ) ( ) ( )

( )

( ) ( )

* *

*

*

[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

2

[ ] [ ] [ ] 2 [ ] [ ] [ ][ ]

/ / / ( )

/ ( ) ( )

( ) ( ) ( / ) / .

c N T N T Td m d N bm N d N bm N

bm N T Td N

bm bm bm N T T bm bm bmd N

M UG U R M UG U M R

UU M G R

U U G R c N M U U N

ψ ψ ψ ψ

ψ ψ ψ

ψ ψ ψ ψ

+ − + −
′ ′ ′ΕΕ ≥ ≥

′≥

′ ′≥ ≥

  

Thus, we can complete the proof by showing (8).  We replace [ ]i  by its inside argument (e.g., 

*[ ]d N  by 
*

d N ) without loss of generality.  If m N T= ≤  ( * 1y = ), (8) immediately follows.  

Suppose now that m T N= < .  By Assumption D, there exists 
v

m  ∈  � , such that * ( / )y T N−   

< v  for all v
m m≥ .  Thus, for 

v
m m≥ ,  

 * * * *( ) [ ] [ ]c cd m d N d N b y v N N d N bT N d N bm N m≤ = + − − ≤ + − ≤ + − < . 

 

Lemma A.8:  Under Assumptions A, C, and D, for sufficiently large m and j ≤ [ ]cd m  - 2r, 

 ( ) ( )2 2 1

2 [ ] [ ] [ ] , 1 1( / ( )) / /bm bm bm NT r jc N mM U U N c m UU Mψ µ ψ−
+

′ ′≤ ≤� . 

Proof:  Let 1( ) ( )o o o o oP −′ ′Λ = Λ Λ Λ Λ  and  ( ) ( )o o

N
Q I PΛ = − Λ .  Let * 1( )o o oF F −′= + ΕΛ Λ Λ   

so that * * ( )o o oXX F F Q′ ′′ ′= Λ Λ + Ε Λ Ε .  Since * *( )o orank F F′ ′Λ Λ  ≤ r, * *

1( ) 0o o

r
F Fψ +

′ ′Λ Λ = . 

Thus, using Lemmas A.6 and A.5, we can show that 

(9) ( ) ( ) ( ) ( ) ( )* *

1( ) ( ) ( )o o o o o

r j r j j r j
Q XX Q F F Qψ ψ ψ ψ ψ+ + +

′ ′′ ′ ′ ′Ε Λ Ε ≤ ≤ Ε Λ Ε + Λ Λ = Ε Λ Ε .  

Using the same lemmas, we can also show that 

(10) ( ) ( ) ( )( ) ( ) ( )o o o

j j j
Q Q Pψ ψ ψ′ ′ ′ ′Ε Λ Ε ≤ Ε Λ Ε + Ε Λ Ε = ΕΕ , 
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(11) 2 ( )
r j

ψ +
′ΕΕ  ≤  ( ) ( )1( ) ( )o o

r j r
Q Pψ ψ+ +

′ ′Ε Λ Ε + Ε Λ Ε  = ( )( )o

r j
Qψ +

′Ε Λ Ε , 

because ( ( ) )orank P r′Ε Λ Ε ≤ .  Equations (9) – (11)  imply that 

(12) ( ) ( )2 ,/ ( ) / ( )r j NT r j jNT NTψ µ ψ+ +
′ ′ΕΕ ≤ ≤ ΕΕ� , for 1,..., 2j m r= − .  

Lemma A.7 and (12) imply the result. 

 

Lemma A.9:  Under Assumptions A, C, and D, for 1,...,[ ] 2cj d m r= − , 

 ,(1) (1)
p NT r j p

c o m c oµ ++ ≤ ≤ +� , 

where ** lim ( / )
m

y N M→∞= ,  ( )
2

2 ** *

2 1c c y by= − ,  and ( )
2

2

1 1c c y= + . 

Proof:  The result immediately follows from Lemmas A.8, A.1, and A.2. 

 

Lemma A.10:  Under Assumptions A and B, for any 1( ,..., )
T p p

A a a× =  such that pA A TI′ = ,  

  ( )1/2

2

1
trace( )o

p
A F A O N

T N

−′′ ′Λ Ε = , ( )1

2

1
trace ( )o

pA P A O N
T N

− 
′ ′Ε Λ Ε = 

 
. 

Proof:  Observe that 

 

2
trace( )o o o

i i i
A F A AA F A F λ ε′ ′ ′′ ′ ′ ′Λ Ε ≤ Λ Ε ≤ Σ

i
,

 

( )( )( ) ( )

( )( )( )

,

2

trace trace

trace .

o o o o o

i i i i i i i i i i j t i it jt j

o o o

t i i it j jt j t i i it

λ ε λ ε ε λ λ ε ε λ

λ ε ε λ λ ε

′ ′′ ′Σ ≤ Σ Σ = Σ Σ

′= Σ Σ Σ = Σ Σ

i i i

 

Thus, we have 

 

22

1/2

2

1 1 1 1 1 1
trace( ) ( )o o

t i i it pA F A A F O N
T N TN T T N

λ ε −′ ′ ′Λ Ε ≤ Σ Σ = . 

Similarly, 

 

1

2

22

1

1 1
trace ( ) trace

1
(1) ( ).

o o o o
o

o

p p

A A
A P A

T N N NT NT NT T

A
O O N

N T NT

−

−

  ′ ′′ ′ΕΛ Λ Λ Λ Ε   ′ ′Ε Λ Ε =          

ΕΛ
≤ =
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Lemma A.11:  Under Assumptions A – D, for 1,...,j r= , 

 ( ) ( )1/2 1

, ,NT j NT j p p
O N O mµ µ − −= + +� .  

Proof:  We can complete the proof by showing that, for j  = 1, ... , r, 

(13) ( ) ( )* * 1/2

,/ ( )o o

j NT j p
F F NT O Nψ µ −′ ′Λ Λ = + ;  

(14) ( ) ( )* * 1

, / ( )o o

NT j j p
F F NT O mµ ψ −′ ′= Λ Λ +� . 

Observe that * * ( )o o o o o o oF F F F F F P′ ′ ′ ′ ′ ′ ′Λ Λ = Λ Λ + ΕΛ + Λ Ε + Ε Λ Ε .  Let *

kΞ  be the matrix of 

the eigenvectors corresponding to the first ( )k r≤  largest eigenvalues of * * / ( )o oF F NT′ ′Λ Λ , 

normalized such that * *

k k

k
TI′Ξ Ξ = .  Similarly, define kΞ and k

F�  for the eigenvectors of 

/ ( )o oF F NT′ ′Λ Λ  and / ( )XX NT′ , respectively.  Then, by Lemma A.10, 

(15) 

* *

1

* * * * * *2 2 2

1/2 1

2

1/2

1

1

1 1 1
trace 2 ( )

1
trace ( ) ( )

1
( ).

k o o

j j

k o o k k o k k o k

k o o k

p p

k o o

j j p

F F
NT

F F F P
NT NT NT

F F O N O N
NT

F F O N
NT

ψ

ψ

=

− −

−
=

 ′ ′Σ Λ Λ 
 

 ′ ′ ′ ′ ′ ′′ ′= Ξ Λ Λ Ξ + Ξ Λ Ε Ξ + Ξ Ε Λ Ε Ξ 
 

 ′ ′ ′≤ Ξ Λ Λ Ξ + + 
 

 ′ ′= Σ Λ Λ + 
 

 

Similarly,    

(16) 

* *

1

* *

2 2 2

1/2 1

1

1/2

1

1

1 1 1
trace 2 ( )

1
( ) ( )

1
( ).

k o o

j j

k o o k k o k k o k

k o o

j j p p

k o o

j j p

F F
NT

F F F P
NT NT NT

F F O N O N
NT

F F O N
NT

ψ

ψ

ψ

=

− −
=

−
=

 ′ ′Σ Λ Λ 
 

 ′ ′ ′ ′ ′ ′ ′ ′≥ Ξ Λ Λ Ξ + Ξ Λ Ε Ξ Ξ Ε Λ Ε Ξ 
 

 ′ ′= Σ Λ Λ + + 
 

 ′ ′= Σ Λ Λ + 
 

 

The fact that (15) and (16) hold for all 1, ... ,k r=  implies (13).  We now show (14).  By (10), 

Lemmas A.7 and A.1,  

 2 1 1

1 1 1 1[ ( ) / ( )] [ / ( )] ( / ) ( )o

p
Q NT NT c m UU M O mψ ψ ψ− −′ ′ ′Ε Λ Ε ≤ ΕΕ ≤ = .   

Thus, by Lemma A.5,  
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(17) 

( )

* *

1 1 1

* * 1

1

1 1 1
( )

1
.

k k o o o

j j j j

k o o

j j p

XX F F k Q
NT NT NT

F F O m
NT

ψ ψ ψ

ψ

= =

−
=

     ′ ′′ ′Σ ≤ Σ Λ Λ + × Ε Λ Ε     
     

 ′ ′= Σ Λ Λ + 
 

  

Also, for any 1,...,k r= , 

(18) 

( )

* *

1 * * * *2 2

* * 1

1

1 1 1
trace ( )

1
.

k k o o k k o k

j j

k o o

j j p

XX F F Q
NT NT NT

F F O m
NT

ψ

ψ

=

−
=

   ′ ′ ′ ′′ ′Σ ≥ Ξ Λ Λ Ξ + Ξ Ε Λ Ε Ξ   
   

 ′ ′≥ Σ Λ Λ + 
 

  

Then, (14) follows from (17) and (18).  

 

Lemma A.12:  Under Assumptions A – D, ( 1) (1)
p

V r O+ = . 

Proof:  Note that [ ] 2

2 , ,[ ] 2 1
( 1)

c

c

d m r m

j r NT j NT jj d m r
V r µ µ−

= + = − +
+ = Σ + Σ� � .  By Lemma A.8, 

 2 [ ] 2 2

2 [ ] [ ] [ ] 2 , 1 1

[ ] 3 1 1 [ ] 3 1 1c
c c

d m r

bm bm bm j r NT j

d m r N d m r
c U U c UU

m M N m M
ψ µ ψ−

= +

− − − −   
′ ′≤ Σ ≤   

   
� , 

 2

, 1 1[ ] 2 1

[ ] 2 1
0 c

c
m

NT jj d m r

m d m r
c UU

m M
µ ψ

= − +

− +  
′≤ Σ ≤  

 
� . 

Then, 
1 2

( 1)A V r A≤ + ≤ , where  

 ( )
2

2 2 ** *

1 2 [ ] [ ] [ ] 2

[ ] 3 1 1
1

c
c

bm bm bm p

d m r N
A c U U d c y by

m M N
ψ

− −  ′= → − 
 

, 

 ( )
2

2 2

2 1 1 1

1 1
lim 1

m p

m r
A p c UU c y

m M
ψ→∞

− −  ′= → + 
 

, 

as m → ∞ , by Lemmas A.1 and A.2, and  “
p

→ ” means “converges in probability.” 

 

Proof of Theorem 1:  By Lemma A.11, 
, , 1 , , 1

/ / (1) (1)
NT j NT j NT j NT j p p

o Oµ µ µ µ+ += + =� �  for 

1, 2, ..., 1j r= − .  By Lemmas A.11 and A.9, 

 
( ) ( )1/2 1

,,

, 1 [ (1)] /

NT r p pNT r

p

NT r p

O N O m

c o m

µµ

µ

− −

+

+ +
≥ → ∞

+

�

�
. 

By Lemma A.9, for j  = 1, ... , [ ]cd m  - 2r - 1, , , 1/ ( (1)) / ( (1))
NT r j NT r j p p

c o c oµ µ+ + + ≤ + +� � .  These 

results indicate that the ER estimator is consistent.   
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 We now show the consistency of the GR estimator.  Consider the inequalites 

(19) / (1 ) ln(1 )c c c c+ < + < , for (0, )c ∈ ∞ .  

Using these inequalities, we have that 

 

* *

, , ,

* * *

, 1 , 1 , 1 , 1

ln(1 )
(1)

ln(1 ) / (1 )
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for 1,2,..., 1, 1,...k r r= − + , kmax.  Lemma A.12 implies that  
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Using this and the inequalities (19), we have that    
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Proof of Corollary 1:  It is enough to show that ,0 ,1/ ( )
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Figure 1: Effects of Error Covariance Structure (Three-Factor Model) 

 

Panel A:  I.I.D. Errors 
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3r = , 1θ = , kmax = 8, and 0Jρ β= = = . 

Panel B: Serially Correlated Errors 
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3r = , 1θ = ,  kmax = 8, 0.7ρ = , and 0Jβ = = . 

Panel C: Cross-Sectionally Correlated Errors 
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3r = , 1θ = , kmax=8, 0ρ = , 0.5β = , and max{10, / 20}J N= . 

Panel D: Serially/Cross-Sectionally Correlated Errors 
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3r = , 1θ = , kmax=8, 0.5ρ = , 0.2β = , and max{10, / 20}J N= . 



 

 

  

Figure 2: Effects of Weak Factors (Three-Factor Model)   

 

Panel A: When All Factors Are Weak 
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r  = 3, θ = 6, ρ = 0.5, β = 0.2, J = max(10, / 20)N , kmax = 8, and  f1, f2, f3 

~ N(0,1).  

Panel B: When One Factor Is Weak  
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N = T = 100, 3r = , θ = 1, ρ = 0.5, β = 0.2, J = max(10, / 20)N , kmax = 8,  
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Figure 3: Estimation with Different Values of kmax (Three Factor Model) 
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N = T = 150, r  = 3, θ = 1, ρ = 0.5, β = 0.2, J = max(10, / 2)N , and  f1, f2, f3 ~ N(0,1). 

 

 



 

Figure 4: Effects of Small Error Variances When Large kmax is Used (Three-Factor Model) 

Panel A: Frequencies of Incorrect Estimation by ER 
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Panel B: Frequencies of Incorrect Estimation by GR 
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Panel C: Frequencies of Incorrect Estimation by ED 
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Panel D: Frequencies of Incorrect Estimation by ABC 
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N = T = 150, kmax = 100, r  = 3, θ = 1, ρ = 0.5, β = 0.2, J = max(10, / 2)N , and  f1, f2, f3 ~ N(0,1).

  



 

 

Figure 5:  Effects of Dominant Factor (Two-Factor Model) 

Panel A: Frequencies of Incorrect Estimation by ER 
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Panel B: Frequencies of Incorrect Estimation by GR 
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Panel C: Frequencies of Incorrect Estimation by ED 
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Panel D: Frequencies of Incorrect Estimation by ABC 
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2r = , 1θ = , kmax = 8, 0.5ρ = , 0.2β = , max{10, / 20}J N= , 

1
~ (0,1)f N  and  

2
~ (0, 2)f N SNR  

 

  


