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Eigenvalue Sensitivity 

Analysis for a Combined 

Beam Structure with Varying 

Constraints 

An eigenvalue sensitivity formula for a combined beam structure due to the variation of its 

shape or joint coordinates is proposed based on the Lagrange multiplier technique for a 

free vibration equation of the structure. The shape variation is decomposed into the length 

and the orientation variation of each beam to obtain individual effects on the total sensitiv­

ity. The sensitivity equations due to the length and the orientation variations are expressed 

as an energy density form and the cross product of joint forces and displacements respec­

tively. Several numerical examples are also presented to validate the proposedformulation 

and to show how to implement the idea. 

INTRODUCTION 

Eigenvalue sensitivity analysis has attracted a great at­

tention in the areas of structural design modifications 

and optimizations, since it can estimate the change of 

dynamic characteristics after modifying structures. In 

early stages, many researchers considered size of a 

structure as design variables such as thickness, cross 

sectional area, moment of inertia, and etc. Recently, 

shape sensitivity analysis has been popular in which 
design variables are structural shape itself. When con­

sidering combined substructures, composed of many 

substructures, the variations of both shape and orien­

tation of each substructure must be accounted to derive 

eigenvalue sensitivity. This work focuses on this prob­

lem. 
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Son and Kwak (1993) presented the eigenValue sen­

sitivity formula with respect to the change of bound­

ary positions using the material derivative concept. 

They utilized the tangential component of design ve­

locities at boundaries. The derived formula was ap­

plied to finding optimal support positions of beams 

and plates. Chuang and Hou (1990, 1992) also pro­

posed the eigenvalue sensitivity formula as varying the 

support positions of a beam or the joint positions of 

planar frame based on continuum approach with the 

material derivative method. Both the domain method 

and the boundary method were used in deriving the 

sensitivities. Twu and Choi (1992) derived a contin­

uum based configuration design sensitivity for built­

up structures using the consistent way as in driving 
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the shape sensltlVlty (Haug et a!. , 1986). They as­

sumed that the change of built-up structures can be ex­

pressed with its shape and orientation changes. Wang 

(1993) derived the eigenvalue sensitivi ty formula with 

respect to discrete in span occurrence members using 

the normal mode method. He obtained an explicit form 

of eigenvalue sensitivi ty by explaining that the eigen­

value sensitivi ty is directly proportional to the slope 

of its mode shape and the reaction force at the sup­

port point. Lie et a!. (1996) also derived eigenvalue 

sensitivity with respect to in span support location us­

ing the generalized variational principle of Rayleigh's 

quotient with the Lagrange multiplier method. 

In this paper, a different approach is proposed to de­

rive eigenvalue sensitivities of a combined beam struc­

ture due to its joint coordinate variations. Firstly, it for­

mulates the free vibration equation of the combined 

structure using Lagrange multiplier techniques. And 

then, it is assumed that the variation of joint coordi­

nates can be decomposed into the variations of free 

ends, joint positions, and the orientation of each sub­

beam. Thus, the resulting sensitivity can be obtained 

by summing the effects of such variations. Each effect 

is derived by taking a variation of the free vibration 

equation. A single beam structure is investigated to 

show the proposed idea before applying a more com­

plex combined beam structure. Some numerical exam­

ples are also shown to compare the accuracy of pro­

posed methods and their applicability to real problems. 

EIGENVALUE SENSITIVITY ANALYSIS FOR A 

BEAM STRUCTURE 

In the filed of eigenvalue sensitivity analysis of a struc­

ture with varying its shape or constraint positions, ear­

lier authors considered boundary conditions or con­

straint positions in an implicit manner. That means that 

they did not include constraint equations in the free 

vibration equation. However, this work will incorpo­

rate constraint equations in the free vibration equation 

through the Lagrange multiplier technique. This ap­

proach has several advantages. Firstly, it can provide 

a systematic way to derive sensitivity equations when 

the design variables are structural shape and constraint 

position. Secondly, it can be applied to complexly 

combined structures or a structure having multiple 

supports or substructures. That is because the free vi­

bration equation of those structures is easily expressed 

using the Lagrange multiplier techn ique. Lastly, the 

accuracy can be improved considerably, since it uses 

force information instead of higher derivatives of dis­

placement at constraint positions. Those facts will be 

clearly shown in later sections. 

~=L~A 

Orig'mli ~ 
Varied 

(a) Shape variation of a beam 

i tl~J 
(b) Free Deployment 

(c) Constraint Movement 

FIGURE 1 Assumptions on the shape variation of a beam. 

To clarify the idea, the approach is developed for a 

single beam structure. 

Before deriving sensitivity equations, we made an 

assumption regarding the shape or the length variation 

of the beam. Figure 1 clearly shows the assumption. 

As shown in that figure, the shape variation is assumed 

to be two consecutive steps - free end deployment and 

constraint movement. Then the resulting sensitivity is 

obtained by summing each of the effects. The effect 

on sensitivity due to the free deployment can be easily 

derived by utilizing the conventional sensitivity equa­

tion, and the one due to the constraint movement is 

obtained by a method proposed in this section. 

The same procedure developed in this section will 

be extended for a combined beam structure in the fol­

lowing section. 

Previous Study 

Haug et a!. (1986) solved this problem using the ma­

terial derivative concept. They used a variational form 

of the free vibration equation, and the boundary con­

dition was treated in an implicit manner. The resulting 

sensi tivity of a uniform beam is Eq. (1) when its end 

at ~ = L is deployed as shown in Fig. 1 (a). 

A,L = -ApAu 2 (L) - EJu ,m (L)u , ~ (L) 

+2EJu,€ ~ (L), (1) 

where L , p, A, J, and E are the length, mass densi ty, 

cross-sectional area, moment of inertia, and Young's 

modulus respectively. A and u are the eigenvalue and 



the eigenfunction, respectively. A variable following 

a comma with a subscript variable denotes the partial 

derivative of the variable with respect to the subscript 

variable. The second and third terms in Eq. (1) can be 

eliminated depending on the boundary condition, e.g., 

both are zero for free end. 

Free Vibration Equation 

One of the main ideas in this work is using Lagrange 

multipliers to formulate the free vibration equation of 

a constrained structure. The free vibration equation 

of a beam, whose transverse displacement at ~ = s 

is fixed, is formulated using the Lagrange multiplier 

method (Reddy, 1986). 

a(u(~), u(~)) - Ad(u(~), u(~)) 

+lu(~)I~=s = 0, (2a) 

u(~)I~=s = 0, (2b) 

where u is the kinematically admissible displacement 

and 1 is the Lagrange multiplier. The kinetic and po­

tential energy bilinear forms for a beam, a(·, .) and 

d(·, .), are 

a(u, u) = foL Elu,~~ u,~~ d~, (3a) 

d(u,u) = foL pAuud~. (3b) 

The eigenValue and eigenfunction must satisfy Eq. (2) 

for all kinematically admissible displacement. The 

eigenfunction is normalized as, 

d(u, u) = 1. (4) 

Earlier authors did not include constraint equations in 

the free vibration equation, since they used kinemati­

cally admissible functions satisfying the constraints. 

Eigenvalue Sensitivity on Free End 

Deployment 

The eigenvalue sensitivity due to free deployment 

without the movement of constraint (8s = 0), as 

shown in Fig. 2, can be derived using Eq. (1). Even 

though Eq. (1) was derived for a beam having no kine­

matic constraint within its domain, it also holds for 

a constrained beam if the constraint does not move 

with the end deployment. This can be easily proven 

by defining a local design velocity field near the free 

end as in Son and Kwak (1993). Then the sensitivity 

becomes 

(5) 
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Original beam 

Varied beam 

FIGURE 2 Shape variation of a constrained beam. 

where A,F denotes the sensitivity due to the deploy­

ment of the free end. Equation (5) is also satisfied 

when the constraints located at the end of the beam 

because the deployed part is also free, as shown in 

Fig. l(b). 

Eigenvalue Sensitivity on Constraint 

Movement 

Many authors studied eigenvalue sensitivity analysis 

with varying constraint position (Rou and Chuang, 

1990; Wang, 1993; Liu et al., 1996), but no one in­

cluded constraint equations in the free vibration equa­

tion. 
To derive the sensitivity based on Eq. (2), Eq. (2a) 

is differentiated with respect to constraint positions, 

s, after substituting u for u into that equation. In this 

process, the length of the beam does not change (8L = 

0). Then the sensitivity becomes 

A,s = 2[a(u, u,s) - Ad(u, u,s)]. (6) 

A normalizing condition is used. Since the constraint 

equation must be satisfied before and after the vari­
ation of constraint position, the derivative of the La­

grange term becomes zero. One can also substitute U,s 

for u in Eq. (2a) to obtain Eq. (7), because the eigen­

function is also a member of admissible functions even 

after the variation of constraint position. 

a(u,s , u) - Ad(u,s , u) + lu,s (s) = o. (7) 

From Eqs. (6) and (7), the sensitivity becomes 

A,s = -2lu,s (s). (8) 

Another important relationship is obtained by taking 

the derivative of the constraint equation, Eq. (2b), with 

respect to s. By noting that the eigenfunction is func­

tion of both the domain variable, ~, and the constraint 

position, s, the derivative of the constraint equation be­

comes 

[u(~, s)I~=J,s = u,s (s) + u,~ (s) = o. (9) 
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One can reach the same result using Taylor series ex­

pansion of eigenfunction at ~ = s. From Eqs. (8) and 
(9), the sensitivity becomes 

A,S = 21u,~ (s). (10) 

Examining Eq. (2a), it is clear that the Lagrange mul­

tiplier is the constraint force with a minus sign. Thus, 

the final form of sensitivity due to constraint move­

ment becomes 

A,S = -2lvu,~ (s) (11) 

where Iv is the vertical reaction force at the constraint 

position. If the constraint is in rotational displacement 

instead of in transverse displacement, following the 

same procedure, the sensitivity becomes 

(12) 

where 1M is the moment at the constraint. Since u,H 

is not continuous across the constraint position, the av­

eraged value, u,H, is used. Let the position of the dis­

placement constraint and the rotational displacement 

constraint coincide and move to the end of the beam, 

then the sensitivity becomes 

A,S = -2lvu,~ (L) - fMu,~~ (L). (13) 

The averaged value of the second derivative of the 

eigenfunction becomes u,H /2 as the constraint point 

moves to the free end. 
The resulting form of the shape eigenvalue sensi­

tivity is obtained by combining Eqs. (5) and (13), 

A,L = -ApAu2(L)-2lvu,~ (L)- fMu,H (L). (14) 

It is clear that Eq. (14) is the other form ofEq. (1) by 

considering the classical beam theory which associates 

internal forces and displacements. Thus, the proposed 

procedure can be an alternative to deriving sensitivity 

equations. The usefulness of this procedure is verified 
in later sections. 

EIGENVALUE SENSITIVITY ANALYSIS FOR A 

COMBINED BEAM STRUCTURE 

A combined beam structure is a structure composed of 

multiple beams connected by constraints or joints. The 

shape eigenvalue sensitivity of the structure is the vari­

ation of the eigenvalue due to the variation of its joint 

coordinates. Some authors have derived the sensitivity 

formula using the material derivative concept (Chuang 

and Hou, 1992; Twu and Choi, 1992). 

-- Original beam 

........ Varied beam 

(a) Shape variation of (b) Free deployment 

combined two beam structure 

...... , ....... . ~ .•.. 

......... ...- .............• 

(c) Joint movement (d) Orientation change 

FIGURE 3 Shape variation of combined two beams. 

The shape eigenvalue sensitivity for a combined 

beam structure is derived in this section by using the 

same procedure developed in the previous section. 

A similar assumption, as made in the previous section, 

is applied to describe the variation of shape or con­

figuration of a combined beam structure. In order to 

achieve the final configuration, it is assumed that the 

original structure is varied in three consecutive steps 

- end deployments, joint movements, and orientation 

changes of sub-beams as shown in Fig. 3. Thus, the 

shape eigenvalue sensitivity can be considered as com­

bined effects of free end deployment, joint movement, 

and orientation change of each sub-beam. 

Only a planar beam is considered in this work, but 

the proposed approach can be extended to spatial beam 

structures without further difficulties. 

Free Vibration of Combined Beam Structure 

Figure 4 shows two beams, which are connected by 

joint j at position S j of a structure composed of n 
beams and m rigid joints. The free vibration equation 

of the structure is formulated using the Lagrange mul­

tiplier method as follows. 

n 

L (a (uCi) , u Ci» - M(uCi), u Ci») 
i=l 

m 

+ Ll](uCjl)(Sj) - U(j2) (Sj») 

j=l 

m 

+ L1Mj(u,Vl) (Sj) - u,V2) (Sj») = 0, (15a) 

j=l 



Jointj 

V2 j(JI) j(i2) f (i
l
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j iii) j il12) 
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~) 

LBeamjl Beamj2 ~ 

FIGURE 4 Two beams connected by joint j. 

u(j1)(Sj) - U(j2) (Sj) = 0, 
(jl) (j2) 

U,~ (Sj) - U,~ (Sj) = 0, 

for j = 1, ... , m, (I5b) 

where u is displacement vector composed of trans­

verse displacement, u, and longitudinal displace­

ment, v. I is the vector of Lagrange multipliers for the 

displacement constraint and 1M is the Lagrange mul­

tiplier for the rotational displacement constraint. The 

superscript T denotes transpose of a vector or a matrix 

and (i) on a variable denotes that the variable belongs 

to beam i. The eigenvalue and eigenfunction must sat­

isfy Eq. (15) for all kinematically admissible displace­

ments, v and it. The kinetic and potential energy bilin­

ear form of each beam is 

Normalization condition is also used. 

n 

Ld(u(i), liCi») = 1. (17) 

i=l 

Eigenvalue Sensitivity on Free End 

Deployment 

As shown in Fig. 3(b), since the internal force and the 

moment are zero in the deployed section of the beam, 

only the kinetic energy terms have effect on the sensi­

tivity due to the free deployment as in the case of the 
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single beam of previous section. Thus the eigenvalue 

variation due to free deployment is 

n 

8AF = 'L).pCi)ACi)(lluii)1128Lii) -llugJ I1 28Lg») 

i=l 
(18) 

where subscripts 1 or 2 denote that the value is eval­

uated at ~Cl) = ° or ~(l) = L(i) respectively. 8Ll and 

8L2 are the length variation at the ends of a beam. II . II 
denotes a norm operator. 

Eigenvalue Sensitivity on Joint Movement 

Following the same procedure for the case of a con­

strained single beam, the sensitivity is obtained when 

joints move to the varied ends as shown in Fig. 3(c). 

One can obtain the equation caused by the joint move­

ments as follows. 

8AC = 

_ "(f Ci ) Ci) + 2f(i) Ci) + f(i) (i) ) ~LCi) 
~ Ll Vl,~ VI Ul,~ MIUl'H 0 1 

(19) 

where fLi' fVi, and fMi are the constraint forces as 

in Fig. 4. The detailed derivation will not be shown 

because of its complexity. 

Energy Density Form 

Even though the sensitivity due to shape or length vari­

ation of each sub-beam is the sum of Eqs. (18) and 

(19), there is a general form which governs it. The 

form can be derived by applying those equations to 

a single beam base, which is considered as two com­

bined beams as shown in Fig. 5. Then, the sensitivity 

is the sum of the effects of free deployment and joint 

movement of beam 1. 

Since the constraint forces in Eq. (20) are also the in­

ternal forces at ~ = s of the original beam, Eq. (20) 

can be rewritten as 

8AL = -(ApA Ilu(s) 112 + gds)v,~ (s) 

+2gvu,~ (s) + gM(s)U,H (s))8L, (21) 
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11------
(a) Original beam 

ill ~=s 
!~!r-l"L1:B;:e=am::-:ll----:·~~L-B-e-am-2--

(b) Combined two beams 

m i& ,.t. ----------~:~~~-----
(c) Free deployment of beam 1 

;,.. .. ·.! .. ·I~ .~ +HJ--------:.. ___ L_---1 

(d) Constraint movement of beam 1 

(e) Internal forces at ~=s 

FIGURE 5 Shape variation of a single beam with a con­

cept of two beam structure. 

where g L, gv, and gM are the internal forces of the 

original beam at s as in Fig. 5(e). However, the sen­

sitivity is independent of the constraint position, s, 

Eq. (21) holds for every point,~. Thus, we can define 

a constant variable for a uniform beam which governs 

the shape eigenvalue sensitivity of a beam 

E(~) = constant, 

where, 

E(O = EK(~) + Ep(~), 
EK(~) = ApAllu(~)1I2, 

Ep(~) = gLv,~ (~) 

(22) 

(23 a) 

(23b) 

+ 2gvu,~ (~) + gMu,H (~), (23c) 

E, E K, and E p will be called energy density form 

and kinetic and potential energy density form respec­

tively. It is noticeable that the shape sensitivity of a 

beam can be obtained from the properties at any point 

of the beam domain including the boundary. That is 

the extension of the conventional sensitivity, Eq. (1), 

which is evaluated only at the boundary. 

Eigenvalue Sensitivity on Orientation Change 

Figure 3(d) shows the orientation variation after the 

deployment of the free end and the movement of the 

joint. The eigenvalue sensitivity is also derived by ap­

plying the proposed procedure. Then the sensitivity 

becomes 

oAg = -2 ~I~(_a_u(j!)(s(/!))oe(j!) 
~ J ae(]!) 1 
j=! 

___ a ._u(j2) (s(~2))8e(j2)). (24) 
ae (]2) J 

Equation (24) is also rewritten as follows: 

0.1. = -2 ~ (r.i)T_a_. uti) + f(i)T_a_. u(i))oe(i) 
g ~! ae(l)! 2 ae(l) 2 ' 

i=! 
(25) 

where f denotes the joint force vector. The term in 

Eq. (25) can be also written as 

fT ~u = fT ~(A(e)u) 
ae ae 

= fT ~ (A(e) )AT (e)u, (26) 
ae 

where u is the displacement vector expressed in the 

local coordinate of a beam and A(e) is the transfor­

mation matrix from the local coordinate system of a 

beam to the global coordinate system. Using the cross 

product of vectors, Eq. (26) becomes 

:r a 
f -U= -fx u·n 

ae z' 
(27) 

where Uz is the unit normal vector to the plane where 

the structure locate. Thus the eigenvalue variation can 

be expressed as 

n 

oAg = 2 L (f~i) x u~i) +~) x ug)) . DzOe(i). (28) 

i=! 

Finally, the shape eigenvalue sensitivity of a com­

bined beam structure is obtained using the energy den­

sity form and Eqs. (21), (23), and (28) 

n 

0.1. = - L E(i)oL(i) 

i=! 
n 

+ 2 L (~i) x u~i) +~) x ug)) . DzOe(i). (29) 

i=! 

Calculation of Eigenvalue Sensitivity 

From the classical beam theory which associates in­

ternal forces and deflections, the energy density form, 



Eq. (23), can be expressed in three different ways: 

E(~) = ApA(v2 + u2) 

+ gL v,~ +2gvu,~ +gMu,H, (30a) 

E(~) = ApA(v2 + u2) 

+ EAv,~ -2E1u'~H u,~ +E1u,~~, (30b) 

E(~) = ApA(v2 + u2) 

g'i g~ 
+ EA + 2gvu,~ + E1· (30c) 

If E(~) is to be evaluated at the joint position (~ = 0 

or L), then the internal forces become joint forces. The 

joint forces are obtained by using the discrete version 

of free vibration equation, Eqs. (15) 

[K - AM]{u} + C{l} = {O}, 

CT{I} = {O}, 

(31a) 

(31b) 

where {u} and {I} are the eigenvector and the Lagrange 

multiplier vector respectively. The mass and stiffness 

matrices, M and K, are made by simply augmenting 

the mass and stiffness matrices of sub-beams, thus 

those are block diagonal matrices. C is a constraint 

matrix to connect sub-beams at joints, and that is usu­

ally Boolean matrix. The external force vector is 

{f} = -C{l} = [K - AM]{u}. (32) 

Since the joint forces are only the external forces, the 

joint forces can be obtained from {fl. The procedure 

to obtain energy density fonn can be summarized as 

follows: 

(i) Solve eigenvalue problem of the corresponding 

structure. 

(ii) Obtain v,~, u,H, and u'H~ from known 
element shape functions and eigenvector. 

(iii) Form M and K using mass and stiffness 

matrices of sub-beams. 

(iv) Obtain joint forces from the external force 

vector. 

(v) Obtain E using Eqs. (30). 

If the internal forces need to be evaluated at a certain 

point of a beam, the same approach can be applied by 

treating the beam as two beams which are rigidly con­

nected at that point. 

From the first of Eqs. (30), we will call the 

mixed, displacement, and force equation of method. 

The displacement method uses only displacement in­

formation, thus it is readily applicable after solving 

the eigenvalue problem of considering structure. The 
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mixed method is the direct result of the proposed ap­

proach. The force method utilizes any possible force 

information. The accuracy of those methods will be 

compared in the following section by investigating 

several examples. 

EXAMPLES 

Analytic Beam 

Since the exact eigenvalue of a cantilevered beam, 

which one end is fixed at ~ = 0 and the other end is 

free at ~ = L, is known as Eq. (33a) in Blevins (1979), 

the analytical fonn of its shape eigenvalue sensitivity 

is Eq. (33b) 

e4 E1 
A=-­

L4 pA' 

c4 E1 
A,L= -4 L5 pA' 

(33a) 

(33b) 

where e is a constant and that is 1.8751 for the first 

mode. The same sensitivity equation can be obtained 

using the conventional sensitivity equation, Eq. (1), 

and the exact eigenfunction, Eq. (34), at ~ = L 

u = J pIAL [ cosh f x - cos f x 

sinh e - sin e ( . he. e ) ] - sm -x - sm - x . 
coshe + cose L L 

(34) 

But it is not difficult to show that the sensitivity can 

be also obtained using the analytic eigenfunction irre­

spective of ~ from the proposed equations, Eqs. (29) 

and (30b). Figure 6 shows the kinetic and potential en­

ergy densities for the first mode in case of L = 1 and 

E 1 / pA = 1. SI units are used in all examples. 

60 

~ 
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.;J 

5 
0 
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....................... L E=EK+E
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Ep(,;} ;............ .// 
.. , 

//)<. ..... . 

,.,./ 'E @ 
,.~ K 

-.---.-.-.---.-.-.-.-.---.-.-.~ .... 

0.0 0.2 0.4 0.6 0.8 1.0 

FIGURE 6 Energy densities of a cantilevered beam. 
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FIGURE 7 A stepped beam with a support. 
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FIGURE 8 Energy densities of a stepped beam with a 
support (0: displacement method, 0: mixed method, and 
0: force method). 

A Stepped Beam with a Support 

The proposed method can be easily applied to obtain 

eigenvalue sensitivities of a beam when its in-span dis­

crete components move. The components could be a 

support, step, spring, substructure, and etc. Figure 7 

shows an example of that beam. It has a support at 

~ = 1 and a step at ~ = 2.S. To apply the proposed 

method, the beam is treated as a three unifonn beam 

structure joined at the support and the step position. 

The energy densities are numerically obtained us­

ing the proposed three methods to verify the conserva­

tive property of the densities in the unifonn beam do­

main and to study the error characteristics of the meth­

ods. Five elements per beam are used for finite ele­

ment modeL Figure 8 shows the conservative property 

clearly. The force method provides the most accurate 

results but the displacement method shows some er­

rors especially near joints. This aspect is identical with 

the characteristics of the finite element displacement 

method which usually provides inaccurate results for 

the derivative of displacements or stresses at discon­

tinuous points. 

The sensitivity fonnula due to the support or the 

step movement can be expressed explicitly by apply­

ing the proposed method, since the sensitivity is sim­

ply the difference of energy density fonns of two 

neighboring beams. For the support movement, be­

cause only the internal shear forces are not continuous 

at the support position, the sensitivity becomes 

A' = E(2)(0) - E(I)(1) 

( (2) (I») 
= 2 Iv (0):- Iv (1) u,~ (1). (3S) 

The difference of internal shear forces in Eq. (3S) is 

the support reaction force. 

The sensitivity with respect to the variation of the 

step position becomes 

A' = E(3) (0) - E(2) (1.S) 

= Ap(A2 - Al)u2(2.S) 

2 1(1 1) + I m (2.S)- - - - . 
E h It 

(36) 

Equation (36) shows that the discontinuities of area 

and inertia moment affect the eigenvalue sensitivity. 

The eigenvalue sensitivities with respect to step po­

sition variation are numerically obtained and the re­

sults are compared with those of the finite difference 

method. The forward and backward finite difference 

methods are used. 

, A(S + os) - A(s - os) (37) 
AFDM = . 

20s 

Two, five, and ten elements are used in meshing each 

beam, and the results are summarized in Table 1. The 

first eigenvalue decreases as the step moves to right 

but the second and third eigenvalues increase. The re­

sults of the mixed and force methods agree well with 

those of the finite difference method. The displace­

ment method gives almost useless results for this ex­

ample. The reason is that it uses the derivation of v 

and the second and third derivation of u at the stepped 

point, and those values from the finite element tech­

nique are usually inaccurate especially at such a dis­

continuous point. The eigenvalues and sensitivities are 

converge as the number of elements increase. 

Two Beam Structure 

The proposed methods are applied to two beam struc­

tures as shown in Fig. 9. If the joint position is moved 

in the ~ direction, the length of the lower beam and the 

length and orientation of the upper beam are changed. 
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Table 1. Eigenvalue Sensitivities for a Stepped Beam with a Support 

Disp. M. MixedM. ForceM. 

Mode Mesh A' A' A' 
AFoM A _D_~ i?'-% r% Beam A' IJ 

FDM FDM FDM 

2 0.760 240.11 99.96 100.12 -0.340 

5 0.760 162.10 99.96 100.00 -0.340 

10 0.760 132.12 99.99 100.00 -0.340 

2 23.569 137.82 94.39 99.39 828.62 

2 5 23.442 109.01 99.61 99.98 809.57 

10 23.438 102.53 99.95 100.00 808.96 

2 116.838 53.80 93.69 94.21 2.620E4 

3 5 114.397 76.59 98.71 99.81 2.335E4 

10 114.313 88.21 99.64 99.99 2.327E4 

Table 2. Eigenvalue Sensitivities for Two Beam Structure 

Displacement variation (x) Angle variation (0) 

1 

Mode 

1 

2 

3 

4 

ApA A' A' 

ET f,D-% f,M-% 
FDM FDM 

6.45 96.12 100.05 

22.93 106.04 99.74 

36.32 127.16 99.95 

107.2 100.86 100.07 

E=200xl09 Pa 

p=7800 kg/m3 

A=O.06m2 

1=0.0003 m4 

y 

~% 
A~M 

100.03 

100.13 

100.21 

101.20 

I------------~_x 

2m 
FIGURE 9 Example of two beam structure. 

Thus, the eigenvalue variation is the sum of the shape 

sensitivities of each beam and the orientation sensi­

tivity of the upper beam multiplied by corresponding 

variations. The results are compared with those of the 

finite difference method and summarized in Table 2. 

Five elements per beam are used for the finite element 

model. The energy densities are taken at the joint. The 

results show that if the joint position moves in x direc­

tion, the eigenvalues decrease. The mixed and force 

methods provide almost equal results with the finite 

difference method. But the displacement method gives 

A' M A' A' A' pA 
FDMEI r% r% FDMEI FDM FDM 

-11.329 99.85 100.00 6.910 

-37.832 100.12 100.00 4.430 

-67.660 102.02 100.00 14.996 

-97.368 106.83 100.60 -7.515 

inaccurate results. Table 2 also shows the sensitivi­

ties when the orientation between two beams is var­

ied. There are almost no differences between the re­

sults from the force method and the finite difference 

method. The displacement method shows little dis­

crepancies. 

A Truss Beam Structure 

The proposed methods are applied to a truss structure 

composed of twelve beams to study the applicabil­

ity of the method to a complex beam structure. The 

original and the perturbed configuration are shown in 

Fig. 10. After the configuration variation, the length of 

nine beams and the orientation of six beams are varied. 

The sensitivities by force, mixed, and displacement 

methods are also obtained and the results are com­

pared with those from the finite difference method. 

Five elements per beam are also used in meshing the 

structure. As displayed in Table 3, the first four eigen­

values are raised for the varied configuration. All of 

the three methods provide satisfactory results and the 

pattern of errors is also the same as that of the previ­

ous examples. From this example, it is believed that 
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4m 

I' 
0.5m 

0.05m1E 
II 

--Original structure 

.......... Perturbed structure 

4m 4m 

E=200xI09 Pa 

Ilro.2m p=7800 kglm3 

<Beam cross section> 

FIGURE 10 Example of a truss beam structure. 

Table 3. Eigenvalue Sensitivities for Truss Structure 

~ J..' J..' J..' 
A' M Mode 

EI J?L% i?"-% r% FDMEI 
I'DM I'DM I'DM 

0.0718 99.12 99.80 100.02 0.0127 

2 0.1443 97.02 99.57 100.08 0.0213 

3 0.1779 96.20 99.57 100.Q7 0.0460 

4 0.2704 94.77 99.83 100.26 0.1088 

the proposed method can be applied to complex beam 

structure. The accuracy of the force method and the 

mixed methods is almost the same as the finite differ­

ence method. 

CONCLUSIONS 

A procedure is proposed to derive the eigenvalue sen­

sitivity of a combined beam structure due to the vari­

ation of its joint coordinates based on the Lagrange 

multiplier technique for the free vibration equation. 

The sensitivity is obtained by taking the variation of 

the equation. The configuration variation of the struc­

ture is decomposed into the variations of lengths and 

orientations of sub-beams. It is found that the sensi­

tivity due to length variations of sub-beams is deter­

mined by an energy density form, and this form is 

conservative on the uniform beam section. The sen­

sitivity due to orientation variation is represented by 

the cross product of joint forces and displacements. 

The displacement, mixed, and force methods are sug­

gested to calculate the sensitivities, and it is shown that 

the force method provides the most accurate results. 
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