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The concept of shrinkage, as (1) a statistical phe-
nomenon of estimator bias, and (2) a reduction in ex-

plained variance resulting from cross-validation, is ex-
plored for statistics based on sample eigenvalues.
Analytic solutions and previous research imply that the
magnitude of eigenvalue shrinkage is a function of the
type of shrinkage, sample size, the number of vari-
ables in the correlation matrix, the ordinal root posi-
tion, the population eigenstructure, and the choice of
principal components analysis or principal factors
analysis. Hypotheses relating these specific indepen-

dent variables to the magnitude of shrinkage were
tested by means of a monte carlo simulation. In par-
ticular, the independent variable of population eigen-
structure is shown to have an important effect on
shrinkage. Finally, regression equations are derived
that describe the linear relation of population and
cross-validated eigenvalues to the original eigenvalues,
sample size, ordinal position, and the number of vari-
ables factored. These equations are a valuable tool that
allows researchers to accurately predict eigenvalue
shrinkage based on available sample information.

Sample-based factor analysis has become an important tool in many areas of psychology ranging
from industrial/organizational theory to models of personality. The technique has also been criticized on
a variety of dimensions (cf. Arrnstr&reg;n~9 1967). Perhaps the most common criticisms are based on the
psychometric freedom a researcher has in using factor analysis to generate a model. There is wide latitude
in the choice of particular factor models (e.g., unities or communalities in the correlation matrix) and of
decision rules (e.g., the number of factors) as well as latitude in the verbal interpretation of the results
of a factor analysis. A second basis for concern stems from the largely unanswered question of the degree
to which sample-based factor statistics estimate their respective population parameters.

After conducting sample-based principal components (or principal factors) analyses, it has become

fairly routine practice to report the value of X~X,, where the X; are the sample eigenvalues and k is the
number of components (or factors) extracted. In general, k is substantially less than the number of original
variables, p (cf. Everett, 1983, or Zwick & Velicer, 1982, for reviews of stopping rules). Note that if a
correlation matrix (with unities in the diagonal) is factored, then the total variance (for all variables)

equals the number of variables, p. Thus, a common statistic in the psychological literature is ~ilp, which
is interpreted as the proportion of total variance accounted for by the ith principal component. Similarly,

~k_,~.;lp can be used as an index of the proportion of variance accounted for by the first k principal
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components. In social science research, the magnitude of.S~X, is often used to demonstrate the practical
significance of the analysis; that is, to show that the k factors span a sufficiently large portion of the p-
dimensional variable space. Assuming that the correlation matrix is nonsingular, allp principal components
are required to explain all of the variance. 1~&reg;~ever, in the majority of instances, the first few principal
components will account for most of the variance.

Given that the above statistics are routinely reported (e.g., for invoking the practical significance of
the results), concern is with their accuracy as point estimates. That is, if the k extracted components are
used in future samples, to what extent will they continue to explain the same proportion of total variance?

Or, to what extent does the sample-based value of 2~,X, reflect the population value .2~,X,? These
issues, generally labeled &dquo;validity shrinkage&dquo; in multiple regression literature (e.g., Darlington, 1968),
are crucial for the accurate interpretation of sample factor results. The purpose of this paper is to determine
the severity of eigenvalue shrinkage and to develop equations for predicting the magnitude of such

shrinkage.

Shrinkage

Lee and Comrey ( 1979) have indicated that principal components form the basis for more than two-
thirds of all factor analyses reported in the literature. It is crucial to remember that each principal component
is derived from a maximization perspective. For example, the first principal component is the linear
combination of variables which maximizes the variance of that combination in the original sample (subject
to the constraint that the squared weights sum to 1.0). Also, it is crucial to remember that such sample
eigenvalues are based on all properties of the sample-including sample idiosyncracies. Thus, it would
be expected that application of the first few original eigenvectors to a new sample would result in composite
variances that are generally less than the original eigenvalues. This expected reduction in variance is

labeled &dquo;shrinkage.&dquo; 
9

Note that since the total variance in a correlation matrix is constant (i.e., always equal top), such
overestimation of population eigenvalues will occur only in the early eigenvalues (i.e., the first few that
are extracted). Practically speaking, however, this is the area of interest since principal components
analyses generally focus on the first few emergent dimensions.

The above anticipates two classes of definitions for shrinkage. First, how much do sample eigenvalues
overestimate population eigenvalues? Second, how much will eigenvalues, developed in an original
sample, shrink when the original weights (eigenvectors) are applied to a new sample? Both definitions
are developed in the Appendix. The first definition is analogous to the multiple regression shrinkage
formula developed by Wherry ( 1931 ) the second definition is analogous to formulas developed by Lord
(1950) and Nicholson (1960). Given results in multiple regression (cf. Darlington, 1968), it is hypothesized
that the second (cross-validation) definition of shrinkage is associated with greater eigenvalue loss.

Parallel Analysis

Parallel analysis (Horn, 1965) is a factor technique that is related to eigenvalue shrinkage. In the
context of factor extraction (i.e., determining 7c), Horn suggested that factors be extracted only if their

eigenvalues were greater than eigenvalues obtained from a &dquo;random&dquo; correlation matrix (i.e., based on
a sample drawn from a population identity matrix). The underlying assumption is that, because of the
freedom to capitalize on chance correlations in the sample matrix, the first few eigenvalues are inflated
estimates of the corresponding population eigenvalues.

Rather than generate a random correlation matrix each time a parallel analysis is to be conducted,
Montanelli and Humphreys (1976) have empirically derived equations for the purpose of estimating the
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expected value of random eigenvalues (from identity populations). Based on a degrees of freedom rationale,
they fit a separate equation for eigenvalues of different ordinal positions (i = 1 ... , p) to predict eigen-
values (ti) generated from random samples. The general form of their equations is

They generated equations for 21 levels of p (ranging from 6 to 90) and 4 levels &reg;f ~1 (ranging from 25
to 1,533). When using these results, factors are to be retained for further analysis if their respective
sample eigenvalues are greater than those predicted by Equation 1. This technique has been implemented
in a variety of research contexts, including the analysis of binary items (Green, 1983) and the theory of

performance ratings (Harvey, 1982; Hulin, 1982).

Shrinkage Formula

In multiple regression literature, equations for predicting shrinkage typically use sample information,
such as the sample multiple correlation, sample size, and the number of independent variables (see Cattin,
1980, for a review of these formulas). These equations can be used as substitutes for half-sampling or
other cross-validation schemes (Murphy, 1983).

Regarding estimates of eigenvalue shrinkage, Equation 1 provides a first estimate of the degree to
which the magnitude of a sample eigenvalue, ti, is due to the sample-based maximization criterion of

principal components. That is, parallel analysis provides an initial answer to the question, 6 ‘H&reg;~ much

will eigenvalues shrink in cross-validation?&dquo; However, as noted above, previous efforts were motivated

by factor selection, not shrinkage. Thus, several crucial elements are still lacking in Equation 1.
First, the degree of shrinkage may be a function of the magnitude of ti and not just of the ordinal

position. This is analogous to the fact that shrinkage in multiple correlations is dependent on the sample
value &reg;f ~22. Thus, Equation 1 should be amended to include ti as a predictor of ki.

Second, the equations of Montanelli and Humphreys (1976) are based on samples from identity
populations (mutually uncorrelated variables). It is demonstrated below that shrinkage of eigenvalues
depends on the underlying population covariance structure. Thus, the present analysis varied this structural

aspect, added ti as a predictor, and generated equations useful for estimating eigenvalue shrinkage in

applications of factor analyses.

of Eigenvalue Shrinkage

An analytic solution for eigenvalue shrinkage for the special case &reg;f p = 2 is given in the Appendix.
It is obvious that this limited case has few direct applications, given that the general goal of principal
components analysis is a systematic reduction of a relatively large variable space. Nevertheless, the
derivation is of heuristic value. Specifically, shrinkage in factor analysis is hypothesized to be a function
of (1) the sample size, N, (2) the number of variables factored, p, (3) the population eigenstructure, (4)
the two definitions of shrinkage (see Appendix), (5) the ordinal position of the principal component, i,
and (6) use of 1.0 or communalities in the main diagonal of the sample correlation matrix.

Sample a~~ ~~~~1~~&reg;~ Size

From the results in the Appendix, it is hypothesized that eigenvalue shrinkage is greater when p is

large and A~ is small. This is consistent with Montanelli and ~~anphreys9 (1976) results and analogous
to multiple regression results (cf. Cattin, 1980).
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Eigenstructure

Shrinkage should also be a function of the population eigenstructure. That is, if the first population
eigenvalue is relatively large, then sample estimates should have proportionately less shrinkage. Following
a procedure by Cliff (1970), correlation matrices in the current study were varied according to their

pattern of eigenvalues,. The three patterns were identity matrices, slow-descent eigenstructures, and steep-
descent eigenstructures. For identity population matrices all intercorrelations are zero, and hence, all

eigenvalues equal one. For steep-descent eigenstructure populations, the eigenvalues displayed large
changes in magnitude from one ordinal position to the next. The slow-descent eigenstructure populations
represented an averaging of the identity and steep-descent populations. Note that the identity matrix was
included in the study for reasons of completeness and for generating slow-descent matrices. In practice,
application of Bartlett’s (1954) test for sphericity would usually preclude a factor analysis of sample
correlation matrices drawn from identity populations.

Ordinal Position

Assuming that shrinkage is a result of the freedom of sample estimates to capitalize on chance
anomalies in the sample, it is hypothesized that the first eigenvalue is associated with greatest shrinkage.
Subsequent eigenvalues should exhibit successively smaller shrinkage. This hypothesis is also consistent
with the empirical findings of Montanelli and Humphreys (1976).

Conxgxxunality Estimation

As noted earlier, the unities in the main diagonal of a sample correlation matrix are often replaced
by communalities (the principal factors approach). It is hypothesized that shrinkage is increased by this

principal factors approach because an additional set of parameters (communalities) is introduced into the

process, with no change in sample size.

Method

A monte carlo simulation was used to examine the above hypotheses. The general method was (1)
to construct population matrices with properties corresponding to the levels of the independent variables,
(2) to generate sample correlation matrices from these populations and obtain their eigenvalue decom-

position, and (3) to cross-validate the sample results to gain data corresponding to the two types of

shrinkage.

~~p~~a Design

The independent variables were arranged to yield a split plot factorial design with between replications
factors of: (1) the type of eigenstructure of the population correlation matrix, (2) the number of variables
factored, p, (3) the pll~ ratio that, jointly with p9 sets the sample size, N, and (4) the specific population
matrix that was nested within the eigenstructure factor. The within replications, or repeated measures,
factors were ( 1 ) the type of shrinkage, (2) the use of communality estimates versus the use of unities in
the diagonal of the factored correlation matrices (i.e., principal factors analysis vs. principal components
analysis), and (3) the ordinal position of the eigenvalues.

Three types of population eigenstructures were used in the study. They were: (1) identity correlation

(and thus equal eigenvalue) matrices, (2) eigenvalue matrices in which the eigenvalues showed relatively
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large sequential reductions in magnitude (steep-descent structure), and (3) eigenvalue matrices in which
the eigenvalues had magnitudes halfway between the identity and the steep-descent eigenstructures (slow-
descent structure). The rules used to generate these eigenvalues are given below.

The three levels of the number of variables, p, were 10, 20, and 30. These levels were chosen to
be representative of many factor analytic studies while also being small enough to allow rapid eigenvalue
decomposition of the sample correlation matrices, thus allowing a large number of samples to be drawn.

The four levels of the pIN ratio used in the study were: 1/2, 1/4, 1/s and 1/2o. Given the level ofp, 9
these ratios were obtained by setting the sample size, TV, to the appropriate level. The ratios were

representative of the majority of factor analytic studies appearing in the literature (cf. Bolton & 1-~in~a~9

1973; Crawford & Koopman, 1973).
For each combination of the level of p and the population matrix type other than the identity, five

population matrices were generated and used in obtaining the data. This was done to insure that cell
means were not dependent on one particular population matrix. Ten sample correlation matrices were
chosen from each distinct population, resulting in 50 replications per cell.

Two types of shrinkage were evaluated. Analogous to regression procedures, Wherry-type shrinkage
was defined as the difference between a sample eigenvalue and its corresponding population eigenvalue.
Lord/Nicholson-type shrinkage was defined as the difference between the sample eigenvalue and the

66pS~~d&reg;-ei~e~val~e9’ obtained by applying the sample eigenvector to the population matrix (i.e., com-

puting the variance of the sample eigenvector using population intercorrelations). This second definition
of shrinkage corresponds to the concern with cross-validation of eigenvalues,. 

I

Within replications, eigenvalues of the correlation matrices and of communality-reduced matrices
were obtained and cross-validated. Communalities were estimated with squared multiple correlations.

An additional set of data with p equal to 40 was generated for use in the curve-fitting data analysis.
To keep computer time and costs within reason when p = 40, only one population correlation matrix
was generated per cell (with 10 replications per cell). The four levels of the pIN ratio discussed above
were used.

Construction of the Population Correlation fi4atrices

The population matrices were constructed following a method described by Dempster, Schatzoff,
and Wermurth (1977). To use the method, a proposed or target eigenvalue matrix is defined. For the

type of population with steep-descent eigenvalues, the equation

was used to generate the set ~~~9 i = 9 ... 9 p~. In this equation, k is a normalizing constant setting the
trace of the eigenvalue matrix equal to ~.

The target eigenvalues for the slow-descent eigenvalues were obtained by taking the mean of the ith

eigenvalue defined by Equation 2 and the value 1.0. For the case &reg;f p = 40, Equation 2 was altered
such that the exponent w~s - i/3 and k again normalized the trace equal top. This was done so that all

target eigenvalues were nonzero within computational rounding error. Exemplary target eigenvalues for
the steep- and slow-descent eigenstructures, when p = 10, are presented in Table 1.

’Actually, application of the sample eigenvector to the population correlation matrix is not mathematically equivalent to the expected
value obtained when applying sample vectors to new samples. That is, there are two distinct operationalizations ofLord/Nicholson-

type shrinkage. Indeed, Rozeboom (1978) has indicated that, in multiple regression contexts, these two operationalizations are
based on slightly different assumptions. 1-lov~~ever. this study’s computer simulations demonstrated that these two measures of
shrinkage were always within 10-’- of each other. Hence, only one measure of Lord/Nicholson shrinkage (sample weights applied
to the population) is reported here.
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Table 1

Exemplary Target Eigenvalues (p = 10)

The second step of the Dempster et al. procedure is the construction of a p x p matrix whose

elements are random numbers. This matrix is orthonormalized by columns with the Gram-Schmidt

procedure (cf. Green & Carroll, 1976). Call the orthonormalized matrix G and the diagonal matrix of

target eigenvalues l~m Then the matrix I = ~-I~G° is a covariance matrix with eigenvalues corresponding
to the diagonal elements of A. The population correlation matrix is obtained by standardizing 1. The

resulting correlation matrix will not, in general, have the exact eigenstructure reflected in A, but is usually
sufficiently close (Dempster et al., 1977). In this manner, five population correlation matrices were

generated for each level of p crossed with the steep- and slow-descent eigenstructure types. Following a

procedure given by Montanelli (1975), 10 sample matrices were drawn from each of these populations.

of Shrinkage Data

For ~lhcrry-typc shrinkage, sample eigenvalues were calculated and compared to population eigen-
values (i . e. , obtained from population matrices). For Lord/Nicholson-type shrinkage, sample eigenvectors
were applied to the population. The resultant cross-validated eigenvalues were then compared to the

sample eigenvalues. These calculations were performed twice: once with principal components analysis
and once with principal factors analysis.

Results

Cell Means

Mean shrinkage data corresponding to the first two ordinal positions (i.e., first two sample eigen-
values) are presented in Tables 2, 3, and 4. These means are collapsed across the five population correlation
matrices nested within each type of eigenstructure. They are also collapsed over the replications factor.
Thus, each mean is based on 50 shrinkage estimates. Table 2 presents shrinkage results when the population
variables are uncorrelated (identity matrix). Tables 3 and 4 present results from slow-descent and steep-
descent eigenstructure populations, respectively.

For example, suppose a principal components analysis (PCA) is conducted withp = 20andN = 160,
and a sample is drawn from an identity population matrix. From Table 2, it can be seen that the first

sample eigenvalue will overestimate the population eigenvalue by .652 (Wherry shrinkage, PCA,
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Table 2

Mean Shrinkage Values for Principal Components Analysis (PCA) and

Principal Factors Analysis (PF) for Samples Drawn
From Identity Population Matrices

Table 3

Mean Shrinkage Values for Principal Components Analysis (PCA) and

Principal Factors Analysis (PF) for Samples Drawn
From Slow-Descent Population Matrices
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pIN = 20/160 = 1/8). That is, relative to a population eigenvalue of 1.0, the first sample eigenvalue
will be about 1.652. A quick perusal of Tables 2, 3, and 4 indicates that this shrinkage drops dramatically
as pl~1 ratios decrease and/or eigenstructures are nonidentity.

Analysis of Variance

The shrinkage data in Tables 2, 3, and 4 were analyzed with a split-plot analysis of variance. All
main effects, other than those for the number of variables (p) and for population matrices nested within

eigenstructure type, were statistically significant (p <.01). Many of the interactions were also statistically
significant .2 Given the number of replications, and consequent large degrees of freedom, each F-test was
subject to high statistical power. Thus, omega-squared estimates were computed to allow practical eval-
uations of the relative contributions of independent variables. These estimates are given in Table 5. In

interpreting Table 5 note that T (the type of population structure) includes identity, slow-descent, and
steep-descent matrices. Also, A (the analytic method) was either principal components or principal factors

analysis and S (the shrinkage type) implied either a Wherry definition or a Lord/Nicholson definition of
shrinkage.

Of all nonerror sources of variance, the type of population eigenstructure accounted for the largest
proportion of variance. In fact, this factor accounted for more than half of the systematic variance and
1~.63°Io of the total variance in eigenvalue shrinkage. The effect of the pIN ratio accounted for an additional
7.92% of the total variance. The interaction of population eigenstructure type by the plhl ratio accounted
for 1.99~/0 of the total variance, such that high pl~1 ratios elicited particularly large shrinkage when the

population correlations were zero (identity matrix). Thus, the two independent variables of the pIN ratio
and type of population eigenstructure accounted for more than 75% of the systematic variance in this
data set when the two main effects and their interaction were included.

Curve Fitting Formulas)

Curve fitting included simulation data from all ordinal positions. Regression analyses were conducted
with either population eigenvalues (Wherry shrinkage) or cross-validated eigenvalues (Lord/Nicholson
shrinkage) as the dependent variables. Several modifications to Equation 1 were dictated by a theoretical

analysis.
First, as initial estimates of population parameters, the sample eigenvalues (&euro;,) were included in the

regression. This is information available to a researcher and, as demonstrated above, certainly affects

shrinkage. Second, the last term in Equation 1 is calculable only when the ordinal position, i, is less than

p/2 (otherwise, a logarithm of a negative number is implied). In order to identify all ordinal positions,
the linear (not log) factor, (p/2)-!, was used. Remaining terms in the equation were generated by
interacting this ordinal position factor with Montanelli and Humphreys’ ( 1976) factors of variable size,

p, and sample size, 1V.

Thus, shrinkage equations had the general form:

The empirically derived values of bi are given in Table 6. For example, the best (least squares) prediction
of the ith population eigenvalue, when principal components are used, is

2A complete analysis of variance is available from the authors.
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Table 4

Mean Shrinkage Values for Principal Components Analysis (PCA) and

Principal Factors Analysis (PF) for Samples Drawn
From Steep-Descent Population Matrices

Table 5

Omega Squared Estimates for Eigenvalue Shrinkage
of the First Two Principal Components

aNo higher order interactions had an individual contribution of
more than .60.

bThe residual w2 is the sum of all sources which include the

replications factor.
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Table 6

Regression Weights for Predicting Eigenvalues from Equation 3

This equation fits the simulation data extremely well (R2 = .973).
From Equation 3 an estimate of the magnitude of the shrinkage would be calculated as (X, &horbar; &euro;,).

This value could be computed for each desired component (or factor), or for a particular set of dimensions

(say, the first 3 principal components).

Discussion

Variables

The analysis of variance indicated that the type of eigenstructure and the j?/7V ratio had a substantial

impact on the magnitude of eigenvalue shrinkage. Perhaps the most important implication of these results
is that the population eigenstructure has a far greater effect on shrinkage than do the more commonly
examined variables such as sample size and the number of variables factored. The results also confirmed
the hypothesis that the magnitude of eigenvalue shrinkage may be substantially less than is implied by
previous parallel analysis equations-particularly when the variables to be factored are highly intercor-
related.

The effect of pIN ratios on eigenvalue shrinkage is consistent with previous factor analytic research
(cf. Montanelli & Humphreys, 1976) as well as with the multiple regression literature. In addition, the
effect of population structure on eigenvalue shrinkage is consistent with the findings that changes in the

magnitude and pattern of population factor loadings will affect the stability of sample results (cf. Cliff
& Pennell, 1967; Guadagnoli & Velicer, 1984).

In the context of variance statistics of the form 2~X;, the above analysis assumed that the number
of factors extracted, k, was a fixed known quantity. It would be of interest to investigate the interaction
of factor selection rules with variance shrinkage. In general, following stepwise regression logic, greater
shrinkage would be expected when the value of k is allowed to vary. Of course, the type of selection
rule would specifically influence the value of k (cf. Hakstian, R&reg;gers9 ~ Cattell, 1982; Zwick & Velicer,
1982) and consequent shrinkage.

Several caveats to these findings are also in order. First, these results were based on the analysis of
correlation, not covariance, matrices-because the majority of factor analyses have been conducted on
correlation matrices. Therefore, these results (e.g., the generally small magnitudes of shrinkage, large
overlap between the two types of Lord/Nicholson shrinkage, etc.) may be valid only for analyses of
correlation matrices. ..

Second, the present concern has been with the estimation of eigenvalues and not with the interpretation
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of factors (i.e., not the estimation of factor loadings). The effects of factor patterns and sample size (~V)
on factor loadings is well documented (e.g., Cliff & Hamberger, 1967; Cliff & Pennell, 1967), and
excellent methods exist for estimating the stability of factor interpretation (e.g., Kleinknecht, Thomdike,
~lcGly~~, ~ Harkavy, 1984). The fact that eigenvalues do not shrink may not necessarily guarantee that
factor loadings will remain stable across samples.

Applications

Joint use of Equation 3 and Table 6 enables researchers to predict eigenvalue shrinkage. Because ~~
is included as an independent variable, results in Table 6 generalize across a variety of population
eigenstructures. Furthermore, in contrast to Tables 2, 3, and 4, Equation 3 is applicable to all ordinal

positions.
As an application, consider a factor analysis reported by Murphy, Martin, and Garcia (1982). They

extracted two factors from a pool of 10 items (p = 10), with a sample size of 45. The analysis was
conducted with communalities in the main diagonal (principal factors analysis) and resulted in

fl + ~2 = 5.34 + L5l = 6.85. The total common variance for all 10 variables was 9.133. Thus, in
the original sample, the two factors accounted for (6.85/9.133) x 100 = 75% of the common variance.

Using the weights in the last row of Table 6, application of Equation 3 yields X, = 5.14 and ~2 =
1.35. Thus, it is predicted that the cross-validated two factor solution would account for (6.49/

9.133) x 100 = 71% of the common variance-a shrinkage of 4%.
It should be noted that application of Equation 3 to other reported factor analyses revealed similar

results. That is, even under relatively largely ratios (say, 1/2), total shrinkage was small (a few percentage
points). This is in contrast to multiple regression analyses, when pIN ratios of 1/io or greater elicit concern
about shrinkage in squared multiple correlations (cf. Thomdike, 1978). Thus, there is room for optimism
regarding shrinkage in principal components based factor analysis. Researchers are urged to quantify that

optimism, or perhaps identify aberrant cases, through the joint use of Equation 3 and Table 6.
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Appendix

An analytic solution to eigenvalue shrinkage is derived below for the restricted case when p = 2.
The derivation has heuristic value.

Let ti be the first eigenvalue of a sample correlation matrix drawn from a population correlation
matrix with eigenvalue XI. Similarly, let r be the sample correlation coefficient between the two measured
variables and let p be the respective population correlation. Also, let (ca,, ag) represent sample weights
for the first eigenvector. Then, t, is the sample variance of a, z, + a2 Z2 and,

Remember that the a, are constrained such that a) + ~a2 = i In addition, when p = 2, it is easily dem-
onstrated that 0)~2 = 1/2 if r is positive and a,a2 = -1/2 if is negative. Thus, lettingf(r) be the density
function of f,
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Let Wherry-type shrinkage be defined as the difference between the sample eigenvalue and the cor-

responding population eigenvalue (see Darlington, 1968, for the regression analogy). Again, if p = 2,
it is easily demonstrated that B, = 1 + ~p~ . Then,

Similarly, let Lord/Nicholson-type shrinkage be defined as the difference between the sample ei-

genvalue and the &dquo;pseudo-eigenvalue&dquo; obtained by cross-validating the sample eigenvector onto the

population correlation matrix. Denoting the pseudo-eigenvalue as h; note that X* = 1.0 + 2a~a2P where

a, and cz2 are the eigenvector entries obtained from the sample. Then,

In order to facilitate comparisons, note that the first two integral terms in Equations 6 and 7 are
identical. Then, it can be seen that the subtractive term for Wherry-type shrinkage is greater than the
subtractive term for Lord/Nicholson-type shrinkage. This is because the bracketed terms in Equation 7
must sum to 1.0. Therefore, their difference (which multiplies p in Equation 7) must be less than 1.0.
Hence, Wherry-type shrinkage is smaller.

In the extreme case when p = 2 and p = 0, further simplification is possible. That is, the last term
of Equations 6 and 7 becomes zero and the two types of shrinkage are identical. Also, when p = 0, the
density function of r is (Mood & Graybill, 19~39 p. 357)

where ~a is the sample size. Upon integrating, it follows that eigenvalue shrinkage is

The resultant value, and hence shrinkage in ~,, is reduced as the sample size is increased.
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