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Abstract. 

We compute the eigenvalues of the 3-state superintegrable chiral 

Potts model and of the associated spin chain by use of a functional 

equation. We find that the system has four phases, two of which are 

massless and two of which are massive. 

§1. Introduction 

Recently [1-4] a new class of 2 dimensional classical statistical me

chanical models has been shown to obey the integrability condition of 

commuting transfer matrices 

(1.1) [T(u),T(u')] = 0. 

The model is a special case of the general N state chiral Potts model on 

the square lattice defined by 

N-1 

(1.2) £ = - LL {E!(u;,kuJ,r.+1t + E:(u;,kuJ+1,kt} 

with 

{1.3) 

i,k n=l 

N -1 ui,k - · 

We define local Boltzmann weights as 

{1.4) 

with 

{1.5) 

N-1 

W"•h(n) = exp/3 '°' E'!•hwin 
p,q L..J 1 

i=l 

W = e2w:i/N 
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and define the transfer matrix as (Fig. 1) 

./1( 

(1.6) T{e},{l'} = II w;,q(l 3 - t',)w;,q(l 3 - l',+ 1 ) 

j=l 

where periodic boundary conditions are imposed by defining N + l = 1 

and the indices li range from 1 to N. 

Fig. 1. The lattice used to define the transfer matrix 

T{t},{t'} for the chiral Potts model. The direction 

of transfer is from top to bottom. The arrows on 

the lines serve to define the sign of l; - l'; (and 

l; - l';+1), 

Then the special case of (1.2) which satisfies (1.1) is defined by [4] 

(1.7a) W~q(n) = IT (dpbq - apcqw~) 

WP,q(O) i=l bpdq - cpaqwJ 

and 

(1.7b) 

where ap, bp, cp, dp and aq, bq, cq, dq lie on the generalized elliptic curve 

defined by 

(1.8) 

with 

(1.9) 

For A2 -:/:-0, 1, and oo this curve has genus N 3 - 2N 2 + 1. The symbols q 

and p represent the uniformizing variable for (1.8). We regard q as the 

variable u in (1.1) which holds for each value of p. These results have 

been presented in detail by Perk in this present volume [5]. 
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In addition to the transfer matrix Tp,q we are interested, in fact more 

interested, in the eigenvalue spectrum of the associated quantum spin 

chain Hamiltonian. This Hamiltonian is obtained from Tp,q by letting 

q-tpas 

(1.10a} aq = aP +au'+ O(u'2 ) 

(1.10b) 

(1.10c) cq = Cp + ,u' + O(u'2 ) 

(1.10d) 

where a,{3,,,8 are constrained by (1.8). Then with the rescaling 

(1.lOe) 

and with the normalization w;,q(O) = w;,q(o) = 1 we have w;,p(n) = 

1, w;,p(n) = 8n,O, 

(1.11) 
N-1 

T =1{1+2Nu(apcp)1-N/2~(apcp)t-1 1 }+u1l+O(u2) 
p,q b d ~ b d 1 - w-l 

pp l=l pp 

and 

/I/ N-1 

(1.12) 1l= - L L{an(X;t+an(Z;ZJ+1r}. 
j=l n=l 

Here we use 

(1.13a) 
'th 

X; = IN @ • • • @ X 1 @ • • • @ IN 

(1.13b) 

IN is the N x N identity matrix, the elements of the N x N matrices Z 

and X are 

(1.14a) z 8 l-1 
l,m = l,mW 
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(1.14b) Xt,m = 5t,m+l (modN), 

the parameters a:k and O:k are 

(1.15a) 

(1.15b) 

with 

(1.16) 

and 

{1.17) 

ak = exp[i(2k - N)</>/N]/sin(1rk/N) 

O:k = >.exp[i(2k - N)~/N]/ sin('lrk/N) 

cos </> = >. cos ~ 

~ - 1/2 apCp 
e -W b d ' 

p p 

Our interest in this present article is to analytically study the eigen

value spectrum of Tp,q and of 1t. Some of our results have been published 

in references 6 and 7. 

Our study will be carried out for the case N = 3 and is based on 

the matrix equation 

{1.18) 

Tp,qTp,RqTp,R2q 

= e-iP {f{,Rqf~,pTP,q + f!ftTp,R2q + f{.R&q/~q,pTp,R4 q}· 

Here 

{1.19) 

is the function introduced in ref. 4 in the solution of the star triangle 

equation. Despite the Wh root which explicitly occurs in (1.19) /p,q can 
be shown to be a meromorphic function on the Riemann surface defined 

by (1.8). Furthermore in (1.18} R is the automorphism of (1.8} defined 

by 

(1.20} 

and P, the total momentum is obtained from Tp,q by 

(1.21a} 1. rrr -iP 
llll.Lp•Rq=e . 

q--+p ' 



Chiral Potts Model 5 

The interaction {1.2) is translationally invariant so P and Tp,q may be 

simultaneously diagonalized and P has the .N eigenvalues 

{1.21b) P - 21rk 
- .N 

where k = 0, 1, .. . .N - 1 mod .N. Similarly the interaction {1.2) is 

invariant if all <Tj,k ---+ W<Tj,k· Thus the spin translation operator 

(1.22) 

also commutes with Tp,q and the eigenvalues Q take on the values 0,1,2. 

We note that (1.18) does not involve Q. 

A proof of (1.18) will not be given here. Instead, we will concentrate 

on its consequences. Unfortunately, as we will see in Section 2 the general 

solution of {1.18) seems to require the use of some deep machinery of 

algebraic geometry. However, as discovered in ref. 6, if we specialize to 

the case 

(1.23) <l>=<fi=1r/2 

first considered by Howes, Kadanoff and den Nijs [8] a remarkable sim

plification takes place in that all eigenvalues of 1{, are grouped into sets 

which have the form 

m 

{1.24) E = A+ B"). + N ~ ±(1 + ),.2 + ai").)112 

j=l 

where A, B, m and the ai depend on the set under consideration. This 

special case (1.23) we have called superintegrable. Note that when N = 2 

the model (1.2) reduces to the Ising model and property (1.24) is that 

found originally by Onsager [9]. 

For this superintegrable case we are able to solve (i.18). The details 

of the solution will be presented in this paper but for orientation we 

conclude this introduction with a sketch of some of our major results. 

We restrict our attention here to O ~ ),. and find that the system has 

4 phases (Fig. 2). 
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I II III IV 

order order order order 

parameter ,t:O parameter ,t:O parameter=O parameter=O 

disorder disorder disorder disorder 

parameter =0 parameter =0 parameter # 0 parameter ,t: 0 

mass gap ,t:O mass gap =0 mass gap =0 mass gap,t:O 

no oscillation oscillation oscillation no oscillation 

..\=0 ,\ = .901292... ,\ = 1 ,\ = 1/.901292 ... 

Fig. 2. Summary of the properties of the 4 phases of the 

superintegrable 3 state chiral Potts model for O ~ >.. 

00 

In each phase we have calculated the ground state energy per site 

(1.25) e0 (..\) = lim .Nl E.t(>.). 
N-+oo 

From (1.24) we see that e0 (>.) obeys a duality relation 

(1.26) 

Phase I occurs for O ~ ,\ < ,\1 = .901292 ... and here the ground 

state energy per site is 

(1.27) 
I 11 4,\ 12 4,\ 

e0 (..\) = -(1 + ..\){F(- 2, 3; 1; (l + ,\)2 ) + F(- 2, 3; 1; (l + ,\)2 )} 

where F(a, b; c; z) is the hypergeometric function. A different form: of 

this result has recently been derived by Baxter [10]. 

Phase II occurs for >.1 < ,\ < 1. Here the ground state energy per 

site is 

(1.28a) 1"U 

ef (..\) = eij(..\) + dv'p(v')F(v') 
tJL 
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where 

(1.28b) 
1~12/3 

F(v) = 211 - -XI+! 11
- dy (2vy- l)v [~ _ (1- .\)2]1/2 

7r 1 1 - vy + v2 y2 ya - 1 

and p( v) satisfies the integral equation 

{1.29) 

1vu v' 1 27r 
dv'p(v') 2 , ,2 + 1 2 = r;;P(v) for VL < v < vu. 

VL V + VV + V - V + V y3 

The limits v L and vu satisfy 

(1.30) F(vL) = F(vu) = 0 and F(v) :5 0 for O :5 VL :5 v :5 vu. 

The density p(v) is positive and integrable for VL :5 v :5 vu. 

In phase III and phase IV e0 (.X) is obtained by use of (1.26). 

7 

We find in addition that in phase I the ground states for Q = 0, 1, 

and 2 are exponentially degenerate in N. For phase IV the ground state 

has Q = 0 and is different from Q = 1 or 2 by a term 2Qll - -XI. In 
phases I and IV the single particle states have Q = 1 and their energy 
in the N --+ oo limit is 

(1.31) 

lim {E.N'(P,.X)- Et(-X)} = 411 - -XI+ 2(1- .X) 
N-+oo 

where 

(1.32) 

l!H.1218 2 311
-.i. d { WV W V }[ 4.\ (l .\)2jl/2 

+ ; 1 y 1 + wyv + 1 + w2yv y3 - 1 - -

-iP 1 +vw2 
e =--

l+vw 

This spectrum always has a mass gap in phases I and IV. In phases II 

and III the excitation spectrum has no mass gap. 

We will also argue that lim1c-+oo I < ZoZZ > I =/-0 in phases I 
and II but vanishes in phases III and IV and that the correlations have 
oscillations in phases II and III but not in phases I and IV. 

In Section 2 we discuss the general method of solving {1.18) in the 
superintegrable case and then use the machinery developed to compute 

e0 (.X) in phase I. In Section 3 we extend the procedure to calculate the 

eigenvalues for single particle excitations in phases I and IV. In Section 
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4 we show that in phase II ( and Phase III) the ground state of phase I 

(phase IV) becomes unstable against multiparticle collapse and a new 

ground state occurs whose energy is given by (1.28)-(1.29). We also 

show why phases II and III are distinct. Finally we conclude in Section 

5 with a presentation of the existing information on the order parameter 

and the asymptotic behavior of < ZoZk > for large k. We here also 

discuss the relation of this work to previous studies. 

§2. Formalism and the phase I ground state energy 

The discovery of relation (1.18) was inspired by the work of 

Bazhanov and Reshetikhin (11]. However, (1.18) as it stands is not pre

cisely in the form of ref. 11. This is because Bazhanov and Reshetikhin 

follow the practice which is universally followed in the study of solvable 

models of factorizing the transfer matrix eigenvalues into the product 

of their zeroes and poles as a function of the spectral variable q. Such 

a factorization is possible because the eigenvalues Tp,q are meromorphic 

functions of q on the Riemann surface .defined by (1.8). Such a fac~ 

torization is useful because the poles of Tp,q can only come from the 

poles of the Boltzmann weights (1.7). Thus the universal practice is to 

characterize the eigenvalues by locating their zeroes. 

To make this factorization we first proceed in· a symbolic fashion. 

From (1.7) we see that w;,q(n) has 9 poles. These occur at places on 

the Riemann surface where 

(2.la) 

(2.lb) 

and 

(2.lc) 
Cq .,dp 
-=w -
dq Cp 

where x, y, and z are certain integers taking on the values 0,1 or 2. We 

define the symbol [xyz] to represent the place (2.1). Then, defining Dp,q 

to be the collection of places where (1. 7a) has poles (i.e. the polar divisor 

of w;,q(n)) we find 

(2.2) Dp,q = (200,220,100,201,221,101,202,222,102]. 
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Similarly we define Dp,q to be the polar divisor of W;',q( n) and define 

the symbol [xyz] to represent the place 

(2.3a) 

(2.3b) 

(2.3c) 

Then from ( 1. 7b) we find 

(2.4) Dp,q = [210,110,120,211,111,121,212,112,122] 

and we note that 

(2.5) 

We then define Tp~q from 

(2.6) 
TN 

T - p,q 
p,q - (D fJ )N p,q p,q 

and we note the important factorization of /p,q (1.19) 

(2.7) 
- Dp,q 

/p,q - ---. 
Dp,q 

We now put {2.6) and {2.7) into {1.18) and get 

{2.8) 
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Then using (2.5) we may rewrite this as 

T N TN TN -iP{(D D )2NTN p,q p,Rq p,R2q = e p,Rq Rq,p p,q 

+ (Dp,qDq,p)2NT:.R•q 
(2.9) 

N )N + (Dp,qDq,pDp,R•qDR•q,p) (DRsq,pDp,RsqDRq,pDp,Rq Tt·,R4q}. 

Dp,R•qDR4q,p Dp,RsqDRsq,p 

We now define h';,q as the second factor of the coefficient of Tp,R4q ( and 

hence h';,Rq as the first factor of the coefficient of Tp,R4q)- Then using 

(2.2) we find 

(2.10) 
[
- - - - - - - - 1')')]2 

hp,q = 210,000, 120,211,001,121,212,002, 122J 

hp,Rq = [200,020,110,201,021,111,202,022, 112]2 • 

We also use (2.2) to find 

(2.lla) 

and 

(2.llb) 

Thus we obtain 

{2.12) 

T N TN TN _ -iP{(h h )NTN p,q p,Rq p,R2q - e p,q p,R2q p,q 

+ (hp,R-1qhp,Rq)NT:,R2q 

+ (hp,qhp,Rq)NT:,R4q}. 

An identical form can be obtained from (3.19) of ref. 11 if we identify 

the f n of that paper with h';,R"q" 

This procedure leads to a perfectly fine result and yet it embodies 

a serious practical difficulty. The difficulty follows from the fact that 

on Riemann surfaces factorizations like {2.6) and {2.7) are not possible 

in terms of functions. Instead they are carried out in terms of prime 

forms [12]. For the case of a genus one Riemann surface the prime form 

is expressible in terms of the single variable Jacobi theta function and 

hence equations like (2.12) have been widely studied starting with Bax

ter's original solution of the 8-vertex model [13]. However, in our present 

case the genus of the Riemann surface is 10. We can still express the 

prime form in terms of theta functions but the theta functions now have 

10 variables and involve a mapping from the original Riemann surface 
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into the corresponding Jacobian. The most obvious way to represent 

the situation would be to explicitly uniformize the curve (1.8). Unfor

tunately we do not know how to do this in a useful fashion. Therefore 

we are not in a position to extract useful information from (2.12) in the 

general case. 

However all is not quite lost because for the superintegrable case 

(1.23) a great miracle occurs. When</> = <i, = 1r /2 the variables ap, bp, cp, 

and dp are seen from (1.17) to satisfy 

(2.13) 

and the relation (1.8) becomes 

(2.14) ap = (~)-b. 
Cp 1 + A 

When (2.13) holds, it is clear from (2.1) and (2.3) that 

(2.15) [xyz] = [x, y, -z] 

and the miracle occurs that the zeroes of hp,q given by (2.10) are identical 

with the zeroes of the meromorphic function 

(2.16) 

where for convenience we used 

(2.17) = (~)~ 
T/ 1 - A 

withN=3. 

Furthermore, the zeros of Dp,qDp,q coincide with the zeros of the 

meromorphic function 

(2.18) r,'!!. - 1 . 
dq 

Thus if (with a slight abuse of notation) we set 

(2.19) 
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and set 

(2.20) h = K[aqbq 172 - 1] 
p,q Cqdq 

where K is an appropriate normalization constant (which is irrelevant 

to our calculation) we find that (2.12) becomes (dropping the subscript 

on aq, bq, Cq and dq) 

TN TN TN 2 = K2N e-iP{( ab 112 - 1).N( ab 112w2 - l)N TN 
p,q p,Rq p,R q cd cd p,q 

(2.21) + (ab 112w2 - l)N(ab 112w - l)NTN 2 

cd cd P,R q 

ab 2 N( ab 2 )N N } 
+(cd11 -1) cd17w-l Tp,R4q. 

This is an equation between meromorphic functions and all need to 

consider theta functions has disappeared. This is the extension to N = 3 

of the well known fact that for the Ising case of N = 2 elliptic functions 

are not used in any step of Onsager's solution [9]. 

Of course, having calculated hp,q on the basis of these arguments 

about zeros and poles it would be satisfying to find an explicit algebraic 

calculation of (2.20) (which would also find K). We present this in 

appendix A. 

We now turn to the solution of (2.21). As usual with any complicated 

equation the best way to proceed is to guess a solution and plug in. 

Therefore we begin our solution by studying eigenvalues of Tp,q and 1{ 

which have been obtained either analytically or on the computer for 

N = 3, · · ·, 7. Some of these results have been published in ref. 6. From 

these studies we abstract the following Ansatz for the eigenvalues of Tp,q 

for any N for the superintegrable case as a function of q 

NN(11g,_ - l)N a b cN 

Tp,q = [(11J); - l]N (11a,la(11clb(dN le 

mp 1 + WV .,2 ab m111 1 + ' N + bN ( N bN) Il( l•1 cd) rrc--")½{a ± Wt a - }. 
l=l 1 + WVt l=l 1 - ).. 2dN (1 + )..)dN 

(2.22) 

From this by ( 1. 11) the eigenvalues of 1{ are 

E =N(2Pc + mE) -.N(N -1) 

(2.23) 
+ >-.[.N(N - 1) - N(2Pc + mE) + 2(Pb - Pa)] 



Chiral Potts Model 13 

and from (1.21) 

(2.24) 

mp 2 

-iP _ Pb Il( 1 + W Vt) e -W ---. 

l=l 1 + WV!. 

In terms of this form we may make much more explicit the concept 

of "sets" of eigenvalues previously discussed by associating with each 

eigenvalue the quantum numbers mE, mp, Pa, Pb, and Pc. We have done 

this for all eigenvalues for N = 3, · · ·, 7 and list the results in Table I. 

There are many important properties of the eigenvalues which are 

reflected in Table I. For example there are the symmetry properties 

1. For N = 0 mod 3 

E(Q = 2, P, >.) = E(Q = I, -P, ->.) 

E(Q = O, P, >.) = E(Q = O, -P, ->.) 

21rQ 
E(Q,P, >.) = -E(Q,-P - - 3-, ->.); 

2. For N = I mod 3 

E(Q = 2,P,>.) = E(Q = 0,-P,->.) 

E(Q = I,P,>.) = E(Q = I, -P, ->.); 

3. For N = 2 mod 3 

(2.25) 

E(Q = l,P,>.) = E(Q = 0, -P, ->.) 

E(Q = 2,P,>.) = E(Q = 2, -P, ->.). 

The proof of these symmetries is given in Appendix B. There are 

also relations between mp, Pa, Pb, and Q 

1. ForN = 0 mod 3 

a) if mp = 0 mod 3 then A-Pa= Q mod 3 

b) if mp = I mod 3 then Pb = I - Q and Pa = I + Q mod 3 

c) if mp= 2 mod 3 then A = 2 - Q and Pa = 2 + Q mod 3; 

2. ForN= 1 mod 3 

a) if mp = 0 mod 3 then Pb = 0, Pa = 2 - Q 

b) if mp = I mod 3 then Pb - Pa = Q + I = 2 so only Q = I is 

allowed 

c) if mp = 2 mod 3 then Pb = Q + I mod 3 and Pa = O; 

3. ForN= 2 mod 3 
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a) if mp = 0 mod 3 then A = 0, Pa = 1 - Q mod 3 

b) if mp = 1 mod 3 then Pb = Q + 2, Pa = 0 mod 3 

c) if mp = 2 mod 3 then Pb - Pa = Q + 2 = 1 

so only Q = 2 is allowed. 

These restrictions follow from the form (2.22), the equation (2.21) 

and a symmetry of the eigenvalues found by Baxter [10]. The proof is 

given in appendix C. There are inequalities necessary for Tp,q to be a 

meromorphic function with poles only at Dp,qDp,q of 

(2.27) 

and 

Pb+ mp~ 3Pc 

and there is the most important relation that eigenvalues occur in se

quences such that if mE decreases by 2 then mp increases by 3. In other 

words we may group eigenvalues according to 

(2.28) 3mE + 2mp = const. 

Armed with the insight of these finite chain studies, we conclude 

this section by solving (2.21) for the case where mp = 0 and P = 0. 

Numerically it is seen that for small chains and small A this is the ground 

state. This is the case recently studied by Baxter (10] for arbitrary N 

by use of a special case of (2.12) obtained by restricting the vector space 

to a set which includes only vectors for mp = 0. 

When mp = 0 the Ansatz (2.22) has a very simple behavior under 

the automorphism R 2 namely 

(2.29) 

Thus the equation (2.21) reduces to (setting Pb= 0 in accordance with 
Table I) 

(2.30) 
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Then if we note that 

{2.31) 

we find 

- a ab PG mE (a3 + b3)2 a (a3 - b3)2 

K(r, cd) II { 4c3d3 - Wt {1 + A)2c3d3 } 
l=l 

{2.32) 
={( ab 112 _ l).N' ( ab 112w2 _ l).N' w-P 4 

cd cd 

+ ( ab 112w2 - 1).N' (a\2w - 1).N' 
cd cd 

+ ( ab 112 - 1).N' (°b 112w - 1).N' wPG }. 
cd cd 

where K is an irrelevant normalizating constant. 

We use this to solve for the Wt, First multiply together the two 

equations of the curve {1.8) to get 

Thus 

and 

{2.34) 

which are functions of :! alone. Thus, defining 

{2.35) 
2 ab 

t =11 -
cd 

the roots Wt are determined from 

(2.36) 



16 G. Albertini, M. McCoy and H.H. Perk 

where tl are the roots of the polynomial equation 

(2.37) 
0 = Pq(t) = t-P .. {(t - l)N (tw2 - l)N' w-P .. 

+ (tw - l)N'(tw 2 - l)N + (t - l)N'(tw - l)N WP"-}. 

We note that 

(2.38) Pq(wt) = Pq(t). 

and thus Pq(t) is a polynomial in t3 • Furthermore Pq(t) is real for t3 

real and thus the zeros of Pq(t) lie on the three lines where t, wt, and 

w2t are real. Thus, since w: depends on tt only through t: we see that 

to avoid triple counting of Wt we should restrict our attention to the real 

solutions of (2.37). 

It remains to determine Pa and Pc. From Table I it is apparent 

that these depend on Q, and, since Q does not appear in (2.21) we 

clearly need some other means to find them. One such extra piece of 

information is the symmetry relation of Baxter (10] that if 

(2.39a) 

then 

(2.39b) T -Q-NT 
p,q-+ w p,q• 

Thus we use (2.39) in {2.22) with Pb = 0 to find 

{2.40) Pa= -Q-.Nmod3. 

Hence, with o. ::;; Pa ::;; 2 which is needed to prevent Tff:q having poles 

at a = 0 or oo, Pa is found to agree with Table L However, for Pc we 

do not have such a general argument ( although in ref. 10 Baxter does 

have a special argument which applies to the present case) and will be 

content to determine Pc from Table I as zero. 

We now combine these considerations and obtain 

(2.41) 

mQ 

E}(.X; Q) = A_i + Bi.x - 3 t [(1 - .X)2 + 1 ~\3 ]1/2 
l=l l 

where 

(2.42) 
Q 2.N-Q 

m E = integral part of [ 3 ] 
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and 

(2.43) Ai+ Bi>..= -2Q - [2N - 2Q - 3m~](l + >..). 

It remains to study the N -+ oo limit of (2.41). In this limit we 

see from (2.37) that all real zeroes occur fort < -1 where the first and 

third term are of equal magnitude and oscillate and the second term is 

real and exponentially smaller than the magnitude of terms 1 and 3. We 

thus use Cauchy's theorem to rewrite (2.41) as 

(2.44) 

EJ.r(>..; Q) = Ai+ Bi>,. 

- ~ 1 dti_(lnPq(t))[(l - >..)2 + _£_] 112 
2rrz c 1 dt 1 - t3 

= Ai +Bi>,. 

- ~ 1 dti_(lnPq(t))[(l - >..)2 + 4>.. 3 ]112 

27fZ cl +c.+ca dt 1 - t 

where the contours c1,c2, and c3 encircle the zeroes of P0 (t) as shown 

in Fig. 3 and in the second line of (2.44) we have symmetrized over the 

three equivalent contours. 

We now obtain a form useful for the N -+ oo limit by deforming the 

contour from c1 + c2 + c3 to c~ + c; + c;. However, to do this we note 

that the integrand of (2.44) has branch cuts at t3 = 1 and t3 = ( ~ )2 
and a pole at t = oo with residue 11 - >..J where we assume>,. is real. To 

handle the pole we rewrite (2.41) as 

EJ.,(>..; Q) = Ai+ Bi>.. - 3m~ll - >..I 

(2.45) 
mQ 

- 3 I:{[(1- >..)2 + 1 ~\3]112 - 11 - >..J} 
l=l l 

and thus (2.44) becomes 

(2.46) 

EJ_r(>..; Q) =Ai+ B2,>. - 3m~Jl - >..J 

- ~ 1 dti_(lnPq(t)) 
2rrz c' +c' +c' dt 

1 2 8 

{[(1 - >.)2 + _£_]1/2 - 11 - >.i}-
1 - t3 

The limit N -+ oo may now be taken because the contours c~ lie far 

away from the zeroes of Pq(t) and there is no pole at oo. Moreover 
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c'; 

Fig. 3. The contours, c;, c\, and c\' in the complex t plane. 

The wiggly lines denote the branch cuts from t3 = 1 

to t 3 = ( ~ )2 • The crosses indicate the zeroes of 

the polynomial P(t). 

the contours c~ all give equal contributions. Thus we may restrict our 

attention to Ci alone and deform to the contour er which circles the 

branch cut on the real axis. Then if we note that the second term in 

(2.37) is exponentially largest when t is real and positive we obtain 

(2.47) 

e~(.X; Q) = lim Nl E_t-(.X; Q) 
N"-+oo 

=-211-.x1 

3 / w2 w )[ )2 4.X ]1/2 
-21riJ~,,dt(w 2t-1 +wt-1 (l-A +1-t 3 

c, 

where the righthand side is independent of Q. Then, if we note by using 

the contours cf and ci of Fig. 3 and by closing on the pole at t = oo 
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that 

1 i { w w2 1 }[(1 )2 4>. ]1/2 
21ri ,, dt wt - 1 + w2t -1 + t - 1 - >. + 1 - t3 

cl 

(2.48) = _1_ l dt-1-[(1->.)2 + ~]1/2 
21ri Jc"+c"+c" t - 1 1 - t3 

1 2 a 

= -11 - >.J, 

we may rewrite {2.47) as 

{2.49) 

eij(>.;Q) = 

__ 1_ f {-w- w2 __ 2_}[(1 _ )2 ~]1/2 
21ri Jc,, dt wt - 1 + w2t -1 t - 1 >. + 1 - t3 • 

cl 
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The integrand in {2.49) (as opposed to (2.47) has no simple poles and 

is seen to be an abelian integral of the second kind over a hyperelliptic 

curve of genus 2. 

To simplify this result further we first combine the terms in the first 

factor to rewrite (2.49) as 

eij(>.; Q) = ~ r dt t + 1 [1 + >,2 - 2>.( t3 + 1 )]1/2. 
21rz } c" t3 - 1 t3 - 1 

cl 

(2.50) 

Further reduction is obtained by deforming the contour as shown in 

Fig. 4 to the two rays 

(2.51a) 

and 

(2.51b) 

t = -w 2z 

t = -wz 

where O ::; z :s; oo. 

On these contours the square root in (2.50)is real for O ::; >. :s; 1 and 

we find 

(2.52) eI(>.· Q) = - 3v3100 dz z + 1 [1 + >.2 - 2>. z3 - lp;2. 
0 ' 21r O z3 + 1 z3 + 1 

By sending z -+ z- 1 this is manifestly seen to be an even function of >. 

(2.53) 
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1~12/3 
1-~ 

Fig. 4. The rays in the t plane t = -w 2 z and t = -wz for 

0 :5 z :5 oo along which the integral in (2.50) is 

evaluated. 

Then if we let 

(2.54) 
3 1 - cos20 

z =----
1 + cos20 

we find 

(2.55) 

e5(.X; Q) = -VJ(l + .X) 1,.. d0{(tan 0)113 + (tan 0)- 113 } 

71' 0 

[ 4.\ 2 1/2 

1 - (1 + .X)2 cos 0] 

which by using cos2 0 = U is easily recognized as 

(2.56) 

where F(a,b;c;z) is the hypergeometric function [14]. 

We have thus obtained an analytic expression for the function whose 

expansion to order .\88 was derived in ref. 6. 

Near A= 1 we use [14] 
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(2.57) 

4.X. r(c)r(c-a-b) 
F(a,b;c; (1+.X.)2 ) =r(c-a)r(c-b) 

to find that 

(2.58) 

1 - .X. 2 
xF(a,b;a+b-c+l;(--J) 

1 +,,_ 

r(c)r(a + b - c) ( 1 - .X.)2cc-a-b) 

+ I'(a)I'(b) 1 + .X. 

1 - .X. 
x F(c-a c-b·c-a-b+l·(--) 2 ) 

' ' ' 1 +.x. 

e1(1 · Q) = -41r-1;2{ r( ! ) + r( ¾)} 
o ' r(f) r(½) 
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which agrees with the numerical result of ref. 6. Moreover it is also clear 

from (2.56) and (2.57) that near A = 1 we have 

(2.59) 

eI(.X.· Q) = ~( 1- A)2na + ( 1- A.)2-½ ~(1 - A)2nb 
0 ' ~ 1+.X. n 1+.X. ~ 1+.X. n 

n=O n=O 

which also confirms [6]. 
We also note that Baxter [10] has studied this problem for N > 3 

and that his result for general N can be put in the form (2.56); namely 

(2.60) 

and at .X. = 1 

(2.61) 
N-1 I'(3 l) 

eI(l· Q N) = _47r-1/2 '°' 2 - 'Fi . 
0 , , ~ I'(N-l) 

l=l N 

For N = 4 and 5 these agree with the results of ref. 6. 

For the purpose of studying the ground state energy per site this 

completes our study in phase I. However, for the study of the excited 

states we need slightly more information than the order N term in 

Et(.X.; Q), we need the order 1 term in Et(.X.; Q)- Et(.X.; Q = 0). From 
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Table I or from (2.42) and (2.43) we see that the details of the calcula

tion will depend on whether N is congruent to 0,1, or 2 mod 3. However, 

the final result is expected to be independent of this fact. We illustrate 

the calculation for N = 0 mod 3. 

From (2.42), (2.43) and (2.46) we find for N = 0 

(2.62) 

EJ,r(">..;Q = 1) - E1,,-(>.; Q = 0) 

= - (3 + >.) - 3(mk - m~)\1 - >.\ 

3 j d P1(t){[( 2 4 ]1/2 \ \} 
- -2 . dtdt ln R (t) l - >.) + -1 t3 - 1 - >. 

1ri c" O -
1 

and mk - m~ = -1. We may now use (2.37) and (2.40) to show that 

on c~ 

(2.63) lim ~ln Pi(t) = -2C 1 

N-+oo dt Po(t) 

and hence from (2.62) 

lim {EJ.r(-X;Q = 1) - E1,,-(-X, Q = 0)} 
N-+oo 

(2.64) = - (3 + ,\) + 3\1 - ,\\ 

+ ~ r dt m1 _ ,\)2 + ~i112 _ 11 _ ,\\}. 
7n J,._,, t 1- t3 

cl 

This contour integral may be explicitly evaluated if we first set 

(2.65) Z = t3 

to write 

lim {EJ.r(-X;Q = 1) - E1,,-(-X; Q = O)} 
N-+oo 

(2.66) = - (3 + ,\) + 3\1 - ,\\ 

1 1 dz{[( 2 4,\ 1;2 +---:- - 1 - ,\) + -] - \1 - >.\}. 
1n r z 1-z 

when r encircles the branch cuts of the square root in the integrand. 

The only other singularity in the integrand is at z = 0 so the integral is 

readily evaluated and we find for N = 0 mod 3 
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{2.67) 

lim {Et,.{,\;Q = 1)- Et,.(,\;Q = 0)} 
N--+oo 

= -(3 + ,\) + 311 - ,\I+ 2{1 + ,\ -11 - ,\J} 

= 11 - ,\J - {1 - ,\). 

For N = 1 and N = 2 mod 3 the calculation is identical except that 

{2.68) A}.r + B}.r,\ - (A?v, + Et,,\) = 2,\, mk - mi = 0 

and 

{2.69) Pa(Q = 0) - Pa(Q = 1) = 1. 
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A completely equivalent calculation can be done for Q = 2. Thus we 

conclude that for O :::; ,\ < 1 

lim {Et,(,\; Q) - Et,(,\; O)} = 0 
./v--+oo 

but for 1 < ,\ 

{2.70) lim {Et,{,\; Q) - Et,{,\; O)} = 2Q{,\ - 1). 
./v--+oo 

Indeed, for O :::; ,\ < 1 a more accurate calculation shows that E'}.;-(,\, Q) 
is not only independent of Q to order 1 as N -+ oo but that the de

pendence on Q vanishes exponentially as N -+ oo. Thus we say that 

these eigenvalues are asymptotically 3 fold degenerate. This is the ana

logue of the 2 fold asymptotic degeneracy of the Ising model in the low 

temperature phase [9]. 

§3. Single particle excitation in phases I and IV 

Even though the eigenvalue E'}.;-(,\; Q) calculated in Section 2 is the 

lowest eigenvalue for small ,\ and even though eo ( ,\; Q) fails to be analytic 

only at ,\2 = 1, this is not sufficient to guarantee that no phase transition 

occurs for O < ,\ < 1 because, clearly, if for some value of A the system is 

unstable against single particle excitation a phase transition will occur. 

In this section we continue our investigations by studying these single 

particle excitations. More precisely, we study the states in the sector 

Q = 1 with mp = 1 and Pb = 0. From Table I we see that such states 

exist for all N and all P -:f-O, or -21r/3. 
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We commence our study by using the form {2.22) with mp= 1 and 

Pb = 0 in {2.21) and note again that in the resulting expression a, b, c, 

and d can be eliminated in favor of the single variable t to give 

- ffiE 1 - .X 4 
c'tPa(l +t 3 v3 ) Il[l - (--) 2t3 -w 2 ---{1- t)3 )] 

1 + .X t (l + .X)2 
l=l 

{3.1) = e-iP{(t- l)N(tw 2 - l)N{l +wvt)w-Pa 

+ (tw - l)N(tw 2 - l)N{l + vt) 

+ (t - l)N (tw - l)N {1 + w2vt)wPa }. 

Here we use the symbols Pa and mE to distinguish from Pa and mE of 

Section 2. This equation must be used now to determine v as well as 

Wt, 

We first obtain v by letting t = -v- 1 (and -wv- 1 and -w 2v- 1 as 

well). The left hand side of {3.1) vanishes as well as the second term the 

right. Thus we find that v satisfies the equation 

{3.2) 
0 = (-v- 1 - l)N(-w 2v- 1 - l)N{l - w)w-Pa 

+ (-v- 1 - l)N(-wv- 1 - l)N{l - w2 )wPa 

which we rewrite as 

{3.3) N( 1 + WV )N 2P -1 w --- =w a • 

1 +w 2v 

Then if we use the relation {2.24) between P and v we find 

{3.4) 

which, because of the quantization of P {1.21b) gives the identity 

{3.5) 2Pa - 1 - N = 0 mod 3 

which, with O ~ Pa ~ 2 fixes Pa and agrees with Table I. 

We now can determine the Wt as before in terms of the roots of the 

polynomial 

{3.6) 
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Thus, using the linear terms as found in Table I we follow the procedure 

of the previous secion and find 

(3. 7) 

where 

and 

(3.8) 

EN(P, .X) =AN+ fJN>.. - 3mEl1 - >..I 

- ~ r dt.!!_ ln J'i (t)[(l - >..)2 + ~] 112 
21ri Jc, +c' +c' dt 1 - t 

1 2 3 

AN= 0,BN = -4 if N = Omod3 

AN = 1, BN = -3 if N = 1 mod 3 

AN= 2,BN = -2 if N = 2mod3. 

We finally must compute the difference EN'(P, >..) - E'J..r(>..; Q = 0) 

and let N -> oo. Again separate calculations must be done for N = O, 1, 

or 2 mod 3. However, the calculation is slightly simplified if we note that 

for all N 

(3.9) Pa= Pa(Q = 1). 

Thus from (3.8) and (2.43) we have for all N 

(3.10) AN'+ ENA - (A}.,+ Bl.,-.X) = 3(1- .X) 

and 

(3.11) - 1 1 mE-mE = - . 

Here, subtracting (2.45) from (3.7) and using the result that for 1::; t 

(3.12) lim .!!_ln Pi(t) = .!!_ln 1 +tv = -( wv + w2v ) 
N-+oodt Pi(t) dt l+t 3v3 l+wtv l+w 2tv 

we find 

lim {EN"(P; >..) - E'J..r(.X; 1)} = 3(1- .X) + 311 - >..I 
N-+oo 

(3.13) 

l!B.12/3 311 --" WV w2v +- dt + 
1r 1 { 1 + wtv 1 + w2tv} 

X [ ~ - (1 - >.)2]1/2 
t3 -1 
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and, thus, using (2.67) 

lim {EN"(P, >.) - Et(>.; 0)} = 411 - >.j + 2(1 - >.) 
N->oo 

(3.14) 

We now can investigate the question of stability posed at the begin

ning of the section. When >. = 0 (3.14) reduces to 

(3.15) EN'(P, 0) - Et(0; 0) = 6. 

However when >. = 1 (3.14) becomes 

lim {EN"(P, 1) - Et(l; 0)} 
N->oo 

(3.16) 
6 loo w w2 

- -v dt + t3 - 1 - 1/ 2 
- 1r 1 { 1 + wtv 1 + w2tv }( ) · 

This is clearly an analytic function of v which vanishes linearly in v at 

v = 0. Therefore there is a range of P for which EN"(P, 1) lies below 
Et(l, 0) if N is sufficiently large. Thus there is a range of >. about 

>. = 1 for which the state whose eigenvalue is Et(>.; 0) is not the ground 

state. 

To be more quantitative about this instability we have plotted 

.6.e(P,>.) = limN"_,00 {EN"(P,>.) - E1,,-(>.;0)} for several values of>. be

tween O and 1 in Fig. 5a. 

We note that as we increase>. .6.e(P, >.) first vanishes at,\= .9735 ... 

and P = .1612.. .. When ,\ = 1 .6.e(P, >.) is negative for O < P < 
.3518 .... Thus we conclude that phase I surely does not extend to 

(3.17) .9735 ... < >. 

because of instability against one particle excitation. 

However, this is not the entire story. From the duality relation {1.26) 

the value >.1 at which phase I ceases to be stable and the value >.1v at 

which phase IV ceases to be stable should satisfy 

(3.18) >.1 = l/>.1v_ 

Due to the presence of the term 411 - >.J + 2(1- >.) in (3.14) we find (see 

Fig. 5b) that for >. > 1 the region of P where .6.e( P, >.) is negative ocurs 
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6e(P,>-) 

6 >-=O 

-1 P/Tr 

Fig. 5a The excitation energy 

.6.e(P, >..) = lim.w--+00 {EN(P, >..) - E}(>.; O)} 
for several values of >.. as a function of P for O < 
>. < 1. This excitation curve is tangent to the P 
axis at P = .1612 ... for >.. = .9735 .... 

.9013 ... = 1/)/V < 1/). 
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This is clearly a smaller value than that of {3.17) and indicates that 

phase I will be unstable against multiparticle excitation even though 

it is stable against single particle excitation. This is the first piece of 
evidence that the full phase diagram of Fig. 2 is correct and that phase 

II and Phase III are in fact distinct. 

§4. Multiparticle excitations for Q = 0 

Once it has been shown that "single particle excitations" lie below 

the "ground state" then it is to be expected that multiparticle excitations 
will be lower still and thus the true ground state energy per site will lie 

below the eo(>..) calculated in Section 2. 

The basic equation for eigenvalues is still valid as is the form (2.22) 

but, as before, some guidance as to the choice of allowed quantum num

bers must be gained from the finite chain studies summarized in Table 
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6 

0.2 0.4 0.6 0.8 1 

Phr 

Fig. 5b The excitation energy l:.e(P, >-.)/>-. for several val

ues of).. as a function of P for 1 < ).. < oo. This 

excitation curve is tangent to the real P axis at 

P = .225 ... for 1/>-. = .9013 .... 

I. Here we confine our attention to the sector Q = 0 and make the ob

servation that multiparticle excitations occurs in triplets. For example, 

consider N = 7. The P = 0, mp= 0 state has the linear term -2(1 + .X). 
Accompanying the eigenvalue is a set with mp = 3 but not mp = 1 or 

2. Similarly for P -# 0 the same linear term of -2(1 + .X) has states of 

mp = 3 and mp = 6. This occurance of triplets is caused by the fact that 

each mp single particle excitation has a Z 3 charge of 1. Thus triplets of 

excitations do not change the Z3 charge. 

In this section we will compute the ground state energy per site for 

a finite density of these excitations when 

( 4.1) 

We first must determine the equation for the Vt, This is easily 

obtained by first putting the form (2.22) in (2.21) to obtain the gener

alization of (3.1) of 
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mp 

= e-iP {(t - l)N(tw 2 - l)N IT (l + wvet) 

l=l 

mp 

(4.2) + (tw - l)N(tw 2 - l)N wP.,+1\ IT (1 + vet) 

l=l 

mp 

+ (t - l)N(tw - l)N w-(P.,+Pb) 11(1 + w2vtt)}. 

l=l 

We obtain mp equations for the mp unknowns v1, by setting t = -vk. 
Both the left hand side and the second term on the left hand side of 

( 4.2) vanish here and we have 

mp 

0 = (-v;;1- l)N(-v;; 1w2 - l)NIT(l -wvt/vk) 

(4.3) 
l=l 

mp 

+ (-v;; 1 - l)N (-v;; 1w - l)N w-(P.,+1\) IT (1 - w2ve/vk) 

l=l 

for k = l, ···mp which we rewrite as 

(4.4) 

Once the Vk are determined from (4.4) the Wt are obtained from 

(2.36) where now the tt are the real roots of the polynomial 

We now restrict our attention to the case mp = 0 mod 3 

(4.6) Q = 0, Pb = 0, 2Pa - N = 0, mod 3 
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where 

(4.7} 

Then since 

(4.8} 
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linear term = 0 for .N = 0 mod 3 

-2(1 + A) for .N = 1 mod 3 

-(1 + A) for .N = 2 mod 3. 

2mp + 3mE = const = 3m~ 

and mp = 3s where s = 0, 1, · · · we have 

(4.9} 

EN(P, A, mp} - Et(A; O} = -3(mE - m~}ll - Ai 

- ~ f dti ln P(t) [(1 - A)2 + _4_]1/2 
21ri Jc,, dt Po(t} 1 - t3 

1 

= 2mpll -Ai 

1~12/3 
+ ~ f - dti In( P(t) )[ ~ - (1 - A}2]112 

1r J1 dt Po(t) t3 - 1 

= 2mpll-AI 

1~12/8 fflp 2 311-A WVt W Vt +- dt'°'{---+---} 
1r 1 L., 1 + wtv1. 1 + w2tvt 

l.=1 

x [~ -(l -A}2]1/2. 
t3 - 1 

where in the last line the .N -+ oo limit is taken. 

The solution of our problem has now been reduced to the solution 

of (4.4). This, however, is a very familiar equation as can be seen by 

letting 

(4.10} 

to obtain 

(4.11} 

where from (2.24} 

(4.12} 

1-wz,. 
v,. = 

z,.-w 

fflp 

e+iP = wmp-1\ IT z1.. 

l=l 
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Up to the phase factor in front, this is the well known Bethe's Ansatz 

equation for the XXZ spin chain with D. = -1/2 [15] where mp is the 

number of down spins in the chain. We thus would like to study the 

N ----+ oo limit by means of integral equations as is done for the Bethe's 

Ansatz problems. However, in order to do this we need to answer two 

questions. 

1. Do solutions occur for which v,. = v;? and 

2. Do solutions occur where some v,. are complex? 

To answer the first question we first note that there are indeed so

lutions of ( 4.4) when 2 or more Vt are equal. However whenever these 

solutions have been compared with the finite chain studies they always 

have led to eigenvalues which do not exist. This is, of course, not a sur

prising happening because we do not as yet have any information on the 

eigenvectors and hence the degeneracy of our eigenvalues is not really 

known. This is a problem which affects any method of solution based 

on equations for eigenvalues alone [9,16]. For the purposes of this paper 

we will assume that solutions of ( 4.4) with equal roots do not contribute 

to the eigenvalues because of the information obtained from the finite 

chain studies. A better argument should surely be found because the 

physics of the result depends on it. 

To answer the second question we again look at finite chain calcu

lations. In contrast to the first question we do indeed find that there 

are eigenvalues corresponding to complex Vt· Thus we must pursue this 

question further. 

If v,. is real then z,. is on the unit circle and each side of ( 4.11) has 

magnitude 1 and (4.12) is satisfied with P real. However ifv,. is complex 

then z,. will not be on the unit circle and if there were only one such z,. 
(4.12) could never be satisfied. Thus we study the possibility of a pair 

of z,., one inside and one outside the unit circle. Moreover because of 

(4.6) the equation (4.11) reduces to 

( 4.13) 

fflp 

./1/ 2./1/( 1)3m +1 II 1 + ZI, + z1oz1. z,. = w - p 

1 +z,. +z1oz1. 
l.=1 

from which we conclude that the pair of roots z1 , z2 off the unit circle 

satisfy 

( 4.14) 

which we parametrize in the form 

(4.15) 
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with O ~ ( < 1 where ( and </> are real. We now recall the standard 

discussion of pair solutions of Bethe's Ansatz equations. If k = 1 then 

as N--, oo the left hand side of ( 4.13) goes to zero. Thus on the right 

hand side there must be some factor which vanishes. The factor is 

( 4.16) 

Equating this to zero and using ( 4.15) we find for N --, oo the relation 

between </> and ( of 

( 4.17) (- 1 = -2 cos</>, 

where, to satisfy the requirement that O ~ ( < 1 we need 

(4.18) 27r < </> < 41r_ 
3 3 

We now use this in ( 4.10) and find that the vk which correspond to these 

pair solutions are 

( 4.19a) 

and 

(4.19b) 

Then from ( 4.9) we see that the contribution of these pair states make 

to the energy is 

(4.20) 

l!B_ 12/3 31·1 ->. WV w2v V _ & r + r + 2 __ r_ 

1l' 1 { 1 + WtVr 1 + w2tvr 1 + Vrt} 

X [~ - (1 - >,)2]1/2 
t3 - 1 

with 

( 4.21) 
sin(</>+ 2,..) 

V -- 3 >O 
r - , (/4 21r) -

Slil'l'- 3 

where the positivity statement is a consequence of ( 4.18). Thus, rewrit

ing (4.20) as 

(4.22) ~ / 1~ 1213 dt Vr[l - Vrt + 4(vrt)2] [~ _ l _), 2] l/
2 

1r 11 1 + t3v~ t3 - 1 ( ) 
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and noting that for the allowed range of Vr ( 4.22) this is positive we 

conclude that complex pairs of Vt will only serve to raise the energy 

E1v(P, A, mp) - Et-(A; 0). Thus these complex pairs will not contribute 

to the lowest energy state and for our purposes the answer to question 

2 is negative. 

Having thus disposed of complex pair solutions and argued that the 

Vk obey an exclusion principle we may now follow the procedure used for 

the Heisenberg Ising chain and consider the vk to be distributed along 

the real v axis in an interval 

( 4.23) VL < V < Vu. 

We then take the logarithm of ( 4.4) and choose the logarithm of 1 to be 

21riik where h are a set of distinct integers with 

( 4.24) 

to find 

(4.25) N1n(w 2 +vk) = 41riPa+21ri(Ik+!)+~1n(Vk-w 2v,_)· 
W + Vk 3 2 ~ Vk - WV(. 

l=l 

We now may obtain an integral equation by considering the interval 

t:..vk = Vk+1 - vk and define the density function p( v; A) as 

( 4.26) 

and use 

( 4.27) 

where 

(4.28) 

and 

(4.29) 

! L = LP(vi;A)t:..v,_ - j dvp(v;A) 
l (. 

p(v;A) 2:: 0 for VL < v < Vu 

!,vu 

dvp(v; A)= lim mp/N. 
VL N-+oo 

Thus subtracting ( 4.25) from the same equation with k - k + I and 

using (4.24), (4.26) and (4.27) we obtain 

(4.30) !,vu v' I 27r 
dv' p(v'· A)-,,----...,..+---...,..= r,;3p(v; A) 

"L ' v2 + vv' + v'2 I - v + v2 v .:> 
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and hence the ground state energy per site is obtained from ( 4.9) as 

(4.31) ef(,\) = lim .Nl EN(P,,\,mp) = eij(,\) + ru dvp(v;,\)F(v,,\) 
N-+oo },,n 

where 

(4.32) 
l.!_H.12/3 

F(v,.>.)=211-,\I+~ r•->. dy (2vy-l)v [~-(l-.>.)2]1/2. 
1r 11 1 - vy + v2y2 y3 - 1 

We note that F(v, ,\) is identical with the Q = 1 single particle excitation 

spectrum ,\Lie(P, ,\- 1 ) for 1 < ,\ found in Section 3. Thus we see that if 

(4.33) ,\ 1 = .901292 · · · < ,\ < 1 

then F(v) has two zeroes and is negative for v between them. There 

zeroes determine the VL and vu as F(vL) = F(vu) = 0 and can be used 

in (4.29) to compute !!J!-. 
We thus have found in ( 4.30), (4.31) and (4.32) a set of equations to 

determine ef (,\), the ground state energy per site in phase II. However, 

just as with the Heisenberg Ising chain in the presence of a nonzero mag

netic field, this integral equation (4.30) has not been solved explicitly. 

Thus we will content ourselves here with a few qualitative features of 

the solution. 

We have already noted that at ,\1 the energy per site eij(,\) {2.56) 

is analytic. However the same is not true for e{/. When ,\ ----+ ,\ F from 

above, VL and vu approach 

(4.34) Ve ~ .12248 ... , 

the integral in (4.30) can be neglected as being of order vu -VL and we 

find that p( v) can be approximated as 

(4.35) I) v'3 1 
Pc = P( Vci ,\ = -2 l + 2 

7r - Ve Ve 

and F(v, ,\) is approximated by 

(4.36) 

where 

{4.37) 
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and 

( 4.38) 

Thus 

(4.39) 

and we find that 

ef (>,) - el(-X) ~ 1vu dvpc[a1(v - Vc) 2 - ao(.X- .\1 )] 

VL 

(4.40) = Pc[~1 (v - vc)3 - ao(.X - .\1 )(v - Ve)]:~ 

4 3/2 
= --p ~(.\ _ _xl)3/2 

3 C 1/2 • 
a1 

Hence ef (.\) has a singularity at ,\ = .\1 even though e5(.X) does not. 

Thus it is surely true that ,\ 1 marks a phase boundary. 

We close this section with a discussion of the behavior of ef (.X) as 

,\ --t 1. First we study the value of ef at ,\ = 1 by setting VL = 0 in 

(4.30) and,\= 1 in (4.32). Thus p(v; 1) satisfies 

( 4.41) 1vu v' 1 271' 
dv'p(v'; 1) 2 , , 2 + 1 2 = r,;P(v; 1) 

0 V + VV + V - V + V y 3 

and 

( 4.42) 

eu(l) = e1 (1) + dvp(v; 1)- dy----(y 3 -1)- 1/ 2 • 1vu 6 1= (2vy - l)v 

o o o 7r i 1 - vy + v2y 

Secondly, we wish to study the singularity in ef ( .X) as ,\ --t 1. For 

this we must note from ( 4.41) that p( v; 1) is not bounded as v --t 0 

because the kernal of the integral equation is v 1- 1 if v = 0. Thus p( v; 1) 

is of the form 

( 4.43) p(v; 1) ~ Av-a as v --t 0 

and, using this form in ( 4.41) we find that a: satisfies 

( 4.44) 
r= d -a X 271' 

lo xx 1 + x + x 2 = .f3 
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and the integral on the left is evaluated as 

( 4.45) 
271" sin f(o + 2) 

J3 sin 71"0 

Thus the equation for o is 

( 4.46) 
sin f(o + 2) 
-~--=1 

sin 71"0 

from which we readily find 

( 4.4 7) 

We may now compute the form of the singularity in ef (.X) at .X = 1 
by noting that the region in the y and v integrals which contributes to 

the leading singularity is 

( 4.48) vy = 0(1) 

where separately 

( 4.49) 

and 

( 4.50) (
1-.X)2/3 

v= l+.X z with z=O(l). 

Then if we note that VL = c(l - .X) which is much smaller than ( 4.50) we 

see that p(v; .X) may be approximated by (4.43) and (4.47). Thus from 

( 4.42) the leading singular behavior is 

( 4.51) 

The x integral must be cut off in an appropriate fashion to show 

the constant term ( 4.42). This subtraction, however, can only affect the 

amplitude and not the form of the singularity. Thus we find that as 

.X --t 1 

( 4.52) ef (.X),...., ef (1) + canst (1- .X)½ + · ·, 
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This singularity is clearly larger than the singularity ( 1 - >. 2 ) ¾ present 

in ei(>.). We thus conclude that phase II is separated from phase III by 

a singularity in eF ( >.) at >. = 1 ( which, by duality also occurs in phase 

III). 

§5. Discussion 

Our calculations are complete and we now turn to the physical in

terpretation of our results and a comparison with previous work. 

The most detailed previous study of this system is that of Howes, 

Kadanoff, and den Nijs [8]. We strongly advise the reader at this point 

to consult ref. 8 because the situation is most subtle. 

In Fig. 6 we reproduce the phase diagram of ref. 8. 

ro~-----~-------,, 

>-1 

0 
0 

DISORDERED 

2 

ORDERED 

1 

-rr/2 

cf, 

3 

.,,. 

Fig. 6 The proposed phase diagram of ref. 8. 

This diagram is in the >., <P = ¢ plane and contains 3 phases: 

1. An ordered phase where for k --+ oo 

(5.1) 

and m = (1- >.2 ) 119 for <P = ¢ = rr/2 [8]. 

2. A disordered phase, dual to the ordered phase where 

(5.2) 
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3. A single incommensurate phase where 

(5.3) 

for O < Qe < 21r/3. 
As the boundary between 1 and 3 is approached from phase 1 there 

is no singularity in the ground state energy. As the boundary between 

phase 1 and 3 is approached from phase 3 the ground state energy has 

a singularity of the form (>. - >-c)312 • This phase diagram is arrived at 

through series expansions in >. and a fermiox;i. analysis in phase 3 about 

the point >. = O, ¢ = 1r. 

It is quite clear that there are major differences between Fig. 6 and 

the phase diagram on the line ¢ = ¢ = 1r /2 of Fig. 2. The most striking 

of the differences is that not only does the phase boundary cross the 

¢ = ii> = 1r /2 line for >-1 < 1 but that there are 4 phases instead of 3. 

Moreover, neither our phase II nor phase III have all the characteristics 

of the incommensurate phase 3. We conclude this because from Section 

3 and Section 4 we see that in phase II the energy of three Q = I 
excitations is not the sum of three separate Q = I energies. This is 

inferred from the coefficient of 1 - >. being 6 in (3.14) if>. < 1 while it 

is 2 if >. > 1. This lack of additive energies in phase II indicates that if 

the total number of Q = I domain walls is not a multiple of 3 there is a 

mismatched energy seam in the system which can only be caused by a 

long range spin order. However, it is clear that if we extend the Bethe's 

Ansatz analysis of the eigenvalues in phase II we will see that there is 

no mass gap in this phase. Hence we conclude that in contrast to the 

incommensurate phase 3 we have for phase II 

(5.4) 

where K could contain a term ei 811 k as well. In phase III there will be 

no long range order but by duality there will be long range disorder. 

Such long range disorder is also absent in the phase 3 of ref. 8. 

How can these two situations be resolved? 

We first note that the analysis of ref. 8 makes no claim to be valid 

near >. = 1 and that we have no results near ¢ = 1r and >. = 0. Thus, 

unless some subtlety causes the perturbative results of ref. 8 to break 

down if the expansion is carried out to all orders there has to be a new 

phase boundary which separates the incommensurate phase 3 of ref. 8 

from the phases II and III of the paper. 

We also note, however, that phases II and III do have much in 

common with phase 3. The argument that the incommensurate oscilla

tion in the incommensurate phase 3 is given by the density of domain 
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walls mp/N surely applies in our case as well. Indeed the singularity 

of (>. - >-c)312 in phase 3 at the phase 1 boundary is exactly the same 

as our (>. - >.1 ) 312 singularity in phase II at the phase I boundary. The 

only difference is that we have interacting fermions and ref. 8 has free 

fermions. All in all the physical situation is most delicate. 

Our final remark is of a more general nature. As was emphasized in 

ref. 8 the reason that there are any transitions into phase 3 or phases II 

and III at all is because of level crossing in the ground state. However, 

if we were dealing with a two dimensional statistical mechanical system 

with real interactions all elements of the transfer matrix would be posi

tive for all real >. and the ground state would always be non-degenerate 

by the Perron-Frobenius theorem [17]. Thus level crossing in the ground 

state would not occur. 

There is a submanifold in the space of Boltzmann weights (1.7) 

where this positivity occurs [4] namely 

(5.5) 

a*c = w112 b*d p p p p, 

japj = ldpl, 

lbpl = !cpl· 

On this submanifold there will be no ground state level crossing and the 

ground state energy found by Baxter [18] will be correct for all real >.. 
On the other hand, for the superintegrable case considered here 

</> = ¢> = 1r/2, the Boltzmann weights (1.7) are in general complex, the 

Perron-Frobenius theorem does not apply, and hence there can be level 

crossing in the ground state of 'Ji. The existence of phases II and III is 

due to this crossing. 

The use of positivity properties of quantum mechanical hamiltonians 

to prevent level crossing is well-known for hamiltonians of the form 

(5.6) 1i = KINETIC ENERGY + POTENTIAL ENERGY 

where in the coordinate representation 

(5.7} POTENTIAL ENERGY= LV(qi - qi) 
i<j 

is a diagonal operator which may be made positive by adding a suitable 

constant and 

(5.8) KINETIC ENERGY = ~ L Pl = - - 1 L 882
2 

2m . 2m . q3• 
3 3 
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is an off diagonal operator with non-negative elements. For this hamilto

nian the ( operator analogue of) Perron-Frobenius theorem tells us that 

the ground state is unique and has no nodes. For this type of hamilto

nian the level crossing transition of this paper is forbidden. 

But there are many familiar quantum hamiltonians which do not 

enjoy positivity properties. The most ubiquitous are those obtained 

from the minimal coupling with an electromagnetic field 

(5.9) P,,. --t P,,. - A,,. 

where A,,. is a vector potential. The simplest example is the phenomenon 

of Landau diamagnetism [19] where A,,. is chosen to give a uniform mag

netic field and V = 0. In this case the ground state eigenvalue has a 

macroscopic degeneracy. If instead of Schroedinger's equation we con

sider the free Dirac equation in an external magnetic field we also have 

a system which has no positivity properties and has level crossing [20]. 

Clearly nonpositive hamiltonians, degenerate ground states, and level 

crossing are common in quantum mechanics. 

In quantum field theory there are also simple field theories such as 

>..¢>4 which have positivity properties for which we can prove unique

ness of the vacuum. But when gauge interactions are introduced via 

(5.9) these positivity properties can be destroyed. Once the positivity 

properties are gone, level crossing phenomena can occur that change 

the vacuum. One such example is the Adler, Bell, Jackiw [21] anomaly 

which can be shown to be most similar to the behavior of electrons in 

the presence of a magnetic field [22]. 

Finally, we remark that many of the models proposed to explain 

high temperature superconductivity do not have positivity properties 

and level crossing in the ground state must be considered. 

On the other hand, even though there are many examples of quan

tum systems where level crossing occurs, the physics of these systems 

is far from understood if, for no other reason, than that perturbation 

theory is an inadequate tool to investigate these phenomena. One of 

the main uses of the integrable chiral Potts model is to provide physical 

insight into strong coupling level crossing transitions. In this way the 

N ~ 3 integrable chiral Potts model plays the role with respect to level 

crossing transitions that the N = 2 Ising model has played for 45 years 

with respect to second order phase transitions. 
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Appendix A 

We give here an algebraic derivation of the normalized recursion 

relation (2.21). As a first step, we want to find an explicit expression 

for fp,q/q,p and /p,Rqfq,p· This has already been done in [18], but an 

alternative calculation will be given here for completeness. Consider the 

star-triangle relations [4,18] 

N-1 

I:w;,q(k - i)w:,qu - i)w:,p(i - l) 

(A.1) i=O 

= fr,pfp,q Wh (j - k)Wv (k - l)Wh (j - l). 
I r,p r,q p,q 
r,q 

Note that, from the definition (1.7) 

(A.2) WJ,~(n) = 1, wtj(n) = c5n,o mod N. 

Therefore, ifwe replace q --t Rq,r --t q in (A.1), we find 

(A.3) 

Actually, by the definition (1.19), the RHS is in the form i, so it must 

be understood as lim /q,Rq'. This limit can be computed and it gives 
q'-tq 

(A.4) I p,Rqfq,p = J,i:!!-/q,Rq' = >.(N1!..i)/N. 

(A.4) allows us to rewrite the recursion relation (1.18) as 

+ ( 2 33 )Iv TpR4q} 
>. f p,R8 q/R8 q,p/p,R4q/R4q,p ' 

(A.5) 

where only /p,q/q,p need to be computed, the other coefficients being 

obtained applying the automorphism R to the q variables. Define then 

N-1 

(A.6) sp,q(k,l) ~r I: w;,q(k - i)W:,p(i -l) 
q=O 
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and specialize {A.I) to the case r = q. Properties (A.2) of the Boltzmann 

weights must be supplemented by 

(A.7) w(h)(n)w(h)(n) = 1 p,q q,p , fq,q = 1 

which are also easy consequences of the definitions {1.7), {1.18). So we 

find that 

(A.8) 

and fp,qfq,p is nothing else than S{0,0). We then proceed to compute 

S ( 0, 0). Since w;,q( N + n) = w;,q ( n), the definition of the Boltzmann 

weights {1. 7) yields 

(A.9) 

where we have set 

(A.10) A (dpaq)N - (apdq)N ( )( ) 
= (bpcq)N _ (cpbq)N bpcq - cpbq dpaq - apdq . 

By means of the geometric sum representation 

(A.11) 
1 1 N-1 

- -- ~ k 
1 - Z - 1 - zN L.-i :C • 

k=O 

{A.7) is written as 

(A.12) 

with 

(A.13) A'- A 
- ab Cd [1-{~)N][l-{~)N]. 

q P q P bpc• dpa• 

Interchange the sums in (A.10), to get 

(A.14) 



Chiral Potts Model 43 

Since k1, k2c{0, 1 ... N - I}, one has that k1 + k2 + lc{l, 2 ... 2N - I} 

and bk1 +k 2 +1,o(mod N) can be replaced by bk1 +k 2 +i,N· Eliminating the 

b one remains with a geometric sum and it is easy to conclude that 

(A.15) 

This awkward expression can be slightly reduced, by means of (1.8) 

(A.16) 

In the superintegrable case, when ap = hp = I and Cp = dp = T/, this 

expression further reduces to 

(A.17) 
N(TJ~ - I)(TJ~ - I) 

f f dq Cq 

p,q q,p - >.(112a•b• - I) 
Cqdq 

The notation is somewhat simplified if, following [10], we set x = 77~ 
• 

y = .!:.Lb with (xN - I)(yN - I)= >.(yN - xN), owing to (1.8). Therefore, 
'1 • 

when N = 3 

(A.18) f f _3(x-I)(y-I) 
p,q q,p - >.(y - x) 

and Jp,RhqfR•q,p is found noting that the action of the automorphism 

Ron the pair (x,y) is R(x,y) = (I/y,I/wx). Finally, defining the 

normalized transfer matrix Tp1:q from 

(A.19) T - (x - I)N TN 
p,q - (x3 - l)N' p,q 

and inserting (A.16), {A.17) into (A.2), it is straightforward to obtain 

(2.12) with 

(A.20) 
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Appendix B 

The Hamiltonian {1.12) enjoys many symmetries, but we will prove 

here only those listed in (2.25). Further information can be found in 

[8,23]. The definition (1.14) of X and Z implies that 

(B.I) zx = wxz xN = zN = 1 xt = x- 1 zt = z- 1 

where X and Z are taken to be on the same site. Operators on different 

sites commute. 

Here we prefer to work in the basis when X is diagonal. In this basis 

Z acts as the cyclic step-down operator, (see (B.l)) 

(B.2) Xln >= wnln > Zin >= In - I > (mod N) 

Define an operator V that, on each site of the chain, acts as follows 

(B.3) Vin >= IN - I - n > 

Obviously V = v- 1 and 

vzkv- 1 = zt 
(B.4) 

V Xk v- 1 Xk = w- 1 xt. 

Furthermore, we will need the space inversion operator I. It slightly 

simplifies the notation to consider the Hamiltonian (1.12) to be centered 

about the origin, even though the conclusions are by no means affected 

by this choice. Thus 

(B.5) 
1xk1- 1 = x_k 

IZkr 1 = Z-k· 

Set U = IV. We have that 

(B.6) 

This is true for any value of A, ¢>, <fi. In the superintegrable case, ¢> = 
ef> = 1r /2 entails that 

(B.7) 

which amounts to change the sign of A. Therefore, we conclude that in 

the superintegrable case, for any length of the chain, the whole spectrum 

is invariant under A ---+ -A 

(B.8) {E(A)} = {E(-A)}. 
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To prove how the various sectors are mapped into each other, we observe 

that with P the momentum and eiP the (right) shift operator, 

(B.9) 

since U includes the space-inversion operator. As to the ZN charge 

operator R = Ilk Xk, (B.4) implies that 

(B.10) 

Therefore, calling Q the ZN charge, defined mod N by R = e 2;.· Q, the 

complete transformation properties of the spectrum are 

(B.11) E(Q, P, .X) = E(-Q -N, -P, -.X). 

WhenN = 0 mod N, a further symmetry of the spectrum is present. 

To show it, we introduce U defined by 

(B.12) 

The transformation property of the basic operators X, Z is 

(B.13) 
uxku- 1 = x_k 

U zk(J- 1 = wk Z-k 

When applying U to the Hamiltonian, it is easily seen that the term 

(ZkZZ+ 1)i goes into w-i(z-kz!k_ 1)i but the boundary term, where 

periodic boundary conditions are imposed, acquires an extra factor wAf i. 

This factor is identically 1 if we choose N = 0 mod N. Under this 

restriction 

(B.14) 

In the superintegrable case CLnWn = -an, and therefore the whole 

spectrum has the symmetry 

(B.15) {E(.X)} = {-E(-.X)}. 

Incidentally, (B.15) along with (B.8), assures that for N = 0 mod N, 

the whole spectrum is reflection symmetric about O [23]. 

Obviously [U, R] = 0 and a sector of specified Q is mapped into 

itself under U, but an eigenspace of momentum is not, because U is not 
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translation invariant. Instead, remembering that eiP I = I e-iP we find 

that for an arbitrary vector of momentum P and ZN charge Q 

(B.16) 

iPUIP, Q > = iPI(II x;,.)IP, Q >= Ie-iP(II x;,.)eiP e-iPIP, Q > 
,. ,. 

= uR-le-iPIP,Q >= ue-i(P+¥)1P,Q > 

Hence UIP, Q > has momentum -(P + 2"!v9). Now (B.14) allows us 

to conclude that, given an eigenvector of H(>-.), with momentum P, ZN 

charge Q and energy E(>-.) 

(B.17) H(->-.)UIE(>-.), P, Q >= -E(>-., P, Q)UIE(>-.), P, Q > 

so that IE(>-.),P,Q > is also an eigenvector of H(->-.) and the relation 

holds 

(B.18) 
21rQ 

{E(>-.,P,Q)} = {-E(->-.,-P- N,Q)} 

which completes the demonstration of (2.25). 

Appendix C 

The set of equations (2.26) comes from a requirement of consistency 

between (4.12) and (4.13) and (2.39). In a N-site chain, ei/1/P = 1, so, 

( 4.13) yields 

fflp 

(C.1) II zf = w"f(Pi.-m.) 

l=l 

If we multiply the mp equations in ( 4.12) we have 

fflp 

(C.2) II zf = wmp(.N'-P.-Pi,-mp) 

l=l 

which is consistent with (C.1) provided that 

This restriction on Pa, Pb has to be supplemented by 

(C.4) 
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which follows from the symmetry (2.39). By inspecting all the possible 

values of .N and mp (mod 3) in (C.3) and C.4) we solve for Pa and Pb 

and find (2.26). Note that for some choices of .N and mp, a solution can 

be found only for particular values of Q. 
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N = 3 

Table I The quantum numbers for the eigenvalues of the 

transfer matrix established from analytical and nu

merical studies on finite size chains of length .N = 
3, 4, 5, 6, and 7. Here Q is the Z3 charge, P is 

the total momentum, and the quantum numbers 

Pa, A, Pc, mE, and mp are defined by (2.22). 

Linear Number Number of 

Q p Term Pa Pb Pc ffiE mp of Sets Eigenvalues 

0 0 0 0 0 0 2 0 1 4 

0 0 0 1 0 3 1 1 

±211" 
3 0 0 0 1 0 3 2 2 

1 0 -(3 + >.) 2 0 0 1 0 1 2 

2>. 0 1 1 0 2 1 1 

+ 2,r 
3 

-4>. 2 0 1 0 1 1 1 

2>. 0 1 1 0 2 2 2 

-2,r 3 - >, 0 1 1 1 0 1 2 -3-

2>. 0 1 1 0 2 1 1 

2 0 -3 + >, 1 0 0 1 0 1 2 

-2>. 1 0 1 0 2 1 1 

~ 3 + >, 0 2 1 1 0 1 2 
3 

-2>. 1 0 1 0 2 1 1 

-211" 4>. 0 2 1 0 1 1 1 -3-

-2>. 1 0 1 0 2 2 2 
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.N = 4 

Linear Number Number of 

Q p Term Pa Pb Pc mE mp of Sets Eigenvalues 

0 0 -2(1 + .X) 2 0 0 2 0 1 4 

1 + .\ 0 1 1 1 2 2 4 
±,r 

1 + .\ 0 1 1 1 2 2 4 2 

-2(1 + .X) 2 0 1 0 3 2 2 

7r 1 + .\ 0 1 1 1 2 3 6 

-2(1 + .X) 2 0 1 0 3 1 1 

1 0 -2 1 0 0 2 0 1 4 

-2 1 0 1 0 3 2 2 

4 0 2 2 0 3 2 2 
±,.- 1 - 3.\ 1 0 1 1 1 1 2 2 

1 + 3.\ 0 2 1 1 1 1 2 

-2 1 0 1 0 3 2 2 

7r 1 - 3.\ 1 0 1 1 1 1 2 

1 + 3.\ 0 2 1 1 1 1 2 

-2 1 0 1 0 3 2 2 

4 0 2 2 0 1 1 

2 0 -2 + 2.\ 0 0 0 2 0 1 4 

1 - .\ 0 0 1 1 2 2 4 
±,r 1 - .\ 0 0 1 1 2 2 4 -2 

-2 + 2.\ 0 0 1 0 3 2 2 

7r 1-.X 0 0 1 1 2 3 6 

-2 + 2.\ 0 0 1 0 3 1 1 
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.N=5 

Linear Number Number of 

Q p Term Pa Pb Pc ffiE mp of Sets Eigenvalues 

0 0 -(1 + .>.) 1 0 0 3 0 1 8 

1 0 1 1 3 3 6 

2{1 + .X) 0 2 2 0 3 3 3 

All 

P=j:O -(1 + .X) 1 0 1 1 3 5 10 

2{1 + .>.) 0 2 1 2 1 1 4 

0 2 2 0 4 2 2 

1 0 -1 +.>. 0 0 0 3 0 1 8 

0 0 1 1 3 3 6 

2 - 2.X 0 0 2 0 3 3 3 

All 

P=/: 0 -1 +.>. 0 0 1 1 3 5 10 

2 - 2.X 0 0 1 2 1 1 4 

0 0 2 0 4 2 2 

2 0 -4 2 0 0 2 0 1 4 

2 0 1 1 2 1 1 4 

-1- 3.X 2 0 1 1 2 1 2 

-1 + 3.X 0 1 1 1 2 1 2 

-4 2 0 1 0 1 1 

2 0 1 2 0 4 4 

All 

P=j: 0 2 0 1 1 2 1 1 4 

-1- 3.X 2 0 1 1 2 2 4 

-1 + 3.X 0 1 1 1 2 2 4 

2 0 1 2 0 4 3 3 

-4 I 2 0 1 0 1 1 
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Linear Number Number of 

Q p Term Pa Pb Pc ms mp of Sets Eigenvalues 

0 0 0 0 0 0 4 0 1 16 

0 0 1 2 3 5 20 

0 0 2 0 6 10 10 

±2,r 0 0 0 1 2 3 8 32 -6-

0 0 2 0 6 6 6 
±4,r 0 0 0 1 2 3 8 32 -6-

0 0 2 0 6 8 8 

7( 0 0 0 2 2 3 9 36 

0 0 2 0 6 5 5 

1 0 -3 - ). 2 0 0 3 0 1 8 

2 0 1 1 3 2 4 

3-A 0 1 2 1 3 5 10 

2). 0 1 1 2 2 3 12 

0 1 2 0 5 5 5 

-4). 2 0 2 0 3 3 

2,r 

6' 
4,r -4). 2 0 1 2 1 1,1,1,1 4,4,4,4 
6' 
6,r 2 0 2 0 4 0,4,0,1 0,4,0,1 
6' 
-2,r -3-). 2 0 1 1 3 5,3,4,4 10,6,8,8 -6-

3-). 0 1 2 1 3 4,3,5,4 8,6,10,8 

2). 0 1 1 2 2 3,4,3,3 12,16,12,12 

0 1 2 0 5 5,6,5,6 5,6,5,6 

-4,r 3-). 0 1 1 3 0 1 8 -6-

0 1 2 1 3 2 4 

-3-). 2 0 1 1 3 5 10 

2). 0 1 1 2 2 3 12 

0 1 2 0 5 5 5 

-4). 2 0 2 0 3 3 
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Linear Number Number of 

Q p Term Pa Pb Pc mE mp of Sets Eigenvalues 

2 0 -3+ .\ 1 0 0 3 0 1 8 

1 0 0 1 3 2 4 

3+.X 0 2 2 1 3 5 10 

-2.\ 1 0 1 2 2 3 12 

1 0 2 0 5 5 5 

4.\ 0 2 2 0 3 3 

2,r 

6' 
6,r 

4.\ 0 2 1 2 1 1,1,1,1 4,4,4,4 
6' 

-4,r 
0 2 2 0 4 1,0,4,0 1,0,4,0 -6-, 

-2,r 
-3+.X 1 0 1 1 3 4,4,3,5 8,8,6,10 -6-

3+.\ 0 2 2 1 3 4,5,3,4 8,10,6,8 

-2.\ 1 0 1 2 2 3,3,4,3 12,12,16,12 

1 0 2 0 5 6,5,6,5 6,5,6,5 

4,r 
3+.X 0 2 1 3 0 1 8 6 

0 2 2 1 3 2 4 

-3+.X 1 0 1 1 3 5 10 

-2.\ 1 0 1 2 2 3 12 

1 0 2 0 5 5 5 

4.\ 0 2 2 0 3 3 
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N=7 

Linear Number Number of 

Q p Term Pa Pb Pc ffiE mp of Sets Eigenvalues 

0 0 -2(1 + ,\) 2 0 0 4 0 1 16 

2 0 1 2 3 4 16 

2 0 2 0 6 7 7 

1+>. 0 1 1 3 2 3 24 

0 1 2 1 5 21 42 

p =I 0 -2(1 + ,\) 2 0 1 2 3 7 28 

2 0 2 0 6 6 6 

1+>. 0 1 1 3 2 4 32 

0 1 0 1 5 19 38 

1 0 -2 1 0 0 4 0 1 16 

1 0 1 2 3 7 28 

1 0 2 0 6 10 10 

4 0 2 2 2 2 3 12 

0 2 3 0 5 3 3 

1+3>. 0 2 2 1 4 9 18 

1 - 3,\ 1 0 2 1 4 9 18 

P=/ 0 1 - 3,\ 1 0 1 3 1 1 8 

1 0 2 1 4 8 16 

-2 1 0 1 2 3 9 36 

1 0 2 0 6 9 9 

1+3>. 0 2 1 3 1 1 8 

0 2 2 1 4 8 16 

4 0 2 2 2 2 2 8 

0 2 3 0 5 3 3 

2 0 -2(1 - ,\) 0 0 0 4 0 1 16 

0 0 1 2 3 4 16 

0 0 2 0 6 7 7 

1 - ,\ 0 0 1 3 2 3 24 

0 0 2 1 5 21 42 

P=/0 -2(1 - ,\) 0 0 1 2 3 7 28 

0 0 2 0 6 6 6 

1 - ,\ 0 0 1 3 2 4 32 

0 0 2 1 5 19 38 
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