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PREFACE

The application of the theory of matrices and eigenvalues to combina-
torics is certainly not new. In a certain sense the study of the eigenvalues
of the adjacency matrix of a graph even became a subject of its own, see for
instance [B5], [c11], [ct2], [H14] and [$2]. Also in the theory of designs,
matrix and eigenvalue methods have often been used successfully;: see for
instance [c6]1, [c9], [H17] and [R3]. In the present monograph the starting
point is a new theorem concerning the eigenvalues of partitioned matrices.
Applications of this theorem and some known matrix theorems to matrices
associated to graphs or designs lead to new results, and new proofs of
known results. These concern inequalities of various types, including con-
clusions for the case of equality. In addition we obtain guiding-principles
for constructing strongly regular graphs or 2~designs. Let us give some
more details.

Our theorem (Theorem 1.2.3) about eigenvalues and partitionings of

matrices, which was announced in [H1], reads as folldws:

THEOREM. Let A be a complete hermitian n x n matrix, partitioned into n?
block matrices, such that all diagonal block matrices are square. Let B be
the m % m matrix whose i,3-th entry equale the avervage row sum of the i,j-th
block matrix of A for 1,3 = 1,...,m. Then the eigenvaluce Ay@ 2 ooz ()
of A and the eigenvalues A(B) 2 ... 24 (B) of B satisfy

Ai{A) 2 Ai(B) z A (A) fori=1,...,m.

n-m+i

Moreover, if for some integer k, 0 5 k 5 m, Ai(A) = Ai(B) fori=1,...,k
and A (B) = ln—m+i(A) for i = k+1,...,m, then all the block matrices of A
have constant row and columm sums.

The weaker inequalities kl(A} z li(B) 2 An(A) were already observed by
C.C. Sims (unpublished), and have been applied successfully by HESTENES &
HIGMAN [H10], PAYNE {P4], [P6] and others. They are usually applied under
the name Higman-Sims technique. Many proofs by means of this Higman-Sims
technique can be shortened by use of our generalization. But, what is more

important, our theorem leads to new results, which we shall indicate below.



Suppose G is a graph on n vertices, whose (0,1)~adjacency matrix has
eigenvalues AI(G) 2 ... 02 Xn(G). DELSARTE [D1] proved that, for strongly
regular G, the size of any cocligque {independent set} cannot be larger than
—r:kn(G) /{AI(G)-An(G)). A.J. Hoffman (unpublished) proved that this bound
holds for any regular graph G. Using the above theorem we prove that an
upperbound for the size of a coclique in any grapth is provided by

2
=R (@A (6) / (a2, -3 (@2 (a) ,

where dmin denotes the smallest degree in G. This generalizesyﬂoffman's
-bound, since in case of regularity Al(G) = dmin holds. More generally, by
use of the same methods we f£ind bounds for the size of an induced subgraph
of G in terms of the average degree of the subgraph (Theorem 2.1.2). Apart
from the inequalities of Delsarte and Hoffman we also find inegualities of
Bumiller, De Clerck and Payne as corollaries of our result.

By applying the generalization of the Higman~Sims technigue ({with
m = 4) to the adjacency matrix of the incidence graph of a design, we obtain
bounds for the sizes of a subdesign in terms of the singular values of the
incidence matrix (Theorem 3.1.1). For nice designs, such as 2-designs and
partial geometries, this result becomes easy to apply, since then the sin-
gular values are expressible in the design parameters (for gymmetric 2-
designs the inequality also appeared in [H4]). Thanks to the second part of
our theorem certain conclusions may be drawn easlly for the case that the
bounds are attained, for the graph case as well as for the design case.

We also prove results concerning the intersection numbers of designs,
such as the inequalities of AGRAWAL [Al] (Theorem 3.2.1) and the results of
BEKER & HAEMERS [B2] about 2 - (v,k,A) designs with an intersection number
k=A(v-k) /(k-1).

HOFFMAN [H13] proved that the chromatic number y(G) of a graph G
satisfies v(G) 2 1-—A1u» /An(G). To achieve this, Hoffman first proves a
generalization of the inequalities of Araconszajn concerning eigenvalues of
partitioned matrices. In Section 1.3 we give a new proof of these inequali-
ties using ouf generalization of the Higman-Sims technique. In Section 2.2
the application of these inequalities yields a generalization of Hoffman's
bound (Theorem 2.2.1). Foxr non~trivial strongly regular graphs this leads
to y(G) 2 max{1 =26 /A (6) , 1 -2 (G) ‘“‘2(6)}' In Chapter 4 we use these
bounds, and many other results from the previous chapters, in order to

determine all 4-colourable strongly regular graphs. This chapter is also



meant to illustrate some applications of the results and techniques obtained
in the first three chapters,

Chapter 5 is in the same spirit, but rather independent from the other
ones. The main result is the ixiequality of HAEMERS & ROOS [H3]: t < 53 if
s # 1 for a generalized hexagon of order (s,t), together with some addition-
al regularity for the case of equality. This is préved by rather elementary
eigenvalue methods. The same technique applied to generalized guadrangles
of order (s,t) yields the inequality of HIGMAN [H11l: t < s° if s # 1, the
result of BOSE [B7] for the case of equality and a theorem of CAMERON,
GOETHALS & SEIDEL [¢5] about pseudo-geometric graphs.

Using eigenvalue methods we obtain guiding-principles for the con-
struction of designs and graphs. In Section 6.1 we construct a 2~ (56,12,3)
design, for which the framework is provided by Theorem 3.2.4. This design
is embeddable in a symmetric 2~ (71,15,3) design. By modifying this design
we obtain eight non~isomorphic 2 - (71,15,3) designs. all these designs seem
to be new (the construction is also published in [B21). In Section 6.2 some
ideas for the construction of strongly regular graphs are described. We
construct strongly regular graphs with parameter sets
(q3+q2+q+1,q2+q,q-1,q+1}and(23n+22n+1.22n+2n-1,2n—2,2n) for prime power g
and positive integer n. Strongly regular graphs with the first parameter
set are known; however, our construction ylelds graphs which are not iso-
morphic to the known ones. The second family seems to be new. Special at-
tention is given to strongly regular graphs with parameter set (40,12,2,4).
Several such graphs are constructed with the help of a computer.

In the first appendix we recall some basic concepts and results from
the theory of graphs and designs (including finite geometries). This appen-
dix i1s meant for readers who are not familiar with the theory of designs
and graphs. The second appendix exhibits explicitly some of the designs and

graphs constructed earlier.



CHAPTER I

MATRICES AND EIGENVALUES

1.1. INTRODUCTION

In this chapter we shall derive some results about eigenvalues of
matrices. They provide the main tools for our investigations. We shall
assume familiarity with the basic concepts and results from the theory of
matrices and eigenvalues. Some general references are [M3], [N1], [w5]1.

Let A be.a square complex matrix of size n. The hermitian transpose
of A will be denoted by a*. Suppose A has n (not necessarily distinct)
real eigenvélues, which for instance is the case if A is hermitian (i.e.
A = Af). Then we shall denote these eigenvalues by

Ai(A) 2 ees 2 kn(A) .

If denoted by subscripted variables, eigenvectors will always be ordered
according to the ordering of their eigenvalues. Vectors are always column
vectors. The linear span of a set of vectors UyrenarBy is denoted by

< Uyreensuy >. A basic result, which is important to our purposes, is
Rayley's principle (see [N1], [w5]).

1.1.1. RESULT. Let A be a hermitian matrixz of size n. For some i, 0 £ i s n,
let Upseneslly be an orthonormal set of eigenvectors of A for A @) e.aid (B
Then
*
u Au

%
uau

i. Ai{A) < for ue < Uyreesruy >, u# 0, 1#0;

i
equality holds iff u is an eigenvector of A for A 1.

*
. u_Au n .
ii. Ai+l(A) 2 :;i: for ue < Uyraensuy >0, U #0, 1i#n;

equality holds iff u 18 an eigenvector of A for A, , {R).

i+l

For the multiplicity of an eigenvalue we shall always take the geo~
metric one, that is, t?e maximal number of linearly independent eigenvectors



(to be honest, this agreement is only of influence to the proof of the next
lemma, because throughout the remainder of this monograph we shall only
consider eigenvalues of diagonalizable matrices). Now we shall prove some

"easy and well known, but nevertheless useful lemmas.

1.1.2. LEMMA. Let M" and N be complex m x m, matrices. Put

Then the following are equivalent.

i. A #0 is an eigenvalue of A of multiplicity £;
ii. -\ # 0 g an eigenvalue of B of multiplicity £;
iii. Azaéo 18 an etgenvalue of MN of muliiplicity £;
iv. kza‘o 18 an eigenvalue of WM of multiplicity f.
PROOF.

1. (1) e (ii): let AU = AU for some matrix U of rank f£. Write

Uy o~ Uy
U = , and define U := P
v, -u,
where U; has m; rows for i = 1,2. Then NU, = AU; and MU, = AU,. This implies

AU = -AU. Since rank U = rank U, the first equivalence is proved.
2. (iii) &= (iv): let MNU' = AU' for some matrix U' of rank f£. Then
NM(NU') = ANU', and rank NU' = rank U', since

rank AU' = rank MNU' < rank NU' < rank U' ,

and A # 0. This proves the second equivalence.

3. (i) e (iii): because

N 0
A2 = ’
0 Mn
this equivalence follows immediately from the previous steps. o

The eingular values of a complex matrix N, are the positive eigen-

valueg of



‘By the above lemma we see that they are the same as the square roots of the

N . *
non-zero eigenvalues of NN .

1.1.3, 1LBMMA. Let

be a complex matrix. If Al 15 non~singular, and rank A, = rank A, then

- -1
Byp = Byy Byy By -

PROOF. For i = 1,2, let a, 4 dencte the j-th column of Ai . From

* x % "7 2
rank A = rank £A11 A21] it follows

L,3) 2 11 u,
223 A
for some vector u. But if Al 1 is non-singular, then u = Aﬁ a, 4 ‘Hence
-] ’
25,5 = Ay A a4 which proves the lemma. 0

The identity matrix of size n will be denoted by In or I. The matrix
with all entries equal to one by J; a column vector of J is denoted by j;
Jn is a square J of size n; the symbol ® is used for the Kronecker product
of matrices.

As a last result in this section we observe that, if K := In ® Jm‘ then

J\i(K) Foaee = )sn(l() =m , }\n+1(K) = oLa. = lmn(K) =0 .

1.2. INTERLACING OF EIGENVALUES

Suppose A and B are square complex matrices of size n and m, respec-
tively (m £ n), having only real eigenvalues. If

?xi(A) & Ai(B) 2 A i{A)

n~m+



for all i = 1,...,m, then we say that the eigenvalues of B interlace the
eigenvalues of A. If there exists an integer k, 0 € k £ m, such that

}\i(A) = Ai(B) for i = 1,...,k

An—m+i(A) = li(B) for i = k+l,...,m ,

then the interlacing will be called tight.

1.2.1. THEOREM. Let S be a complex n X m matrix such that s's = I.Leta
be a hermitian matriz of size n. Define B := S'AS, and let vy,...,v_be an
orthonormal set of eigenvectors of B. Then

i. the eigenvaluee of B interlace the eigenvalues of A;

ii. if A B) € X, (a), ln.m+i(A)} for some 1 € {1,...,m}, then there
exists an etgenvector v of B for A; (B, such that Sv ig an eigen—
vector of A for A, (B);

iii. <fs for some % € {0,...,m}, A (B) =), (B) for all i = 1,...,8%,
then sv, ig an eigenvector of A for A @), for i=1,....8;
iv, if the interlacing is tight, then SB = aS.

' PROOF. Let Ugreeerty be an orthonormal set of eigenvectors of A. For any i,
1 £ i< n, take

~ * * i ~
Vi€ S ViraenVy >n<§g ul,...,s w >, v, #0 .

~ L
Then Svi € < ul,....ui._1 >~, hence by 1.1.1

Thus also

(-A) = - % (A} .

- A (B) = (-B) <A —

m-i+l “m=i+l

This proves (i).
If )\i(B) = Ai(A), then vy
for the eigenvalue A i(B) = }.i(A) . This, together with the same result

and S;i are eigenvectors of B and A respectively

applied to ~B and =~A yields (ii).



We shall prove (iii} by induction on £. If £ = 0, there is nothing to

prove. Suppose £ > 0., We have

*

*

* vxs ASVJL
L A =2 (B = vy By =
Vg'S SV!'

On the other hand, Sv, € < Svj,...,Sv, , >', and by the induction hypothesis
SVys...48v,_, are orthonormal eigenvectors of A for Agal,.. ";‘2—1 (3) . Now
1.1,1.1i yields that SV,Q. is an eigenvector of A for A f,(A) . This proves
(iid).

Let the interlacing be tight. By applying (iii) to A with ¢ = k and to - A
with 2 = m~k, we find that SV1, .o .,Svm is an orthonormal set of eigenvec-
tors of A for A,(B),...,A (B). Write V := I:v1 vm] and

D &= diag(kl(B),...,Am(B)) . Then ASV = SVD, and BV = VD. Hence
ASV = SBV .
Because V is non-singular, {(iv) has now been proved. 0
A dirxect consequence of the above theorem is the following theorem.

This result is known under the name Cauchy inequalities, see [H7], [M2],
[ws].

1.2.2. THEOREM. Suppose
A1 B

*
Ay Ay

A=

i8 a hermitian matrix.
i. The eigenvaluee of A, interlace the eigenvalues of A.

ii. If the interlacing is tight, then a,=0.

PROOF. Let m be the size of A, Define S := [Im 0]*. and apply 1.2.1. O

Another consequence of 1.2.1 is the following result which was
announced in [H1] (see also [H2]). This result will often be used in the

forthcoming sections.



1.2.3. THEOREM. Let A be a hermitian matrix partitioned as follows

such that A, i8 square for i = 1,...,m. Let bij be the average row sum of

Aij, for i,j =1,...,m. Define the m x m matrix B := (bij) .

i. The eigenvalues of B interlace the eigenvalues of A.

ii. If the interlacing is tight, then Aij has constant row and column
sums for i,j = 1,...,m.

iii. If, for i,j = 1,...,m, Aij has constant row and column sums, then
any eigenvalue of B is also an eigenvalue of A with not smaller
a multiplicity.

PROQF. Let ni be the size of Aii' Define

4

it ...1 0...0 ... O... @

0...0 1...1 ... 0...0
ok 0...0 0...0 ... O0...0

.
~

~ - ke
D := diag(nl,...,nm), and § := SD 1.Then s*s =1 and §'S = D2. We easily
see that (E*Ag)ij equals the sum of the entries of Aij' Hence

By 1.2.1.i we know that the eigenvalues of S*AS interlace the eigenvalues

*
of A. But B has the same eigenvalues as S AS, since

13* ~ -1 1

s*as = p "§"aSp " =D "BD .

This proves (i).

It is easily checked that AS = S(D-laD) reflects that Aij has constant row
sums. for all i,j=1,...,m. Hence 1.2.1.iv implies (ii).
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1

On the other hand, if A8 = SD BD and BU = A 4(B)U for some matrix U and
integer i, then A(SD-IU) = Ai(B)SD-iu, and rank U = rank SD_lu. This proves
(iii). ‘ 0

As a special case of the above theorem we have that

A A) 2 A;(B) 22 (a) ,

for i = 1,...,m. These inequalities are well known and usually applied
under the name Higman-Sims technique, see [H10], [P4]. We shall also use
the name Higmans-Sims technique if we apply the more general result 1.2.3.
Also 1.2.3.iii is well known, see for instance [¢12], [H9] (note that this
result remains valid for non-~hermitian A). We see that 1.2.3.ii gives a
sufficient, and that 1.2.3.iii gives a necessary condition for the block
matrices of A to have constant row and column sums. However, neither of
these conditions is both necessary and sufficient. This is illustrated by
the following partitioned matrices:

For both A and A' the eigenvalues are 2,0,0,-2, and the average row sums of

o 0
0o of° The block

matrices of A have constant row sums, whilst the interlacing is not tight.

the block matrices are given by the entries of B =

The row sums of the block matrices of A' are not constant, whilst the

eigenvalues of B are also eigenvalues of A.

1.3. MORE EIGENVALUE INEQUALITIES

In this section we shall use interlacing of eigenvalues in order to
prove some known inequalities and equalities, which we shall use in later
sections. The first result is due to WEYL [w2] (see also [W5]).

1.3.1. THEOREM. Let A, and A, be hermitian matrices of size m. Then

Xi_j(Ai) + ki+j(A2) 2 Ai(Al-bAz) z li+j(A1) + Am_j(az) ’

fori=1,...,m 0 53 s min{i~-1,m-i}.
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PROOF. Define

0 A2-11+j(A2)I

*

s :=!:/§[Im 1,1 .

Then Ai{A) = 0, and

*
S'AS = h(a, +2, - (Ri_j(Al) +A1+j{A2})I} .

With 1.2.1 we now have

Aiml +A2) - Ai‘-j (A

*
1) - A1+j(A2) = 2&1(8 AS) s Zki(A) =0 .

If we replace Al and AZ by -A, and -2\2, we get the second inequality. 0

1
The next theorem is due to HOFFMAN [H13].

1.3.2. THEOREM. Let A be a hermitian matrix of size n, partitioned as
followe

Ay e A
A= | 2 O
Aml ves Amm
where A, 18 a square matrix of size ng, fori=1,...,m Let Jyreeesdy be

integers such that 1 s ji < ny for i = 1,...,n. Then

mil Iil
A (a) + A {n) 2 A, (B,,) 2
31+.,. .+jm i=1 i i=1 Ji ii

n

2 A, PN ¢V D T W 7 Y I
31+...+3m 1 jenem+2 i

PROOF. Let ul,...,un be an orthonormal set of eigenvectors of A. Let

be an orthonormal set of eigenvectors of a,, for i = {,...,m.

U, e
ERRARREAS S ii
i ~ k

" ok -~ *
Put k = j, +... +jm. Choose a vector u = [um umk] # 0, such that
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~ L
uk € < ul,...,uk_l > £
and
Eik € < uil""'uij > for i=1,...,m.
i

It follows from dimension considerations that we can always do so. Now
define

Wi = “aikﬂ r
and
L3 isw #0,
_ wi ik i
Uik T
uiji if wi =0,

for i = 1,...,m. Furthermore put

*
W 3= (WyreearW
(yreenrvg)”

and
uik 0 ces 0
0 G 0
8 = %k .
0 o] i
L mk

Then we have
ss=1, sw=au nd (s"as),, =4, G,, for i=1
= ' L (s ii*uikAii ik Fori=i,...m.
By l.1.1.1i and the choice of ﬂik’ the last formula gives

(S*As)ii 2 A (Aj) fori=1,...m.
i N

Hence

m- ‘ m
* *
(%) 121 A;(87AS) = trace S AS 2 121‘Aj @) .

On the other hand, Sw = &, s¥s = I and 1.1.1 yield



.13

® K N*A~
w S ASw - uk uk

*
{xx) Am(S aA8) < R o < kk(A) .
w wu
‘Applying 1.2.1 gives
m-1 . ' m-1
(xxx) DIENCE- DI R VeV
i=1 i=1

Combining (%), (*%) and (***} yields the first inequality of our theorem.
Agaln, the second inequality follows by substituting ~A for A in the first

one. D

If the matrix A of the above theorem is positive semi~definite and

m = 2, then we have

A, A +x, @A) 2, L (a) .
3 11 iy 22 31+32 1

These are the inequalities of ARONSZAJN [A3] (see also [H7]).

The following consequence of 1,3.2 will turn out to be a useful tool

in computations with eigenvalues.
1.3.3. THEQREM. Suppose

A 2
a’. A
12 P2

A =

18 hermitian of eize n. Suppose B has just two distinet eigenvalues, that
18,

AI(A) cee = AL(B) > A£+1(A) T oaee = An(A)

for some £, 1 < £ < n. Let n; and n, be the sizes of Ay, and B,, respective—
ly. Then

AylRg) = Ap() + A (A) = Ap i, (Ayy)
for max{1,£+1-n;} < i < min{f,n,} ,
?‘:L(Azz) = Al(A) for 1 £ i < f+l-n, ,

Aj(By,) = A (A) for £<isn,.
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PROOF'. By the Cauchy inequalities (1.2.2.i) we have

Ai(A) P Ai(Azz) 2 ln1+i .

‘This proves the result for 1 £ 1 < f+1~n1. and for £ < i n,.
For the remaining values of i, 1.3.2 gives

Af+1(A) +A1(A) 2 A (Ail) +Ai(A22) 2 kf(zx) +7\n(A) ’

f-i+l

which proves the required result.

It is an easy exercise to give a direct proof of the above theorem,
The proof then could go analogously to the one of Theorem 5.1 of [C5],

where a similar result is stated.
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CHAPTER 2

INEQUALITIES FOR GRAPHS

2.1. INDUCED SUBGRAPHS

In this section we shall derive inequalities for induced subgraphs of

graphs, using the results of section 1.2 on interlacing of eigenvalues.

Let G be a graph on n vertices. The eigenvalues of G are the eigen-
values of its (0,1)-adjacency matrix; we denote them by AI(G) 2 ... 02 An(G}.
Let Gl be an induced subgraph of G. Then by 1.2.2 (Cauchy inequalities) the

eigenvalues of G, interlace the eigenvalues of G. In particular, if G1 is a

1 ,
coclique of size a, then Aa(G) z AQ(GI) = 0, and kn—a+1(6) < AI(GI) = 0.
Hence, we have the following result, which was first observed by CVETKOVIC

[cl1] (see also [ci2]).

2.1.1. THEOREM. The size of a coclique of a graph G cannot exceed the number
of nemnegative [nompositive] eigenvalues of G.

Now we shall derive inequalities for induced subgraphs using the
Higman~Sims technique (1.2.3). Suppose G is a graph on n vertices of
average degree d. Let the vertex set of G be partitioned into two sets,
and let Gl and Gz be the subgraphs induced by these two sets. For i = 1,2,
let n; be the number of vertices of Gi‘ let di be the average degree of Gi'
and let di be the average of the degrees in G over the vertices of Gi' How

we can state the following theorem.

2.1.2. THEOREM. For i = 1,2

a;en - 'Ein'i
i. ll(G))\z(G) z —_nl— Zz ?\1 (G);\n(G) s
ii. if equality holds on one of the sides, then G, and G, are

regular, and also the degrees in G are congtant over the
vertices of G, and G,.
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PROOF. If G is complete we easily see that the theorem is correct. So let

us assume that G is not complete. Let Aii’ A22 and

Bir By
*
Bip Byl

. A=

be the adjacency matrices of Gl' Gz, and G, respectively. Put

Then the entries of B are the average row sums of the block matrices of A.
By 1.2.3.i we have ‘

I\l(A) > Al(B) ’ AZ(A) b A2(B) ' —An(A) 2 —Az(B} .
Because trace A = 0, we have An(A) £ 0. From 2.1.1 we know that XZ(A} z 0,
since otherwise G would be complete. Hence

{*) Al(A)Ag(A) 2 Al(B)Xz(B) 2 kl(A)?«n(A) .
On the other hand we know

(xx} A1 (BIA,(B) = det B = d,d, - d,(d,~d;) .

We quickly see

dn = dinl + d2n2 ’ nz(dz-dz) = nl(dl-dl) , no= n1+n2 .

This yields
~ ~ e~ ~2
d,d, - d,(4, -dz) = (d,@n~din,) /{n-ng) .

With (*) and (**) this proves (i).
If equality holds on one of the sides, the interlacing must have been
tight. Hence 1.2.3.ii gives (ii). 0

Now let us look at the conseguences of the above inequalities for
some special cases. The size of the largest coclique and clique of G are
denoted by «(G) and w(G), respectively.
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2.1.3. THEOREM. If d . and A ax &€ the smallest and the largest degree in
the graph G, respectively, then

2
i. aGi(d . - 216G (G)) < -nA, (G)A (Q) ,

ii. ©(G) (dn ~‘d§ax +1,(6)2,(8)) £ n(d + A{(G)A,(G) .

PROOF. (i). Substitute 4(G) = n;, d; = O and &) 2 d_, in the right hand
inequality of 2.1.2.4i.

(1i). Substitute w(G) = ny, &, = w(G) -1 and &, s d__ in the left hand
inequality of 2.1.2.i. 0

2.1.4. THEOREM. If G is a regular graph on n vertices of degree d, then

i. any subgraph G, of G with ny vertices and average degree 4,
gatisfies
nd, -n,d

1
}tz(G) Zm—-—z )\n(G) >

1

ii. a(@) (@-2,(6)) < -nA_(6) ,

iid. ©(6) (n-d+1,(G)) S n(l+iy(6) .

PROOF. If G is regular then AI(G} =d= 31 = 52 = dmin = dmax' Now

2.1.2.i, 2.1.3.i and 2.1.3.ii give the required results. 0

The inequality 2.1.4.ii is an unpublished result of A.J. Hoffman
{see [c12], [H2], [L2]). In fact, the inequalities (ii) and (iii) of 2.1.4
{just as the left and the right hand inequality of 2.1.4.1) are equivalent,
because either one can be obtained from the other by using w(G) = a'(G) '
(@ =n-2(C) -1 and X;(8) =-2 (G) -1 for i=2,...,n (G is
the complement of G).

n=i+2

For the graph G with its subgraphs G1 and G,, we define D{G,Gy)} to be
the incidence structure whose points and blocks are the vertices of G1 and
62, respectively, a point and a block being incident if the corresponding
vertices are adjacent. If we have equality in any of the inequalities of
2.1.2-2.1.4, then 2.1.2.ii yields that D(G,Gl) is a 1-design, possibly
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degenerate. Now let G be strongly regular. Then by use of 1.2.3.iii it is
not difficult to show that equality holds in 2.1.4 iff D(G,Gl) is a l~design.
If Gy 1s a coclique or a cligue we have a criterion for D(G,Gl) to be a 2-
design.

2.1.5. THEOREM. If G Ze¢ a etrongly regular graph on n vertices of degree 4,
then

i. afG) < 1+ (n-d-1)/Q,(G) +1),
ii. w(@ <1 -a/xr (@,
iii. if equality holds in (i) or (ii), and G, t¢ a coclique of size

a(G), or a clique of size w(G), respectively, then D(G,G,) is a
2-design, possibly degenerate.

PROOF. If G is strongly regular, we know (see [C5], [84] or Appendix I)

(A-2,(Q)) (=2 (G)) = n(d+A, (@A (G)) .

From this it follows in a straightforward way that (i) and (ii) are equi~
valent to 2.1.4.ii and 2.1.4.4iii.

From the definition of a strongly regular graph we know that any two points
of D(G,Gl) are incident with a constant number of blocks of D(G,Gl) .
Furthermore, equality in (i) or (ii) implies that D(G,Gi) is a i-design, so
in this case D(G,Gl) is then a 2~-design, possibly degenerate. O

The theorems 2.1.5 and 2.1.4 for strongly regular graphs are known.
They are direct consequences of the linear programming bound of DELSARTE
[pi] (see also [H2]). They were also proved by BUMILLER [B9].

Applying 2.1.4.i to the point graph of a partial geometry (see Appen-
dix I, or [B6], [T1]) gives the following result of DE CLERCK [C7] (see
also [P3] for the case o = 1, and [B9] for t = t).

2.1.6. COROLLARY. Let P be a partial geometry with parameters (s.t,o),

containing a partial subgeometry P, with parameters (sy:ty,0). Then

8=35 or s - sltl-!-a-l .
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PROOF. If G and Gl are the point graphs of P and Pl' respectively, then
(see Appendix I or [T1]) G, is an induced subgraph of G, and

§= {(s+1)(st+a)/a ., n, = (sl+1)(slt1+a)/a .

d = s({t+il) , d1=sl{t24~1} : AZ{G) =g=-1,

Substitution of these values in the left hand inequality of 2.1.4.i leads
to

(s~s1) (st +0) (slt-.1 +ta-s=-1) 0.

This proves the result. ) 0

The next theorem gives a result in case both Hoffman's bound (2.1.4.1ii)
and Cvetkovié's bound (2.1.1) are tight.

2.1.7. THEOREM. Let G be g strongly regular graph on n vertices. Let £,
denote the multiplicity of the eigenvalue AL (6. Then

i. a{G) s £ (6) ,
ii. a(G) =1 + (n~hl(G)-1)/(A2(G)+1) Py
iii. let G, be a coclique, whose size attains both of these bounds,

then G,, the subgraph of G induced by the remaining vertices, is
strongly regular with eigenvalues

A{(6y) = A, (@)a(6) / (n=a(G) + A,(G,) = A,(G) ,

A = )\2(6) + )\n(G) .

a-a(e) (€2

PROOF. Theorem 2.1.1 implies (i); (ii) is the same as 2.1.5.i. Let A and A
be the adjacency matrices of G and Gy respectively. Then

2

"3 (6) = 2,(8)

A - e
n

has just two distinct elgenvalues, )‘2 (G) and An(G) of multiplicity n -fn(G)
and fn(G} = 0{G), respectively. From 1.3.3 it follows that
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xl(G) - AZ(G)

e T —

A2 H
has three distinct eigenvalues, AZ(G), Az(G) + Xn(G) and AZ(G} + kn(G) +
S a(GQ(Ai(G) -AZ(G}} /n, where the last eigenvalue is simple (has multi~-

plicity one). On the other hand, 2.1.5.iii gives that G, is regular of

2
degree Al(G)a(G)f {n ~a(G))}. This shows that A, and Az have a common basis
of eigenvectors, and that the simple eigenvalue of 32 belongs to the eigen-
vector j. Thus A2 has the desired eigenvalues, and therefore (see [C6] or

Appendix I) G, is strongly regular. 0

Using 1.1.3 it is not difficult to show that D(G,Gl) is a quasi-
symmetric 2-design (see Section 3.2}, whose block graph is the complement
of G,. This situation has been studied by SHRIKHANDE [s5].

In proving 2.1.2 we applied interlacing to the product of eigenvalues.
We did so in order to get reasonably nice formulas. However, for non-
regular graphs the inequality for the product carrxies less information than
the separate inequalities. For this reason, applying the Higman-Sims
technique directly to the adjacency matrix of a given non-regular graph,
may yield better results than 2.1.2 or 2.1.3. Also, if more is known about
the structure of G or Gi’ it is often possible to get better results by a
more detailed application of the Higman-Sims technique. Let us illustrate
this by the following result.

2.1.8. THEOREM. Let G be a regular graph on n vertices of degree 4, and let
the complete bipartite graph Ky n be an induced subgraph of G. Let x, and

¥
X, Xy Z X,, be the zeros of

(n-%-mx> + (A% +dm - 20m)x - tm(n -2d) .
Then

Az(g) 2 ) and An(G) S X, .

PROOF. Without loss of generality, let G have adjacency matrix

'
0 J A12
A= | J 0 A;z f

[ ] i)
By P By
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where the diagonal block matrices are square of sizes 2, m and n,, respect~
ively. Using the Higman-Sims technique (1.2.3) we find that the eigenvalues
of

. 0 m d-m
B := I3 . 0 d~2
ldr;-m mdx;ﬂ. d_m+§d-2zm
2 2 2

interlace the eigenvalues of A. Clearly AI(B) = xl(A) = d and hence

3\2(3}13(3) = {det B} /d = Im{2d ~n) an R

Az(B) + ka(B) = (trace B) - d = (2fm - 2d -md} an .

This yields x = Az(B) and x, = )\3 (B) . Now the interlacing gives the
required result. 0

BUMILLER [B9] showed for strongly regular G and m = 1 that

£{u +12(G)) < -dkn(G} ‘
" where u = d + A (@)X (6). Using
(@=2,(6)) (=X (@) = n(@+X,(G)A (@)
one easily checks that this follows from the second inequality of the

above theorem. PAYNE [P6] proved that

(L-1)(m-1) < 52,

if G is the point graph of a generalized quadxancjle of order (s,t) (see
‘Chapter 5 or Appendix I). This follows after substituting

n=(s+l)(st+l) , d=s(t+l) , A,(6) =s~1
in the first inequality of the above theorem. It should not be surprising

that for this case we obtain the same result as Payne, because he too uses
the Higman-Sims technique.



22

2.2. CHROMATIC NUMBER

In this section we shall derive lower bounds for the chromatic number
of a graph in terms of its eigenvalues. The main tool is Hoffman's generali-
- zation of Aronszajn's inequalities (1.3.2).

Let G be a non-void graph on n vertices. Then it follows immediately
that v{(G)}, the chromatic number of G, satisfies

yY{Gla(G) 2 n .
Combining this with the upper bounds for o(G) found in the previous section
we obtain lower bounds for y(G). For inmstance, 2.1.3 gives

y{G) 2 1-a%,_ /2 (@A (G)

- min’ "1 n *

However, this is not best possible, since HOFFMAN [H13] (see alsc [B5],
[a2], [H14], [12]) showed that

y{G) 21 -RI(G) /ln(G) ’
which, if G is not regular, is better than the above bound. If G is reqular,

then the two bounds coincide. Taking into account that a{G) is an integer

~ we get

Y@ 2 n/lnr @2 (6) / (Ay(@ (@ -a2 ) ],

which is occasionally better than Hoffman's bound.

HOFFMAN [H13] proves his lower bound by use of the inequalities 1.3.2.
We shall use the same technique, but in a more profound way, in oxder to
obtain a generalization of Hoffman's inequality.

2.2.1, THEOREM. Let G be a graph on n vertices with chromatic number{ v. Let
k be an integer satisfying O < k < n/y. Then

i. (Y=-1)A_.. (&) = -A

K+l n-k{y-1) @ .

ii. (=D (6) S A 4y (@) .

PROOF. Let A be the adjacency matrix of G. Then without loss of generality ’
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11 1y
A= L : .
F ees A

yi Y

where\Aii is the ny x ny all-zerc matrix, for i = 1,...,Y.
First, we assume that n, > kfori=1,...,v. Let Uyreeesuy denote an

orthonormal set of eigenvectors of A. Define
~ k *
A=A+ (A () -1 (@A) 121 wug .

Clearly the matrices u iu;f_ and A have a common basis of eigenvectors. This
implies V

(%) Ai(i) = A . .(B) for i = 1,...,n-k .

k+i

For i = 1,...,Y: let 2., be the submatrix of a corresponding to A,,. Since

ii N ii
u iu: is positive semi-definite of rank one, ): u iu: is positive semi-
i=1
definite of rank k. This yields that -»Ai i is positive semi-definite of

rank at most k, hence

(Zii) =0 fori=1,000,7 .

An.-k
i
Now we apply the left hand inequality of 1.3.2 with j 3 =0y -k. This gives

gk B+ 151’ A @) 2 0.

With (%) this yields

, -1
(%%) Mok (y-1) @) 121 i) 20 .
Hence

Gorx) (Y= B 2 ()

Now suppose that n; < k for some L ¢ {1,...,v}. Let L ¢ {1,...,Y} be such
that n, < k iff 1 € L. Let A' be the n' x n' submatrix of A, cbtained by
discarding all block mat;‘ices Aij with i ¢ Lor j € L. Put ¢ := IL
k < n/y it follows that £ < y, hence n' > 0. Now (%¥x) glves

. From
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(Y=2-DA,,, (&) +2 a"vy zo.

n*+ki~k (y~1)

Using n' +k& > n and the Cauchy inequalities {(1.2.2) we have

Mtk r-1) A5 Ao yon) B Apge gy B
M@ <A, B) .

Hence
(Y-—k-n}«”k(m + An—k(v-l)m) 20 .

From k < n/y it follows that A1+k(A) 2 A
Thus

n-k(y-i)(A)' hence A1+k(A} z 0.

(Y=1)A, . (B) 2 =1 (a) .

14k n-k(y-1)

This proves (i}. The proof of (ii) proceeds analcgously,-but also follows
from the above by replacing A by -A. 0

We see that the second inequality of the above theorem for k = 0 is
Hoffman's bound. In Chapter 4 we shall need a sharpened version of this
inequality (see [H131):

Y=-2
- iZO Ay @ 2 A @),
which is in fact just formula (**) in the above proof with k = 0, and A
equal to minus the adjacency matrix of G.

If k > 0, the above inequalities are not really bounds for Y (G},
since y(G) also occurs in an index. However, this does not matter much 1if
we use these inequalities for estimating the chromatic number of a given
graph. It is also not difficult to derive proper bounds from these in-
equalities. The next results illustrate this.

2.2.2. COROLIARY. Let £,(G) denote the multiplicity of the eigenvalue
A (@) Then

ﬂ@meU+%wL1~%mhqﬂm}~

PROOF. Suppose v = v{(G) = fn(G). Then An{G) = Xn_Y+1(G). Now 2.2.1.1 with
k =1 gives (y-1)A,(G) 2 ~A_(G). This proves the required result. O
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For strongly regular graphs the above results lead to the following
theorem.

- 2.2.3. TEEOREM. Let G be a strongly regular graph on n vertices. Suppose G
18 not the pentagon or a complete y-partite graph. Then

Y(G) 2 max{1-A(6) /A (G) s 1 =X () /A, (@) .

PROOF. Due to the above results, it suffices to prove the following claim:

£,(6) 2 =2, (G) /2,(G) .

To achieve this, we distinguish three cases,

a) n £ 28. For this case it is easily checked that all feasible parameter
sets for strongly regular graphs which viclate our claim are those of the
pentagon and the complete y~partite graphs. )

b) Ag(G) < 2. In this case Az(G) = 1, or G is a conference graph (see

[¢2] or Appendix I). If G is a conference graph, then A,(6) = -+ ¥,

and hence n € 25 and we are in case 1. Strongly regular graphs with

A,(G) = 1 were determined by SEIDEL [s3]. They satisfy n € 28 ox G is a
ladder {disjoint union of edges)}, the complement of a lattice (line graph of
a Km'm)- or the complement of a triangular graph‘(line graph of a Km). One
easily verifies that these three families of graphs satisfy our claim.

c} QZ(G) 2 2 and n > 28. If G is imprimitive (G is complete y-partite or
the disjoint union of complete graphs), the result is obvious. So assume G
is primitive. Suppose the claim does not hold. Using AZ(G) z 2, Ai(G) <n

and

£,(GIAL(G) + (n=1-£ (G))A,(G) + A;(G) = O
we obtain

£2(6) < ~£_(GIA_(6) /1,(0) =

“n-1- £,(6) + 2 (G) / A,(@) < % n - £(6) .
This yields |

2 3 3
fn(G) +3fn(G) <‘§-n+2 .
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Por primitive G the absolute bound (see [D2], [84]) reads

2
n < &(fn{G) + Bfn(G)) .
Hence  %n < 2 één. i.e. n < 24, This contradicts our assumption, and there-

fore the theorem is proved. ‘ 0

2.2.4. EXAMPLE. Let G be the Schl&fli graph, which is drawn in Figure 1;
two black or two white vertices are adjacent iff they are on one line, a
black vertex is adjacent to a white one iff they are not on a line. (see
[s3], [H2]). Then G is strongly regular, n = 27 and

[}

Al(G) = 16, AZ(G) = oL, = k?(G) 4, AB(G) = oLl = 127{8} = -2,

AI(G) = 10, AZ(G) = ... =A21(G) =1, RZZ(G) =L, = 327(6) = -5,

where G denotes the complement of G. From Figure 1 we see that
(@) 23 and o(G) 26 .

The thin vertical lines partition G into six cliques, hence y(G} < 6. The
numbering gives a colouring of G with nine colours, so y{(G} s 9. Using our
bounds it follows that equality holds in all these inequalities. Indeed,
by 2.1.4.1ii or 2.1.5.i we have a(G) = 3; 2.1.1 yields a(G) < 6; y(G) 2 9
follows from Hoffman's bound, and Y(é) 2 6 follows from our last theorenm.

FIGURE I

The chromatic number of strongly regular graphs will be the subject of
Chapter 4.
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CHAPTER 3

INEQUALITIES FOR DESIGNS

3.1. SUBDESIGNS

In this section we shall derive inequalities for subdesigns of de-
signs.

Let D be a design with incidence matrix N. It is clear that we cannot
apply the Higman-Sims technique (1.2.3) to N, because N does not have to
be symmetric. Instead, we apply the Higman-Sims technique to

By definition the positive eigenvalues of A are the singular values of N.

Let 01 2 02

main result of this section.

2 ... > 0 denote these singular values. Then we can state the

3.1.1. THEOREM. Let D be a 1 - (v,k,r) design with b blocks. Let D, be a
possibly degenerate 1 - (v,,k,,x,) subdesign of D with b, blocks., Then

2
i. (vr1 -blk) (bkl -vlr) < 02(v —vl} (b -b1) '

ii. if equality holds, then each point Lblock] off D, is ineident
with a constant number of blocks [pointe] of D,.

PROOF. Let N1 and

be the incidence matrices of D, and D, respectively. Put

1
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0 4] Nl N2 0 0 r, r-x,
0 0 N3 N4 0 0 b r=-x
A= | * and B := ’
N1 N3 0 0 k k-k1 0 0
- * *
'Nz N4 0 0 ] Yy k-y 0 0

where

X 3= bl(k-ki){(v-vl) and y := vl(r-rl)f(b-bl) .
Then the entries of B are the average row sums of the block matrices of A.
By 1.1.2 we know

a) , 2

)\i(A) B X (B) ’

bvil-i 3B = =gy

for i = l,veusbtv, 3 = 1,.4.,4. We easily have
o, = A, (A) =1, (B) = V/rk .
From det B = rk (:c1 -x) (kl -y} it now follews that
= - - - —
AZ(B) AB(B) v’(r1 X} (k1 ¥) .

Now 1.2.3.1 gives

2 _ 2
{rl "'x) (kl ‘Y) £ }‘2(A) = 02 -
With blkl = v, this yields (i). .
If equality holds, then the interlacing must be tight. Thus 1.2.3.iv gives
(ii). ‘ [

From the above proof it is clear that the result also holds if D1 is
not a i-design, but then we have to take Ty and k1 to be the average row
and column sums of Nl‘

For many l-designs 02 is expressible in terms of the parameters of
the design. For instance, og =r-XA if D is a 2~ (v, k,)) design, and
oy, = s+t ~a+1 if D is a partial geometry with parameters (s,t,a) (see
Appendix I, or [cel, [T1]).

We shall make explicit two consequences of the above theorem.
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3.1.2. COROLLARY. If a symmetric 2 - (v,k,A) design containg a symmetric
2= (vy.ky o)) subdesign, possibly degenerate, then

k-k13
kz k ~ NP, — +A .
1 lxar--v1 :

PROOF. Substitute b = v, k = r, b1 =V, kl =x and ag = k=X in
3.1.1.4. 0

3.1.3. COROLLARY. Let X and ¥ be a set of points and a set of lines,
respectively, of a partial geometry with parameters (s,t,a), such that no
point of X is incident with a line of Y. Then

(@[ + (s+t+1-a)(s+1))(a|¥] + (s+t+1-a)(t+1)) <

< (s+t+l-a)(s+1)2(e+1)2 .

PROOF. Substitute ky = xry =0, b, = |¥|, v, = |X|, k =s+1, r = £+1,
v = (s+1)(st+a) /o, b= (t+1)(st+o) /& and 02 = s+t+1-a in
3.1.1.4. 0

Corollary 3.1.2 appeared in [H4]. A Baer subplane of a projective
plane {see [D}]) satisfies 3.1.2 with equality. Other examples which meet
this bound (hence where 3.1.1.ii applies) can be found in [H4].

The bound of 3.1.3 can also be tight. For instance, let Q be the
partial geometry with parameters (2,4,1) (generalized quadrangle), whose
points and lines are the vertices and the triangles of the complement of
the Schl&fli graph (see Example 2.2.4). There are 15 triangles which do
not have a vertex in common with a double six (the black vertices in
Figure 1), Thus we have an empty subgeometry (no point and line are in-
cident) of Q having 12 points and 15 lines. This satisfies 3.1.3 with

equality.
if D1
which meet the bound of 3.1.1.1i. For instance: a projective plane with a

ié an empty design (k1 =x, = 0), then one easily finds examples

maximal arc (see [D31); a symmetric 2-design containing an oval without
tangent blocks {see [A4]); a 2-design having a block repeated b/v times
{see [L1]; here the inequality 3.1.1.i is Mann's inequality [M21).
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Although the results of this section are similar to those of Section
2.1, we did not start with a general inequality for substructures of an
incidence structure like we did for subgraphs of a graph in 2.1.2. This has
two reascons. Firstly, the formula for an arbitrary incidence structure is
more complicated than 2.1.2. The second reason is that there does not seem
to be much interest in incidence structures withou£ any additional proper-
ties; this is certainly not true for graphs. Yet we shall give one result
for an arbitrary incidence structure, namely an inequality for the sizes of

an empty substructure.

3.1.4. THEOREM. Let D be an incidence structure with v points and b blocks,

Let every point [blockl] be incident with at least Toin blocks Ekmin pointel.
Let X and Y be a set of points and a set of blocks, respectively, such that
no point of X is incident with a block of Y. Then

2 g2 1x||y|scfa

2
min min 2

(v-ix)-ix]) ,
where o, and o, denote the two largest singular values of the ineidence
matriz of D.

PROOF. Let the incidence matrix of D be

where O denotes the [X]| x |[¥]| all-zero matrix. Let ry and k., be the

i
average row sums of Ni and N:, respectively, for i = 2,3,4. Then by

1.2.3.1 the eigenvalues of

s ~
0 0 0 r,
0 4] r r
B 1= 3 4
0 k3 0 0
k2 k4 o] 9] )
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Now with 1.1.2 it follows that

det B = z (s)x (B s x (A);\ (a) = of o .

~ On the other hand we have

Since r k z k . , the theorem is proved. a
*min “min

3.2. INTERSECTION NUMBERS

If two distinct blocks of a design D have exactly g points in common,
then p is called an intersection number of D. It is cbviocus that an inter-

section number p of a 1 - (v,k,x}) design satisfies
k 2 p 2 max{0,2k-v} .

The next result, which is due to AGRAWAL [Al], gives non-trivial bounds
for the intersection numbers of a l-design. Like in the previous section,
the singular values of the incidence matrix of a design D will be denoted
byciacza... > 0.

3.2.1. THEOREM. Let D be a 1 - (v,k,xr) design with b blocks. Let By and B,
be distinct blocks of D. Then

rk-Uz

2 2
NBy $2———"=-k+a);

i. |B =

1

if equality holds then |B, n By| + [Bz n Byl = 2(rk-c§) /b for
any further block By,

2
ii. By n Byl 2k - 055

if equality holds then |B, n By| = [B, 0 By| for amy further
bloek Bj.

PROOF. The result is obvious if b £ 3, so assume.b 2 4. Let N be the in-
cidence matrix of D, such that the first two columns correspond to the
blocks B, and B,. Define
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Then the off-diagonal entries of A are the intersection numbers of D, and

the row and column sums of A equal kr. Put p := B

' following partitioning of A:

k  py A

ook 12
A= |\

*

B2z By

Define

X = 2(kxr-k-p) /(b~2}) and B :=

k+p

X

1

n 82 and consider the

kr-k=-p

kr-x

Then the entries of B are the average row sums of the block matrices of A.

Clearly
AI(B) = Al(A) = rk
By 1.2.3.i we have
A,(B) 5 A (A) = o°
2 2

Hence

02.

og(b-z) < (k+p)(b—2) - 2(kr -k —p) .

This yields

2 2
p <0, -k +2(xk-03) /b .

kz(B) = Kk+p~% .

If equality holds, the interlacing is tight and 1.2.3.1 gives that every

column sum of A,, equals x. This proves (i}.

12

To prove (ii) we apply 1.2.1-to A with

-1 1t 0...0"

0 0 1...1

Then
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It is easily seen that kxr-x 2 k-p if b 2 4. So }\Q(B} = k -p. Hence, by
1.2.1.4

2
k-p < ?\Z(A) =a, .

Here eqﬁality does not have to imply that the interlacing is tight. There~
fore we shall use 1.2.1.ii. If c§ = k=p =kr=x, thenr =1, p = 0 or
r=2, p=10, b=4, and the result is easily checked to be true. If

02 = k-p < kr-x, then 1.2.1.i1 inplies that 5(1,0)" = (-/Z,/Z,0,...,0)"
is an eigenvector of A for the eigenvalue k -p. Thus A:;,\(‘i'l)* = 0.

This proves (ii). 0

It is straightforward to verify that equality in (i) or (ii) for a
pair of blocks of D implies also equality for the corresponding blocks of
the complement of D.

Although Agrawal's proof of the above theorem is different from ours,
it also uses eigenvalue techniques (in essence the Cauchy inequalities
1.2.2). MAJUMDAR [M1] gives a proof of this theorem for the case that D is
a 2-~design, using counting arguments. See also BUSH [B10] and CONNOR [C8]
for similar results.

It is clear that our method also leads to inequalities if we consider
the intersection pattern of more than two blocks.

3.2.2. THEOREM. Let D be a 1 - (v,k,r) design with b blocks. Let Y be a set
of blocke which mutually have p points in common. Then

i. ¥l (op -xk) 2 blp ~k) .

ii. Y] (bp—xk+c§} Sb(oi-k-l-p) .

PROOF. Let N be the incidence matrix of D, We apply the Higman-Sims
technique to A& := N*N, partitioned according to Y and the other blocks of
D. Put

kizx-1) - p(l¥| -1}
b -~ Y|

x := |y}

Then
k-p+olY]l xk-k+p-pl¥l

x ¥k -x
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carries the average row sums of the block matrices of A. Clearly

A (B) =k~-p +tol¥l -x = (b(k-p) + (bp ~kx) [¥]) / (b~ {¥]) .

~From 1.2.3.1i we have

. 2
0= ?\b(A) < AE(B) < )\Z(A) =0, .

This lower and upper bound for AZ(B) yields (i) and (ii), respectively. [J

We define two blocks By and B, of a 1 ~(v,k,z} design to be equivalent
if
ngB

|B € {k,k-—og} .

1" Byl

Then from 3.2.1.ii it is clear that this indeed defines an equivalence
relation, and that the number of common points of two blocks only depends
on the eguivalence classes of these blocks. By the use of 3.2.2 we find

bounds for the size of the equivalence classes.

3.2.3. THEOREM. Let D be a 1 - (v,k,r} design with b blocks. Let ¥ be an
- equivalence class of blocks. Then

i. k and k -cr§ cannot both be an intersection number of D,
ii. ifk —og 18 an intersection number of D, then
bc:g
l¥ls 3

bcg - bk + rk

iii. if k 18 an intersection number of D, then
bo?
Yl = 7
bk - rk + 62‘

PROOF. Assume 2xr £ b; we may do so because of the remark right after
Theorem 3.2.1. Suppose k-—cg is an intersection number. Then k-dg >0,
hence og—k+2(rk-c§) /b < 2k(r~-1) /b < k. So 3.2.1.i yields that k can-

not be an intersection number.
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Formulas (ii) and (iii) follow immediately from (i) and (ii) of 3.2.2 by
substitution of p = k -03 and p = k, respectively. [

Suppose D is a 2~ {v,k,A) design, so og =r«i= {bk-xk) /(v-1).
From 3.2.3.iii it follows that D has at most b/v repeated blocks; this is
the inequality of MANN [M2] (see also [L1]). If D has an intersection
number k-og = k=~xr+A, then 3.2.3.ii implies that the size of any equi-
valence class is at most b/(b -v +1); this bound appeared in [B2]. This

paper also contains the next result (see also [B1]).

A 2-design with just two distinct intersection numbers is called
?{uasi-symetmlc. Consider the graph G, whose vertices are the blocks of a
quasi-symmetric 2~design D, two vertices being adjacent if the number of
points which the corresponding blocks have in common equals the larger
intersection number. We call G the block graph of D. GOETHALS & SEIDEL [G2]
{see also [C6]) proved that the block graph of a gquasi-symmetric 2-design
is strongly régulax.

Now suppose D is a 2 -~ (v,k,A) design with just three distinct intersection
numbers kK~ + A, Py and Py (p1 > pz). We have already observed that the
number of points which two blocks have in common only depends on the egui-
valence classes of these blocks. For this reason the following definition
is legitimate. The class graph of D is the graph whose vertices are the
equivalence classes, two vertices being adjacent if two blocks representing

the corresponding classes have Py points in common.

3.2.4. THEOREM. Let D be a 2~ {v,k,)) design with just three intersection
numbers, k~x + 2, Py and Py Then the clase graph of D is a strongly
regular graph on

b(k-x+;\-pi) (k-—rjl-k-pz)

n:=
2 pl
AT = k(r=3i) + (x=2)" + bp,p, = Avipy +p,)

vertices, with eigenvalues

AI(G) = (Avn = b(k~—r+k-p2+p2n)) /’b{pl -p2) ’
AZ(G) = (ngk-i-r-;\) /(pl"pz) ¥

A (G) = (blp, ~k+x=1) = nlr=1)) /blo, -p,) -
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PROOF. Let N be the incidence matrix of D. Define A := N*N . Then

(*) 2% = N )N = N (AT + (x-A)IIN = Ak%T + (x-2)A .

 Put Py = k- +A. Let xj (3 = 0,1,2) denote the number of times that pj

ocecurs in the i-th xow of A, for some i ¢ {1,...,b}. Then

(A.J)i1 = k + xo{k—r+k) + xlp1 + x2p2 = rk ,
2 .2 2 2 2 4.2 ;
(A)ii-k +x0(k r+A) +x191 +x202—3\k + k{r=-2) ,

on using (*). Substitute x, = b-~1 - Xq =Xy and subtract the first equation
multiplied by (p1 +p 2) from the second one. This yields

xo(k-r'f}x-pi)(k—r-!-h -02) =

= (b-1p K(x=1)(p, +p,) + k(x=1) + K2(A-1) .

12~
Hence x, does not depend on i and therefore all equivalence classes have
size x0+1. Now n = b/(x0+ 1) yields the given formula for n.

Now we partition A according to the equivalence classes. Let X denote the
adjacency matrix of G. Then the definition of G yields that the entries of

(x%) B := (b/n) ((k=x+A=p )T + (0, =py)A + pyT)

are the row sums {(which are constant) of the block matrices of A. Since A
has three distinct eigenvalues, rk, r-3 and 0, it follows from 1.2.3.iii
that each eigenvalue of B is egual to rk, r - oxr O. We easily check that
rk is a simple eigenvalue of B, belonging to the all-one vector j. Now from
(**) the eigenvalues of a follow. Hence A has an eigenvector j and just two
distinct eigenvalues not belonging to j. This implies (see Appendix I or
[c6]) that G is strongly regular. 0

Examples of designs which satisfy the hypothesis of the above theorem
can be found in [B1], [B3] or [M8]. For all these examples the class graph
7 is a complete multipartite graph. In Section 6.1 we shall give an example
for the above theorem where the class graph is primitive (not complete
multipartite or the complement). For other results on 2-designs with an

intersection number k —x + ), see [B2].
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CHAPTER 4

4~COLOURABLE STRONGLY REGULAR GRAPHS

4.1, INTRODUCTION

In this chapter we shall illustrate the use of the results and
techniques obtained in the previous chapters. The result will be the de-
termination of all 4-colourable strongly regular graphs.

It is obvious that a regular complete y-partite graph, and a disjoint
union of complete graphs on y vertices are strongly regular graphs with
chromatic number y. Strongly regular graphs, not belonging to one of these
two families, are called primitive.

Let G be a strongly regular graph with parameters (n,d,pil,pfl). Then
(see [c5], [c9] or Appendix I)

d=20@ , pj;-d =260 (G) , = 2,0 + 1 (@ ,

2 1 2
Py Py "Pyy
2 - (@-a (e (d-1_(6)
"Pyy = 2 n :
Moreover, G has at most three distinct eigenvalues:

ll(G) P lz(G} = el = Af+1(G) 20, -1 22 (G) = «v. = An(G) '

£42
where £ = £,(G), the multiplicity ofVAZ(G), satisfies

£ = (-2 (6) (n=1) =Q) / (3,(6) = _(G)) .

If G is primitive, then pfi >0, 1,(@) >0, and A_(G) < -1.

4.1.1. IEMMA. If G Ze a primitive strongly regular graph, not the pentagon,
then '

i. da s'-kn(G)(Y(G) -1)
ii. =2,(6) s A6 v -1) ,

iii. A,(6) < yi{g) -1 .
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PROOF. (i) and (ii) are quoted from 2.2.3. Since G is primitive,
2 s
0 < Py = a AZ(G)}gn(G). Hence (i) gives vy(G} -1 2 sd!kn(G) > AZ(G). ]

As a dixect consequence of this lemma we have the following theorem.

4.1.2, THEOREM. Given y € N, the number of primitive strongly regular
graphs with chromatic number v is finite.

PROOF. If the graph G is primitive, then pfl z 1 and hence by use of the

formulas above

n s npl, = (@=1,y(6))(d-1_(G) S dld-A_(G))
By Lemma 4.1.1 we have

d@-1 @) < (@ (e -1° .

This completes the pxoof. ) 0
Now let us examine the case y(G) < 4.

4.1.3. LEMMA. Let G be a 4~colourable strongly regular graph. Suppose G has
a non~integral eigenvalue. Then G is the pentagon.

PROOF. Since G has a non-integral eigenvalue, we have (see [C9] or
Appendix I) '

A (@ =%m~1) , A (@) =-%+4/n, A (G =-%~%4rn,
nzl (mdd) , /¢ N.

'By 2.1.5 we have a(G) < vn, hence
42y(@ 2n/a@ zn/ | /],

therefore n =16 or n £ 12. Combining the restrictions for n we have n = 5,
hence G is the pentagon. 0

4.1.4. LEMMA. A 4-colourable primitive strongly regular graph has one of
the following parameter sets:
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i. (5,2,0,1) , vii.. (16,9,4,6) ,
ii. (9.4,1,2) , viii. (40,12,2,4),
JEEER (10,3,0,1), ix (50,7,0,1) 4
iv. (15,6,1,3), X. (56,10,0,2),
v. (16,5,0,2), xi. {64,18,2,6),
vi. (16,6,2,2), xii. (77,16,0,4).

PROOF. Let G be such a graph. Suppose G is not the pentagon (which has
parameter set (i}). Then by 4.1.3, the eigenvalues of G are integers. The
primitivity of G yields Az(G} > 0, An(G) < -1, Now 4.1.1.iii gives

AZ(G) e {1,2} .
Suppose Az(G) = 1. Then by 4.1.1
xn(G} € {-2,-3} , a= AI(G) £9.

Straightforward computations give that the only feasible parameter sets
satisfying these conditions are (ii) - (v}, (vii) and (10,6,3,4). However,
' a graph G with this last parameter set satisfies 0(G) $ 2, therefore

Y{G} 2 5. Suppose kz = 2, Then 4.1.1 implies

An(G} e {-2,-3,-4,-5,-6} , 4 <18 .

With a little more work than for the previous case, this leads to the
feasible parameter sets (vi), (viii) - (xii) and (57,14,1,4). However,
WILBRINK & BROUWER [W4] proved the nonexistence of a strongly regular graph
with this last parameter set. 0

For graphs with parameters (i) - {v) existence and uniqueness is known
(see [83]). Cases (i), (ii) and (iii) are the pentagon, the line graph of
Ky 4 (also called the lattice graph L,(3)), and the Petersen graph,
respectively. It is easily seen that these three graphs have chromatic
number three. From 4.1,1 it is clear that none of the other graphs is
3~colourable. Case (iv) is the complement of the line graph of KG (also
called the complement of the triangular graph T(6)), which is easily seen

to be 4-colourable. Case (v) is the Clebsch graph {see [83]). This graph
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is given in Figure 2, where two black or two white vertices are adjacent
iff they are not on one line, whilst a black vertex is adjacent to a white
one iff they are on one line. We almost immediately see that this graph is

PIGURE 2

4-colourable. There are precisely two nonisomorphic strongly regular
graphs with parameter set (vi) (see [86]): the line graph of 1(4'4 (L,(4))
and the Shrikhande graph (see cover), both graphs are easily seen to be
4-colourable. Case (vii) is the complementary parameter set of (vi). We
quickly see that the complement of the line graph of K

4,4
however, the complement of the Shrikhande graph is not 4-colourable.

is 4-colourable,

Indead, the size of the largest coclique equals three. The remaining cases
are more difficult. They will be treated in the next section.:

4.2, STRONGLY REGULAR GRAPHS ON 40, 30, 56, 64 AND 77 VERTICES

In this section we shall study the feasible parameter sets for 4-
colourable strongly regular graphs, which remain from the previous section.

The first case is the pavameter set {(40,12,2,4). Although several
strongly regular graphs with these parameters are known (see Section 6.2},
it will turn out that no 5\1(:1:1 graph has chromatié number four. To prove
this we use the following lemma.

4.2.1. LEMMA. There <8 no regular bipartite graph on 20 vertices with
eigenvalues 4, 2,0, -2, -4 of multiplicity 1, 6,6, 6, 1, respectively.
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PROOF. Suppose G were such a bipartite graph. Let

be the adjacency matrix of G. Then N is the incidence matrix of a
1-(10,4,4) design, D say, with singular values o, = 4, Oy = con =0y = 2.
Let 81 and 32 be two distinct blocks of D. Then 3.2.1.i yields

[B, nB,| <12/5.

Suppose 81 and 82 are disjoint. Let x and y be the two péints of D which
are not incident with 31 and Bz. Let B3 be a block through x. Using
3.2.1.ii it follows that

|By nBy| = [B, n By =1,

s0 B3 is incident with y. Hence, any block incident with x is also in-
cident with y. However, this is not possible, since two points of D have
at most two blocks in common, as follows from 3.2.1.i applied to the dual
of D. So we have

B, nB,| € (1,2} .

This implies that B := &*N~—J<-31 is the adjacency matrix of a (strongly)
regular graph with eigenvalues -3, 1 and 3 of multiplicity 3, 6 and 1,
respectively. This is impossible, since

30 = trace B% # 3.(-3)% + 6.1% + 1.3% . O

4.2.2. THEOREM. There existe no 4-colourable etrongly regular graph with
parameters (40,12,2,4).

PROOF. Let G be a strongly regular graph with parameter set (40,12,2,4}.
The eigenvalues of A, the adjacency matrix of G, are 12, 2 and -4 of multi-
plicity 1, 24 and 15, respectively. Suppose G is 4-colourable. Then without
loss of generality
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0 Ay B3 By
U - - BT
By By 0 Ay
\ Par  Paz By O

By 2.1.5.1 all block matrices are square of size 10, and by 2.1.5.iii all

row and column sums of Ai are equal to 4, for i,j = 1,2,3,4, i # j. Define

3
. A1 s r By := , A::=2a-%, Ai = Ai'-%J '

for i = 1,2. Let i € {1,2}. Let G, be the graph with adjacency matrix A .
Now A has just two distinct eigenvalues 2 and -4 of multiplicity 25 and 15,
respectively. Furthermore, Ai and Ki have the same eigenvalues, except for
the one belonging to the eigenvector j, which equals 4 for Ai and -1 for
Ai. Since Gi is bipartite, A also has an eigenvalue -4. Now by the Cauchy
inequalities (1.2.2) it follows that Ki’ and hence alsc A,, has at least
five times the eigenvalue 2. But Gi is bipartite, therefore Ai’ and hence
also Ay has at least five times the eigenvalue -2. Now from 1.3.3 it
follows that A, ;, and hence also Ai and Ai' has at least five times the
eigenvalue 0. Since G i is bipartite on an even number of vertices, the
multiplicity of the eigenvalue 0 is even, so at least six. Going backwards
through the above reasoning we conclude that the multiplicities of the '
eigenvalues 2 and -2 of Ai are also at least six. Thus Ai has eigenvalues
4, 2, 0, -2, ~4 of multiplicity i, 6, 6, 6, 1, respectively. Now Lemma

4.2.1 finishes the proof. O

HOFFMAN & SINGLETON [H15] showed the existence and uniqueness of a
strongly regular graph with parameters (50,7,0,1). So we only have to
determine whether this graph is 4-~colourable or not. To do so, we shall
use a descripiion of the Hoffman-Singleton graph (this description seems
to be folklore, since it is well known; however, I could not find a refer-
ence) based on the following result, see [Bli] or [ci0].

4.2.3. RESULT. The thirtyfive lines of PG(3,2) can be represented by the
thirtyfive triplee of a set with esven elemente, euch that two lines
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intersect Lff the corresponding triples have one element in common.

REMARK. This result is directly related to the isomorphism of the groups
PSL(4,2) and the alternating group on eight symbols (see for instance [B4]
or [c10D).

Now we construct the Hoffman-Singleton graph as follows. The vertices
are the fifteen points and the thirtyfive lines of PG(3,2). Points are
mutually non-adjacent; a point is adjacent to a line iff the point is on
that line; two lines are adjacent iff the triples, which correspond with
these lines according to the above result, are disjoint. It is an easy
exercise to check that this construction indeed gives the desired strongly

regular graph.

4.2.4. THEOREM. The Hoffman-Singleton graph has chromatic number four.

PROOF. Colour the fifteen points red. Fix two elements x and y of the 7-set
of Result 4.2.3. Colour lines blue, if they correspond to a triple contain-
ing x. Of the remaining lines, colour those yellow, whose corresponding
triple contains y, and colour the other ones green. From our definition it
is obvious that this is a correct colouring of the Hoffman-Singleton

graph. 0
GEWIRTZ [Gl1] showed existence and uniqueness of a strongly regular
graph with parameters (56,10,0,2). Before giving a description of the

Gewirtz graph we first prove the following.

4.2.5. PROPOSITION. If the Gewirtz graph has two disjoint cocliques of size

16, then its chromatic number equals four.

PROOF. Assume that the Gewirtz graph has adjacency matrix

0 25 Ay
A= A21 0 A23 ’
B3y B3 By
where A12 = A;l is square of size 16. We know that A has three distinct

eigenvalues, 10, 2 and ~-4. From 2.1.5 it follows that A12, A21, A31 and A32
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have constant row sums equal to 4. Therefore the graph G3. whose adjacency
nmatrix is A33, is a disjoint union of cycles. Suppose one of these cycles
has ¢ vertices. Partition A33 according to the vertices of this cycle, and
. the remaining ones. This induces a partition of A into sixteen block

matrices, and the entries of the matyxix

'

0 4 ¢  6-%c
4 0 ke  6-he
4 4 2 0

4 4 0 2

are the average row sums of these block matrices. We immediately see that

the eigenvalues of B are

J\z(B) = 10 , lz(B} =2, )\3(3} = A4(B) = -4,

Howevexr, we know that

M@ =10, M) =2, A = AggA) = -4,

56 (A

Hence the eigenvalues of B interlace the eigenvalues of A tightly, thus by
1.2.3.ii all block matrices have constant row sums. Therefore, %c is an
integer. This proves that each component of (;3 is a cycle of even length.
Thus G3 is bipartite, and therefore the whole graph is 4-colourable. ]

We use the description of the Gewlrtz graph given in [G2], where this
graph is obtained as the complement of the block graph of a quasi-symmetric
2-(21,6,4) design with intersection numbers 0 and 2 (see Section 3.2).

4.2.6, THEOREM. The Gewirtz graph has chromatic number four.

PROOF. Let D be the quasi-symmetric 2 - (21,6,4) design. It is clear that
all blocks through a fixed point of D yield a coclique in our graph of size
16. To see that there is another coclique of the same size, disjoint from
this one, we proceed as follows. D can be obtained from a 3 - (22,6,1) de~
sign D {the extension of PG(2,4), see for instance [C6]) by deleting one
point and all blocks through that point (i.e. D is a residual design of 5) .
Take a block B of 5, which is not a block of D. An elementary counting
argument {see [C2]) shows that there are 16 blocks of D which are disjoint
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from B, and which mutually have 2 points in common. Hence these 16 blocks
provide a coclique of size 16 in the Gewirtz graph, which, if B has been
chosen appropiately, is disjoint from our previous cocligue. Application of
4.2.5 completes the proof. 0

Three 2 - (16,6,2) designs on a common point set are called limnked if
any two blocks from distinct designs have 3 or 1 pointvs in common (see [C1]
or [M7]). Let N, N, and N, be incidence matrices of three linked
2~(16,6,2) designs. Then we know that

*
N.J =N

*
i J=6J, NiN

*
§ “NiNi-EJ-&éI,

i

for i = 1,2,3. Moxeover, for i,j = 1,2,3, 1 # i, the matrix

*
Nij = %(3J -NiNj)

is a (0,1) matrix by definition. In fact, Nij is the incidence matrix of a

2=-(16,6,2) design, since

* * *
Nijuij = (37 -NiNj) (3J—NjNi) = 27 + 41 ,

" by use of the above formulas. Define

N, =% =21, N., t=N., Ny.:t=N ,

i1 03 3 30 j
for i = 0,1,2,3, j = 1,2,3. Then

N, =N N,.N, =33 - 2N

e TR T 1 ik *

for i,j,k = 0,1,2,3, as follows readily from the formulas above. This
implies that

0 Ny Ngy Ng3
No O Njp Ny
A 3=
Nag Ny 0 Ny
N30 M3y N3z 0|

is a symmetric matrix, which satisfies

a2 =181 + 22 + 6(J -1 ~3) .
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Hence A is the adjacency matrix of a strongly regular graph with parameters
{64,18,2,6), which is 4-colourable. We call this graph the Zneidence graph
of the three linked designs,

4.2.7. THEOREM. Let G be a strongly regular graph with parameters
(64,18,2,6) and chromatic number four. Then G ig the incidence graph of
three linked 2 - (16,6,2) designs.

PROOF'. Suppose G has adjacency matrix

0 Ay Ayz Ags
A= Bo 9 By Ay .
B Ry 9O By

P30 P31 P O

A has eigenvalues 18, 2, and -6 of multiplicity 1, 45 and 18, respectively.

By 2.1.5, Aij

equal to 6, for i,j = 0,1,2,3, i ¥ j. This implies that A and

is square of size 16, and'all row and column sums of Ai are

3

3= 14 ® J16

have a common basis of eigenvectors. Using this, we cbtain that

K = A = 2I + &K

has eigenvalues 24, 0 and -8 of multiplicity 1, 48 and 15, respectively.
Thus

rank K = 16 .

For i = 0,1,2,3, put Ay i= %Jis - 2116. Then
R0t Pos
rank A,, = 16 and A= | ! . .
ii . .
A30 cer A33
From rank AOO = rank &, it follows that AiOAUO 03 = Aij’ for 1,3 = 1,2.33

on applying 1.1.3. By use of

-1 -1
Aoo = {kJ - 2I) = (1/24}3 - %I and AijJ = 6J
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this implies that for i,j = 1,2,3

1 %

3
(%)} '2-J _EAOiAOj = A

i3 "

* This completes the proof. Indeed, if i = j, then (*) implies
By;Bgs = 23 +41, showing that By; is the incidence matrix of a 2 - (16,6,2)
design, and if i # j, then (*} reflects that the designe represented by
AOI' 502 and A03 are linked, and that Aij is of the desired form for
i,j=1,2,3. 0

MATHON [M7] proved that there are exactly twelve non-isomorphic
triples of linked 2 - (16,6,2) designs, which lead to eleven non-isomorphic
incidence graphs. Hence there are precisely eleven non-isomorphic 4-coloux-
able stronély regular graphs with parameters (64,18,2,6). It is fairly easy
to show that one of these graphs is the point graph of the known generaliz~
ed quadrangle of order (3,5) (see Chapter 5; a construction is described in
6.2.3). For completeness we list in Appendix II the systems of three linked
2-(16,6,2) designs, which provide the ten remaining graphs; these systems
are taken from Mathon's paper. It is not known whether there are any
further strongly regular graphs with these parameters, which are not 4-
colourable.

Filnally, the next theorem deals with the last set of parameters of

Lemma 4.1.4.

4.2.8. THEOREM. There exists no 4-colourable strongly regular graph with
parameters (77,16,0,4). ‘

PROOF. Let G be a strongly regular graph with parameters (77,16,0,4). Then
G has eigenvalues 16, 2 and -6 of multiplicity 1, 55 and 21, respectively.
Suppose G is 4-colourable, and let ¢ be the size of the largest colour
class. Then ¢ 2 [ 77/4 |= 20. Let

o A,
a A

21 22

where 0 is square of size c, be the adjacency matrix of G. Then Gz, the
graph with adjacency matrix A22, is 3~-colourable. From 2.1.7 it follows that

¢ £ a{G) < 21, and that ¢ = a(G) = 21 implies that G, is the Gewirtz graph.

2
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Since the Gewirtz graph has chromatic number fdur, G cannot be coloured
with four colours if ¢ = 21 (this shows that G is S5~colourable if a(G) =21,
which is the case for the known strongly regular graph with these para-

_ meters; see [G2]), Suppose c = 20. Now we apply 1.3.3 to A - (2/11)J, so as
to obtain that

24 =-s6,

Ag7(Ban = 11 gy =-4.

2
selPon T 1T
Now 1.3.1 gives

A57(A22) 2z -6, ?\SG'(A22I z -4,

On the other hand, the average row sum of A_., equals 592/57. Hence by

1.2.3.1 (take m = 1) we have

22

AI{A22) 2 592/57 .

Now the sharpened version of Hoffman's inequality for the chromatic number
{see Section 2.2), applied to the 3-colourable graph 62 gives

) 2 XI(A

“Agy(Byy) = Agg(ay, 22) *

- This is a contradiction, proving the theorem. ]

4.3. RECAPITULATION.

All cases of Lemma 4.1.4 have been treated now. The only thing left is
to state the main theorem.

4.3.1., THEOREM. If G 18 a 4~colourable strongly regular graph, then one of
the following holds:

i. Y{G) = 2, and G is a regular complete bipartite graph, or a dis-
dJoint union of edges;
ii. Y(@) = 3, and G Z8 a regular complete 3-partite graph, a die-
Joint union of triangles, the pentagon, the line graph of K3 3
¥
or the Petersen graph;
iii. ¥{(G) = 4, and G i8 a regular complete 4-partite graph, a dis-

Joint union of X,'s, the complement of the line graph of K., the
" line graph of Ky, g0 OF ite complement, the Shrikhande graph, the
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Clebsch graph, the Hoffman~Singleton graph, the Gewirtsz graph,
or one of the eleven incidence graphs of three linked 2 - (16,6,2)
designs.
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CHAPTER 5

GENERALIZED POLYGONS

5.1. INTRODUCTION

a generalized n—gon of order (s,t), s > 0, t > 0, is a 1 ~ (v,s+l,t+1)
design whose incidence graph has girth 2n and diameter n (see [T4], [D3],
[(F1], [B12] or Appendix I). A generalized polygon is a generalized n-gon
for some n.

Generalized n-gons were introduced by TITS [T4]. An important result
is the theorem of FEIT & HIGMAN [Fl] (see also [H12], [K2]), which states
that a genéralized n~gon of order (s,t)} is an ordinary n-gon (s=t=1) or
n e {2,3,4,6,8,12}.

For a generalized polygon we speak of lines rather than blocks. We
shall often omit the adjective "generalized". If D is a polygon of order
(s,t), then we immediately see that the dual of D (points and lines inter-
. changed) is a polygon of order (t,s).

Suppose N is the incidence matrix of the incidence graph of an n-gon
of order (s,s). Then N is the incidence matrix of a 2n-gon of oxder (1,s).
Conversely, it can be proved easily that all generalized n~gons of order
(1,8), 8 > 1, are of this form. FEIT & HIGMAN [F1] also proved that s = 1
or t = 1 for a 12-gon of oxder (s,t), thus in a sense generalized 12-gons
are the same as generalized hexagons of order (s,s). Generalized n-gons of
order (s,t) with s > 1, t > 1, are called thick.

A generalized 2-gon is degenerate (every point is incident with every
line). It is not difficult to verify that a generalized triangle of oxder
{s,t) is a 2 -(52+s+1,s+1,1) design, which is the same as a projective
plane of order s (thus s = t}, So 3-gons of oxder (s,s) exist for every
prime power s. For projective planes see DEMBOWSKI [D3]or HUGHES & PIPER
[H16].

Thick geﬁeralized quadrangles of order (s,t) are known to exist for
{s,t}), (t,s) = (q,q),‘(q,qz), (qz,qB), (g-1,q+1}, for every prime power ¢
{q # 2 for the last case). Constructions are due to AHRENS & SZEKERES [az2],
HALL [H6], XaNTOR [K11, PaYyNE [Pi], [P2] and TITS [T4], see also [D3],
{r3]. AIGMAN [H11] showed that
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t < 52 < t4

for thick quadrangles of order (s,t). Several other proofs of this inequal~
ity have been found, see [C3], [c5], [H12], [P6] and Section 3 of this

" chapter; some of these proofs also lead to consequences for the case of
equality. There is an extended literature on generalized quadrangles. We
mention the survey papers [P4], [T1] and [T3].

Thick generalized hexagons are known to exist for the orders {33,8},
(s,s) and (s,s3) for prime power s, see [T4]. A necessary condition for
existence of a hexagon of order (s,t) is that st be a square, see [F1].
HAEMERS & ROOS [H3] showed that

for thick hexagons of order (s,t). This inequality, together with a result
for the case of equality, will be the subject of the next section. For morxe
information about generalized hexagons we refer to [M4], ER1]1, [s11, [T4],
[¥i].

Thick generalized octagons of order (s,t) are only known to exist for
(t,8), (s,t) = (2%,2%), for 0dd m. The construction is due to J. Tits, see
[D3]. A necessary condition for existence of an octagon of order {s,t) is
that 2st be a square, see [F1]. HIGMAN [H12] showed that

8 < t2 < s4

for thick octagons. There is hardly any literature about octagons.

Let G be a connected graph of diameter m. For vertices x and y of G,
let p{x,y) denote the distance between x and y. For i,j = 0,...,m, define

Py (%iy) = |[{z | p(x,2) = i & ply,z) = j}]

If pij(x,y) depends on i, j and p(x,y) only, then G is called dzstance
regular (see [B5]), and we write pi t= pij(x,y) where k := p(x,y), and
dy
numbers of G. Clearly, a distance regular graph is regular of degree d1!

s pgi, for i,3 = 0,...,m. The numbers pyy are called the intersection

and a distance regulak graph of diameter 2 is the same as a connected
strongly regular graph (in general, a distance regular graph of diameter m
is equivalent to a metric association scheme with m classes, see [D1]).
For a distance regular graph G of diameter m, we define the matrices

AO""’Am‘ indexed by the vertices of G, by
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1 ifp(x,y) =1,

(A}
i
xy 0 otherwise.
. Clearly, AO = z A = J and Ai is the adjacency matrix of G. Moreover,
~ im0
(A ) 0(x,y)

implies

k?:-o Pyy B ¢ AT = diJ , for 1,3 = 0,...m.

These equations show that AO""'Am geherate an m+ 1 dimensional algebra.
This type of algebra turns out to be useful in the gtudy of distance
regular graphs and similar configurations, see [B5], [B8], [D11, [H123,
[w1].

The point graph of a generalized n-gonD is thegraph whose vertices are
the points of D, two points being adjacent whenever they are on one line of
D. It is well known {see [D3], [¥2]) that the point graph G of an n-gon of
order (s,t) is distance regular of diameter [%nJ, and that the intersection
numbers of G can be expressed in terms of s and t (in the forthcoming sec-
tions of this chapter we shall exhibit this resuit for n=6 and n = 4).

A graph G is called geometric for an n-gon if G is the point graph of
an n-gon. A graph G is called pseudo—geometric for an n-gon if G is dis~
tance regular of diameter |%n} and its intersection numbers are such that G
could be geometric, that is, there exist integers s and t, such that the

intersection numbers of G depend on s and t as for geometric graphs.

Let D be a generalized polygon. An element of D is a point or a line
‘of D. A sequence of ¢+1 elements ey,...,e,, is called a path of length &
i1 for i = 1,...,8 (thus in
Cgrese1€ys points and lines alternate). The distance between elements e
and e, of D, denoted by k(eo,e )+ is the length of the shortest path
between e and - Thus, if €y and e,

twice the distance between e, and e, in the point graph of D.

between e and ey if e, is incident with e

are both points, then A(eo,e ) is

In the next two sections we shall describe a method which for guadr-

angles and hexagons leads to the inequalities mentioned above, and to the
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results in case of equality {um':’ortunately, this method does not work for
octagons). The same method also yields a new proof of a theorem of CAMERON,
GOETHALS & SEIDEL [C5], which states that a pseudo-gecmetric graph for a

- quadrangle of order (s,sz) is geometric.

5.2. AN INEQUALITY FOR GENERALIZED HEXAGONS

For n = 6 the definition of a generalized n-gon is equivalent to the
following one:

5.2.1. DEFINITION. A generalized hexagon of order (s,t) 18 an incidence

structure with pointe and lines, such that

i. each line has s +1 points,

ii. each point is on t+1 lines,

iii. two distinet lines meet in at moet one point,

iv. for any non-incident point-line pair x,L there 18 a unique path

of length < 6 between x and L.

Throughout this section H will denote a gengralized hexagon of order
{s,t). By use of the above definition it is straightforward to count the
intersection numbers p];.j of the point graph of H. They are exhibited in
Table 1. The amount of work in computing these numbers can be reduced by
use of the equalities

=d, , d, =v = (s+1}(32t2+st+1) .

=0 jao J

This counting also shows that the point graph of a generalized hexagon is
distance regular.

TABLE 1

k k kK k k k k

P11 | P12 P22 P13 Pa3 P33
0| s(t+l) [4) szt(tﬂ) Q o] 33t2

2.2 2,2

1 s~1 st st(s~1) 0 st st (s~1)
2 1 s~1 s (t2+t~1) st st(s~1) {t+1) st(szt-st-s+t)
3 0 t+l | (s-1) (t+l) 2 (s-1) (t+1) | (t+1) (52t~st-s+t) t(t-1) (szt-s+t)




54

Let AO" ..,A3 be the matrices of the point graph of H. Define

- (s-~1)2&1 + (32-—s+1)1 -—1-—3 .

E := A3 s+ 1

2

Then we have the following lemma.

5.2.2. LEMMA. The eigenvalues of E are

0 and 52 + st + t2

of multiplicity

2 2 2.2
- +
s t+st st+s+t ] s3st st +1

2 2 2 °

1+ st(s+1)(t+1) 3
s +st+t s +st+t

respectively.

PROOF. It is clear that EJ = 0, and that

1

2
(z - (s2-s+1)I + J) = (s-1)2 Af - (s-1) (A, +AA) + Ag )

s+1
3 k
v From Aiaj = kzo p;l.j a, and Table 1 we have

A2 = sPt(t+1)T + st(s~1)Ay + (stP+st-s)a, + (s-D(t+1? 4, ,

A1A2 = AQAI = gt A1 + (s-—l)A2 + (t+1)A3 '
2
Al = g{t+1)I + (s—l)A1 + A2 .

By use of Al + Az +A3 = J~1I and EJ = 0, this leads to

E(E - (s +st+t)I) =0 .

Hence 0 and s2+st+t2 are the eigenvalues of E. Finally,

2

trate E =v(52—s+1-,(s+1)-1) = 33(szt + st +1)

yields the multiplicities. o
REMARK. In the texminology of DELSARTE [D1], the matrix (32+st+t2)-is
is a minimal idempotent in the Bose-Mesner algebra of the association

scheme on the points of H. The underlying theory provides a more elegant
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way to prove the previous lemma.

Let I‘O be a line of H, let Li (i = 1,2) denote £he set of points at
distance 2i+1 from Lo. Partition E according to I"O' L, and LZ:

“

00 Eo1 Eo2
E= B0 Eip Eyp] -
B Fa B2
so B, = E;i for 1,3 = 0,1,2.

5.2.3. LEMMA. The eigenvalues of E,, are 0, s? and st of multiplicity
st-s+t, t(52 ~1) and s, respectively.

PROOF. Let A and A be the submatrices of A, and A.,, respectively,
e 1,11 2,11 1 2

corresponding to Li‘ We easily see that without loss of generality

THBA 4y =T ®9g and I H+A 4y Ay 0y =T @

holds, hence

2,
E11=Is+1®Jst‘-S( QJS)+SI~

1
Ist-l-t s+1 J .

From the eigenvalues of Is+1 ® Jst' Ist+t e Js' I and J, and the fact that

these four matrices have a common basis of eigenvectors, the eigenvalues of
E, and their multiplicities follow. 0
5.2.4. THEOREM. 4 generalized hexagon with s+1 points on a line and t+1

lines through a point satisfies

i. t553 or s=1,

ii. s<td op t=1,.

PROOF. From 5.2.2 and 5.2.3 it follows that

2

rank E = s3(szt +st+1) /(Sz-l-st-l-tz) , rank E,, = st+s-t .

11

Since rank Ell < rank E, we have
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(sgt-l-s—t) (sz-l-st-!-tz) < s3(szt2+st+1) .

This yields
tztsz-l) (t-s3) 0.

Thus s = 1 or t < s3. Applying this result to the dual of H yields (ii). [

For another proof of this inequality see [H3]. Next we shall derive
some additional regularity for hexagons meeting the above bound. To achieve

this we need some properties of the matrices E,_.. First we observe that

ij
1-1/(s+1) if X{x,y) =

(E..) =
02" xy -1/{s+1} otherwise,

as follows directly from the definition of E and E02‘ This implies

1-1/(s+1) if 2(x,2) = A(y,z) for some z € Ly

%*
(Eoz Egplyy =

-1/(s+1) otherwise.

Hence, without loss of generality

1
02 =3 ® Il 5T Tr(er) !

* 1
02 Fo2 T Tz ® Tou1 " SHT Tristr) !

where r := sztz. Now the positions of the points of L2 relative to the
points of L0 give rise to a partition of 222 into (s+ 1)2 square block

matrices Fij of size s2t2:

FOO ces FOS
E : s
F

It is a matter Qf stralghtfcrward counting to see that F,.  has constant row

ij
sums equal to t (s—1+6 ) -8 t /{s+1) for i, = 0,...,8. This, and
the structure of E02 imply that
* t2 E*

Eyz Bgp = 02 °
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The following identities are now quickly seen to be true:

2 1
E00=s(z—s+1J), EijJSO for i,j = 0,1,2,
g2 = sk E. E.=s’E E.. Er, =t2E
. 00 00 ‘' “00 “02 02 * Fo2 Foz 00 °
5.2.5. LEMMA. The matrix
B..i=E.-s%8_ E
22 'S ®22 T8 Eopy B

has eigenvalues

0, st+t2 and 52+st+t2,'

the muliiplieity of s +st+t? equals
t2(s?-1) (2 -t) / (2 +st+t?) .

PROOF. Define

Using the above formulas we obtain

(*) w' = s2(s2+tHu , E'U = (s2+td)u .

Since rank U = s, the last formula reflects that the columns of U span an
s~dimensional eigenspace of E' corresponding to the eigenvalue 52 + tz.
Thanks to 5.2.2 and 5.2.3 the eigenvalues of E and E11

1.3.3 we obtain that the non-zero eigenvalues of E' are

are known. By use of

sz*tz, st+t2 and sz+st+t2,

of multiplicity

s . t(sz-l) and i:z(ss2 -1} (s3,~t) / (sz«l-st-t-tz) '
respectively. Now from (%) it follows that

g - s 2uty

has just two distinct non-zero eigenvalues st+t2 and sz +st+t2, with the
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same multiplicities as before. On the other hand one easily verifies that

which proves the lemma. ) ]
The important thing in the last lemma is that the eigenvalue sz-+st-+t2

disappears if t = 33. In orxder to give a combinatorial interpretation of

this phenomenon, we need two definitions. For a line L and points z and y

of a generalized hexagon we define:

Py Trxey) = [{z 1M(z/0) = 2041, Mzx) = 23, Mz,y) = 2k}

for i = 0,1,2, j,k = 0,1,2,3; the configuration Znduced by L, x and y is the
configuration formed by the points and the lines, which are on a shortest
path between L and x, L and y, or x and y. For example, Figure 3 gives all
possible configurations induced by L, x and y if A (L,X) = X(L,y} = 5 and
AMx,y) = 4.

YOO

s +s -5 -Zs s +s —s —s -1 = +s -8 ~1 s +s —s -8 s +s ~s -5

FIGURE 3

5.2.6. THEOREM. If a generalized hexagon hae order (s.s3), then pijk(L.x.y)
only depends omn i, i, k and the configuration induced by L, x and y.

PROOF. First observe that
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2 3 3
2 P.. (le:Y) I I P (thyy) and 2 P (L,x,y)
i20 ijk =0 ijk k=0 ijk

’only depend on i, j, k and the configuration induced by L, x and y {(in fact,

2
2 P.:., (LeX,¥) = pp(x,y))_ Subsequently, we verify (this is an eagy but
i=0 ijk jk

tiresome job), that the theorem is true if 1 =0, or j £ 1, ox k s 1, and
also if A{L,x) < 5 or A(L,y) < 5. Thus it guffices to prove the theorem for
i=j=k= 2, ML,x) = x{L,y) = 5. From the definitions of E, E22 and
pijk(L,x,y) it follows that

0%, = F-s e py oy +

t
(EBop = 57T I Mgy

' 2 2
- 2(s-1){(s —s-fi)pzcl(Lo,x,y) + 2{(s -s-+1)p202(L0,x,y) +

+ (5=17% by (Louxiy) = (5=1) (Byy o (Lgskay) + Py, (Lgsrxsy)) +

¥ PagallgrXey) -

Now take t = s3. Lemma 5.2.5 implies that gzz has just two distinct eigen-

values 0 and 34(1-+52). Hence

~2 4 2.~
E22 =g (1+s )E22 .

Using the formulas for the matrices E 3 this yields

i

2

4 2 2 1
J) =8 {l+s )E22 -8

1 * 8 -
(322 =T EOZ 302 +s (s+l) "J.

This implies that {(E,, - (s+ 1t

configuration induced by LO, x and y. Combination with the previous steps

J)z}xy only depends on X, y and the

yields that for x,y ¢ L2, p222(L0,x,y) only depends on the configuration
induced by Ly, x and y. This completes the proof. ' 0

With the'available formulas the values of Pijk(L’x'y) are readily :
computed. For example, in Figure 3 we give pzzz(L,x,y) fc: the given con-
figurations.

roNAN [R1], [R2] and THAS [T2], give sufficient conditions for a
generalized hexagon to be one of the known ones. One hopes of course that a

result like the one above will imply such a sufficient condition. Unfor-
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tunately, the gap between the condition we have and the condition we need,
still seems to be too large to close up. It is worthwhile to remark that the
known hexagons of order (s,t) with t # 33 do not satisfy the condition of
the above theorem.

f‘inally we rem§rk that similar techniques yield thé inequality (see
MATHON [M6]) V

t < 33 + t2(52—5+1)

for a regular near hexagon with parameters (s,t,tz) , as introduced by
SHULT & YANUSHKA [S7] (see also [¥21). If t, = 0, then a near hexagon is

the same as a generalized hexagon.

5.3, GEOMETRIC AND PSEUDO-GEOMETRIC GRAPHS FOR GENERALIZED POLYGONS

In this section we deal with the question whether a pseudo-geometric
graph is geometric for a generalized n-gon. It is clear that for n {2,3}
the point graph of an n-gon is the complete graph. Assume G is the point
graph of an n~gon D with n > 3. Then three points of D which form a triangle
in G, must lie on one line of D. This implies that the graph c<i>o cannot
be an induced subgraph of G. The next result states that the converse is

also true.

5.3.1. LEMMA. For a generalized n—gon with n > 3, a pseudo-geometric graph
G te geometric iff o<bo i8 not an induced subgraph of G.

PROOF. Only the "if" part remains to be proved. Take n even (the case n odd
is not difficult, but superfluous because of the Feit-Higman theorem). Let
D be the incidence structure whose points are the vertices of G, and whose
lines are the cliques (= complete subgraphs) of G of size P;I + 2. For two
adjacent vertices of G, there are pil vertices adjacent to both, but all
these vertices are mutually adjacent since otherwise o<g>c occurs. This
means that every edge of G determines a unique line of D. This proves that
D is a 1~ (v,s+1,t+1) design, where g = pil +1 and t = prll’n_1 ~-1.

Let G' denote the incidence graph of D. Then, because p]i{,k— i = 1 for
k=0,..0,3n~1, i = 0,...,k, the girth of G' is at least 2n. Now, since
each point of D is incident with P?,n-—l lines, it follows that the distance
between a point and a line of D (regarded as vertices of G'} is at most
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n-1. Hence G' has diameter n and girth 2n. This proves that D is an n-gon,

whose point graph is G. O

A direct consequence of this lemma (which was pointed out to me by
D.E. Taylor) is the following.

5.3.2. COROLLARY. For a genmeralized n-gon with n > 4, a pseudo-geometric

graph is geometric.

2 .
PROOF. If n > 4, then Pyy = 1. Hence c:it:n does not oc;ur in a pseudo-
geometric graph. Now 5.3.1 gives the result. 0

What remains to be studied are generalized quadrangles. A very easy
counting argument shows that the point graph G of a quadrangle of oxder
(s,t) is strongly regular with intersection numbers pil =g=~1, pfl = t+1,
p?l = dl = g(t+1} (this proves that the point graph of an n~gon is dis-
tance regular, in the case n = 4). This implies (see [¢5], [T1] or Appendix
I) that the eigenvalues of G, and hence the eigenvalues of any pseudo-geo=-

metric graph for a quadrangle of order (s,t), are
s{t+1) , s-1 and -t-1

of multiplicity

1, s2(st+1) /(s+t) and st{s+1)(t+1) / (s+%) ,

respectively.

There exist many pseudo-geometric gréphs for guadrangles, which are
not geometric. The Shrikhande graph {see cover) is one of them. More
examples (including an infinite family) are given in Section 6.2. The
following theorem, which is due to CAMERON, GOETHALS & SEIDEL [C5], gives
a sufficient condition for a pseudo-geometric graph to be geometric, as
well as the extension of Higdan's inequality to pseudo-geometric graphs
for generalized quadrangles.

5.3.3. THEOREM. Let G be a pseudo-geometric graph for a thick generalized
quadrangle of order (s,t). Then

i. t < 32 5

ii. if equality holds, then G is geometriec,
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iii. equality implies that all subconstituente of G are strongly
regular.

PROOF. Let A be the adjacency matrix of G. Define

E =~ (s+1)a+ (32-1)1 +J .
Then from the eigenvalues of A it follows that E has just one non-zero
eigenvalue (s+1) (s +t) of multiplicity sz(st +1) /(s +t). Hence
2
(%) rank E = s (st+1) /(s+t) .

Lat x be a vertex of G. Partition A and E according to x; the vertices ad-

jacent to x, and the vertices not adjacent to x:

b ¥ o 2 -8
A=13 By Aol E= =) Ey Ejpl
0 2y By 3 By By

where A12 = 321 and 312 = EZl' For i = 1,2, let Gi be the graph with ad-
jacency matrix Aj.i (so Gi is a subcorlxstituent of G}. Then (51 has s{t+1)
vertices, and is regular of degree pil = g=~1. Hence s -1 is an eigenvalue
of A,, of multiplicity c, say. It is known (see [B5], [c12] or Appendix I)
that . ¢ eguals the number of components of G1. Clearly each component has
at least s vertices. Hence

(*%) cs € sl(t+1) .

The matrices All' I and J have a common basis of eigenvectors. Using this
it follows that E11 has an eigenvalue 0 of multiplicity ¢ ~1 {(one of the
eigenvalues s ~1 of A“ corresponding to the eigenvector j leads to the
eigenvalue s(t+ 1) of Eii) . Hence

rank E = g{t+1) - (¢-1) .

i1

Now using (%) and (%%} we have

s{t+l) -t s rank E,, s rank E = sz(st.+1) /{s+t) .

11

This yields
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t(s=1)(t-52) <0,

proving (i). Suppose equality holds. Then we must have equality in (%%},
which means that Gl is a disjoint union of compiete graphs on s vertices.
. Since x is arbitrary, this yields that o(j:>a does not cccur in G. Now
(ii) follows on applying 5.3.1.

Since the disjoint union of complete graphs of the same size is strongly
regular, it only remains to be proved that G2 is strongly regular. This we
shall prove analogously to the proof of 5.2.5. We know that the eigenvalues
of B, are 0, s(s+1) and s(s?+1) of multiplicity s%, (s-1)(s®+1) and 1,
regpectively. Now using 1.3.3 and the eigenvalues of E, we cobtain that the
matrix

has eigenvalues 0, sz(s-bi) and 232, where 252 is a simple eigenvalue with

*
eigenvector [32 j*] . Hence E22, and also & ot has just two distinct eigen—

2
values not belonging to the eigenvector j. This proves that G2 is strongly

regular. a

Prom (iii) of the above theorem it follows that the number of points
adjacent to three mutually non-adjacent points of a quadrangle of order
(8,52) is constant. This result was first proved by BOSE [B7].

A quadrangle of order (s,t) is the same as a partial geometry with
parameters (s,t,1) (see [H11], [T1] or Appendix I). For pseudo-gecmetric
graphs for a partial geometry with parameters (s,t,a), where ¢ > 1, a result
like Lemma 5.3.1 does not hold anymore. Therefore the question in the be-
ginning of this section is much more difficult to answer for these geo-
metries.



64

CHAPTER 6

CONSTRUCTIONS

6.1. SOME 2~ (71,15,3) DESIGNS

In this section we shall construct eight non-isomorphic 2 - (71,15,3)
designs. First we shall construct a 2 - {56,12,3) design D, which satisfies
the hypothesis of Theorem 2.2.4., Next we show that D is embeddable in a
2-(71,15,3) design. A less extensive treatment of this construction appear-
ed in [B2]. Designs with these parameters seem to be new (see [C4] p.104,
or [H5] p.297).

The most important ingredient for our construction is :E‘B, the field
with eight elements. Let G be the full automorphism group of FS’ that is,
the group of order 168 defined by x v axzi-i-b, a,b e FS' a# 0, i eZ. We
shall identify ]FB with AG{3,2), the 3~dimensional affine space over JFZ'

Although G is the full automorphism group of F G is not the full auto-

14
morphism group of AG(3,2). Yet G acts transitivily on the elements (we
- reserve the word points for points of a design), the lines (i.e. unordered
pairs of elements), the planes (sets of four lixiearly dependent ele-
ments), and the sets of four linearly independent elements. Morecver, the
stabilizer of a line L has four orbits on lines: L itself, the lines inter-
secting L, the lines parallel to L, and the lines skew to L.

Now we shall define the incidence structure D. The points of D are the
fiftysix ordered pairs of distinct elements of 18'8, The blocks of D are the
seventy 4-subsets of :IFB. Let o, satisfying a3 = g+1, be a prinitive element

of 3?8. The point (0,1) is defined to be incident with the following blocks:

3 5
2 2 4'0‘ 1,

{0.1,a,a%}, {O,I;a,az}, {0,1,0%,0°}, {a,e .03.04}, {a%,07,a
2
{*) {0,1,a I“é}r {0:1:5‘2'“4}' {6:1:34;‘-"6}: {31a21Q4:‘36}:‘ {a1a31a41a6}l
4
{0,1,&4,a5}, {0,1,4,a}, {0,1,a,a5}, {a,cz,a4,a5}, {a,az,as,as}.

Now we let G act on D. This defines D, because G acts transitively on the
peoints of D, and because the map x xz, which fixes the point (0,1), also
fixes the set of blocks incident with (0,1). A point (x,y) is called
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equivalent to a point (w,z) if {x,y} = {w,z}. Two blocks b < £ and

bt « :l'c"e are called equivalent if b=Db', oxbnb' =@ (i.e. bub' = :E‘B}.
We know that G has two orbits on the blocks of D. The first orbit contains
fifty?ix blocks, they are the linearly independent 4-subsets of ]‘5‘8; these
blocks will be called blocks of fype I. The second orbit consists of the
fourteen linearly dependent 4-subsets of JFS (i.e. planes), that is, they
have the form {x,y,2,x+y+z}; these blocks are of type II. It is clear that

equivalent blocks are of the same type.

and b' ¢ ¥, be dis-

6.1.1. LEMMA. Let (x,y) be a point of D. Let b Fy s

tinct equivalent blocks of D.
i. If (x.,y) ig ineident with b, then {x,y} ¢ b or {x,y} < b'.

ii. If {x,¥} < b, bof type I, then exuctly one of the following two
statements is true.

1. (x,¥) 8 ineident with b and not with b', and (v.x) 18 inci-
dent with b' and not with b;

2. {x,y) i8 incident with b' and not with b and (y.2) 1e tncident
with b and not with b'.

iii. If b e of type II, then (x,y) ie incident with b <ff {x,y} < b.

iv, b and b' have no points of D in common.

PROOF. Without.lossof generality take (x,y) = (0,1). We may do so, because
G is transitive on the points of D. Blocks incident with (0,1) are given in
(*}. On applying the map x+~ x+1 to (*}) we find that the blocks incident
with (1,0) are the following ones:

{0,1,&,33}, {0:1:33r36}: {0,1,3,&6}, {0333:35036}1 {alu4lasla6}l

(**) {Olllazlas}l {olllaslaG}l {Ollrﬂgras}; {62533135336}: {Q:32:33:QS}8

{0,1,&4,a5}, {olllu3la5}l {0111331a4}' {a3la4135:a6}: {a2133rﬁ4136}-

The first column of (*) and (**) consists of blocks of type II, all other
blocks are of type I. Now (i), {ii) and (iii) are just a matter of verifica-
tion. (iv) follows immediately from (ii) for blocks of type I, and from
(iii) for blocks of type II. 0
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From (ii} and (i1il) of this lemma we conclude the following. If each
point of D is replaced by its equivalent partner and each block of D of
type I by its equivalent partner, then incidence is not changed. Hence the
permutation of the points of D, which interchanges the equivalent ?airs of
pointé,is an automorphism of D. This automorphism is different from, and
commutes with, the automorphisms provided by the group G.

6.1.2. THEOREM. D Zg¢ a 2~ {56,12,3) design.

PROOF. First we prove that D is a l-design. 8ince every point is incident
with fifteen blocks, the average number of points incident with a block
equals twelve. By 6.1.1.iii a block of type II is incident with exactly
twelve points. Now, since G acts transitively on blocks of the same type,
also the blocks of type I are incident with exactly twelve points. We have
seen that G has three orbits on the (unordered) pairs of lines of Eé
(intersecting, parallel, skew), for which the following pairs are repre-

sentatives:
3 2 4
{{o,1},{0,a3} , {{0,1},{a,e”}} , {{0,1},{c",a"}} .

From this it follows that the group 2 x@G, which is an automorphism group of
D, has seven orbits on the (unordered) pairs of points of D, for which the

following ones are representatives:
3 2 4
{(011):(013)} . {0, (a,a™)} , {(0,1),(a%a )},

{(1,0,0,0} , (1,0, (@ad} , {(1,00,.%ah},
{1t1,0),¢0,1)} .
Blocks incident with (0,1) and (1,0) are given in (*) and (%*), respective-

ly. Using the maps xt> ax, x> x+0 and xv a(x+a), we obtain the blocks
incident with (0,a), (a,a3) and (a2,a4). The blocks incident with (0,ua) are

4 4
{0,a,a%,0 1, {0,0,0%,0%), {O,a,a3.a4}, {az,a3,a4.a5}. {03,a ,aS,aGP,

3 3
{olltala }: {Glala cas}: {0,1,&,&5}, {1ta21a3'u5}l {1102134r35} '
{O,a,as,as}, {O,a,az,aS}, {O,G,az,as}, {a2,33,a5,a6}, {l,az,a3,a6}.

The blocks incident with (a,a3) are
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{0,1,&,&3}, {0t3:03:04}: {1,a,a3,a4}, {0:1102134}; {1,&2,04,a6},

2 2

3 4 3 4 3
{a,a”,a 335}: {o,a,0a",0 }v {Qr (O ,0 }: {0 azaa O }' {Ofl,az,as}:

2
{a,o ,ua.aé}. {O.G,az,a3}, {O,a,a3.u6}, {O.az,a4.a6}, {0,a4,a5,a6}.

The blocks incident with (az,a4) are

4
{Olalazla . {Oluztu41a5}o (arazta4ras}: {Otacchas}c {133933135}6

2 3

2 4
{G + O ,a L0 } {G P11 ¢0.4,35}l {a F3 104336}: {0133

lastas}: {0,&,&3,36},
2
{1,& 'Q 132 }a {O:G ;G 13 }: {O: ra 3 } {0 1;& G }v {0 1:“ 10 }

Blocks incident with (0,1) are marked by 4. Blocks incident with (1,0) are
marked by ». We see that for each of the seven pairs of points there are
exactly three blocks incident with both points. Hence D is a 2~ (56,12,3)
design. L]

Next we shall see that D satisfies the hypothesis of 3.2.4. The line
graph of a geometry is the graph whose vertices are the lines, two vertices
‘ being adjacent iff the lines intersect.

6.1.3. THEOREM. D has just three intersection numbers 3, 2 and 0 (= k~x +1).
The clase graph of D ie the complement of the line graph of PG(3,2).

PROOF. Let b1 <« F, and b, © JFB be non-equivalent blocks of D. Let b! and

8 2 1
bé be the equivalent partners of b1 and bz, respectively. Let By. By Bi,
Bé be the sets of points incident with bl' bz. b}

1 bé, respectively. Then
by 6.1.1

By

n By =B, nBy =0=k-xr+1r.
Bence by 3.2.1.ii

|5, n B,] = |8y 0 By| = B} n B,| = |B] n Byl .
This implies

|8, uB} n (B, uBY| =4 n B,

From (ii) and (iii) of 6.1.1 it follows that
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[, uBY n (B, uBY| =
= [{x,y) € Fg | x # v, {x,y} ¢ b, or {z,y} < D!,
{x,y} € b, or {x,y} = bj}| =
8 if [b, nb,| =2,

12 if b, nby| € {1,3} .

Hence 3, 2 and 0 are the intersection numbers of D. It is clear that the
thirtyfive equivalence classes of blocks of D can be represented by the
4~gubsets of ¥F_ containing 0. Therefore, they can also be represented by

8
all 3-subsets of Fg - {0}. Now using Result 4.2.3 we see that the class
graph of D is indeed the complement of the line graph of PG(3,2). 0

By the above theorem, there exists a 2~1 correspondence between the
blocks of D and the lines of PG(3,2), such that two blocks have no point in
common 1ff they correspond to the same line of PG(3,2), two blocks have two
points in common iff they correspond to intersecting lines and two blocks
have three points in common iff they correspond to skew lines.

6.1.4. THEOREM. D ¢¢ embeddable in a eymmetric 2 - (71,15,3) design.

PROOF. We extend D to D, with fifteen points (called new potnts), being the
peints of PG(3,2) and one block (new block). The points incident with the
new block are precisely the new points. We define a new point to be inci=-
dent with an old block (block of D} iff the line of PG(3,2) corresponding
to that block contains that point. Now it is easily seen that D1 is a
1-(71,15,15) design, and that any two distinct blocks of b, have three
points in common. This proves that the dual of Di* and therefore Di itself,
is a symmetric 2 - {71,15,3) design. 0

From 6.1.1.1ii it follows that the seven equivalence classes of blocks
of type II of D correspond to seven mutually intersecting lines of PG(3,2).
For these lines we may take seven lines through one point or seven lines in
one plane. Let D, be the embedding of D 4in which blocks of type II corre-
spond ta*lines through one point, and let D2 be the other embedding of D.

Define D1 and D; te be the dual of nl and Dy, respectively. We shall show



69

that these four 2 - {71,15,3) designs are non-isomorhic. To achieve this we
define a block B of a 2-(71,15,3) design to be gpecial if the derived
design with respect to B (i.e. the 2 - (15,3,2) subdesign of the 2 - (71,15,3)
~design, formed by the points of B and the blocks distinct from B) consists
of two identical copies of a 2-(15,3,1) design. It is not difficult to see
that the residual design with respect to a special‘block B (i.e. the
2-(56,12,3) subdesign of the 2 - (71,15,3) design, formed by the points off
B and the blocks distinct from B) satisfies the hypothesis of Theorem 3.2.4
and that its class graph is isomorphic to the complement of the block graph
of the 2- (15,3,1) design associated to B (which clearly is quasi~symmetric,
since A = 1). From the proof of 6.1.4 it follows that the new blocks of Dl
and DZ are special. Moreover, 6.1.1.iii implies that the new point of 1:)1
which is incident with all old blocks of type II, is a special block of Dy

1°
By verification it turns out that these are the only special blocks of Dl'
D: and Dz. However, D; has seven special blocks. They are the seven new
points of Dz, which lie in the plane of PG(3,2) corresponding to the old
blocks of type II. This already shows that
* * * * *
Dzénz, Dzdt Dl' Dzdtl)l, Dgfaﬂ Dl' thﬁDl .
We know that any 2 - (15,3,1) design associated to a special block of D, or

02 is the design formed by the points and lines of PG(3,2). By use of '
6.1.1.iii it follows that also the 2~ (15,3,1) design associated to the

; is the design which comes from PG(3,2). Let D' be the
residual design of D;

graph of D" is again the complement of the line graph of PG(3,2). This

special block of D
with respect to the special block. Then the class

means that, similarly as for the design D, interchanging points and planes
of PG(3,2) yields a second embedding of D* into a 2- (71,15,3) design. Let
Dg be this 2~ (71,15,3) design and let D3 be the dual of D;. By verifica=-
tion it follows that D; has just one special block (the one we started

with), but that Dy

D; * Dg. By further investigation it turns out that the 2~ (15,3,1) design

has seven special blocks. This already shows that

associated to'any of the seven special blocks of D, is again the design

obtained from PG(3,2), however, the seven special glocks of D; give other
2~(15,3,1) designs (in fact all seven of them give the second design in
the list of WHITE, COLE & CUMMINGS [W3]). This proves that D; % D,, and
therefore Dl ot DI. Hernce Dl' DI, Dz, D;, D3 and D; are all non-isomorphic.

But there is still more. As remarked before, the 2 - (15,3,1) design associ-



70

ated to one of the seven special blocks of D3 (these seven special blocks
form an orbit under the automorphism group of D3) is the design formed by
the points and lines of PG(3,2). This implies that once again we can make

. another 2 - (71,15,3) design by taking away the (two identical) 2 - (15,3,1)
desigﬁs and putting them back again after having interchanged points and
planes. Call this new design D4, and let Dz be its'dual. It turns out that
D, has one special block, and that DZ has seven special blocks. Hence D, is
not isomorphic to D1, D;, D;, 93 and DZ. In addition, D4 is not isomorphic
to D2 and D;, since otherwise D3 would have been isomorphic to D1 or D:.

Because of time considerations we did not check whether it is possible

to produce still more 2« (71,15,3) designs by playing once again the same
game with respect to a special block of D:. Thus we have the following

result.

6.1.5. THEOREM. There exist at least eight 2 - (71,15,3) designs.

The designs D:, D;, Dg and Dz are given explicitly in Appendix II. By
taking residual designs with respect to various special blocks we obtain
{(at least) four non-isomorphic 2 - (56,12,3) designs which satisfy the hypo-
- thesis of Theorem 3.2,.4. One of these designs hag a clagss graph which is

non~isomorphic to the class graph of the other ones.

An oval in a 2-(71,15,3) design is a set 8 of six points such that
any block has two or no points with 8 in common, see [a4]. Let S be an oval.
It is clear that exactly twentysix blocks do not meet S. Therefore, by
3.1.1 an oval of a 2~(71,15,3) design is equivalent to an empty sub-
design with six points and twentysix blocks. From 3.1.1.ii (see also [A4])
it follows that the subdesign of the 2~ (71,15,3) design formed by the
points off S and the blocks not meeting $ is the dual of a 2~ (26,6,3)
design. By verification it follows that the following blocks of D provide
an oval in D:: '

{113132:33}1 {110032:“5}: {olllalas}

2 4 2
{1,6%,0a ;as}p {a,a la4la5}l {ola3la4ia6}‘
We conclude this section with a remark about automorphism groups. The

group 2 XG of order 336 is an automorphism group of Dy, Dz, Dy and their
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duals. The designs D4 and Dz have an automorphism group of order 48, viz.
the stabilizer of a special block of D3. F.C. Bussemaker has verified by use
of a computer that the groups mentioned above are the full automorphism
groups.

ACKNOWLEDGEMENT. I thank H.J. Beker, F.,C, Bussemaker, R.H.F. Denniston and

M. Hall Jr. for various contributions to this section.

6.2. SOME STRONGLY REGULAR GRAPHS

Suppeose A is the adjacency matrix of a strongly regular graph G on n

vertices of degree d. Purthermore, assume that A admits the following

structure:
A.‘L.’L cee Aim
A=1: : ’
Am1 e Amm

where Aij is a square matrix of size ¢ := n/m having constant row sums

equal to bij’ say, for i, = 1,...,m. From 1.2.3.iii it follows that the
~ eigenvalues of the matrix B := (bij) satisfy

(*) 11(3) =M@ =4, Ai(B) € {AZ(A), ln(A)} for i = 2,...,m .

Hence (*) yields directives for the construction of strongly regular graphs,
whose adjacency matrix admits this block structure. Let us consider two

special cases of this structure.

CASE 1: All diagonal entries of B are equal to Xoyr says and all off-~diagonal
entries of B are equal to xy, say, that is,

B = (ro-rl)I + riJ'
Hence by (*)
m~1)r, + ?0 =d and 1ry-r ¢ {Azta). An(A)} .

This implies

r, = (12(2&) (m=1) +d} /m , r, = (@=2,(8)) /m ,
QY

rg = (A (A)(m-1) +4d) /m, xy = (d»An(A)) /m .



72

6.2.1., EXAMPLE. We wish to construct a strongly regular graph G with para-

2+q+1,q2+q,q—1,q+1) , admitting the block structure of case 1

meter set (q3+q
with m = q2+1 and ¢ = g+ 1. Then (see Appendix I) AZ(G) = qg=-1,

An(G) = -g~1 and the formulas above yield g =ds ¥y = 1. It is indeed
possible to construct G, by use of this framework. To do so we define the

permutation matrices P and Q of size gq+1 by

1 ifi+j=qg+2,

1 0

P = 9 and @ ==[
J 0 otherwise.

It easily follows that

* - -
P‘I+1=1 (pk) aqu+1k=Pk Q2==I

r ! &

¥ -
Fo- g -, § ptau.
i=0

For k = 1,...,q, define R_:= P*Q = 0P X, Then
Ry =R . R ket § i3
= I} R, =P F} R, =dJ, R,R. = (q"‘I)J ’
£ i=0 1=0 j=o 3

for k,8 = 1,...,9. Let PyreserPy (v := qz) be the points, and let

Cl""'cq+1 s
i,3=1,.00,9+1, define the (g+1} x (g+1) matrices

be the parallel classes of an affine plane of orxder g. For

J-Iif i= 3,

=1 ifi#3, i=qg’+lorj=qgi+l,
2

Aij H

P I q2. and C. contains the

Rk :Lfi.#j:iSq K

line through p 1 and pj.

By use of the formulas above it is straightforward to verify that the square

matrix A of size q3 +q2 +g+1, built up with these block matrices A

satisfies

i3’

a+n? = (g+13 + 1.

Therefore, A is the adjacency matrix of the desired strongly regular graph.
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A strongly regular graph with the same parameters is provided by the
point graph of ageneralized quadrangle of order (q,q) (see Section5.1). However,
for g >4 the graphs constructed above need not be geometric. Indeed, we can

~order the points and the parallel classes of an affine plane of order g in
such a way that the graph we obtained by our construction has c@o as an
induced subgraph. Then by 5.3.1, this graph is not ‘geometric, and therefore

non~isomorphic to any of those whichk come from generalized quadrangles.

As a second example of graphs admitting the block structure of case 1
we mention the eleven incidence graphs of three linked 2 - (16,6,2) designs
{see Section 4.2).

CASE 2: All diagonal entries of B are egqual to Tye SaY. The off~-diagonal
entries of B take exactly two values ry and r,, say (r1 > rz) . Then by (x)
the (0,1) matrix

~ 1
B .=;:T_r—2 (B - rz(J-I) - rOI)

hag just three distinct eigenvalues, one of which is simple and belongs to
the sigenvector j. Hence B is the adjacency matrix of a strongly regular
' graph G' with eigenvalues

d4' = Xi(G') = {d~r2m+r2~r0},f‘{r1-r2) '

2,06

(lz(A) +r,-ry) [ -xj)

]

Am(G') (kn(A) +r, —-ro) /(x, -z, .

6.2.2. EXAMPLE. We wish to construct a strongly regular graph ¢ with para-
meters (40,12,2,4), admitting the block structure of case 2 with m = 10,

c =4, g =¥, = o, r, = 2. From Az(G) = 2, A4O(G), = -4 and the above for-
mulas it follows that 4' = 6, AZ(G') = 1, lm(G') = -2, Hence G' is the
complement of the Petersen graph. For h = 0,1 and 1,3 = 2,3,4, define the

square (0,1) matrices T

hij of size four, by

h if (k,8) e {(1,1),(1,8),(k1), (k,0) } ,

(T ..) i=
hij ki 1 -h otherwise.
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Then we have for h,h' = 0,1; i,3,i',3' = 2,3,4,

*
Tnis = This © Tnig” = ¥ Thiy Y Taomay T
U =JifJ#3°, T .. T, = 2T,
. hij "h'i'j’ 373 ¢ Thiy thivy 144" *
Thig Ta-myits = Tour -

With the help of these properties it is relatively easy to check that the
following two matrices are adjacency matrxices of strongly regular graphs
with parameters (40,12,2,4).

0 Tgus To34 Tosq Tozs Tizz Tom O 0 © O Toop Tosz Toaz Tozz Tosz Teaz © O @
Tose O 9 Toag Tiza O Tiza Tozaa @ Tizz) Tozz © Toss Teaz Tozz © @ Yoz Toaz
Toes @ 0 Tiaz Toay Toas © T3z Toae © § [Tozs Toss © Toas 0 Tozz ° Tozz ¢ Tow
Toas Toaa T3z ©  © Tizz O Tozz O Tonal Tone Toze Toas O O 0 oo O Topy Ton
Toas Tras Tosa O O 0 T Tugg Tigp O |Top Topp & O O oy Togn Toas Tosz O
Toas & Toaa iz & 0 Tiag © Toge Tizal Pozs O Tozz @ Tozz O Tose Tozs O Toas
Toap Tr2z © O Tysp Traz 0 ® Toso o2zl Toze O % Tozo Toze Toea © O Toay Toas

9 Toes Tias Tozz Trag O € O Ty Tigal | O Topn Toms @ Toas Tomy © 0 Toss Toa

O 0 Toy O Tipy Togs Tooz Tizz 0 Toaa] | O Toze © Tozz Toaz @ Toss Toar 7 Tom
L% T2 © Togz © iz Tozz Tw32 Toaz O [ | © © Toze Tona © Tose Tose Toas Toss |

MATHON [M5] used the block structure of case 2 for the construction of
strongly regular graphs with parameters (pq2 . Js(pqz-l) P ’:(pq2-5) ' 1a(}?qz"l))
for prime powers pand ¢, p = 1, g § -1 (mod 4). The strongly regular graph
G', which provides the framework for Mathon's construction has parameters
(pr%ip-1) + %(p-5) ,&(p-1)).

Any graph constructed in one of the examples above has the property
that Pil +2 = pfi. This implies that its adjacency matrix A satisfies

2 2 2
(A+I) = p11J+ (d‘+1—p11}I '

where d denotes the degree of the graph. This yields the well~known fact
that A +I is the incidence matrix of a symmetric 2~ (n,d+1 ,pfl) design.
Similarly, if a strongly regular graph satisfies Pil = pfl, then its a?-
jacency matrix itself is the incidence matrix of a symmetric 2 - (n,d,pn)
design. This phenomenon is behind the next example, where we derive a

strongly regular graph with pi 1 +2 = p?i from one with pil = pfl.
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6.2.3. EXAMPLE, We start with a description of the generalized quadrangle @
of order (2%-1,2%1), ¢ ¢ N, due to HALL [H6]. Consider AG(3,q), the three
dimensional affine geometry over IFq, with g = 21. Let S be a set of

m := g+ 2 lines from AG(3,q) passing through one point, such that no three
lines lie in one plane. Such a set exists, because it corresponds to a com-
plete oval in the projective plane PG(2,q), which éxists iff q is even, see
(D3], It is easy to prove that each plane of AG(3,q) contains two or no
lines from S. The points of Q are the points of AG(3,q); the lines of Q ére
the lines of §, and the lines of AG{3,q) which are parallel tc a line of S;
a point and a line are incident in Q, iff they are incident in AG(3,q)}. Now
it is easy to prove that Q is a generalized quadrangle of order (g-1,g+l).
Let us partition the adjacency matrix A of the line graph of Q (i.e. the
point graph of the dual of Q) into m2 square block matrices of size qz,
according to the m parallel classes in Q:

From the structure of ¢ it follows that we may arrange the lines such that

A =0 ifi=3;
A..=31I_®J ifioddand j=1+1, or joadd and i = §+1;
i3 9 “q
Py ve Py
A= K
P ves P
ql qaq

for all other values of i,]j, where sz is a permutation matrix of size q,

for k,2 = 1,...,9. Now we derive a new matrix A from A by replacing

A

ii Ay, i+l A

Ai,i+1 il

Aiet,i Biet,ie Birt,ivt PuatLi

for i = 1,3,...,m~1. Then it follows that

Kz = Az = qJ + qu .

Since & is symmetric with all diagonal entries equal to one, the matrix
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A-I is the adjacency matrix of a strongly regular graph with parameters
(qz(q+2),q2+q-1,q-2,q}. For g = 2 this graph is the Clebsch graph (see
Section 4.1, Figure 2), but for all other values of g = 2£ these strongly
. regular graphs seem to be new.

We remark that in the above example A has the block structure of case
1, whilst A has the block structure of case 2 with the cocktailparty graph
on m vertices (complete km-partite graph) as the underlying strongly regular
graph.

The remainder of this section will be devoted to strongly regular
graphe with parameters (40,12,2,4). For convenience we call such graphs
40~graphs. Examples 6.2.1 {g=3) and 6.2.2 provide 40-graphs. The point
graph of a generalized quadrangle of order (3,3) is a 40~graph. PAYNE [(P5]
proved that there are exactly two generalized guadrangles of oxder (3,3)
(one being the dual of the other). In fact, these two geometric 40~graphs
are the graph of Example 6.2.1 with g = 3, and the second graph of Example
6.2.2. From pil = 2 it follows that a subgraph of a 40—graphvindnced by all
vertices adjacent to a given vertex, is regular of degree two, s0 a dis~

joint union of cycles. But we can say more.

6.2.4. LEMMA, Let G be a 40-graph. Let x be a vertex of G and let G be the
subgraph of G induced by the vertices adjacent to x. Then G, 18 one of the
following graphs:

i. a 12~cycle;

ii. the disjoint union of a 9~cycle and a triangle;
iii. the disjoint wnion of two é-cycles;

iv, the digjoint union of a 6-cycle and two triangles;
v. the disjoint wunion of four triangles.

PROOF. We only have to prove .that the number of vertices of any component
of Gx is divisible by three. If Gx is connected, there is nothing to prove.
Suppose Gx has a component C of size ¢ < 12, We partition A into sixteen
block matrices according to: the vertex x, the vertices of C, the remaining
vertices of Gyr and the vertices not adjacent to x. Then the entries of
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¥] c 12-¢ 0
1 2 0 9
1 0 2 9

¢ ¢/3 4-c/3 8

are the average row sums of the block matrices of A. It is easy to see that

Al(B) =12, Xz(B) = A3(B} =2, A4(B) = -4,

On the other hand we know

AR) =12, A, =A@ =2, A ) =-4.

So the eigenvalues of B interlace the elgenvalues of A tightly. Hence, by
1.2.3.ii the row sums of the block matrices are constant, so ¢/3 is an

integer. ]

We associate with a 40-graph a 5-~tuple (al,...,as}, where Byreerdy
denote the number of vertices x for which Gx has the form (i),...,(v),
respectively, of the above lemma. Using 5.3.1 we observe that a 40-graph is
~ the point graph of a generalized gquadrangle iff its S5-tuple is (0,0,0,0,40).
The first graph of Example 6.2.2 has 5-tuple (0,0,4,24,12). R. Mathon
{private communication) constructed a 40-graph with 5-tuple (0,0,0,36,4).

WEISFEILER [Wi] describes an algorithm for generating strongly regular
graphs with a given parameter set, based on the principle of backtracking.
By use of this algorithm we wrote a computer program (in Algol 60) for the
construction of 40-graphs. Weisfeiler's algorithm rejects isomorphism only
partially. This means that some of the produced 40-graphs may be isomorphic.
We had our program run for about ten minutes. It turned out that, although
we obtained about twohundred (not necessarily non~isomorphic) 40~graphs,
the process of finding all 40-graphs still was in the beginning phase. For
this reason there was no hope for completing the whole search. It seems
that there aré thousands of 40-graphs. Still we wanted to test the few
hundred 40-graphs we found on isomorphism. A complete test on isomorphisus
would have been too expensive. Therefore we just computed the S5-~tuple of
each 40-graph. It turned out that twentyone of these 40-graphs had different
5-tuples. So we found at least twentyone non-isomorphic 40-graphs. One of
these is the first graph of Example 6.2.2. But none of these graphs has the



78

S5~tuple of a geometric 40-graph or Mathon's 40-graph. So we have the follow-

ing result.

- 6.2.5. THEOREM. There exist at least twentyfour strongly regular graphs
with parameters (40,12,2,4).

These 40-graphs are given in Appendix II, except for the three 40~
graphs that are already exhibited in the Examples 6.2.1 and 6.2.2. The
first graph in the list is Mathon's 40~graph.

We noticed already that a 40-graph gives a 2~ (40,13,4}) design. There
is no reason why non-isomdrphic graphs should lead tot non-isomorphic
designs. However, it has been checked that our twentyfour 40-graphs do
produce twentyfour non-isomorphic 2 - (40,13,4) designs.

An oval in a 2~ (40,13,4) design is a set 8 of four points, such that
any block has at most two points in common with 8, sce [A4]. Easy counting
arguments give that twelve blocks are disjeint from S and four blocks have
exactly one point in common with S. Suppose we have a 40-graph with a co-
cligue of size four, such that any vertex is adjacent to two or to no
~ vertices of that coclique. Then this coclique of the 40-graph produces an
oval in the corresponding 2 -~ (40,13,4) design. Conversely, it can be proved
that any oval in a 2 - (40,13,4) design, cbtained from a 40~graph, corre-
sponds to such a coclique. We see that the two 40-graphs of Example 6.2.2
produce 2- (40,13,4) designs with ten disjoint ovals. Also the last six
40~graphs of Appendix 11 supply designs with ovals. The remaining sixteen
40~-graphs have no ovals.

In 4.2.2 we saw that the chromatic number of any 40-graph is at least
five. Since the complement of the Petersen graph is 5-colourable, it follows
that the two 40-graphs of Example 6.2.2 are 5-colourable as well.
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APPENDIX 1

GRAPHS AND DESIGNS

This appendix contains the basic concepts and results from the theory
©of graphs and designs, which are used in the present monograph. Some general
references are [B5], [¢12], [u8], [wel for graphs, [D31, [85]1, [H17], [R3]
for designs, and [B7], [C6] for both. We shall assume knowledge of Section
0

A graph consists of a finite non-empty set of vertices together with a
set of edges, where each edge is an unordered pair of vertices {so our
graphs are finite, undirected and without loops or multiple edges). The two
vertices of an edge are called adjacent (or joint). A graph is complete if
every pair of vertices is an edge. The complete graph on n vertices is
denoted by K . A graph without edges is called void (or null). The comple~-
ment of a graph G is the graph G on the same vertex-set as G, where any two
vertices are adjacent whenever they are not adjacent in G. The disjoint
unton of a collection of graphs Gl"“'Gm on disjoint vertex sets is the
graph whose vertex-set is the union of all vertex-sets, and whose edge-set
is the union of all edge-sets of GyreaesGp. A graph is discomnected if it
is the disjoint union of two or more graphs. Any graph G is the disjoint
union of one or more connected (= not disconnected} graphs, called the
ceomponente of G.

Let G be a graph on n vertices. A sequence of distinct vertices
Xgr---e%, Of G i5 a path of length % between x, and x, if {xi-i'xi} is an
edge for i = 1,...,%. The distance p{x,y) between two vertices x and y is
the length of the shortest path between x and y {p(x,y} = = if x and y arxe
in distinct components of G). The diameter of G is the largest distance in

G. A sequence of vertices X,,...,x, is a eireutlt of length § if KyreserX

3 2
are distinct, x = X, £ > 2 and {xi-l'xi} is an edge for i = %1,...,4. The

girih of G is the length of the shortest circuit in G. The adjacency matriz
of G is the n X n matrix A, indexed by the vertices of G, defined by

1 if {zx,y} is an edge,

(A} =
Xy 0 otherwise.
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Obviously, G has adjacency matrix J-A~I. The eigenvalugs of G are the
eigenvalues of A; they are denoted by Ai G) 2 ... 2 kn(Gi (the eigenvalues
are real, because A is symmetric). We easily have that

Al(Kn) =n-1, AZ(KH) T oeaa = An(Kn) = =1,

The ineidence matrix N of G, whose rows are indexed by the vertices and
whose columns are indexed by the edges, is defined by

1ifx€E'

0 otherwise.

The graph with adjacency matrix NN - 21 is called the line graph of G,
denoted by L(G) . The subgraph of G induced by a set S of vertices of G is
the graph véith vertex-set 8, where two vertices are adjacent whenever they
are adjacent in G {(a subgraph is always an induced subgraph). Note that the
adjacency matrix of a subgraph of G is a principal submatrix of A. A elique
is a complete subgraph; a coclique (or independent set of vertices) is a
void subgraph. The size of the largest clique and coclique is denoted by
w{G) and & (G}, respectively. A colouring of G is a colouring of the verti-
ces, such that adjacent vertices have different cclours {(i.e. a partition
of the vertices into cocliques}. Vertices which are coloured with the same
colour form a colour claes. G is k-colourable if G admits a colouring with
k colours; the smallest possible value of k is the chromatic wumber of G,
denoted by Y{(G). It easily follows that

Y@ 2 wi@) ,» Y{G)a(G) 2z n.

If y(G) = 2, then G is bipartite. By use of 1.1.2 it follows that if G is
bipartite, then

A (€)= -2 (G) for i = 1,...,n.

n+i-i

Conversely, AI(G) = -An(G) implies that G is void or bipartite; this follows
from the Perron~Frobenius theorem on non-negative matrices (see [C12],
[M3]). If G can be coloured with y colours, such that all pairs of differ-
ently coloured vertices are edges, then G is complete y-partite (i.e. the
complement of the disjoint union of coﬁzplete graphs). The complete bipartite
graph (y = 2) is denoted by Kf,,m’ where £ and m are the sizes of the two
colour classes. By use of 1.1.2 it follows that
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)= vVim, MK, ) =0 fori= 2,...,8m=1.

Ayl ( 1%,m

Kz,m) = -A£+m Kz,m

The degree (or valency) of a vertex is the number of‘vertices adjacent to
that vertex. A graph is regular (of degree d) if all its vertices have the
same degree (equal to d).
Let G be regular of degree d. Then Aj = dj, hence 4@ is an eigenvalue
of G with elgenvector j. Moreover, the matrices A, J and I have a common

basis of eigenvectors. By use of this we obtain

J\i@ =n~d=-1, Ai((-;) =~} (¢) -1 for i=2,...,n.

n+2-i

If G is connected, then the Perron-Frobenius theorem yields that d is the
largest eigenvalue of G with multiplicity one. Hence, 4 = Al(G) and its
multiplicity equals the number of components of G (see [B5] for an element-
ary proof) . If G is connected and d = 2, then G is called an n-cycle (or
eircuit) . G is gtrongly regular if G is not void or complete and the ad-
jacency matrix A satisfies

2
1 AT = 4J , (A-)\z(G)I) (A—)tn{G)I) =Py T

for some number pfi. This is equivalent to requiring that A has precisely
two distinct eigenvalues not belonging to the eigenvector j.

Now let G be strongly regular. Then also G is strongly regular. Com-
putation of the diagonal entries and the row sums of both sides of the
second equality of (1) yields

2 2
2 4+ A,(@A(6) = py; 4+ (@=2,(6))(d=-) (@) =pj n.

1 2
Define Py = lz(G) + An(e} + Pyye Then (1)} becomes

AT =da7, A% =ar + pilA + pfl(J-A-z) X
This reflects that G satisfies the following three properties: G is regular
of degree d; for any pair of adjacent vertices there are exactly pil ver-
tices adjacent to both; for any pair of non~adjacent vertices there are
pfl are the
parameters of G. Let £ be the multiplicity of the eigenvalue AZ(G). Then

exactly pfl vertices adjacent to both. The integers n, 4, pil,

0 = trace A =4 + fAz(G) + (n-—f-—l)kn(G) *
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whence

d+ (n=- 1)An(G)

e ™ _ _ e 1 _ 2
£ = kn(G) —kz(G} , kn(G)(n 2fF ?) 4d f(p11 p11} .

So, 4f n # 2f+1, then An(G) is rational, and therefore AZ(G) and An(G) are
integers. It is an easy exercise (see [C6]) to show that n = 2f +1 implies

2

n-1=24 = 4911 =

4(911”) ;A6 == (G) =1 = -%+hVA .

By use of the above results and trace A = 0, it follows that AZ(G) z 0 and
An(G) < =-1. From (2) we have that Az(G) = 0 iff pfl = d. It is easily seen
that pfl = d reflects that G is a complete y-partite graph. If An(G) = -1,
then Az(G) = 0, hence G is the disjoint union of complete graphs and

P?i = 0. Conversely, by (1) pfl = 0 implies d = kZ(G) and An(G) = =1, These
two families of strongly regular graphs are called imprimitive. Let x be a
vertex of G. The two subconstituents of G with respect to X are the sub-
graphs of G induced by the vertices adjacent to x and by the vertices non-
adjacent to x. The subconstituents are regular of degree P;l and d-pil,
respectively. Examples of primitive (= not imprimitive) strongly regular
graphs are: the pentagon ({5~cycle), L(Km) for m 2 5 (= triangular graph),
L(Km,m) for m 2 3 (= lattice graph) and their complements. The Petersen

graph is the complement of L(Ks) and has parameters (10,3,0,1).

An inoidence structure consists of a finite non-empty set v, of pointe
5 of blocks, together with a subset of v, xV,
of flage. & point and a block axe incident if they form a flag. Often blocks

are identified with the sets of points with which they are incident; if so,

and a finite non—empty set V

blocks are denoted by capitals, otherwise we use small types. An incidence
structure without flags is called empity.

Let D be an incidence structure with v points and b blocks. An inci-
dence structure D' formed by points and blocks of D is a substructure of D
whenever a point and a block are incident in D' iff they are incident in D.
The incidence matrix N of D, whose rows are indexed by the points and whose
columns are indexed by the blocks, is defined by

1 ifxeB,

0 otherwise.
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The incidence structures with incidence matrices N and J ~N are called the
dual and the complement of D, respectively. The graph with adjacency matrix
]:S:* lg] is the inmeidence graph of D. Clearly D and its dual have the same
ingidence graph. We call D a t - {v,k,A) degign (or t~design with parameters
(v,k,\)) if all blocks have size k, and if any set of t points is contained
in exactly X blocks. & t - {v,k,A) design with k < t or v~k < t is degenerate.
A design is a t-design for some t. A subdesign is a substructure which is a
design. Note that we allow repeated blocks {(two or more blocks incident
with exactly the same points).
Let D be a non-degenerate t - (v,k,X) design. The complement of D is

also a non-degenerate t-design. By elementary counting we see that for t = 1
D is also a (t~1) - (v,k,A(v-t+1) / (k~t+1)) design. In particular, D is a

1~ (v,k,r) design, where

v-1

‘ k=1

roa= (/0

r equals the number of blocks incident with any point. Counting flags yields
bk = vr. If D is a 1 -~ (v, k,r) design, then rk is the largest eigenvalue of
NN and hence by 1.1.2 ¥rk is the largest singular value of N. A 2-design
is alsc called (balanced incomplete) block design. Now let D be a non-

degenerate 2=~ (v,k,A) design. In terms of the incidence matrix N this means
* *
{3) NIJ=ki, NI=x3J, NN =AJ+ {r-A)I.

NN" has eigenvalues Av+r =2 = rk and r -2} of multiplicity 1 and v=~1,
respectively. By 1.1.2 these eigenvalues are the squa.res‘of the singular
values of N. From vk # 0, r~X # 0, it follows that v = rank NN = rank N,
hence b 2 v (Fisher's inequality). If b = v (i.e. r = k}, D is called
symmetric. Formula (3) yields N(N' - (A/r)}J) = (xr-A)I. If D is symmetric, N
is square, hence O - A/D)IN = (r-A)I, i.e. N'N = 3J 4 (r-2A)I, and
therefore the dual of D ig a symmetric 2 - (v,k,A) design as well. Let D be
symmetric, and let B be a block of D. The subdesign formed by the points
incident with B and the blocks distinct from B is a 2~ (k,A,A~1) design
(possibly degenerate), called the derived degign of D with respect to B.
Similarly, the subdesign formed by the points not incident with B and the
blocks distinct from B is a 2~ (v-k,k-A,)} design (possibly degenerate},
called the regidual design of D with respect to B. A 2~ (v-k,k~A,)) design
D' is embeddable in D if D' is a residual design of D. For example, the
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points and lines of PG(2,q), the projective plane of order g, form a sym-
metric 2 - (q2+q+1,q+1,1} design; the degenerate 2 - (gq+1,1,0) design is a
derived design, and the affine plane of orxder g, which is a 2~ (qz,q,l}
design, is a residual design.

A partial geometry with parameters (s,t,o), s,t,a ¢ N, is a
1 - (v,s+l,t+1) design satisfying the following two‘conditicns:

N any two blocks have at most one point in common;
(4) for any non-incident point-block pair (x,B) the number of
blocks incident with x and intersecting B equals «.

For a partial geometry we speak of lines rather than blocks. Let D denote a
partial geometry wiﬁh parameters (s,t,a) and incidence matrix N. The graph
with adjacency matrix NN - (t+1)I is the point graph of D. The Iine graph
of D is the point graph of the dual of D. From the definition it readily
follows that the point graph G of D is strongly regular with parameters

(vys(t+i) ,t(@-1) +s~1,a(t+1)) .
By use of our identities for strongly regular graphs we obtain

Al(G) = s{t+1) , Az(G) =g=-0 , Rn(G) =~-t~1,
ve(s+l)(st+a)/a , b= (t+1)(st+a)/a .

Hence NN* has the eigenvalues (s+1)(t+1), 0 and s+t+ 1 -0 of multiplicity
1, s{(s+1l~a)(st+a) /fo(s+t+1-a) and st(s+1)(t+1) /a(s+t+1~a),
respectively. By 1.1.2 the sqguare roots of these eigenvalues are the singular
values of N. A partial subgeometry is a substructure, which itself is a
partial geometry. Let D' be a partial subgeometry of D with parameters
(s',t',a). Then the point graph of D' is an induced subgraph of the point
graph of D. This can be seen as follows. Let x and y be two points of D' and
suppose there exists a line L of D, which is not a line of P', incident with
x and y. Let ¥ be a line of D' incident with x. By (4) there are a lines of
D' incident with x and intersecting M. Hence there are at least a +1 such
lines in D. This is a contradiction. So two points are on a line of D' iff
they are on a line of D, vwhich proves the claim. 2 partial geometry with
parameters (s,t,1) is the same as a generalized quadrangle of order (s,t).
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APPENDIX II

N TABLES

First we list the twentyone strongly regular graphs with parameters
(40,12,2,4), as promised in Section 6.2. Together with the ones of Examples
6.2.1 and 6.2.2 they form the twentyfour 40-graphs of Theorem 6.2.5. The
respective 5-tuples of the 40-graphs listed below are:

(0,0,0,36,4) (8,18,2,9,3) (16,14,4,5,1)
(12,18,6,3,1) (4,20,4,10,2) (18,18,0,3,1)
(12,12,0,14,2) (9,18,0,9,4) (18,20,0,0,2)
{6,22,6,3,3) (18,12,9,0,1) (27,12,0,0,1)
(0,32,0,0,8) (6,12,0,18,10) (0,36,0,0,4)
(0,24,0,12,4) (8,8,0,20,4) 6,12,12,10,0)
(2,8,12,16,2) {10,8,18,4,0) (0,16,6,12,6} .

2 3 4 5 6 7 8 9101113213 91015 16 17 21 22 24 28 323538 9 10 15 16 17 21 22 24 28 32 35 38
03 4141516171813 202122 6 B 9 10 14 19 23 2432333439 6 8 9 10 14 19 23 24 32 33 34 39
102 4232425262728293031 4 7121516 19 23 24 30 31 3532 4 7 12 15 16 19 23 24 30 31 35 39
102 33233 343503637383940 3 81013 1718 20 21 30 3237 39 3 8 10 13 17 18 20 21 30 32 37 39
t 6 71417202327 31323739 7 91214182021 2228313439 7 9121418 20 21 22 28 31 34 39
1 5 7151821 2428 29333540 2 91213151718 23 31 36 37 38 2 9 11 15 17 18 20 23 31 35 36 37
105 61519222526 30343638 3 510 11 14 16 18 24 33 36 37 38 3 § 10 11 14 16 18 24 33 36 37 38
.1 9310 14 17 20 2526 30 33 3540 2 4 11 15 18 20 22 24 28 34 35 36 2 4 12 13 15 18 22 24 29 34 36 38
1 810151821 232731343638 1 2 5 61116 202530353739 % 2 5 61213 16 25 30 37 38 38
1 8 9161922242829 323739 1 2 4 71213222529 333832 1 2 4 711 20223529 3335 38
11213 14 17 20 2428 29 34 36 38 7 8 9131512 21 25 28 30 33 36 6 7 10 13 15 15 21 25 28 30 34 36
11113 1518 21 2526 30 323739 3 5 6101719 21 2529343536 3 5 & 917 19 21 25 23 33 35 36
111 12 16 19 22 23 27 31 33 35 40 4 610 11 16 19 22 26 28 31 34 37 4 8 91116 19 232 2% 22 31 33 37
2 % 811 15 16 23 28 30 32 36 40 2 5 71517 19 22 26 28 30 32 37 2 5 71517 19 22 36 29 30 32 37
2 6 9121416242631333738 1 3 6 8111421 2629313839 1 3 6 EB11 1421 36 2 31 3839
2 7101314152527 29343539 3 3 7 913202326 2032343 1 3 7 91320 23 2629 32 34 36
2 5 81118192426 31 343539 1 4 61214 202 2628303336 1 4 612142024 2623 30 33 36
2 6 91217192527 29323640 4 5 & 7 823252 28323538 4 S5 6 7 8232526 28323538
2 710131718 23 28 30 33 37 38 2 3111213 14 20 27 28 32 3538 2 3 11 1213 14 20 27 28 32 35 38
2 5 81121 22252729333738 4 S 8 9161719 2723313338 4 5 610161719 27 29 31 34 38
2 6 9122022232830 343535 1 4 5111215 23 27 32 33 34 37 1 4 5111215 23 27 32 33 34 37
2 710132021 24 2631323640 1 5 B 101314 232730313536 1 5 81013 14 23 27 30 31 35 36
3 5 913141921 2425323538 2 3 61618 21222728293033 2 3 6161821 2227 2829 30 33
3 61011 1517222325333630 1 2 3 7 8172527 28313437 1 2 3 7 8172527 28 31 34 37
3 7 2121618 2023 24 34 37 40 510 11 12 18 24 26 27 25 30 31 32 9 10 11 12 18 24 26 27 29 30 31 32
3 7 8121517 2227 28 32 35 3B 13 14 15 16 17 18 25 27 33 34 35 36 13 14 15 16 17 18 25 27 33 34 35 39
3 5 9131618202628 333630 192021 22 23 24 25 26 36 37 38 39 19 20 21 22 23 24 25 26 36 37 38 39
3 61011 141921 26 27 34 37 40 1 531 13 17 18 19 23 24 290 39 40 1 511 13 17 18 19 23 24 29 39 40
3 631011 16 18 20 30 31 32 35 38 B 10 12 14 15 16 20 23 25 28 37 40 € 10 12 14 15 16 20 23 25 28 37 40
307 B 12131419 21 28 31 33 36 39 3 4 91114 17 22 23 25 34 38 40 3 4 911 14 17 22 23 25 34 38 40
35 9131517222930343740 3 5 613152022 2425323340 3 5 6131520 222425323340
4 510121418 2223262933 34 1 2 414161819 21 2531 3640 1 2 4 14 16 18 19 21 25 31 36 40
4 6 B 131519202427 303234 2 71011172021 232631 3540 2 710 12 13 17 21 23 26 31 38 40
4 7 9111617 212528313233 2 5 812131621 2426303840 2 5 811 16 20 21 24 26 30 35 40
4 6 813 16 17 21 23 26 29 36 37 t 03 8 9121819522 26333740 1 3 6 10 12 18 19 22 26 34 37 40
4 7 91114182224 27303537 6 7 811121617 2227323340 8 7 811 1216 17 2227 32 35 40
4 510121519 20252831 3536 4 6 7 9131421 2427293540 4 6 7 9131421 24 27 25 35 40
4 7 91115192023 26293940 1 6 71015 16 192027303440 1 7 & 91518 19 20 27 30 33 40
4 510 12 16 17 21 24 27 30 38 40 2 3 4 5 910152627 283640 2 3 4 5 910 15 26 27 28 36 40
4 6 813 14 18 22 25 28 31 38 39 28 25 30 31 32 33 34 35 36 37 38 39 28 20 30 31 32 33 34 35 36 37 38 39
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21
22
18
21
17
26
25
27

25
26
27
28
a7
27
28

23
23
21
21

20
18
18
17
18
13
20
19
27
27
3

21
22
22
21
22
ig
i7
21
22
18
21
17

28

27

28
26
25
27
28
27
27
25
a5
23
23
a2t
21

18
18
17
18
15

18

a7
31

23
24
23
24
23
20
20
24
24
1%
23

29
30
32
31
31
3
28
29
28
28

24
24
22
22
21
22
24
23
21
2
23
24
0
28
28
32

23
24
23
24
23

2
24
24
19
23
19

.29

30
32
31
3
31

28
a8

24
24
22
22
22
21
24

21
22
23
24
28
28
28
32

2%
25
ek}
3
%
30
29
25

30
25
29
35
35
33
33
Az
32
e
30
29
30
32
31
30
29
32
31
26
5
28
27
25
26
27
28
21

33
33

%
25
25
26
26
30

25

30
25
29
35
38
33
33
a2
32
30
3Q
30
29
32

30
32
31
25

28
27
25

27
28
21
29
33
33

a7
27
28

28
32
31
28

31
27
32
36
36
34
34
33
24
35
36
33
34
35
36
33
34
35
36
33
34
35
3%
28
30
31
32
22
30
34
34

27
27
28
28
25
31
32
28
27
32
27
3

36
34
34
33
34
35
36
33
34
35

33
34
35
36
33
34
35
36
22
30
31
32
22
30
34
34

30
bl
29

33
33
34
34
33
33
34
34
37
37
37
37
37
37
37
37
37
37
37
37
38
38
38
ag
38
38
38
38
33
39
39
39
23
31
35
35

29
30
30
28
33
33
34
34
33
33
34
34
37
37
37
37
37
37
37
37
37
37
37
37
38
a8
38
38
38
38
38
3B
39
39
35
35
23
3t
35
35

31
33
32
32
35
35
38
38
36
38
36
35
38
38
38
38
k)
5
33
3B
40
40
40
40
39
39
38
38
40
40
40
40
40
40
40
40

32
36
£

31
31

32
3s
35
35
35
36
36
36
36
38
38
38
38
39
3%
35
39
40
40
40
40
39
32
339
39
40
40
40
40
40
40
40
40
24
32
36
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iz

17
18

29

8
17
17
18
14
i3
i4
i3
14
13
13
14
17
hi:3

12
13
14
16

14
13
18
15
14

15
1%
13
14
16
15
15
15

13
i7
28

29

20
20
19
18
15
15
16
16
16
16
15
15
22
21
24
23
21
22
24
23
17
18
20
19
18
17
19

19
12
17
17
18
16
14
14
18

26
30

20

19
12
i5
15
16
15
16
16
16
15
22
2
24
23
u
21
24
23
18
17
20
18
17
18
18
20
8
18
17
17
16
16
14
14
18
26
%
30

22
21
21
22
22
is
17
21
22
2]
21
17
26
25
27

25
27
28
27
27
25
25
23
a3
21

20
20
18
is
17
18
19

i3
a7
2%
31

22

21
22
2z
18
17
21
22
18
21
37
26
25
27
28
25
26
27
28
27
27
25
25
23
23
21
21
0
20
18
18
17
18
13
20
19
27
27
3

23
24
23
24
23
20
20
24
24
19
3
13
28
30
31
32

3t
2%
29
28
28
26
%
24
24
22
22
22
21
24
23
2%
22
23
24

28
28
32

23
24
23
24
23
20
20
24
24
18
a3
18
29
30
32
31
3t
31
29
9
28
28
2%
b3
24
24
22
22
21
22
24
23
21
22
23
24

8
28
32

25
26
26
25

30
28
25
2%
30
25
29
35
35
33
33
32
32
30

29
32
E

30
32
31
25
%
28
27
25
%
27
28
2
23
33
33

25
26
26
25

30
29
25
2%
30
25
29
35
35
33
32
32
32
30
30
29
30
32
31
30
29
32
31

25
28
27
a5
26
27
28

29
33

33

27
27
28
28
28
32
31
28

27

31
27
32
36
36
34
34
33
34
35
38
33
34
35

33
34
35
36
33
34
35
36
29
30
31
32
22
30
34
34

27
27
28
28
28
31
32
28
27
32
27
31

36
34
34
23
34
35
36
33
34
35

33
34
35
36

35
36
29
30
31
32
22

34
34

30

29

35

31
3z

32
35
35
35
35

36
36
38
8
38
38
39
3g
39
39
30
40
40
a0
39
39
39

40
40
40
40
40
40
40
40
24
32
36
36

31
3
32

35
35
35
35
38
36
36

38
38
38
38
39
32
32
39
40
40
40

.39

32
39
39
40
40
40
40
40
a0

40
24
32
36
36
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Here are listed the ten syétems of three linked 2~ (16,6,2) designs,
as promised in Section 4.2. The incidence graphs of these systems, together
with the point graph of the generalized quadrangle of order (3,5) form the

-eleven 4-colourable strongly regular graphs with parameters (64,18,2,6) of
Theorem 4.3.1.

2 3 4 8 913 2 3 4 5 913 2 3 4 5 911311 2 3 71518 1 2 3 71516
1 3 4 61014 1 3 4 610 14 1 3 4 61014 1 2 5 91011 1 2 5 91011
1 2 4 71115 1 2 4 71115 1 2 4 71115] 1 3 5 6 814 1 3 5 6 B14
1 2 3 81216 1 2 3 81216 t 2 381216 1 4 6 7 913 1 4 6 7 913
1 6 7 8 913 1 6 7 8 913 1 6 7 8 913 | 1 410121418 1 410 12 14 16
2 5 7 81014 2 5 7 810 14 2 5 7 81014 1 B11121315 1 811121315
3 5 6 81115 3 5 6 81115 35 6 81135 2 3 4 51213 2 3 4 51213
4 5 6 71216 4 5 6 71216 4 5 6 71216 2 4 6111415 2 4 6111415
1 510 11 12 13 1 510 11 12 13 1 510111213 2 6 81013 16 2 6 8101316
2 6 9111214 2 6 9111214 2 6 9111214 2 7 8 91214 2.7 8 91214
3 7 9101215 3 7 9101215 37 910612151 3 4 8 91015 3 4 8 91013
4 8 9101116 4 8 91011 16 4 8 91011 16 3 6 9111216 3 6 9111218
1 5 9141516 1 5 91415 16 15 9141516 | 3 710111314 3 7101113 14
2 61013 15 16 Z 61013 15 16 2 610131516 | 4 5 7 B1116 4 5 7 81116
3 07 41 13 14 16 37111314 16 3 711131436 | 5 6 7101215 5 6 7101218
4 812131415 | 4 812131415 | 4 812131415 | 5 913 14 15 16 5 913 141516
2 3 4 51116 2 3 4 & 11 18 2 3 4 61116 1 2 3 61113 1 2 3 %1113
1 3 4 51215 |1 3 4 8 915 13 4 8 915 ] 1 2 5121415 1 2 5121415
1 2 4 8 914 1 2 4 512 14 12 4 51214 1 3 4 5 710 1t 3 4 5 710
1 2 3 71013 1 2 3 71013 12 3 71013 1 4 9111516 1 4 9111518
1 5 7 81116 1 5 6 810 16 1 5 6 81016 1 6 7 B1216 1 6 7 B1216
2 6 7 81215 | 2 5 9101115 2 5 9101115 | 1 8 9 10 13 14 1 8 91013 14
35 6 72 914 |3 810111214 3 B1o0111214 1 2 3 5 B 916 235 8 91

4 5 6 81013 | 4 5§ 7 81113 4 5 7 81113 | 2 4 & 910 12 2 4 6 91012
1 6 9101216 | 1 7 5111216 17 9111216 | 2 4 7131415 2 4 71314 16
2 5 9101115 ) 2 & 7 81215 2 6 7 81215 | 2 7 81011 15 2 7 810 11 15
3 810111214 | 3 5 6 7 9 14 35 6 7 914 | 3 4 8111214 3 4 81112 14
4 7 9111213 | 4 6 9101213 4 6 9101213 | 3 610 14 15 16 3 610 14 15 16
1 611131415 | 1 611 13 14 15 1 611131415 | 3 7 9121315 37 9121315
2 512131416 | 2 8 91314 16 2 B 9131416 | 4 5 6 81315 4 5 & 81315
3 8 9131516 [ 3 5121315 16 3 512131516 | 5 6 7 911 14 5 6 7 911 14
4 710141516 | 4 710 14 15 16 4 71014 1516 | 510 11 12 13 16 510 11 12 13 16
2 3 4 71214 | 2 3 5 61012 2 3 5 71112 1 2 6 710 14 1 2 6 91416
1 3 4 81113 1 4 6 81112 14 5 6 911 1 2 91213186 12 7101213
1 2 4 51016 i 02 9121315 | 1 210111416 | 4 6 8 914 16 4 6 7 810 14
1 2 3 & 915 12 6 71416 1 2 5 81315 | 4 7 810 12 13 4 8 9121316
15 6 81214 1 4 5 7 910 14 7 81012 1 3 4 61215 1 3 4131415
2 5 6 71113 2 3 7 8 911 2 3 6 8 910 1 4 51113 14 t 4 5 61112
3 6 7 81016 | 3 4 6 71315 | 3 4 5 814 16 2 3 8131415 2 3 6 81215
4 5 7 8 915 | 3 4 9121416 | 3 410111315 | 2 5 6 61112 | 2 5 8 1113 14
1 7 910 11 14 1 310 11 15 16 1 3 & 71516 13 7 8 911 13 8101116
2 B 9101213 2 4 5 815 16 2 4 91215186 1 5 81015 16 1 5 7 B 915
3 5 9111216 | 5 6 91113 16 5 & 10 12 14 15 2 3 4101116 2 3 4 7 911
4 610 11 12 15 5 711121415 [ 6 811121316 | 2 4 5 7 915 2 4 5101516
1 71213 15 16 1 3 5 81314 1 3 91213 14 3 5 & 91013 35 6 71316
2 81114 15 16 2 410111314 ] 2 4 & 71314 35 7121416 3 5 910 12 14
3 510131415 | 6 8 9 10 14 15 5 7 9101316 | 6 711131516 | 6 9 10 11 13 15
4 6 9131416 | 7 810121316 | 7 8 911 1415 | 910 11 12 14 15 7 11 12 14 15 16
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Here we give the 2~ (71,15,3) designs D*, Dg. D; and DZ. which are

91

constxucted in Section 6.1. Together with their duals they form the eight

2~-(71,15,3) designs of Theorem 6.1.5.
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15

4 5 6 7

16
28
16
18
16
18
20
22
20
22
24
26
24
26
20
21
20
21
24
25
24
25
16
17
16
17
24
25
24
25
16
17
16
17
20
21
20
21
18
19
18
19
16
17
16
17
16
17
16
17
18
19
18
13
18
19
18
19
16
17
16
17
16
17
i6
17
18
19
18
19

17
29
17
19
17
19
21
23
21
23
25
27
25
27
22
23
22
23
26
27
26
27
18
19
18
19
27
26
27
26
19
i8
19
18
23
22
23
22
23
22
21
20
21
20
23
22
22
23
20
21
20
21
22
23
21
20
23
22
23
22
21
20
0
21
22
23
22
23
20
21

18
30
28
30
30
28
32
34
34
32
36
38
38
36
36
37
37
36
28
239
29
28
32
33
33
32z
32
33
33
32
37
36
36
37
29
28
28
23
25
24
26
27
25
24
26
27
26
27
25
24
26
27
25
24
27
26
24
25
27

26

24
28
24
25
27
26
24
25
27
26

18
31
29
31
E3
29
33
35
35
33
37
39
39
37
38
39
39
38
30
31
31
30
34
35
35
34
35
34
34
38
38
39
39
38
30
31
31
30
30
31
30
31
28
23
28
28
23
28
29
28
31
30
21
30
29
28
29
28
31
30
31
30
30
31
30
31
28
29
28
9

8
20
32
40
48
56
64
40
42
44
46
40
42
44
46
40
41
44
45
40
41
43
42
40
41
42
43
40
41
44
45
41
40
43
42
40
41
43
42
34
35
33
32
35
34
32
33
33
34
32
33
34
35
33
32
32
33
35
34
33
a2
34
35
33
3z
34
35
32
33
35
34

9
21

33

41
a9

57

65
41

43
45
47
4

43
45
47
a2
43
46
47
%
47
45
44
44
45
6
47
42
43
46
47
44
45
46
47
47
46
44
45
37
36
39
38
8
39
3%
37
39
38
37
36
36
37
38
39
36
37
38
39
39
28
37
36
38
39
36
37
37
36
39
38

10
22
34
42
50
58
66
48
50
52
54
50
48
54
52
52
53
48
49
A8
48
51
50
51
50
49
48
53
52
49
48
49
48
51
50
51
S0
48
49
45
44
44
45
48
49
49
48
52

53
52
41
40
40
41
43
42
41
40
40
41
42
43
43
42
41
40
43
42
41
40

11

23
35
43
51

59
67
49
51
53
5%
52
49
55
53
54
55
50
51
54
55
53
52
55
54
53
52
55
54
51
50
52
53
54
55
52
53
55
54
46
47
47
46
51

50
50
51

55
54
54
55
42
43
43
42
44
45
46
47
45
44
47
46
47
46
45
44
45
44
47
46

12
24
36
44
52
60
68
56
58
60
62
80
62
56
58
56
57
60
61
59
58
56
57
59
58
57
56
60
61
56
57
59
58
57
56
57
58
58
59
56
87
58
59
58
59
56
57
56
57
58
59
57
56
59
58
50
51
48
49
50
51
48
49
50
51
48
49
49

A8

51
50

13
25
37
45
53
61
&8
57
59
61
63
61
63
57
59
58
58
62
63
61
60
62
63
63
62
61
60
62
63
58
59
62
63
60
61
62
&3
61
60
62
63
60
61
62
63
60
61
61
60
63
62
62
63
60
61
54
55
52
53
52
53
54
55
53
52
55
54
52
33
54
55

14
26
38
46
54
62
G
64
66
68
70
70
&8
66
64
68
&9
64
65
67
66
64
65
64
65
66
67
&5
G4
69
68
67
66
65
64
66
&7
&5
64
65
64
67
66
64
65
66
67
65
64
&7
66
67
&6
65
64
61
&0
&0
61
64
65
65
64
68
€9
69
68
57

56.

56
57

15
27
39
47
55
63
71
65
&7
69
7
71
69
67
65
70
71
66
67
&9
68
70
71
68
69
70
71
67
€6
71
70
70
71
68
69
69
68
70
71
68
89
70
71
"
70
69
68
71
70
€9
€8
71
70
89
£8
82
63
63
62
67
66
&6
&7
71
70
70
7
58

.58

59
58
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4 5 6 7

16
28
i6
18
16
18
20
22
20
22
24
%
24
26
20
21
20
2%
24
25
24
25
16
17
16
17
24
25
24
28
16
17
16
17
20

20
21
18
19
18
19
16
17
16
17
16
17
16
17
8
19
18
19
i8
19
18
19
16
17
16
17
16
17
16
17
18
19
18
18

17
29
17
19
17
19
21
23
21
23
25
27
25
27
22

22
23
26
27
26

18
19
18
19
27
26
27
26
19
18
19
18
23
22
23
22
21
23
20
22
23
2
2R
20
22
20
23
21
20
22
21
23
23
21
22
20

23
20
22
20
22
21
23
22
20
23
21

i
30
28
30
30
28
32
34
34
iz
36
38
38
3%
36
37
37
36
28
29
29
28
32
33
13
32
32
33
33
32
37
36
36
37

28
28
29
27
24
26
25
26
25
27
24
27
24
26
25
26
25
27
24
25
26
24
27
24
27
25
26
25
26
24
27
24
27
25
26

19
31
28
31
31
29
33
35
35
33
37
39
a8
37
38
39
38
38
30
31
31
30
34
35
35
34
35
34
34
35
38
39
39
38
30
31
31
30
31
30
31
30
29
28
23
28
28
29
28
29
30
31
30
31
29
28
29
28
31
36
31
30
30
31
30
3
28
29

29

g
20
32
40
48
56
64
40
42
44
46
40
42
44
46
40
41
44
45
40
42
43
41
40
42
41
43
40
41
44
45
41
43
40
42
43
41
40
42
33
34
3z

33
34
a2
35

33
35
32
34
33
35
32
35
32
34
33
35
32
34
33
32
35
33
34
32
35
33
34

9
21
33
41
49
57
65
41
43
45
47
41
43
45
47
42
43
46
47
47
45
44
46
44
46
45
47
42
43
a6
47
45
47
44
46
a4
46
47
45
38
36
39

37
39
36
38
38
37
38
36
36
38
37
39
39
37
38
36
36
38
37
38
38
36
33
37
37
39
36
38

10
22
34
42
50
58
66
48
30
52
54
50
48
54
52
52
53
48
49
48
50
51
49
50
48
51
49
53
52
49
48
48
50
43
51
43
50
51
49
44
45
45
44
49
48
48
49
52
53
53
52
41
40
40
41
40
42
41
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NOTATIONS
A* hermitian transpose of matrix A.
(A)ij ij~th entry of matrix A
(bij)~ matrix with entries bij'
A1 {a) =2... ZAn(A) -eigenvalues (if real) of matrix A.
A®B Kronecker product of matrices A and B.
diag(ai,...,an) diagonal matrix with diagonal entries agse.eed .
I or In n X n identity matrix.
J all-one matrix.
Jn n *x n all-one matrix.
3j all-one vector.
fuf length of vector u.
< Ugrenesty >‘L linear span of vectors Upreesst .
< Uyree A > orthogonal complenent of < Ugreensu, >
G complement of graph G.
a(G) size of largest clique of G.
Y(G) chromatic number of G.
w(G) size of largest cocligue of G.
11 G)z...2 Xn(G) elgenvalues of G.
fi (G) multiplicity of eigenvalue A i (G) .
L{G) line graph of G.
D(G,Gl) incidence structure formed by G and Gl’ see p. 17.
Kn complete graph on n vertices.
Kz'm complete bipartite graph on £ +m vertices.
pix,y) distance between vertices x and y, see p. 79.
pij (x,y} or P];j intersection numbers of a graph, see p. 51 and p. 81.
Mel,ezl distance between elements of an n~gon, see p. 52.
Pijk(L,x,y) see p. 58.
Z integers.
N positive -integers.
:E‘q ‘ field with g elements.
PG(n.q) n-dimensional projective geometry over Fq.
AG(n,q) n~dimensional affine geometry over ]Pq.
Gi 1 4f 4 =3; O04f 4 # 3.
{x] lower integer part of real number x.

[x] uppex integer part of real number x.
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INDEX
adjacency matrix 79 | distance regular graph 51
adjacent vertices 79 | dual of an incidence structure 83
balanced incomplete»block design 83 | edge 79
bipartite graph 80 | elgenvalues of a graph 15,80
block 82 | element of a generalized n-gon 52
block design 83 | embeddable 83
block graph 35 | empty incidence structure 82
Cauchy inequalities 8 | equivalent blocks 34,65
chromatic number 80 | equivalent points 65
circuit 79,81 | flag 82
class graph 35 | (generalized) n-gon S0
Clebsch graph 39 | {generalized) hexagon 53
cligue 80 | (generalized) polygon 50
coclique 80 | (generalized) quadrangle 84
colour class 80 | geometric graph 52
colourable, t~ 80 | Gewirtz graph 42
colouring 80 | girth 79
complement of a graph 79 | graph 79
complement of an inc. structure 83 | graph, 4d- 76
complete graph 79 Higmah—Sims technique 10
complete y-partite graph 80 | Hoffman-Singleton graph 42
component - 79 | imprimitive str. reg. graph 37,82
connected graph 79 | incidence ' 82
cycle, n- : 81 | incidence graph 46,83
degenerate design 83 | incidence matrix 80,82
degree 81 | incidence structure g2
derived design 83 | induced configuration 58
design . 83 | induced subgraph 80
design, t- 83 | independent set of vertices 80
design, t -~ (V,k,}A) ‘ 83 | interlacing eigenvalues 7
diameter 79 | intersection numbers of a design 31
disconnected graph 79 | intersection numbers of a graph 51
disjoint union of graphs 79 | jolnt vertices 79
distance in a graph 79 | lattice graph 82
distance in a generalized n-gon 52 | length of a circuit 79
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length of a path in a graph
length of a path in a gen. n-gon

line graph

linked 2 - (16,6,2) designs

new block
new point
null graph

order of a generalized n~gon

oval

parameters of a t-design

parameters of a partial geometry

parameters of a str. reg. graph

partial geometry
partial subgeometry

path in a generalized n-gon

path in a graph
Petersen graph
point

point graph

primitive str. reg. graph

pseudo~geometric graph

79
52

67,84

45
68
68
79
50

70,78

83
84
81
84
84
52
79
82
82

52,84
37,82

52

quasi-symnetric 2-design
regular graph

residual design
Schldfli graph
Shrikhande graph
singular v&lues

special block

strongly regular graph
subconstituent
subdesign

subgraph

substructure

symmetric 2-design
thick generalized n-gon
tight interlacing
triangular graph

type I, II block
valency

vertex

void graph

35
81
83
26

cover

69
81
82
83
80
82
83
50

82
65
81
79
79
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SAMENVATTING

Matrices en elgenwaarden zijn al vaak benut bij het bestuderen van
eindige grafen en incidentiestructuren (designs). Dit gebeurt ook in dit
proefschrift. Het uitgangspunt is een stelling over de eigenwaarden van ge-
partitioneerde matrices. Het toepassen van deze stelling op matrices geas-—
socieerd met grafen of designs levert grenzen voor de grootte van deelgra-
fen, de afmetingen van subdesigns en de doorsnijdingsgetallen van designs.
Het geval dat deze grenzen worden bereikt wordt ook behandeld. De gencemde
stelling geeft bovendien aanleiding tot een nieuw bewiljs voor de ongelijk-
heden van A.J. Hoffman, betreffende de eigenwaarden van gepartitioneerde
matrices. Deze ongelijkheden leveren grenzen voor het kleuringsgetal van
een graaf. Mede dankzij die grenzen is het mogelijk alle 4-kleurbare sterk
regullere grafen te bepalen.

De behandeling van het bovenstaande gebeurt in de eerste vier hoofd-
stukken. Hoofdstuk 5 behandelt de ongelijkheid t < s3, alsook het geval
van gelijkheid, voor veralgemeende zeshoeken van de orxde (s,t), s ¥ 1. Dit
gebeurt met behulp van eigenwaardetechnieken. Dezelfde methode toegepast op
veralgemeende vierhoeken levert nieuwe bewijzen voor een aantal bekende
stellingen.

Met de hulp van eigenwaardemethoden kan men richtlijnen opstellen voor
het construeren van designs»en grafen met speciale eigenschappen. Langs
deze weg worden er in Hoofdstuk 6 nieuwe 2~designs en sterk reguliere gra-

fen geconstrueexd.
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STELLINGEN

i

Stel men wil bcodschappen overseiﬁen die gevormd worden mét letter§ ult een
alfabet A van n letters genummerd van 1 t/m n, waarvan sommige paren letters
met elkaar verwarbaar zijn. Beschouw een nxn matrix M over een willekeurig
lichaam, die voldoet aan (M)i,i # 0Ovoor i =1, ..., nen (M)i,j = 0 als de
1% en je letter van A niet verwarbaar zijn. Dan is de Shannon capaciteit
van A, die een maat is voor de hoeveelheid foutloos overseinbare informatie,
ten hoogste gelijk aan de rang van M.

Ref.: Willem Haemers, An upperbound for the Shannon capacity of a graph,

Proc. Conf. Algebraic Methods in Graph Theory, Szeged, 1978 (te

verschijnen).

2

Het antwoord op de vragen van Probleem 1, 2 en 3 uit [2] is ontkennend.
Ref.: [1] willem Haemers, On some problems of Lovdsz concerning the
Shannon capacity of a graph, IEEE Trans. Information Theory 25
{1979} 231 - 232,
[2] L&sz16 Lovdsz, On the Shannon capacity of a graph, IEEE Trans.
Information Theory 25 (1979} 1 - 7.

3

Zoals bekend verscheen een speciaal geval van de stelling van Turdn reeds
als opgave 28 in het tiende deel van "wiskundige Opgaven met de Oplossingen”

{1910). De aldaar afgedrukte oplossing is echter onjuist.

4

Er bestaat geen sterk reguliere graaf met 49 hoekpunten en graad 16.
Ref.: F.C. Bussemaker, W. Haemers, R. Mathon & H.A. Wilbrink, The non-
existence of a strongly regular graph with parameters (49, 16, 3, 6)

{in voorbereiding).
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Het is bekend dat de verbindingsmatrix van een sterk reguliere graaf soms

tevens de incidentiematrix van een symmetrisch 2-design is. Het is mogelijk

dat op deze manier twee niet isomorfe grafen isomorfe 2-designs opleveren.

Dit is echter niet mogelijk als een van de grafen een automorfismegroep

heeft vaﬁ 6neven oxée. Met éeriesultéten van het onderstaande rapport volgt

hieruit dat er tenminste 15531 niet isomorfe 2-(36, 15, 6) designs zijn.
Ref.: F.C. Bussemaker, R. Mathon & J.J. Seidel, Tables of two-graphs,

T.H.-rapport (in voorbereiding).

[

Voor het bestaan van een 3~(ﬁk2-¥k+1.k.2)design is nodig dat k-3 een twaalvoud

is.

7

Als er voor n > 1 een projectief vlak van de orde 22n_1 bestaat, dan bestaat

4n_22n 4n~-2 3n-2 .

er een "near-square A-linked design" met 2 punten en A = 2 - 3.2

- 2n-1+1, en is dus het antwoord op de eerste vraag van het Probleem uit §9
van onderstaand artikel, bevestigend.
Ref.: D.R. Woodall, Square M~linked designs, Proc. London Math. Soc., 20

(1970) 669 ~ 687.

8
o B
*

Laat A = [8 ¢

*
] (B is der hermitisch geconjungserde van B} een hermitische

+ -
matrix zijn met grootste eigenwaarde } en kleinste eigenwaarde ) .

Veronderstel B heeft afmetingen mxn en gemiddelde rijsom r. Dan geldt

—A+k- 2 rgm/n.

9

Beschouw een rechthoekiqg veld, betegeld met een eindig aantal rechthoekige
tegels. Een tegel heet zuiderbuur van een andere tegel als de noordkant van de
eerste op dezelfde 1lijn ligt als de zuidkant van de andere tegel. Een noord-
zuid pad is een rijtje tegels waarbij elke tegel (behalve de eerste) zuiderbuur
is van zijn voorganger. Analoog is een oost-west pad gedefinieerd. Er geldt nu

dat elk paar tegels op een nocord-zuid pad of op een oost-west pad ligt.

s
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De enige samenhangende planaire sterﬁ reqguliere grafen zijn:

11

Meetkundig inzicht is een van de meest toepasbare dingen die men zich
binnen de wiskunde kan verwerven. Daarom is het treurig dat het gewijzigde
onderwijsprogramma het ruimtelijk voorstellingsvermogen van de doorsnee
middelbare-school-verlater in tien jaar tijd met ongeveer een dimensie heeft

doen dalen.

Eindhoven, 30 oktober 1979 W.H. Haemers.



