Eigenvalue techniques in design and graph theory

Citation for published version (APA):

Haemers, W. H. (1979). Eigenvalue techniques in design and graph theory. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Stichting Mathematisch Centrum.
https://doi.org/10.6100/IR41103

DOI:

10.6100/IR41103

Document status and date:

Published: 01/01/1979

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

EIGENVALUE TECHNIQUES
 IN DESIGN AND GRAPH THEORY

WILLEM HAEMERS

EIGENVALUE TECHNIQUES
 IN DESIGN
 AND GRAPH THEORY

EIGENVALUE TECHNIQUES IN DESIGN AND GRAPH THEORY

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF.IR. J. ERKELENS, VOOR EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP DINSDAG 30 OKTOBER 1979 TE 16.00 UUR

DOOR

WILHELMUS HUBERTUS HAEMERS

GEBOREN TE EINDHOVEN

1979
MATHEMATISCH CENTRUM, AMSTERDAM

DIT PROEFSCHRIFT IS GOEDGEKEURD
DOOR DE PROMOTOREN

Prof.dr. J.J. Seidel
en
Prof.dr. J.H. van Lint

CONTENTS

PREFACE 1

1. MATRICES AND EIGENVALUES
1.1. Introduction 4
1.2. Interlacing of eigenvalues 6
1.3. More eigenvalue inequalities 10
2. INEQUALITIES FOR GRAPHS
2.1. Induced subgraphs 15
2.2. Chromatic number 22
3. INEQUALITIES FOR DESIGNS
3.1. Subdesigns 27
3.2. Intersection numbers 31
4. 4-COLOURABLE STRONGLY REGULAR GRAPHS
4.1. Introduction 37
4.2. Strongly regular graphs on $40,50,56,64$ and 77 vertices 40
4.3. Recapitulation 48
5. GENERALIZED POLYGONS
5.1. Introduction 50
5.2. An equality for generalized hexagons 53
5.3. Geometric and pseudo-geometric graphs for generalized polygons 60
6. CONSTRUCTIONS
6.1. Some 2-(71,15,3) designs 64
6.2. Some strongly regular graphs 71
APPENDIX I. GRAPHS AND DESIGNS 79
APPENDIX II. TABLES 85
REFERENCES 93
NOTATIONS 100
INDEX 101
SAMENVATTING 103
CURRICULUM VITAE 104

The application of the theory of matrices and eigenvalues to combinatorics is certainly not new. In a certain sense the study of the eigenvalues of the adjacency matrix of a graph even became a subject of its own, see for instance [B5], [C11], [C12], [H14] and [S2]. Also in the theory of designs, matrix and eigenvalue methods have often been used successfully; see for instance [C6], [C9], [H17] and [R3]. In the present monograph the starting point is a new theorem concerning the eigenvalues of partitioned matrices. Applications of this theorem and some known matrix theorems to matrices associated to graphs or designs lead to new results, and new proofs of known results. These concern inequalities of various types, including conclusions for the case of equality. In addition we obtain guiding-principles for constructing strongly regular graphs or 2 -designs. Let us give some more details.

Our theorem (Theorem 1.2.3) about eigenvalues and partitionings of matrices, which was announced in [H1], reads as follows:

THEOREM. Let A be a complete hermitian $n \times n$ matrix, partitioned into m^{2} block matrices, such that all diagonal block matrices are square. Let B be the $m \times m$ matrix whose $i, j-t h$ entry equals the average row sum of the $i, j-t h$ block matrix of A for $i_{1} j=1, \ldots, m$. Then the eigenvalues $\lambda_{1}(A) \geq \ldots \geq \lambda_{n}(A)$ of A and the eigenvalues $\lambda_{1}(B) \geq \ldots \geq \lambda_{m}(B)$ of B satisfy

$$
\lambda_{i}(A) \geq \lambda_{i}(B) \geq \lambda_{n-m+i}(A) \quad \text { for } i=1, \ldots, m
$$

Moreover, if for some integer $k, 0 \leq k \leq m, \lambda_{i}(A)=\lambda_{i}$ (B) for $i=1, \ldots, k$ and $\lambda_{i}(B)=\lambda_{n-m+i}$ (A) for $i=k+1, \ldots, m$, then all the block matrices of A have constant row and colum sums.

The weaker inequalities $\lambda_{1}(A) \geq \lambda_{1}(B) \geq \lambda_{n}(A)$ were already observed by C.C. Sims (unpublished), and have been applied successfully by HESTENES \& HIGMAN [H10], PAYNE [P4], [P6] and others. They are usually applied under the name Higman-Sims technique. Many proofs by means of this Higman-Sims technique can be shortened by use of our generalization. But, what is more important, our theorem leads to new results, which we shall indicate below.

Suppose G is a graph on n vertices, whose (0,1) -adjacency matrix has eigenvalues $\lambda_{1}(G) \geq \ldots \geq \lambda_{n}(G)$. DELSARTE [D1] proved that, for strongly regular G, the size of any coclique (independent set) cannot be larger than $-n \lambda_{n}(G) /\left(\lambda_{1}(G)-\lambda_{n}(G)\right)$. A.J. Hoffman (unpublished) proved that this bound holds for any regular graph G. Using the above theorem we prove that an upperbound for the size of a coclique in any graph G is provided by

$$
-n \lambda_{1}(G) \lambda_{n}(G) /\left(d_{\min }^{2}-\lambda_{1}(G) \lambda_{n}(G)\right)
$$

where $d_{m i n}$ denotes the smallest degree in G. This generalizes Hoffman's bound, since in case of regularity $\lambda_{1}(G)=a_{\min }$ holds. More generally, by use of the same methods we find bounds for the size of an induced subgraph of G in terms of the average degree of the subgraph (Theorem 2.1.2). Apart from the inequalities of Delsarte and Hoffman we also find inequalities of Bumiller, De Clerck and Payne as corollaries of our result.

By applying the generalization of the Higman-Sims technique (with $m=4$) to the adjacency matrix of the incidence graph of a design, we obtain bounds for the sizes of a subdesign in terms of the singular values of the incidence matrix (Theorem 3.1.1). For nice designs, such as 2 -designs and partial geometries, this result becomes easy to apply, since then the singular values are expressible in the design parameters (for symmetric 2designs the inequality also appeared in [H4]). Thanks to the second part of our theorem certain conclusions may be drawn easily for the case that the bounds are attained, for the graph case as well as for the design case.

We also prove results concerning the intersection numbers of designs, such as the inequalities of AGRAWAL [A1] (Theorem 3.2.1) and the results of BEKER \& HAEMERS [B2] about $2-(v, k, \lambda)$ designs with an intersection number $k-\lambda(v-k) /(k-1)$.

HOFFMAN [H13] proved that the chromatic number $\gamma(G)$ of a graph G satisfies $\gamma(G) \geq 1-\lambda_{1}(G) / \lambda_{n}(G)$. To achieve this, Hoffman first proves a generalization of the inequalities of Araonszajn concerning eigenvalues of partitioned matrices. In Section 1.3 we give a new proof of these inequalities using our generalization of the Higman-Sims technique. In Section 2.2 the application of these inequalities yields a generalization of Hoffman's bound (Theorem 2.2.1). For non-trivial strongly regular graphs this leads to $\gamma(G) \geq \max \left\{1-\lambda_{1}(G) / \lambda_{n}(G), 1-\lambda_{n}(G) / \lambda_{2}(G)\right\}$. In Chapter 4 we use these bounds, and many other results from the previous chapters, in order to determine all 4-colourable strongly regular graphs. This chapter is also
meant to illustrate some applications of the results and techniques obtained in the first three chapters.

Chapter 5 is in the same spirit, but rather independent from the other ones. The main result is the inequality of HAEMERS \& ROOS [H3]: $t \leq s^{3}$ if $s \neq 1$ for a generalized hexagon of order (s, t), together with some additional regularity for the case of equality. This is proved by rather elementary eigenvalue methods. The same technique applied to generalized quadrangles of order (s, t) yields the inequality of HIGMAN [H11]: $t \leq s^{2}$ if $s \neq 1$, the result of BOSE [B7] for the case of equality and a theorem of CAMERON, GOETHALS \& SEIDEL [C5] about pseudo-geometric graphs.

Using eigenvalue methods we obtain guiding-principles for the construction of designs and graphs. In Section 6.1 we construct a $2-(56,12,3)$ design, for which the framework is provided by Theorem 3.2.4. This design is embeddable in a symmetric 2-(71,15,3) design. By modifying this design we obtain eight non-isomorphic $2-(71,15,3)$ designs. All these designs seem to be new (the construction is also published in [B2]). In Section 6.2 some ideas for the construction of strongly regulax graphs are described. We construct strongly regular graphs with parameter sets $\left(q^{3}+q^{2}+q+1, q^{2}+q, q-1, q+1\right)$ and $\left(2^{3 n}+2^{2 n+1}, 2^{2 n}+2^{n}-1,2^{n}-2,2^{n}\right)$ for prime power q and positive integer n . Strongly regular graphs with the first parameter set are known; however, our construction yields graphs which are not isomorphic to the known ones. The second family seems to be new. Special attention is given to strongly regular graphs with parameter set (40, 12,2,4). Several such graphs are constructed with the help of a computer.

In the first appendix we recall some basic concepts and results from the theory of graphs and designs (including finite geometries). This appendix is meant for readers who are not familiar with the theory of designs and graphs. The second appendix exhibits explicitly some of the designs and graphs constructed earlier.

CHAPTER I

MATRICES AND EIGENVALUES

1.1. INTRODUCTION

In this chapter we shall derive some results about eigenvalues of matrices. They provide the main tools for our investigations. We shall assume familiarity with the basic concepts and results from the theory of matrices and eigenvalues. Some general refexences are [M3], [N1], [W5].

Let A be a square complex matrix of size n. The hermitian transpose of A will be denoted by A^{*}. Suppose A has n (not necessarily distinct) real eigenvalues, which for instance is the case if A is hermitian (i.e. $A=A^{*}$). Then we shall denote these eigenvalues by

$$
\lambda_{1}(A) \geq \ldots \geq \lambda_{n}(A)
$$

If denoted by subscripted variables, eigenvectors will always be ordered according to the ordering of their eigenvalues. Vectors are always column vectors. The linear span of a set of vectors u_{1}, \ldots, u_{n} is denoted by $\left\langle u_{1} \ldots *, u_{n}\right\rangle$. A basic result, which is important to our purposes, is Rayley's principle (see [N1], [w5]).
1.1.1. RESULT. Let A be a hermitian matrix of size n. For some $i, 0 \leq i \leq n$, let u_{1}, \ldots, u_{i} be an orthonomal set of eigenvectors of A for $\lambda_{1}(A), \ldots, \lambda_{1}(A)$. Then
i. $\quad \lambda_{i}(A) \leq \frac{u^{*} A u}{u^{*} u}$ for $u \in\left\langle u_{1}, \ldots, u_{i}>, u \neq 0, i \neq 0\right.$; equality holds iff u is an eigenvector of A for $\lambda_{i}(A)$.
ii. $\quad \lambda_{i+1}(A) \geq \frac{u^{*} A u}{u^{*} u} \quad$ for $u \in<u_{1}, \ldots, u_{i}>{ }^{1}, u \neq 0, i \neq n$; equality hoids iff u is an eigenvector of A for $\lambda_{i+1}(A)$.

For the multiplicity of an eigenvalue we shall always take the geometric one, that is, the maximal number of linearly independent eigenvectors
(to be honest, this agreement is only of influence to the proof of the next lemma, because throughout the remainder of this monograph we shall only consider eigenvalues of diagonalizable matrices). Now we shall prove some easy and well known, but nevertheless useful lemmas.
1.1.2. LEMMA. Let M^{*} and N be complew $\mathrm{m}_{1} \times \mathrm{m}_{2}$ matmices. Put

$$
A:=\left[\begin{array}{ll}
0 & N \\
M & 0
\end{array}\right]
$$

Then the following are equivalent.
i. $\quad \lambda \neq 0$ is an eigenvalue of A of multiplicity $f_{\text {: }}$
ii. $\quad-\lambda \neq 0$ is an eigenvalue of A of multiplicity $f_{;}$
ii1. $\quad \lambda^{2} \neq 0$ is an eigenvalue of $M N$ of multipliaity f;
iv. $\quad \lambda^{2} \neq 0$ is an eigenvalue of NM of multipticity f .

PROOF.

1. (i) (ii) : let $A U=\lambda U$ for some matrix U of rank f. Write

$$
\mathrm{U}=\left[\begin{array}{l}
\mathrm{U}_{1} \\
\mathrm{U}_{2}
\end{array}\right], \text { ana define } \tilde{\mathrm{U}}:=\left[\begin{array}{c}
\mathrm{U}_{1} \\
-\mathrm{U}_{2}
\end{array}\right]
$$

where U_{i} has m_{i} rows for $i=1,2$. Then $\mathrm{NU}_{2}=\lambda \mathrm{U}_{1}$ and $\mathrm{MU}_{1}=\lambda U_{2}$. This implies $\hat{A U}=-\lambda \tilde{\mathrm{U}}$. Since rank $\mathrm{U}=$ rank $\tilde{\mathrm{U}}$, the first equivalence is proved.
2. (iii) \Rightarrow (iv): let $M N U^{\prime}=\lambda U^{\prime}$ for some matrix U^{\prime} of rank f. Then $\mathrm{NM}\left(\mathrm{NU}^{\prime}\right)=\lambda \mathrm{NU}^{*}$, and rank $\mathrm{NU}^{\prime}=\operatorname{rank} \mathrm{U}^{\prime}$, since
rank $\lambda U^{\prime}=r a n k M N U^{\prime} \leq r a n k N U^{\prime} \leq r a n k U^{\prime}$,
and $\lambda \neq 0$. This proves the second equivalence.
3. (i) (iii): because

$$
A^{2}=\left[\begin{array}{cc}
\mathrm{NM} & 0 \\
0 & \mathrm{MN}
\end{array}\right]
$$

this equivalence follows immeaiately from the previous steps.

The singular values of a complex matrix N, are the positive eigenvalues of

$$
\left[\begin{array}{ll}
0 & N \\
N^{*} & 0
\end{array}\right]
$$

By the above lemma we see that they are the same as the square roots of the non-zero eigenvalues of $N N^{*}$.
1.1.3. LEMMA. Let

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

be a complex matrix. If A_{11} is non-singular, and rank $A_{11}=\operatorname{rank} A$, then

$$
A_{22}=A_{21} A_{11}^{-1} A_{12}
$$

RROOF. For $i=1,2$, let $a_{i, j}$ denote the j-th column of $A_{i 2}$. From $\operatorname{rank} A=\operatorname{rank}\left[\begin{array}{ll}\mathrm{A}_{11}^{*} & \mathrm{~A}_{21}^{*}\end{array}\right]^{*}$ it follows

$$
\left[\begin{array}{l}
a_{1, j} \\
a_{2, j}
\end{array}\right]=\left[\begin{array}{l}
\hat{A}_{11} \\
\hat{A}_{21}
\end{array}\right] \mathrm{u},
$$

for some vector u. But if A_{11} is non-singular, then $u=A_{11}^{-1} a_{1, j}$. Hence $a_{2, j}=A_{21} A_{11}^{-1} a_{1, j}$, which proves the lemma.

The identity matrix of size n will be denoted by I_{n} or I. The matrix with all entries equal to one by J; a column vector of J is denoted by j; J_{n} is a square J of size n; the symbol \otimes is used for the Kronecker product of matrices.

As a last result in this section we observe that, if $K:=I_{n} \otimes J_{m^{\prime}}$ then

$$
\lambda_{1}(K)=\ldots=\lambda_{n}(K)=m, \lambda_{n+1}(K)=\ldots=\lambda_{m n}(K)=0 .
$$

1.2. interlacing of eigenvalues

Suppose A and B are square complex matrices of size n and m, respectively ($m \leq n$), having only real eigenvalues. If

$$
\lambda_{i}(A) \geq \lambda_{i}(B) \geq \lambda_{n-m+i}(A)
$$

for all $i=1, \ldots, m$, then we say that the eigenvalues of B inter $=$ ace the eigenvalues of A. If there exists an integer $k, 0 \leq k \leq m$, such that

$$
\lambda_{i}(A)=\lambda_{i}(B) \quad \text { for } i=1, \ldots, k
$$

and

$$
\lambda_{n-m+i}(A)=\lambda_{i}(B) \quad \text { for } i=k+1, \ldots, m
$$

then the interlacing will be called tight.
1.2.1. THEOREM. Let s be a complex $\mathrm{n} \times$ m matmix such that $\mathrm{s}^{*} \mathrm{~s}=\mathrm{I}_{\mathrm{m}}$. Let A be a hemitian matrix of size n. Define $\mathrm{B}:=\mathrm{S}^{*} \mathrm{AS}$, and let $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}$ be an onthonormal set of eigenvectors of B . Then
i. the eigenvalues of B intertace the eigenvalues of A ;
ii. \quad if $\lambda_{i}(B) \in\left\{\lambda_{i}(A), \lambda_{n-m+i}(A)\right\}$ for some $i \in\{1, \ldots, m\}$, then there exists an eigenvector v of B for $\lambda_{i}(B)$, such that $S v$ is an eigenvector of A for $\lambda_{i}(B)$;
iii. \quad if, for some $\ell \in\{0, \ldots, m\}, \lambda_{i}(A)=\lambda_{i}(B)$ for alZ $i=1, \ldots, \ell$, then Sv_{i} is an eigenvector of A for $\lambda_{i}(\mathrm{~A})$, for $i=1, \ldots$, ;
iv. if the interlacing is tight, then $S B=A S$.

PROOF. Let u_{1}, \ldots, u_{n} be an orthonormal set of eigenvectors of A. For any i, $1 \leq i \leq m$, take

$$
\left.\tilde{v}_{i} \epsilon\left\langle v_{1}, \ldots, v_{i}\right\rangle n<s^{*} u_{1}, \ldots, s^{*} u_{i-1}\right\rangle^{1}, \tilde{v}_{i} \neq 0
$$

Then $S \tilde{v}_{i} \in\left\langle u_{1}, \ldots, u_{i-1}\right\rangle^{\perp}$, hence by 1.1 .1

$$
\lambda_{i}(A) \geq \frac{\tilde{v}_{i}^{*} S^{*} A \tilde{v}_{i}}{\tilde{v}_{i}^{*} S^{*} S \tilde{v}_{i}}=\frac{\tilde{v}_{i} B \tilde{v}_{i}}{\tilde{v}_{i}^{*} \tilde{v}_{i}} \geq \lambda_{i}(B)
$$

Thus also

$$
-\lambda_{i}(B)=\lambda_{m-i+1}(-B) \leq \lambda_{m-i+1}(-A)=-\lambda_{n-m+1}(A)
$$

This proves (i).
If $\lambda_{i}(B)=\lambda_{i}(A)$, then \tilde{v}_{i} and $S \tilde{v}_{i}$ are eigenvectors of B and A respectively for the eigenvalue $\lambda_{i}(B)=\lambda_{i}(A)$. This, together with the same result applied to -B and -A yields (ii).

We shall prove (iii) by induction on ℓ. If $\ell=0$, there is nothing to prove. Suppose $\&>0$. We have

$$
\lambda_{\ell}(A)=\lambda_{\ell}(B)=v_{\ell}^{*} B v_{\ell}=\frac{v_{\ell}^{*} S^{*} A S v_{\ell}}{v_{\ell}^{*} s^{*} S v_{\ell}}
$$

On the other hand, $S v_{\ell} \epsilon\left\langle S v_{1}, \ldots, S v_{\ell-1}\right\rangle^{\perp}$, and by the induction hypothesis $S v_{1}, \ldots, S v_{\ell-1}$ are orthonormal eigenvectors of A for $\lambda_{1}(A), \ldots, \lambda_{\ell-1}(A)$. Now 1.1.1.ii yields that $S v_{\ell}$ is an eigenvector of A for $\lambda_{\ell}(A)$. This proves (iii).

Let the interlacing be tight. By applying (iii) to A with $\ell=k$ and to $-A$ with $\ell=m-k$, we find that $S v_{1}, \ldots, S v_{m}$ is an orthonormal set of eigenvectors of A for $\lambda_{1}(B) \ldots, \lambda_{m}(B)$. Write $V:=\left[v_{1} \ldots v_{m}\right]$ and $D:=\operatorname{diag}\left(\lambda_{1}(B), \ldots, \lambda_{m}(B)\right)$. Then $A S V=S V D$, and $B V=V D$. Hence

$$
\mathrm{ASV}=\mathrm{SBV}
$$

Because V is non-singular, (iv) has now been proved.

A direct consequence of the above theorem is the following theorem. This result is known under the name Cauchy inequatities, see [H7], [M2], [W5].
1.2.2. THEOREM. Suppose

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{12}^{*} & A_{22}
\end{array}\right]
$$

is a hermitian matrix.
i. The eigenvalues of A_{11} inter lace the eigenvalues of A.
ii. If the interlacing is tight, then $A_{12}=0$.

PROOF. Let m be the size of A_{11}. Define $S:=\left[I_{m} 0\right]^{*}$, and apply 1.2.1. \quad]

Anothex consequence of 1.2 .1 is the following result which was announced in [H1] (see also [H2]). This result will often be used in the forthcoming sections.
1.2.3. THEOREM. Let A be a hermitian matrix partitioned as follows

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 m} \\
\vdots & & \vdots \\
A_{m 1} & \cdots & A_{m m}
\end{array}\right],
$$

such that $A_{i i}$ is square for $i=1, \ldots, m$. Let $b_{i j}$ be the average row sum of $A_{i j}$, for $i, j=1, \ldots, m$. Define the $m \times m$ matrix $B:=\left(b_{i j}\right)$.
i. The eigenvalues of B interlace the eigenvalues of A .
ii. If the interlacing is tight, then $A_{i j}$ has constant row and column sums for $i, j=1, \ldots, m$.
iii. If, for $i, j=1, \ldots, m, A_{i j}$ has constant row and column sums, then any eigenvalue of B is also an eigenvalue of A with not smaller a multiplicity.

PROOF. Let n_{i} be the size of $A_{i j}$. Define

$$
\tilde{\mathrm{s}}^{*}:=\left(\begin{array}{llllllllll}
1 & \ldots & 1 & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
0 & \ldots & 0 & 1 & \ldots & 1 & \ldots & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\
0 & \ldots & 0 & \underbrace{0}_{n_{1}} \ldots & 0 & \ldots & \underbrace{1}_{n_{m}} \ldots & \ldots & 1
\end{array}\right),
$$

$D:=\operatorname{diag}\left(n_{1}, \ldots, n_{m}\right)$, and $S:=\tilde{S} D^{-1}$. Then $S^{*} S=I$ and $\tilde{S} * \tilde{S}=D^{2}$. We easily see that $\left(\tilde{S}^{*} A \tilde{S}\right)_{i j}$ equals the sum of the entries of $A_{i j}$. Hence

$$
\mathrm{B}=\tilde{S}^{*} \mathrm{~A}_{\mathrm{S}} \tilde{D}^{-2}
$$

By 1.2.1.i we know that the eigenvalues of $s^{*} A S$ interlace the eigenvalues of A. But B has the same eigenvalues as $S^{*} A S$, since

$$
S^{*} A S=D^{-1} \tilde{S}^{\star} A \tilde{S}^{-1}=D^{-1} B D .
$$

This proves (i).
It is easily checked that $A S=S\left(D^{-1} B D\right)$ reflects that $A_{i j}$ has constant row sums for all $i, j=1, \ldots, m$. Hence 1.2.1.iv implies (ii).

On the other hand, if $A S=S D^{-1} B D$ and $B U=\lambda_{i}(B) U$ for some matrix U and integer i, then $A\left(S D^{-1} U\right)=\lambda_{i}(B) S D^{-1} U$, and rank $U=\operatorname{rank} S D^{-1} U$. This proves (iii).

As a special case of the above theorem we have that

$$
\lambda_{1}(A) \geq \lambda_{i}(B) \geq \lambda_{n}(A),
$$

for $i=1, \ldots, m$. These inequalities are well known and usually applied under the name Higman-Sims technique, see [H10], [P4]. We shall also use the name Higmans-Sims technique if we apply the more general result 1.2.3. Also 1.2.3.iii is well known, see for instance [C12], [H9] (note that this result remains valid for non-hermitian A). We see that 1.2.3.ii gives a sufficient, and that 1.2.3.iii gives a necessary condition for the block matrices of A to have constant row and column sums. However, neither of these conditions is both necessary and sufficient. This is illustrated by the following partitioned matrices:

$$
A:=\left(\begin{array}{rr|rr}
0 & 0 & -1 & 1 \\
0 & 0 & 1 & -1 \\
\hline-1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0
\end{array}\right), \quad A^{\prime}:=\left(\begin{array}{rr|rr}
0 & 0 & -1 & 1 \\
0 & 0 & -1 & 1 \\
\hline-1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right) .
$$

For both A and A ' the eigenvalues are $2,0,0,-2$, and the average row sums of the block matrices are given by the entries of $B=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$. The block matrices of A have constant row sums, whilst the interlacing is not tight. The row sums of the block matrices of A^{\prime} are not constant, whilst the eigenvalues of B are also eigenvalues of A.

1.3. MORE EIGENVALUE INEQUALITIES

In this section we shall use interlacing of eigenvalues in order to prove some known inequalities and equalities, which we shall use in later sections. The first result is due to WEYL [W2] (see also [w5]).
1.3.1. THEOREM. Let A_{1} and A_{2} be hermitian matrices of size m. Then

$$
\lambda_{i-j}\left(A_{1}\right)+\lambda_{i+j}\left(A_{2}\right) \geq \lambda_{i}\left(A_{1}+A_{2}\right) \geq \lambda_{i+j}\left(A_{1}\right)+\lambda_{m-j}\left(A_{2}\right),
$$

for $i=1, \ldots, m, 0 \leq j \leq m i n\{i-1, m-i\}$.

PROOF: Define

$$
A:=\left[\begin{array}{cc}
A_{1}-\lambda_{i-j}\left(A_{1}\right) I & 0 \\
0 & A_{2}-\lambda_{1+j}\left(A_{2}\right) I
\end{array}\right]
$$

and

$$
s:=\frac{1}{2} \sqrt{2}\left[I_{m} I_{m}\right]^{*}
$$

Then $\lambda_{i}(A)=0$, and

$$
S^{\star} A S=\frac{1}{2}\left(A_{1}+A_{2}-\left(\lambda_{i-j}\left(A_{1}\right)+\lambda_{1+j}\left(A_{2}\right)\right) I\right)
$$

With 1.2.1 we now have

$$
\lambda_{i}\left(A_{1}+A_{2}\right)-\lambda_{i-j}\left(A_{1}\right)-\lambda_{1+j}\left(A_{2}\right)=2 \lambda_{i}\left(S^{*} A S\right) \leq 2 \lambda_{i}(A)=0
$$

If we replace A_{1} and A_{2} by $-A_{1}$ and $-A_{2}$, we get the second inequality. \quad The next theorem is due to HOFFMAN [H13].
1.3.2. THEOREM. Let A be a hermition matrix of size n, partitioned as follows

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 m} \\
\vdots & & \vdots \\
A_{m 1} & \cdots & A_{m m}
\end{array}\right]
$$

where $A_{i i}$ is a square matrix of size n_{i}, for $i=1, \ldots$, Let $j_{1} \ldots \ldots j_{m}$ be integers such that $1 \leq j_{i} \leq n_{i}$ for $i=1, \ldots$, Then

$$
\begin{aligned}
\lambda_{j_{1}+\ldots+j_{m}}(A)+\sum_{i=1}^{m-1} \lambda_{i}(A) & \geq \sum_{i=1}^{m} \lambda_{j_{i}}\left(A_{i i}\right) \geq \\
& \geq \lambda_{j_{1}+\ldots+j_{m}-m+1}(A)+\sum_{i=n-m+2}^{n} \lambda_{i}(A)
\end{aligned}
$$

pROOF. Let u_{1}, \ldots, u_{n} be an orthonormal set of eigenvectors of A. Let $u_{i 1}, \ldots, u_{i n_{i}}$ be an orthonormal set of eigenvectors of $A_{i i}$ for $i=1, \ldots, m$. Put $k:=j_{1}+\ldots+j_{m}$. Choose a vector $\tilde{u}_{k}=\left[\tilde{u}_{1 k}^{*} \ldots \tilde{u}_{m k}^{*}\right]^{*} \neq 0$, such that

$$
\tilde{u}_{k} \in\left\langle u_{1}, \ldots, u_{k-1}\right\rangle^{\perp}
$$

and

$$
\tilde{u}_{i k} \in\left\langle u_{i 1}, \ldots, u_{i j_{i}}\right\rangle \text { for } i=1, \ldots, m
$$

It follows from dimension considerations that we can always do so. Now define

$$
w_{i}:=\left\|\tilde{u}_{i k}\right\|
$$

and

$$
\hat{u}_{i k}:= \begin{cases}\frac{1}{w_{i}} \tilde{u}_{i k} & \text { if } w_{i} \neq 0, \\ u_{i j_{i}} & \text { if } w_{i}=0,\end{cases}
$$

for $i=1, \ldots, m$. Furthermore put

$$
w:=\left(w_{1}, \ldots, w_{m}\right)^{*}
$$

and

$$
\mathrm{S}:=\left[\begin{array}{cccc}
\overline{\mathrm{u}}_{1 k} & 0 & \cdots & 0 \\
0 & \hat{u}_{2 k} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \hat{u}_{m k}
\end{array}\right]
$$

Then we have

$$
S^{*} S=I, \quad S w=\tilde{u}_{k}, \text { and }\left(S^{*} A S\right)_{i i}=\tilde{u}_{i k}^{*} A_{i i} \hat{u}_{i k} \quad \text { for } i=1, \ldots m m
$$

By 1.1.1.i and the choice of a_{ik}, the last formula gives

$$
\left(S^{*} A S\right)_{i i} \geq \lambda_{j}\left(A_{i i}\right) \text { for } i=1, \ldots, m
$$

Hence
(*)

$$
\sum_{i=1}^{m} \lambda_{i}\left(S^{*} A S\right)=\operatorname{trace} s^{*} A S \geq \sum_{i=1}^{m} \lambda_{j_{i}}\left(A_{i .1}\right)
$$

On the other hand, $S w=\tilde{u}_{k}, S^{*} S=I$ and 1.1 .1 yield
(**) $\quad \lambda_{m}\left(S^{*} A S\right) \leq \frac{w^{*} S^{*} A S w}{w^{*} w}=\frac{\tilde{u}_{k}^{*} A \tilde{u}_{k}}{\tilde{u}_{k}^{*} \tilde{u}_{k}} \leq \lambda_{k}(A)$.
Applying 1.2.1 gives
(***)

$$
\sum_{i=1}^{m-1} \lambda_{i}\left(S^{*} A S\right) \leq \sum_{i=1}^{m-1} \lambda_{i}(A)
$$

Combining ($*$) , ($* *$) and ($* * *$) yields the first inequality of our theorem. Again, the second inequality follows by substituting - A for A in the first one.

If the matrix A of the above theorem is positive semi-definite and $m=2$, then we have

$$
\lambda_{j_{1}}\left(A_{11}\right)+\lambda_{j_{2}}\left(A_{22}\right) \geq \lambda_{j_{1}+j_{2}-1}(A)
$$

These are the inequalities of ARONSZAJN [A3] (see also [H7]).

The following consequence of 1.3 .2 will turn out to be a useful tool in computations with eigenvalues.
1.3.3. THEOREM. Suppose

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{12}^{*} & A_{22}
\end{array}\right]
$$

is hermitian of size n. Suppose A has just two distinet eigenvalues, that is,

$$
\lambda_{1}(A)=\ldots=\lambda_{f}(A)>\lambda_{E+1}(A)=\ldots=\lambda_{n}(A)
$$

for some $f, 1 \leq f<n$. Let n_{1}, and n_{2} be the sizes of A_{11} and A_{22} respectivety. Then

$$
\begin{aligned}
\lambda_{i}\left(A_{22}\right)= & \lambda_{1}(A)+\lambda_{n}(A)-\lambda_{f-i+1}\left(A_{11}\right) \\
& \text { for } \max \left\{1, f+1-n_{1}\right\} \leq i \leq \min \left\{f_{1}, n_{2}\right\}, \\
\lambda_{i}\left(A_{22}\right)= & \lambda_{1}(A) \text { for } 1 \leq i<f+1-n_{1} \\
\lambda_{i}\left(A_{22}\right)= & \lambda_{n}(A) \text { for } f<i \leq n_{2} .
\end{aligned}
$$

PROOF. By the Cauchy inequalities (1.2.2.i) we have

$$
\lambda_{i}(A) \geq \lambda_{i}\left(A_{22}\right) \geq \lambda_{n_{1}+i}
$$

This proves the result for $1 \leq i<f+1-n_{1}$, and for $f<i \leq n_{2}$. For the remaining values of $i, 1.3 .2$ gives

$$
\lambda_{f+1}(A)+\lambda_{1}(A) \geq \lambda_{f-i+1}\left(A_{11}\right)+\lambda_{i}\left(A_{22}\right) \geq \lambda_{f}(A)+\lambda_{n}(A)
$$

which proves the required result.

It is an easy exercise to give a direct proof of the above theorem. The proof then could go analogously to the one of Theorem 5.1 of [C5]. where a similar result is stated.

CHAPTER 2

INEQUALITIES FOR GRAPHS

2.1. INDUCED SUBGRAPES

In this section we shall derive inequalities for induced subgraphs of graphs, using the results of section 1.2 on interlacing of eigenvalues.

Let G be a graph on n vertices. The eigenvalues of G are the eigenvalues of its (0,1)-adjacency matrix; we denote them by $\lambda_{1}(G) \geq \ldots \geq \lambda_{n}(G)$. Let G_{1} be an induced subgraph of G. Then by 1.2 .2 (Cauchy inequalities) the eigenvalues of G_{1} interlace the eigenvalues of G. In particular, if G_{1} is a coclique of size α, then $\lambda_{\alpha}(G) \geq \lambda_{\alpha}\left(G_{1}\right)=0$, and $\lambda_{n-\alpha+1}(G) \leq \lambda_{1}\left(G_{1}\right)=0$. Hence, we have the following result, which was first observed by cverković [c11] (see also [C12]).
2.1.1. THEOREM. The size of a coclique of a graph G cannot exceed the number of nonnegative [nonpositive] eigenvalues of G.

Now we shall derive inequalities for induced subgraphs using the Higman-Sims technique (1.2.3). Suppose G is a graph on n vertices of average degree d. Let the vertex set of G be partitioned into two sets, and let G_{1} and G_{2} be the subgraphs induced by these two sets. For $i=1,2$, let n_{i} be the number of vertices of G_{i}, let d_{i} be the average degree of G_{i}, and let $\tilde{\alpha}_{i}$ be the average of the degrees in G over the vertices of G_{i}. Now we can state the following theorem.
2.1.2. THEOREM. FOR $i=1,2$
i. $\quad \lambda_{1}(G) \lambda_{2}(G) \geq \frac{d_{i} d n-\tilde{d}_{i}^{2} n_{i}}{n-n_{i}} \geq \lambda_{1}(G) \lambda_{n}(G)$,
ii. if equality holds on one of the sides, then G_{1} and G_{2} are regular, and also the degrees in G are constant over the vertices of G_{1} and G_{2}.

PROOF. If G is complete we easily see that the theorem is correct. So let us assume that G is not complete. Let A_{11}, A_{22} and

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{12}^{*} & A_{22}
\end{array}\right]
$$

be the adjacency matrices of G_{1}, G_{2}, and G, respectively. Put

$$
B:=\left(\begin{array}{cc}
a_{1} & \tilde{a}_{1}-d_{1} \\
\tilde{a}_{2}-a_{2} & d_{2}
\end{array}\right)
$$

Then the entries of B are the average row sums of the block matrices of A. By 1.2.3.i we have

$$
\lambda_{1}(A) \geq \lambda_{1}(B), \quad \lambda_{2}(A) \geq \lambda_{2}(B),-\lambda_{n}(A) \geq-\lambda_{2}(B)
$$

Because trace $A=0$, we have $\lambda_{n}(A) \leq 0$. From 2.1 .1 we know that $\lambda_{2}(A) \geq 0$, since otherwise G would be complete. Hence

$$
\begin{equation*}
\lambda_{1}(A) \lambda_{2}(A) \geq \lambda_{1}(B) \lambda_{2}(B) \geq \lambda_{1}(A) \lambda_{n}(A) \tag{*}
\end{equation*}
$$

On the other hand we know

$$
\begin{equation*}
\lambda_{1}(B) \lambda_{2}(B)=\operatorname{det} B=\tilde{d}_{1} \tilde{a}_{2}-\tilde{a}_{1}\left(\tilde{d}_{2}-\tilde{d}_{2}\right) \tag{**}
\end{equation*}
$$

We quickly see

$$
a \tilde{a}=\tilde{d}_{1} n_{1}+\tilde{d}_{2} n_{2}, \quad n_{2}\left(\tilde{d}_{2}-\tilde{d}_{2}\right)=n_{1}\left(\tilde{d}_{1}-\tilde{a}_{1}\right), \quad n=n_{1}+n_{2}
$$

This yields

$$
a_{1} \tilde{a}_{2}-\tilde{d}_{1}\left(\tilde{a}_{2}-a_{2}\right)=\left(a_{1} a n-\tilde{a}_{1}^{2} n_{1}\right) /\left(n-n_{1}\right)
$$

With (*) and (**) this proves (i). If equality holds on one of the sides, the interlacing must have been tight. Hence 1.2.3.ii gives (ii).

Now let us look at the consequences of the above inequalities for some special cases. The size of the largest coclique and clique of G are denoted by $\alpha(G)$ and $\omega(G)$, respectively.
2.1.3. THEOREM. If $\mathrm{a}_{\text {min }}$ and $\mathrm{a}_{\max }$ are the smallest and the largest degree in the groph G , respectively, then
1.
$\alpha(G)\left(d_{\min }^{2}-\lambda_{1}(G) \lambda_{n}(G)\right) \leq-n \lambda_{1}(G) \lambda_{n}(G)$,
ii. $\quad \omega(G)\left(d n-d_{\text {max }}^{2}+\lambda_{1}(G) \lambda_{2}(G)\right) \leq n\left(d+\lambda_{1}(G) \lambda_{2}(G)\right)$.

PROOF. (i). Substitute $\alpha(G)=n_{1}, d_{1}=0$ and $\tilde{d}_{1} \geq d_{\text {min }}$ in the right hand inequality of 2.1.2.i.
(ii). Substitute $\omega(G)=n_{1}, d_{1}=\omega(G)-1$ and $\tilde{d}_{1} \leq d_{\text {max }}$ in the left hand inequality of 2.1.2.i.
2.1.4. THEOREM. If G is a regular graph on n vertices of degree d, then i. any subgraph G_{1} of G with n_{1} vertices and average degree a_{1} satisfies

$$
\lambda_{2}(G) \geq \frac{n d_{1}-n_{1} d}{n-n_{1}} \geq \lambda_{n}(G),
$$

ii. $\quad \alpha(G)\left(d-\lambda_{n}(G)\right) \leq-n \lambda_{n}(G)$,
iii. $\quad \omega(G)\left(n-d+\lambda_{2}(G)\right) \leq n\left(1+\lambda_{2}(G)\right)$.

PROOF. If G is regular then $\lambda_{1}(G)=d=\tilde{d}_{1}=\tilde{d}_{2}=d_{\text {min }}=d_{\text {max }}$. Now 2.1.2.i, 2.1.3.i and 2.1.3.ii give the required results.

The inequality 2.1.4.ii is an unpublished result of A.J. Hoffman (see [C12], [H2], [L2]). In fact, the inequalities (ii) and (iii) of 2.1.4 (just as the left and the right hand inequality of 2.1.4.i) are equivalent, because either one can be obtained from the other by using $\omega(\bar{G})=\alpha(G)$, $\lambda_{1}(\bar{G})=n-\lambda_{1}(G)-1$ and $X_{i}(\bar{G})=-\lambda_{n-i+2}(G)-1$ for $i=2, \ldots, n$ (\bar{G} is the complement of G).

For the graph G with its subgraphs G_{1} and G_{2}, we define $D\left(G, G_{1}\right)$ to be the incidence structure whose points and blocks are the vertices of G_{1} and G_{2}, respectively, a point and a block being incident if the corresponding vertices are adjacent. If we have equality in any of the inequalities of 2.1.2-2.1.4, then 2.1.2.ii yields that $D(G, G)$ is a 1-design, possibly
degenerate. Now let G be strongly regular. Then by use of $1.2 .3 . i$ ii it is not difficult to show that equality holds in 2.1 .4 iff $D\left(G, G_{1}\right)$ is a 1 -design. If G_{1} is a coclique or a clique we have a criterion for $D\left(G_{1} G_{1}\right)$ to be a 2design.
2.1.5. THEOREM. If G is a strongly regular graph on n vertices of degree d , then
i. $\quad \alpha(\mathrm{G}) \leq 1+(\mathrm{n}-\mathrm{d}-1) /\left(\lambda_{2}(\mathrm{G})+1\right)$,
ii.

$$
\omega(G) \leq 1-d / \lambda_{n}(G),
$$

iii. if equality holds in (i) or (ii), and G_{1} is a coclique of size $\alpha(G)$, or a clique of size $w(G)$, respectively, then $D\left(G, G_{1}\right)$ is a 2-design, possibly degenerate.

PROOF. If G is strongly regular, we know (see [c5], [S4] or Appendix I)

$$
\left(d-\lambda_{2}(G)\right)\left(d-\lambda_{n}(G)\right)=n\left(d+\lambda_{2}(G) \lambda_{n}(G)\right)
$$

From this it follows in a straightforward way that (i) and (ii) are equivalent to 2.1.4.ii and 2.1.4.iii.
From the definition of a strongly regular graph we know that any two points of $D\left(G, G_{1}\right)$ are incident with a constant number of blocks of $D\left(G, G_{1}\right)$.
Furthermore, equality in (i) or (ii) implies that $D(G, G)_{1}$ is a 1-design, so in this case $D(G, G)$ is then a 2-design, possibly degenerate.

The theorems 2.1.5 and 2.1.4 for strongly regulax graphs are known. They are direct consequences of the linear programming bound of DELSARTE [D1] (see also [H2]). They were also proved by BUMILIER [B9].

Applying 2.1.4.i to the point graph of a partial geometry (see Appendix I, or [B6], [T1]) gives the following result of DE CLERCK [C7] (see also [P3] for the case $\alpha=1$, and [B9] for $t=t_{1}$) *
2.1.6. COROLLARY. Let P be a partial geometry with parameters (s, t, α), containing a partial subgeometry P_{1} with parameters $\left(\mathrm{s}_{1}, \mathrm{t}_{1}, \alpha\right)$. Then

$$
s=s_{1} \quad \text { or } \quad s \geq s_{1} t_{1}+\alpha-1
$$

PROOF. If G and G_{1} are the point graphs of P and P_{1}, respectively, then (see Appendix I or [T1]) G_{1} is an induced subgraph of G, and

$$
\begin{aligned}
& n=(s+1)(s t+\alpha) / \alpha, \quad n_{1}=\left(s_{1}+1\right)\left(s_{1} t_{1}+\alpha\right) / \alpha \\
& a=s(t+1), \quad d_{1}=s_{1}\left(t_{1}+1\right), \quad \lambda_{2}(G)=s-1
\end{aligned}
$$

Substitution of these values in the left hand inequality of 2.1.4.1 leads to

$$
\left(s-s_{1}\right)(s t+\alpha)\left(s_{1} t_{1}+\alpha-s-1\right) \leq 0
$$

This proves the result.

The next theorem gives a result in case both Hoffman's bound (2.1.4.ii) and Cvetkovic's bound (2.1.1) are tight.
2.1.7. THEOREM. Let G be a strongly regular graph on n vertices. Let $f_{n}(G)$ denote the multiplicity of the eigenvalue $\lambda_{n}(G)$. Then
i.

$$
\alpha(G) \leq f_{n}(G),
$$

ii.

$$
\alpha(G) \leq 1+\left(n-\lambda_{1}(G)-1\right) /\left(\lambda_{2}(G)+1\right)
$$

iii. \quad Let G_{1} be a coclique, whose size attains both of these bounds, then G_{2}, the subgraph of G induced by the remaining vertices, is strongly regulaw with eigenvalues

$$
\begin{aligned}
& \lambda_{1}(G)=\lambda_{1}(G) \alpha(G) /(n-\alpha(G)), \lambda_{2}\left(G_{2}\right)=\lambda_{2}(G) \\
& \lambda_{n-\alpha(G)}\left(G_{2}\right)=\lambda_{2}(G)+\lambda_{n}(G) .
\end{aligned}
$$

PROOF. Theorem 2.1.1 implies (i); (ii) is the same as 2.1.5.i. Let A and A_{2} be the adjacency matrices of' G and G_{2}, respectively. Then

$$
A-\frac{\lambda_{1}(G)-\lambda_{2}(G)}{n} J
$$

has just two distinct eigenvalues. $\lambda_{2}(G)$ and $\lambda_{n}(G)$ of multiplicity $n-f_{n}(G)$ and $f_{n}(G)=\alpha(G)$, respectively. From 1.3.3 it follows that

$$
\tilde{A}_{2}:=A_{2}-\frac{\lambda_{1}(G)-\lambda_{2}(G)}{n} J
$$

has three distinct eigenvalues, $\lambda_{2}(G), \lambda_{2}(G)+\lambda_{n}(G)$ and $\lambda_{2}(G)+\lambda_{n}(G)+$ $+\alpha(G)\left(\lambda_{1}(G)-\lambda_{2}(G)\right) / n$, where the last eigenvalue is simple (has multiplicity one). On the other hand, 2.1.5.iii gives that G_{2} is regular of degree $\lambda_{1}(G) \alpha(G) /(n-\alpha(G))$. This shows that \tilde{A}_{2} and A_{2} have a common basis of eigenvectors, and that the simple eigenvalue of \tilde{A}_{2} belongs to the eigenvector j. Thus A_{2} has the desired eigenvalues, and therefore (see [c6] or Appendix I) G_{2} is strongly regular.

Using 1.1 .3 it is not difficult to show that $D\left(G, G_{1}\right)$ is a quasisymmetric 2-design (see Section 3.2), whose block graph is the complement of G_{2}. This situation has been studied by SHRIKHANDE [S5].

In proving 2.1.2 we applied interlacing to the product of eigenvalues. We did so in order to get reasonably nice formulas. However, for nonregular graphs the inequality for the product carries less information than the separate inequalities. For this reason, applying the Higman-Sims technique directly to the adjacency matrix of a given non-regular graph, may yield better results than 2.1.2 or 2.1.3. Also, if more is known about the structure of G or G_{1}, it is often possible to get better results by a more detailed application of the Higman-Sims technique. Let us illustrate this by the following result.
2.1.8. THEOREM. Let G be a regular graph on n vertices of degree a, and let the complete bipartite graph $\mathrm{K}_{2, \mathrm{~m}}$ be an induced subgraph of G . Let x_{1} and $x_{2}, x_{1} \geq x_{2}$, be the zeros of

$$
(n-\ell-m) x^{2}+(d \ell+d m-2 \ell m) x-\ell m(n-2 d)
$$

Then

$$
\lambda_{2}(G) \geq x_{1} \text { and } \lambda_{n}(G) \leq x_{2}
$$

PROOF. Without loss of genexality, let G have adjacency matrix

$$
A=\left[\begin{array}{ccc}
0 & J & A_{12}^{\prime} \\
J & 0 & A_{12}^{\prime \prime} \\
A_{21}^{\prime} & A_{21}^{\prime \prime} & A_{22}
\end{array}\right]
$$

where the diagonal block matrices are square of sizes ℓ, m and n_{2}, respectively. Using the Higman-Sims technique (1,2.3) we find that the eigenvalues of

$$
B:=\left(\begin{array}{ccc}
0 & m & d-m \\
\ell & 0 & d-\ell \\
\ell \frac{d-m}{n_{2}} & m \frac{d-\ell}{n_{2}} & d-\frac{l d+m d-2 \ell m}{n_{2}}
\end{array}\right)
$$

interlace the eigenvalues of A. Clearly $\lambda_{1}(B)=\lambda_{1}(A)=d$ and hence

$$
\begin{aligned}
& \lambda_{2}(B) \lambda_{3}(B)=(\text { det } B) / d=\ell m(2 d-n) / n_{2}, \\
& \lambda_{2}(B)+\lambda_{3}(B)=(\text { trace } B)-d=(2 \ell m-\ell d-m d) / n_{2} .
\end{aligned}
$$

This yields $x_{1}=\lambda_{2}(B)$ and $x_{2}=\lambda_{3}(B)$. Now the interlacing gives the required result.
bumiller [b9] showed for strongly regular G and $m=1$ that

$$
\ell\left(\mu+\lambda_{2}(G)\right) \leq-d \lambda_{n}(G),
$$

where $\mu=d+\lambda_{2}(G) \lambda_{n}(G)$. Using

$$
\left(d-\lambda_{2}(G)\right)\left(d-\lambda_{n}(G)\right)=n\left(d+\lambda_{2}(G) \lambda_{n}(G)\right)
$$

one easily checks that this follows from the second inequality of the above theorem. PAYNE [P6] proved that

$$
(\ell-1)(m-1) \leq s^{2},
$$

if G is the point graph of a generalized quadrangle of order (s, t) (see Chapter 5 or Appendix I). This follows after substituting

$$
n=(s+1)(s t+1), d=s(t+1), \quad \lambda_{2}(G)=s-1
$$

in the first inequality of the above theorem. It should not be surprising that for this case we obtain the same resuit as Payne, because he too uses the Higman-Sims technique.

2.2. CHROMATIC NUMBER

In this section we shall derive lower bounds for the chromatic number of a graph in terms of its eigenvalues. The main tool is Hoffman's generalization of Aronszajn's inequalities (1.3.2).

Let G be a non-void graph on n vertices. Then it follows immediately that $\gamma(G)$, the chromatic number of G, satisfies

$$
\gamma(G) \alpha(G) \geq n .
$$

Combining this with the upper bounds for $\alpha(G)$ found in the previous section we obtain lower bounds for $\gamma(G)$. For instance, 2.1 .3 gives

$$
\gamma(G) \geq 1-d_{\min }^{2} / \lambda_{1}(G) \lambda_{n}(G) .
$$

However, this is not best possible, since HOFFMAN [H13] (see also [B5], [H2], [H14], [L2]) showed that

$$
\gamma(G) \geq 1-\lambda_{1}(G) / \lambda_{n}(G),
$$

which, if G is not regular, is bettex than the above bound. If G is regular, then the two bounds coincide. Taking into account that $\alpha(G)$ is an integer we get

$$
\gamma(G) \geq n /\left\lfloor n \lambda_{1}(G) \lambda_{n}(G) /\left(\lambda_{1}(G) \lambda_{n}(G)-d_{\min }^{2}\right)\right\rfloor
$$

which is occasionaliy better than Hoffman's bound.
HOFFMAN [f13] proves his lower bound by use of the inequalities 1.3.2. We shall use the same technique, but in a more profound way, in order to obtain a generalization of Hoffman's inequality.
2.2.1. THEOREM. Let G be a graph on n vertices with chromatic number γ. Let k be an integer satisfying $0 \leq \mathrm{k} \leq \mathrm{n} / \mathrm{Y}$. Then
i.

$$
\begin{array}{ll}
\text { i. } & (\gamma-1) \lambda_{k+1}(G) \geq-\lambda_{n-k}(\gamma-1) \\
\text { ii. } \quad(G) \\
& (\gamma-1) \lambda_{n-k}(G) \leq-\lambda_{1+k(\gamma-1)}(G)
\end{array}
$$

PROOF. Let A be the adjacency matrix of G. Then without loss of generality

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 \gamma} \\
\vdots & & \vdots \\
A_{\gamma 1} & \cdots & A_{\gamma \gamma}
\end{array}\right]
$$

where $A_{i 1}$ is the $n_{i} \times n_{i}$ all-zero matrix, for $i=1, \ldots, \gamma$. First, we assume that $n_{i}>k$ for $i=1, \ldots, \gamma$, Let u_{1}, \ldots, u_{n} denote an orthonormal set of eigenvectors of A. Define

$$
\tilde{A}:=A+\left(\lambda_{n}(A)-\lambda_{1}(A)\right) \sum_{i=1}^{k} u_{i} u_{i}^{*}
$$

Clearly the matrices $u_{i} u_{i}^{*}$ and A have a common basis of eigenvectors. This implies

$$
\begin{equation*}
\lambda_{i}(\tilde{A})=\lambda_{k+i}(A) \quad \text { for } i=1, \ldots, n-k \tag{*}
\end{equation*}
$$

For $j=1, \ldots, \gamma$, let $\tilde{A}_{i i}$ be the submatrix of \tilde{N}^{\prime} corresponding to $A_{i j}$. Since $u_{i} u_{i}^{*}$ is positive semi-definite of rank one, $\sum_{i=1}^{k} u_{i} u_{i}^{*}$ is positive semidefinite of rank k. This yields that $-\tilde{A}_{i i}$ is positive semi-definite of rank at most k, hence

$$
\lambda_{n_{i}-k}\left(\tilde{A}_{i i}\right)=0 \quad \text { for } i=1, \ldots, \gamma
$$

Now we apply the left hand inequality of 1.3 .2 with $j_{i}=n_{i}-k$. This gives

$$
\lambda_{n-\gamma k}(\tilde{A})+\sum_{i=1}^{\gamma-1} \lambda_{i}(\tilde{A}) \geq 0
$$

With (*) this yields
$(* *) \quad \lambda_{n-k(\gamma-1)}(A)+\sum_{i=1}^{\gamma-1} \lambda_{i+k}(A) \geq 0$.
Hence
$(* * *) \quad(\gamma-1) \lambda_{1+k}(A) \geq-\lambda_{n-k(\gamma-1)}(A)$.
Now suppose that $n_{i} \leq k$ for some $i \in\{1, \ldots, \gamma\}$. Let $L \subset\{1, \ldots, \gamma\}$ be such that $n_{i} \leq k$ iff $i \in L$. Let A^{\prime} be the $n^{\prime} \times n^{\prime}$ submatrix of A, obtained by discarding all block matrices $A_{i j}$ with $i \in L$ or $j \in L$. Put $\ell:=|L|$. From $k<n / \gamma$ it follows that $\&<\gamma$, hence $n^{\prime}>0$. Now (***) gives

$$
(\gamma-\ell-1) \lambda_{1+k}\left(A^{\prime}\right)+\lambda_{n^{\prime}}+k \ell-k(\gamma-1)\left(A^{\prime}\right) \geq 0
$$

Using $n^{\prime}+k l>n$ and the Cauchy inequalities (1.2.2) we have

$$
\begin{aligned}
& \lambda_{n^{\prime}+k \ell-k(\gamma-1)}\left(A^{\prime}\right) \leq \lambda_{n-k(\gamma-1)}\left(A^{\prime}\right) \leq \lambda_{n-k(\gamma-1)}(A) \\
& \lambda_{1+k}\left(A^{\prime}\right) \leq \lambda_{1+k}(A)
\end{aligned}
$$

Hence

$$
(\gamma-\ell-1) \lambda_{1+k}(A)+\lambda_{n-k}(\gamma-1)(A) \geq 0
$$

From $k<n / Y$ it follows that $\lambda_{1+k}(A) \geq \lambda_{n-k(Y-1)}(A)$, hence $\lambda_{1+k}(A) \geq 0$. Thus

$$
(\gamma-1) \lambda_{1+k}(A) \geq-\lambda_{n-k}(\gamma-1)^{(A)}
$$

This proves (i). The proof of (ii) proceeds analogously, but also follows from the above by replacing A by $-A$.

We see that the second inequality of the above theorem for $k=0$ is Hoffman's bound. In Chaptex 4 we shall need a sharpened version of this inequality (see [H13]):

$$
-\sum_{i=0}^{\gamma-2} \lambda_{n-i}(G) \geq \lambda_{1}(G)
$$

which is in fact just formula (**) in the above proof with $k=0$, and A equal to minus the adjacency matrix of G.

If $k>0$, the above inequalities are not really bounds for $\gamma(G)$, since $\gamma(G)$ also occurs in an index. However, this does not matter much if we use these inequalities for estimating the chromatic number of a given graph. It is also not difficult to derive proper bounds from these inequalities. The next results illustrate this.
2.2.2. COROLIARI. Let $f_{n}(G)$ denote the multiplicity of the eigenvalue $\lambda_{n}(G)$. Then

$$
\gamma(G) \geq \min \left(1+f_{n}(G), 1-\lambda_{n}(G) / \lambda_{2}(G)\right\}
$$

PROOF: Suppose $\gamma=\gamma(G) \leq f_{n}(G)$. Then $\lambda_{n}(G)=\lambda_{n-\gamma+1}(G)$. Now 2.2.1.i with $k=1$ gives $(\gamma-1) \lambda_{2}(G) \geq-\lambda_{n}(G)$. This proves the required result.

For strongly regular graphs the above results lead to the following theorem.
2.2.3. THEOREM. Let G be a strongly regular graph on n veritices. Suppose G is not the pentagon or a complete γ-partite graph. Then

$$
\gamma(G) \geq \max \left\{1-\lambda_{1}(G) / \lambda_{n}(G), 1-\lambda_{n}(G) / \lambda_{2}(G)\right\}
$$

PROOF. Due to the above results, it suffices to prove the following claim:

$$
f_{n}(G) \geq-\lambda_{n}(G) / \lambda_{2}(G)
$$

To achieve this, we distinguish three cases.
a) $n \leq 28$. For this case it is easily checked that all feasible parameter sets for strongly regular graphs which violate our claim are those of the pentagon and the complete γ-partite graphs.
b) $\lambda_{2}(G)<2$. In this case $\lambda_{2}(G)=1$, or G is a conference graph (see [C9] or Appendix I). If G is a conference graph, then $\lambda_{2}(G)=-\frac{1}{2}+\frac{1}{2} \sqrt{n}$, and hence $n<25$ and we axe in case 1. Strongly regular graphs with $\lambda_{2}(G)=1$ were determined by SEIDEL [S3]. They satisfy $n \leq 28$ or G is a ladder (disjoint union of edges), the complement of a lattice (line graph of a $K_{m, m}$) or the complement of a triangular graph (line graph of a K_{m}). One easily verifies that these three families of graphs satisfy our claim.
c) $\lambda_{2}(G) \geq 2$ and $n>28$. If G is imprimitive (G is complete γ-partite or the disjoint union of complete graphs), the result is obvious. So assume G is primitive. Suppose the claim does not hold. Using $\lambda_{2}(G) \geq 2, \lambda_{1}(G)<n$ and

$$
f_{n}(G) \lambda_{n}(G)+\left(n-1-f_{n}(G)\right) \lambda_{2}(G)+\lambda_{1}(G)=0
$$

we obtain

$$
\begin{aligned}
& f_{n}^{2}(G)<-f_{n}(G) \lambda_{n}(G) / \lambda_{2}(G)= \\
& =n-1-f_{n}(G)+\lambda_{1}(G) / \lambda_{2}(G)<\frac{3}{2} n-f_{n}(G)
\end{aligned}
$$

This yields

$$
f_{n}^{2}(G)+3 f_{n}(G)<\frac{3}{2} n+2 \sqrt{\frac{3}{2} n}
$$

For primitive G the absolute bound (see [D2], [S4]) reads

$$
n \leq \frac{1}{2}\left(f_{n}^{2}(G)+3 f_{n}(G)\right)
$$

Eence ${ }^{\frac{1}{2} n}<2 \sqrt{\frac{3}{2}} n$, i.e. $n<24$. This contradicts our assumption, and therefore the theorem is proved.
2.2.4. EXAMPLE. Let G be the Schlafli graph, which is drawn in Figure 1; two black or two white vertices are adjacent iff they are on one line, a black vertex is adjacent to a white one iff they are not on a line. (see [S3], [H2]). Then G is strongly regular, $n=27$ and

$$
\begin{aligned}
& \lambda_{1}(G)=16, \lambda_{2}(G)=\ldots=\lambda_{7}(G)=4, \lambda_{8}(G)=\ldots=\lambda_{27}(G)=-2, \\
& \lambda_{1}(\bar{G})=10, \lambda_{2}(\bar{G})=\ldots=\lambda_{21}(\bar{G})=1, \lambda_{22}(\bar{G})=\ldots=\lambda_{27}(\bar{G})=-5,
\end{aligned}
$$

where \bar{G} denotes the complement of G. From Figure 1 we see that

$$
\alpha(G) \geq 3 \text { and } \alpha(\bar{G}) \geq 6 .
$$

The thin vertical lines partition G into six cliques, hence $\gamma(\bar{G}) \leq 6$. The numbering gives a colouring of G with nine colours, so $\gamma(G) \leq 9$. Using our bounds it follows that equality holds in all these inequalities. Indeed, by 2.1.4.ii or 2.1.5.i. we have $\alpha(G) \leq 3 ; 2.1 .1$ yields $\alpha(\bar{G}) \leq 6 ; \gamma(G) \geq 9$ follows from Hoffman's bound, and $\gamma(\bar{G}) \geq 6$ follows from our last theorem.

FIGURE I

The chromatic number of strongly regular graphs will be the subject of Chapter 4.

CHAPTER 3
 INEQUALITIES FOR DESIGNS

3.1. SUBDESIGNS

In this section we shall derive inequalities for subdesigns of designs.

Let D be a design with incidence matrix N. It is clear that we cannot apply the Higman-Sims technique (1.2.3) to N, because N does not have to be symmetric. Instead, we apply the Higman-Sims technique to

$$
A=\left[\begin{array}{ll}
0 & N \\
N^{\star} & 0
\end{array}\right]
$$

By definition the positive eigenvalues of A are the singular values of N. Let $\sigma_{1} \geq \sigma_{2} \geq \ldots>0$ denote these singular values. Then we can state the main result of this section.
3.1.1. THEOREM. Let D be a $1-(v, k, r)$ design with b blocke. Let D_{1} be a possibly degenerate $1-\left(\mathrm{v}_{1}, \mathrm{k}_{1}, \mathrm{r}_{1}\right)$ subdesign of D with b_{1} blocks. Then
1.

$$
\left(v x_{1}-b_{1} k\right)\left(b k_{1}-v_{1} x\right) \leq \sigma_{2}^{2}\left(v-v_{1}\right)\left(b-b_{1}\right)
$$

ii. if equality holds, then each point [block] off D_{1} is incident with a constant number of blooks [points] of D_{1}.
proof. Let N_{1} and

$$
N=\left[\begin{array}{ll}
N_{1} & N_{2} \\
N_{3} & N_{4}
\end{array}\right]
$$

be the incidence matrices of D_{1} and D, respectively. Put

$$
A:=\left[\begin{array}{cccc}
0 & 0 & N_{1} & N_{2} \\
0 & 0 & N_{3} & N_{4} \\
N_{1}^{*} & N_{3}^{*} & 0 & 0 \\
N_{2}^{*} & N_{4}^{*} & 0 & 0
\end{array}\right] \text { and } B:=\left(\begin{array}{cccc}
0 & 0 & r_{1} & r-r_{1} \\
0 & 0 & x & r-x \\
k & k-k_{1} & 0 & 0 \\
y & k-y & 0 & 0
\end{array}\right]
$$

where

$$
x:=b_{1}\left(k-k_{1}\right) /\left(v-v_{1}\right) \quad \text { and } \quad y:=v_{1}\left(r-x_{1}\right) /\left(b-b_{1}\right)
$$

Then the entries of B are the average row sums of the block matrices of A. By 1.1.2 we know

$$
\lambda_{i}(A)=-\lambda_{b+v+1-i}(A), \quad \lambda_{j}(B)=-\lambda_{5-j}(B),
$$

for $i=1, \ldots, b+v, j=1, \ldots, 4$. We easily have

$$
\sigma_{1}=\lambda_{1}(A)=\lambda_{1}(B)=\sqrt{r k}
$$

From $\operatorname{det} B=x k\left(x_{1}-x\right)\left(k_{1}-y\right)$ it now follows that

$$
\lambda_{2}(B)=-\lambda_{3}(B)=\sqrt{\left(r_{1}-x\right)\left(k_{1}-y\right)}
$$

Now 1.2.3.1 gives

$$
\left(x_{1}-x\right)\left(k_{1}-y\right) \leq \lambda_{2}^{2}(A)=\sigma_{2}^{2}
$$

With $b_{1} k_{1}=v_{1} r_{1}$ this yields (i).
If equality holds, then the interlacing must be tight. Thus 1.2.3.iv gives (ii).

From the above proof it is clear that the result also holds if D_{1} is not a 1-design, but then we have to take r_{1} and k_{1} to be the average row and column sums of N_{1}.

For many 1 -designs σ_{2} is expressible in terms of the parameters of the design. For instance, $\sigma_{2}^{2}=r-\lambda$ if \mathcal{D} is a $2-(v, k, \lambda)$ design, and $a_{2}^{2}=s+t-\alpha+1$ if D is a partial geometry with parameters (s, t, α) (see Appendix I, or [C6], [T1]).

We shall make explicit two consequences of the above theorem.
3.1.2. COROLLARY. If a symmetmic $2-(v, k, \lambda)$ design contains a symmetric $2-\left(v_{1}, k_{1}, \lambda_{1}\right)$ subdesign, possibly degenerate, then

$$
k \geq\left(k_{1}-v_{1} \frac{k-k_{1}}{v-v_{1}}\right)^{2}+\lambda
$$

PROOF: Substitute $b=v, k=r, b_{1}=v_{1}, k_{1}=r_{1}$ and $\sigma_{2}^{2}=k-\lambda$ in 3.1.1.i.
3.1.3. COROLTARY. Let X and Y be a set of points and a set of lines, respectively, of a partial geometry with parameters (s, t, α), such that no point of X is incident with a line of Y . Then

$$
\begin{aligned}
(\alpha|X| & +(s+t+1-\alpha)(s+1))(\alpha|y|+(s+t+1-\alpha)(t+1)) \leq \\
& \leq(s+t+1-\alpha)(s+1)^{2}(t+1)^{2}
\end{aligned}
$$

PROOF: Substitute $k_{1}=r_{1}=0, b_{1}=|y|, v_{1}=|x|, k=s+1, r=t+1$, $v=(s+1)(s t+\alpha) / \alpha, b=(t+1)(s t+\alpha) / \alpha$ and $\sigma_{2}^{2}=s+t+1-\alpha$ in 3.1.1.i.

Corollary 3.1.2 appeared in [H4]. A Baer subplane of a projective plane (see [D3]) satisfies 3.1 .2 with equality. Other examples which meet this bound (hence where 3.1.1.ii applies) can be found in [H4].

The bound of 3.1 .3 can also be tight. For instance, let Q be the partial geometry with parameters ($2,4,1$) (generalized quadrangle), whose points and lines are the vertices and the triangles of the complement of the Schlafli graph (see Example 2.2.4). There are 15 triangles which do not have a vertex in common with a double six (the black vertices in Figure 1), Thus we have an empty subgeometry (no point and line are incident) of 9 having 12 points and 15 lines. This satisfies 3.1 .3 with equality.

If D_{1} is an empty design $\left\{k_{1}=r_{1}=0\right.$), then one easily finds examples which meet the bound of 3.1.1.i. For instance: a projective plane with a maximal arc (see [D3]); a symmetric 2 -design containing an oval without tangent blocks (see [A4]); a 2 -design having a block repeated b/v times (see [L1]; here the inequality 3.1.1.i is Mann's inequality [M2]).

Although the results of this section are similar to those of Section 2.1, we did not start with a general inequality for substructures of an incidence structure like we did for subgraphs of a graph in 2.1.2. This has two reasons. Firstly, the formula for an arbitrary incidence structure is more complicated than 2.1.2. The second reason is that there does not seem to be much interest in incidence structures without any additional properties; this is certainly not true for graphs. Yet we shall give one result for an arbitrary incidence structure, namely an inequality for the sizes of an empty substructure.
3.1.4. THEOREM. Let D be an incidence stmicture with v points and b blocks. Let every point [block] be incident with at least $r_{\min }$ blocks $[k \min$ points]. Let X and Y be a set of points and a set of blocks, reepectively, such that no point of X is incident with a block of Y . Then

$$
r_{\min }^{2} k_{\min }^{2}|X||Y| \leq \sigma_{1}^{2} \sigma_{2}^{2}(v-|X|)(b-|y|)
$$

where σ_{1} and σ_{2} denote the two largest singulan values of the incidence matrix of D .

PROOF: Let the incidence matrix of D be

$$
\mathrm{N}=\left[\begin{array}{ll}
0 & \mathrm{~N}_{2} \\
\mathrm{~N}_{3} & \mathrm{~N}_{4}
\end{array}\right]
$$

where 0 denotes the $|X| \times|Y|$ all-zero matrix. Let r_{i} and k_{i} be the average row sums of N_{i} and N_{i}, respectively, for $i=2,3,4$. Then by 1.2.3.i the eigenvalues of

$$
\mathrm{B}:=\left(\begin{array}{llll}
0 & 0 & 0 & r_{2} \\
0 & 0 & r_{3} & r_{4} \\
0 & k_{3} & 0 & 0 \\
k_{2} & k_{4} & 0 & 0
\end{array}\right)
$$

interlace the eigenvalues of

$$
A:=\left[\begin{array}{ll}
0 & N \\
N^{*} & 0
\end{array}\right] .
$$

Now with 1.1.2 it follows that

$$
\operatorname{det} B=\lambda_{1}^{2}(B) \lambda_{2}^{2}(B) \leq \lambda_{1}^{2}(A) \lambda_{2}^{2}(A)=\sigma_{1}^{2} \sigma_{2}^{2}
$$

On the other hand we have

$$
\text { det } B=r_{2} r_{3} k_{2} k_{3}=r_{2}^{2} k_{3}^{2}|X||Y| /((v-|X|)(b-|Y|))
$$

Since $r_{2} k_{3} \geq x_{\text {min }} k_{\text {min }}$, the theorem is proved.

3.2. INIERSECTION NUMBERS

If two distinct blocks of a design D have exactly ρ points in common, then ρ is called an intersection number of D. It is obvious that an intersection number ρ of a $1-(v, k, r)$ design satisfies

$$
\mathrm{k} \geq \rho \geq \max \{0,2 \mathrm{k}-\mathrm{v}\}
$$

The next result, which is due to AGRAWAL [A1], gives non-trivial bounds for the intersection numbers of a 1 -design. Like in the previous section. the singular values of the incidence matrix of a design D will be denoted by $\sigma_{1} \geq \sigma_{2} \geq \ldots>0$.
3.2.1. THEOREM. Let D be a 1 - $(\mathrm{v}, \mathrm{k}, \mathrm{r})$ design with b blocks. Let B_{1} and B_{2} be distinct blocks of D . Then
i. $\quad\left|B_{1} \cap B_{2}\right| \leq 2 \frac{r k-\sigma_{2}^{2}}{b}-k+\sigma_{2}^{2} ;$
if equality holds then $\left|\mathrm{B}_{1} \cap \mathrm{~B}_{3}\right|+\left|\mathrm{B}_{2} \cap \mathrm{~B}_{3}\right|=2\left(\mathrm{xk}-\sigma_{2}^{2}\right) / \mathrm{b}$ for any further blook B_{3},
i.i. $\quad\left|B_{1} \cap B_{2}\right| \geq k-\sigma_{2}^{2}$;
if equality holds then $\left|B_{1} \cap B_{3}\right|=\left|B_{2} \cap B_{3}\right|$ for any further blook B_{3}.

PROOF. The result is obvious if $b \leq 3$, so assume $b \geq 4$. Let N be the incidence matrix of D, such that the first two columns correspond to the blocks B_{1} and B_{2}. Define

$$
\mathrm{A}:=\mathrm{N}^{\star} \mathrm{N}
$$

Then the off-diagonal entries of A are the intersection numbers of D, and the row and column sums of A equal $k r$. Put $\rho:=\left|B_{1} \cap B_{2}\right|$ and consider the following partitioning of A :

$$
A=\left[\begin{array}{ll}
\left(\begin{array}{ll}
k & \rho \\
\rho & k
\end{array}\right) & A_{12} \\
A_{12}^{*} & A_{22}
\end{array}\right]
$$

Define

$$
x:=2(k x-k-\rho) /(b-2) \quad \text { and } B:=\left(\begin{array}{cc}
k+\rho & k r-k-\rho \\
x & k r-x
\end{array}\right)
$$

Then the entries of B are the average row sums of the block matrices of A. clearly

$$
\lambda_{1}(B)=\lambda_{1}(A)=r k \quad \text { and } \quad \lambda_{2}(B)=k+\rho-x
$$

By 1.2.3.1 we have

$$
\lambda_{2}(B) \leq \lambda_{2}(A)=\sigma_{2}^{2}
$$

Hence

$$
\sigma_{2}^{2}(b-2) \leq(k+\rho)(b-2)-2(k x-k-\rho)
$$

This yields

$$
\rho \leq \sigma_{2}^{2}-k+2\left(r k-\sigma_{2}^{2}\right) / b
$$

If equality holds, the interlacing is tight and 1.2.3.i gives that every column sum of A_{12} equals x. This proves (i). To prove (ii) we apply 1.2.1•to A with

$$
s:=\left(\begin{array}{ccccc}
-1 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 1
\end{array}\right)^{*} \cdot\left(\begin{array}{cc}
2 & 0 \\
0 & n-2
\end{array}\right)^{-\frac{1}{2}}
$$

Then

$$
B:=S^{\star} A S=\left(\begin{array}{cc}
k-\rho & 0 \\
0 & k x-x
\end{array}\right)
$$

It is easily seen that $k x-x \geq k-\rho$ if $b \geq 4$. So $\lambda_{2}(B)=k-\rho$. Hence, by 1.2.1.i

$$
k-\rho \leq \lambda_{2}(A)=\sigma_{2}^{2}
$$

Here equality does not have to imply that the interlacing is tight. Therefore we shall use 1.2.1.ii. If $\sigma_{2}^{2}=k-\rho=k r-x$, then $r=1, \rho=0$ or $r=2, \rho=0, b=4$, and the result is easily checked to be true. If $\sigma_{2}^{2}=k-\rho<k x-x$, then 1.2 .1. ii implies that $s(1,0)^{*}=(-\sqrt{2}, \sqrt{2}, 0, \ldots, 0)^{*}$ is an eigenvector of A for the eigenvalue $k-\rho$. Thus $A_{12}^{*}(-1,1)^{*}=0$. This proves (ii).

It is straightforward to verify that equality in (i) or (ii) for a pair of blocks of D implies also equality for the corresponding blocks of the complement of D.

Although Agrawal's proof of the above theorem is different from ours, it also uses eigenvalue techniques (in essence the Cauchy inequalities 1.2.2). MAJUMDAR [M1] gives a proof of this theorem for the case that D is a 2-design, using counting arguments. See also BUSH [B10] and CONNOR [C8] for similar results.

It is clear that our method also leads to inequalities if we consider the intersection pattern of more than two blocks.
3.2.2. THEOREM. Let D be a $1-(v, k, r)$ design with b blocks. Let y be a set of blocks which mutually have p points in common. Then
i. $\quad|Y|(b \rho-r i k) \geq b(\rho-k)$,
ii. $\quad|y|\left(b \rho-r k+\sigma_{2}^{2}\right) \leq b\left(\sigma_{2}^{2}-k+p\right)$.

PROOF, Let N be the incidence matrix of D. We apply the Higman-Sims technique to $A \equiv=N^{*} N$, partitioned according to X and the other blocks of D. Put

$$
x:=|Y| \frac{k(x-1)-\rho(|Y|-1)}{b-|Y|} .
$$

Then

$$
\mathbf{B}:=\left(\begin{array}{cc}
\mathbf{k}-\rho+\rho|\mathbf{Y}| & \mathbf{r k}-\mathbf{k}+\rho-\rho|\mathbf{Y}| \\
\mathbf{x} & \mathbf{r k}-\mathbf{x}
\end{array}\right)
$$

carries the average row sums of the block matrices of A. Clearly

$$
\lambda_{2}(B)=k-p+\rho|Y|-x=(b(k-p)+(b p-k x)|Y|) /(b-|Y|)
$$

From 1.2.3.1 we have

$$
0 \leq \lambda_{b}(A) \leq \lambda_{2}(B) \leq \lambda_{2}(A)=\sigma_{2}^{2}
$$

This lower and upper bound for λ_{2} (B) yields (i) and (ii), respectively.

We define two blocks B_{1} and B_{2} of $a 1-(v, k, r)$ design to be equivalent if

$$
\left|B_{1} \cap B_{2}\right| \in\left\{k, k-\sigma_{2}^{2}\right\}
$$

Then from 3.2.1, ii it is clear that this indeed defines an equivalence relation, and that the number of common points of two blocks only depends on the equivalence classes of these blocks. By the use of 3.2 .2 we find bounds for the size of the equivalence classes.
3.2.3. THEOREM. Let D be a $1-(\mathrm{v}, \mathrm{k}, \mathrm{r})$ design with b blocks. Let y be an equivalence olass of blooks. Then
i. $\quad \mathrm{k}$ and $\mathrm{k}-\sigma_{2}^{2}$ cannot both be an intersection number of D ,
ii. if $\mathrm{k}-\sigma_{2}^{2}$ is an intersection number of D , then

$$
|\mathrm{y}| \leq \frac{\mathrm{b} \sigma_{2}^{2}}{\mathrm{~b} \sigma_{2}^{2}-\mathrm{bk}+\mathrm{rk}},
$$

iii. if k is an intersection number of D , then

$$
|Y| \leq \frac{b \sigma_{2}^{2}}{b k-r k+\sigma_{2}^{2}}
$$

PROOF. Assume $2 x \leq b$; we may do so because of the remark right after Theorem 3.2.1. Suppose $k-\sigma_{2}^{2}$ is an intersection number. Then $k-\sigma_{2}^{2} \geq 0$, hence $\sigma_{2}^{2}-k+2\left(r k-\sigma_{2}^{2}\right) / b \leq 2 k(r-1) / b<k$. So 3.2.1.i yields that k cannot be an intersection number.

Formulas (ii) and (iii) follow immediately from (i) and (ii) of 3.2 .2 by substitution of $\rho=k-\sigma_{2}^{2}$ and $\rho=k$, respectively.

Suppose D is a $2-(v, k, \lambda)$ design, so $\sigma_{2}^{2}=r-\lambda=(b k-r k) /(v-1)$. From 3.2.3.iii it follows that D has at most b/v repeated blocks; this is the inequality of MANN [M2] (see also [L1]). If D has an intersection number $k-\sigma_{2}^{2}=k-r+\lambda$, then 3.2.3.ii implies that the size of any equivalence class is at most $b /(b-v+1)$; this bound appeared in [B2]. This paper also contains the next result (see also [B1]).

A 2-design with just two distinct intersection numbers is called quasi-symmetric. Consider the graph G, whose vertices are the blocks of a quasi-symmetric 2-design D, two vertices being adjacent if the number of points which the corresponding blocks have in common equals the larger intersection number. We call G the block graph of D. GOETAALS \& SEIDEL [G2] (see also [C6]) proved that the block graph of a quasi-symmetric 2-design is strongly regular.
Now suppose D is a $2-(v, k, \lambda)$ design with just three distinct intersection numbers $k-r+\lambda, \rho_{1}$ and $\rho_{2}\left(\rho_{1}>\rho_{2}\right)$. We have already observed that the number of points which two blocks have in common only depends on the equivalence classes of these blocks. For this reason the following definition is legitimate. The class graph of D is the graph whose vertices are the equivalence classes, two vertices being adjacent if two blocks representing the corresponding classes have ρ_{1} points in common.
3.2.4. THEOREM. Let D be a $2-(v, k, \lambda)$ design with just three intersection numbers, $k-x+\lambda, \rho_{1}$ and ρ_{2}. Then the class graph of D is a strongly regutar graph on

$$
n:=\frac{b\left(k-r+\lambda-\rho_{1}\right)\left(k-r+\lambda-\rho_{2}\right)}{\lambda k^{2}-k(r-\lambda)+(x-\lambda)^{2}+b \rho_{1} \rho_{2}-\lambda v\left(\rho_{1}+\rho_{2}\right)}
$$

vertices, with eigenvalues

$$
\begin{aligned}
& \lambda_{1}(G)=\left(\lambda \vee n-b\left(k-r+\lambda-\rho_{2}+\rho_{2} n\right)\right) / b\left(\rho_{1}-\rho_{2}\right) \\
& \lambda_{2}(G)=\left(\rho_{2}-k+r-\lambda\right) /\left(\rho_{1}-\rho_{2}\right) \\
& \lambda_{n}(G)=\left(b\left(\rho_{1}-k+r-\lambda\right)-n(r-\lambda)\right) / b\left(\rho_{1}-\rho_{2}\right)
\end{aligned}
$$

PROOF: Let N be the incidence matrix of D. Define $A:=N^{*} N$. Then

$$
\begin{equation*}
A^{2}=N^{*}\left(N N^{*}\right) N=N^{*}(\lambda J+(x-\lambda) I) N=\lambda k^{2} J+(x-\lambda) A \tag{*}
\end{equation*}
$$

Put $\rho_{0}:=k-r+\lambda$. Let $x_{j}(j=0,1,2)$ denote the number of times that ρ_{j} occurs in the $i-$ th row of A, for some $i \in\{1, \ldots, b\}$. Then

$$
\begin{aligned}
& (A J)_{i 1}=k+x_{0}(k-r+\lambda)+x_{1} \rho_{1}+x_{2} \rho_{2}=r k \\
& \left(A^{2}\right)_{i i}=k^{2}+x_{0}(k-r+\lambda)^{2}+x_{1} \rho_{1}^{2}+x_{2} \rho_{2}^{2}=\lambda k^{2}+k(x-\lambda)
\end{aligned}
$$

on using ($*$). Substitute $x_{2}=b-1-x_{0}-x_{1}$ and subtract the first equation multiplied by $\left(\rho_{1}+\rho_{2}\right)$ from the second one. This yields

$$
\begin{aligned}
& x_{0}\left(k-r+\lambda-\rho_{1}\right)\left(k-r+\lambda-\rho_{2}\right)= \\
& =(b-1) \rho_{1} \rho_{2}-k(r-1)\left(\rho_{1}+\rho_{2}\right)+k(r-\lambda)+k^{2}(\lambda-1)
\end{aligned}
$$

Hence x_{0} does not depend on i and therefore all equivalence classes have size $x_{0}+1$. Now $n=b /\left(x_{0}+1\right)$ yields the given formula for n. Now we partition A according to the equivalence classes. Let \tilde{A} denote the adjacency matrix of G. Then the definition of G yields that the entries of

$$
\begin{equation*}
B:=(b / n)\left(\left(k-r+\lambda-\rho_{2}\right) I+\left(\rho_{1}-\rho_{2}\right) \tilde{A}+\rho_{2} J\right) \tag{**}
\end{equation*}
$$

are the row sums (which are constant) of the block matrices of A. Since A has three distinct eigenvalues, $r k, r-\lambda$ and 0 , it follows from 1.2.3.iii that each eigenvalue of B is equal to $r k, r-\lambda$ or 0 . We easily check that rk is a simple eigenvalue of B, belonging to the all-one vector j. Now from (**) the eigenvalues of \tilde{A} follow. Hence \tilde{A} has an eigenvector j and just two distinct eigenvalues not belonging to j. This implies (see Appendix I or [c6]) that G is strongly regular.

Examples of designs which satisfy the hypothesis of the above theorem can be found in [B1], [B3] or [M8]. For all these examples the class graph is a complete multipartite graph. In Section 6.1 we shall give an example for the above theorem where the class graph is primitive (not complete multipartite or the complement). For other results on 2 -designs with an intersection number $k-x+\lambda$, see [B2].

CHAPTER 4

4-COLOURABLE STRONGLY REGULAR GRAPES

4.1. INTRODUCTION

In this chapter we shall illustrate the use of the results and techniques obtained in the previous chapters. The result will be the determination of all 4-colourable strongly regular graphs.

It is obvious that a regular complete γ-partite graph, and a disjoint union of complete graphs on γ vertices are strongly regular graphs with chromatic number γ. Strongly regular graphs, not belonging to one of these two families, are called primitive.

Let G be a strongly regular graph with parameters ($n, d, p_{11}^{1}, p_{11}^{2}$). Then (see [c5], [c9] or Appendix I)

$$
\begin{aligned}
& d=\lambda_{1}(G), p_{11}^{2}-a=\lambda_{2}(G) \lambda_{n}(G), p_{11}^{1}-p_{11}^{2}=\lambda_{2}(G)+\lambda_{n}(G), \\
& n p_{11}^{2}=\left(d-\lambda_{2}(G)\right)\left(d-\lambda_{n}(G)\right) .
\end{aligned}
$$

Moreover, G has at most three distinct eigenvalues:

$$
\lambda_{1}(G) \geq \lambda_{2}(G)=\ldots=\lambda_{\mathrm{f}+1}(G) \geq 0,-1 \geq \lambda_{\mathrm{E}+2}(G)=\ldots=\lambda_{n}(G)
$$

where $f=f_{2}(G)$, the multiplicity of $\lambda_{2}(G)$, satisfies

$$
f=\left(-\lambda_{n}(G)(n-1)-d\right) /\left(\lambda_{2}(G)-\lambda_{n}(G)\right)
$$

If G is primitive, then $p_{11}^{2}>0, \lambda_{2}(G)>0$, and $\lambda_{n}(G)<-1$.
4.1.1. LEMMA. If G is a primitive strongly regutar graph, not the pentagon, then
i.

$$
d \leq-\lambda_{n}(G)(\gamma(G)-1)
$$

ii. $\quad-\lambda_{n}(G) \leq \lambda_{2}(G)(\gamma(G)-1)$,
iii. $\lambda_{2}(G)<\gamma(G)-1$.

PROOF. (i) and (ii) are quoted from 2.2.3. Since G is primitive, $0<p_{11}^{2}=d-\lambda_{2}(G) \lambda_{n}(G)$. Hence (i) gives $\gamma(G)-1 \geq-d / \lambda_{n}(G)>\lambda_{2}(G)$.

As a direct consequence of this lemma we have the following theorem.
4.1.2. THEOREM. Given $\gamma \in \mathbf{N}$, the number of primitive strongly regular graphs with chromatic number γ is finite.

PROOF. If the graph G is primitive, then $p_{11}^{2} \geq 1$ and hence by use of the formulas above

$$
n \leq n p_{11}^{2}=\left(d-\lambda_{2}(G)\right)\left(d-\lambda_{n}(G)\right) \leq d\left(d-\lambda_{n}(G)\right) .
$$

By Lemma 4.1.1 we have

$$
d\left(d-\lambda_{n}(G)\right)<\gamma(G)(\gamma(G)-1)^{5} .
$$

This completes the proof.

Now let us examine the case $\gamma(G) \leq 4$.
4.1.3. LEMMA. Let G be a 4-colourable strongly regutar graph. Suppose G has a non-integral eigenvalue. Then G is the pentagon.

PROOF. Since G has a non-integral eigenvalue, we have (see [c9] or Appendix I)

$$
\begin{aligned}
& \lambda_{1}(G)=\frac{1}{2}(n-1), \quad \lambda_{2}(G)=-\frac{1}{2}+\frac{1}{2} \sqrt{n}, \quad \lambda_{n}(G)=-\frac{1}{2}-\frac{1}{2} \sqrt{n}, \\
& n \equiv 1(\bmod 4), \quad \sqrt{n} \notin \mathbb{N} .
\end{aligned}
$$

By 2.1.5 we have $\alpha(G) \leq \sqrt{n}$, hence

$$
4 \geq \gamma(G) \geq n / \alpha(G) \geq n /\lfloor\sqrt{n}\rfloor,
$$

therefore $n=16$ or $n \leq 12$. Combining the restrictions for n we have $n=5$, hence G is the pentagon.
4.1.4. LEMMA. A 4-colourable primitive strongly regular graph has one of the following parameter sets:

1.	$(5,2,0,1)$,	vii..	$(16,9,4,6)$,
i.i.	$(9,4,1,2)$,	viii.	$(40,12,2,4)$,
iii.	$(10,3,0,1)$,	ix	$(50,7,0,1)$,
iv.	$(15,6,1,3)$,	x.	$(56,10,0,2)$,
v.	$(16,5,0,2)$,	xi.	$(64,18,2,6)$,
vi.	$(16,6,2,2)$,	xii.	$(77,16,0,4)$.

PROOF. Let G be such a graph. Suppose G is not the pentagon (which has parameter set (i)). Then by 4.1.3, the eigenvalues of G are integers. The primitivity of G yields $\lambda_{2}(G)>0, \lambda_{n}(G)<-1$. Now 4.1.1.iiii gives

$$
\lambda_{2}(G) \in\{1,2\}
$$

Suppose $\lambda_{2}(G)=1$. Then by 4.1 .1

$$
\lambda_{n}(G) \in\{-2,-3\}, d=\lambda_{1}(G) \leq 9
$$

Straightforward computations give that the only feasible parameter sets satisfying these conditions are (ii) - (v), (vii) and (10,6,3,4). However, a graph G with this last parameter set satisfies $\alpha(G) \leq 2$, therefore $\gamma(G) \geq 5$. Suppose $\lambda_{2}=2$. Then 4.1.1 implies

$$
\lambda_{n}(G) \in\{-2,-3,-4,-5,-6\}, d \leq 18
$$

With a little more work than for the previous case, this leads to the feasible parameter sets (vi), (viii) - (xii) and (57, 14, 1, 4). However, WILBRINK \& BROUWER [W4] proved the nonexistence of a strongly regular graph with this last parameter set.

For graphs with parametexs (i) - (v) existence and uniqueness is known (see [s3]). Cases (i), (ii) and (iii) are the pentagon, the line graph of $K_{3,3}$ (also called the lattice graph $L_{2}(3)$), and the Petersen graph; respectively. It is easily seen that these three graphs have chromatic number three. From 4.1.1 it is clear that none of the other graphs is 3-colourable. Case (iv) is the complement of the line graph of K_{6} (also called the complement of the triangular graph $T(6))$, which is easily seen to be 4-colourable. Case (v) is the clebsch graph (see [s3]). This graph
is given in Figure 2, where two black or two white vertices are adjacent iff they are not on one line, whilst a black vertex is adjacent to a white one iff they are on one line. We almost immediately see that this graph is

FIGURE 2

4-colourable. There are precisely two nonisomorphic strongly regular graphs with parameter set (vi) (see [S6]): the line graph of $\mathrm{K}_{4,4}\left(\mathrm{~L}_{2}\right.$ (4)) and the Shrikhande graph (see cover), both graphs are easily seen to be 4-colourable. Case (vii) is the complementary parameter set of (vi). We quickly see that the complement of the line graph of $K_{4,4}$ is 4-colourable, however, the complement of the Shrikhande graph is not 4-colourable. Indeed, the size of the largest coclique equals three. The remaining cases are more difficult. They will be treated in the next section.

4.2. STRONGLY REGULAR GRAPHS ON $40,50,56,64$ AND 77 VERTICES

In this section we shall study the feasible parameter sets for 4colourable strongly regular graphs, which remain from the previous section.

The first case is the parameter set $(40,12,2,4)$. Although several strongly regular graphs with these parameters are known (see Section 6.2), it will turn out that no such graph has chromatic number four. To prove this we use the following lemma.
4.2.1. LEMMA. There is no regular bipartite graph on 20 vertices with eigenvalues 4, 2, 0, -2, -4 of multiplicity $1,6,6,6,1$, respectively.

PROOF. Suppose G were such a bipartite graph. Let

$$
A=\left[\begin{array}{ll}
0 & N \\
N^{*} & 0
\end{array}\right]
$$

be the adjacency matrix of G. Then N is the incidence matrix of a $1-(10,4,4)$ design, D say, with singular values $\sigma_{1}=4, \sigma_{2}=\ldots=\sigma_{7}=2$. Let B_{1} and B_{2} be two distinct blocks of D. Then 3.2.1.i yields

$$
\left|B_{1} \cap B_{2}\right| \leq 12 / 5
$$

Suppose B_{1} and B_{2} axe disjoint. Let x and y be the two points of D which are not incident with B_{1} and B_{2}. Let B_{3} be a block through x. Using 3.2.1.ii it follows that

$$
\left|B_{1} \cap B_{3}\right|=\left|B_{2} \cap B_{3}\right|=1
$$

so B_{3} is incident with Y . Hence, any block incident with x is also incident with Y. However, this is not possible, since two points of D have at most two blocks in common, as follows from 3.2.1.i applied to the dual of D. So we have

$$
\left|B_{1} \cap B_{2}\right| \in\{1,2\}
$$

This implies that $B:=N^{*} N-J-3 I$ is the adjacency matrix of a (strongly) regular graph with eigenvalues $-3,1$ and 3 of multiplicity 3,6 and 1 , respectively. This is impossible, since

$$
30=\operatorname{trace} B^{2} \neq 3 .(-3)^{2}+6.1^{2}+1.3^{2}
$$

4.2.2. THEOREM. There exists no 4-colourable strongly regular graph with parameters $(40,12,2,4)$.

PROOF. Let G be a strongly regular graph with parameter set (40, 12, 2, 4). The elgenvalues of A, the adjacency matrix of G, are 12,2 and -4 of multiplicity 1,24 and 15 , respectively. Suppose G is 4-colourable. Then without loss of generality

$$
A=\left[\begin{array}{cccc}
0 & A_{12} & A_{13} & A_{14} \\
A_{21} & 0 & A_{23} & A_{24} \\
A_{31} & A_{32} & 0 & A_{34} \\
A_{41} & A_{42} & A_{43} & 0
\end{array}\right]
$$

By 2.1.5.i all block matrices are square of size 10 , and by 2.1.5.iii all row and column sums of $A_{i j}$ are equal to 4 , for $i, j=1,2,3,4, i \neq j$. Define

$$
A_{1}:=\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & 0
\end{array}\right], \quad A_{2}:=\left[\begin{array}{cc}
0 & A_{34} \\
A_{43} & 0
\end{array}\right], \tilde{A}:=A-\frac{3}{4} J, \quad \tilde{A}_{i}:=A_{i}-\frac{3}{4} J
$$

for $i=1,2$. Let $i \in\{1,2\}$. Let G_{i} be the graph with adjacency matrix A_{i}. Now A has just two distinct eigenvalues 2 and -4 of multiplicity 25 and 15 , respectively. Furthermore, A_{i} and \tilde{A}_{i} have the same eigenvalues, except for the one belonging to the eigenvector j, which equals 4 for A_{i} and -1 for \tilde{A}_{i}. Since G_{i} is bipartite, A_{i} also has an eigenvalue -4 . Now by the Cauchy inequalities (1.2.2) it follows that $\widetilde{\mathcal{A}}_{i}$, and hence also A_{i}, has at least five times the eigenvalue 2. But G_{i} is bipartite, therefore A_{i}, and hence also \tilde{A}_{i}, has at least five times the eigenvalue -2 . Now from 1.3 .3 it follows that \tilde{A}_{3-1}, and hence also \tilde{A}_{1} and \tilde{A}_{i}, has at least five times the eigenvalue 0 . Since G_{i} is bipartite on an even number of vertices, the multiplicity of the eigenvalue 0 is even, so at least six. Going backwards through the above reasoning we conclude that the multiplicities of the eigenvalues 2 and -2 of A_{i} are also at. least six. Thus A_{i} has eigenvalues $4,2,0,-2,-4$ of multiplicity $1,6,6,6,1$, respectively. Now Lemma 4.2.1 finishes the proof.

HOFFMAN \& SINGLETON [H15] showed the existence and uniqueness of a strongly regulax graph with parameters $(50,7,0,1)$. So we only have to determine whether this graph is 4-colourable or not. To do so, we shall use a description of the Hoffman-Singleton graph (this description seems to be folklore, since it is well known; however, I could not find a reference) based on the following result, see [B11] or [C10].
4.2.3. RESULT. The thirtyfive lines of PG(3,2) can be represented by the thirtyfive triples of a set with seven elements, such that two lines
intersect iff the corresponding triples have one element in common.
REMARK. This result is directly related to the isomorphism of the groups PSL $(4,2)$ and the alternating group on eight symbols (see for instance [B4] or [C10]).

Now we construct the Hoffman-Singleton graph as follows. The vertices are the fifteen points and the thirtyfive lines of $\mathrm{PG}(3,2)$. Points are mutually non-adjacent; a point is adjacent to a line iff the point is on that line; two lines are adjacent iff the triples, which correspond with these lines according to the above result, are disjoint. It is an easy exercise to check that this construction indeed gives the desired strongly regular graph.
4.2.4. THEOREM. The Hoffman-Singleton graph has chromatic number four.

PROOF. Colour the fifteen points red. Fix two elements x and y of the 7-set of Result 4.2.3. Colour lines blue, if they correspond to a triple containing x. Of the remaining lines, colour those yellow, whose corresponding triple contains y, and colour the other ones green. From our definition it is obvious that this is a correct colouring of the Hoffman-Singleton graph.

GEWIRTZ [G1] showed existence and uniqueness of a strongly regular graph with parameters $(56,10,0,2)$. Before giving a description of the Gewirtz graph we first prove the following.
4.2.5. PROPOSITION. If the Gewirtz graph has two disjoint cocliques of size 16, then its chromatic number equals four.

PROOF. Assume that the Gewirtz graph has adjacency matrix

$$
A=\left[\begin{array}{ccc}
0 & A_{12} & A_{13} \\
A_{21} & 0 & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

where $A_{12}=A_{21}^{*}$ is square of size 16 . We know that A has three distinct eigenvalues, 10,2 and -4 . From 2.1 .5 it follows that A_{12}, A_{21}, A_{31} and A_{32}
have constant row sums equal to 4. Therefore the graph G_{3}, whose adjacency matrix is A_{33}, is a disjoint union of cycles. Suppose one of these cycles has c vertices. Partition A_{33} according to the vertices of this cycle, and the remaining ones. This induces a partition of A into sixteen block matrices, and the entries of the matrix

$$
B:=\left(\begin{array}{cccc}
0 & 4 & \frac{1}{4} c & 6-\frac{k}{4} c \\
4 & 0 & \frac{b}{4} c & 6-\frac{1}{4} c \\
4 & 4 & 2 & 0 \\
4 & 4 & 0 & 2
\end{array}\right)
$$

are the average row sums of these block matrices. We immediately see that the eigenvalues of B are

$$
\lambda_{1}(B)=10, \lambda_{2}(B)=2, \lambda_{3}(B)=\lambda_{4}(B)=-4 .
$$

However, we know that

$$
\lambda_{1}(\mathrm{~A})=10, \lambda_{2}(\mathrm{~A})=2, \lambda_{55}(\mathrm{~A})=\lambda_{56}(\mathrm{~A})=-4 .
$$

Hence the eigenvalues of B interlace the eigenvalues of A tightly, thus by 1.2.3.ii all block matrices have constant row sums. Therefore, te is an integer. This proves that each component of G_{3} is a cycle of even length. Thus G_{3} is bipartite, and therefore the whole graph is 4 -colourable.

We use the description of the Gewirtz graph given in [G2], where this graph is obtained as the complement of the block graph of a quasi-symmetric 2-(21,6,4) design with intersection numbers 0 and 2 (see Section 3.2).
4.2.6. THEOREM. The Gewirtz graph has chromatic number four.

PROOF. Let D be the quasi-symmetric 2-(21,6,4) design. It is clear that all blocks through a fixed point of D yield a coclique in our graph of size 16. To see that there is another coclique of the same size, disjoint from this one, we proceed as follows. D can be obtained from a 3-(22,6,1) design \tilde{D} (the extension of $\operatorname{PG}(2,4)$, see for instance [c6]) by deleting one point and all blocks through that point (i.e. D is a residual design of \tilde{D}). Take a block B of \tilde{D}, which is not a block of D. An elementary counting argument (see [c2]) shows that there are 16 blocks of D which are disjoint
from B, and which mutually have 2 points in common. Fence these 16 blocks provide a coclique of size 16 in the Gewirtz graph, which, if B has been chosen appropiately, is disjoint from our previous coclique. Application of 4.2.5 completes the proof.

Three 2-(16,6,2) designs on a common point set are called linked if any two blocks from distinct designs have 3 or 1 points in common (see [c1] or [M7]). Let N_{1}, N_{2} and N_{3} be incidence matrices of three linked $2-(16,6,2)$ designs. Then we know that

$$
N_{i}^{*} J=N_{i} J=6 J, \quad N_{i}^{*} N_{i}=N_{i} N_{i}^{*}=2 J+4 I
$$

for $i=1,2,3$. Moreover, for $i, j=1,2,3, i \neq j$, the matrix

$$
N_{i j}:=\frac{1}{2}\left(3 J-N_{i}^{*} N_{j}\right)
$$

is a (0,1) matrix by definition. In fact, $N_{i . j}$ is the incidence matrix of a 2-(16,6,2) design, since

$$
N_{i j} N_{i j}^{*}=\frac{3}{2}\left(3 J-N_{i}^{*} N_{j}\right)\left(3 J-N_{j}^{*} N_{i}\right)=2 J+4 I
$$

by use of the above formulas. Define

$$
N_{i i}:=1_{2} J-2 I, \quad N_{0 j}:=N_{j}, N_{j O}:=N_{j}^{*}
$$

for $i=0,1,2,3, j=1,2,3$. Then

$$
N_{i, j}=N_{j i}^{*}, \quad N_{i j} N_{j k}=3 J-2 N_{i j k}
$$

for i,j,k=0,1,2,3, as follows readily from the formulas above. This implies that

$$
A=\left[\begin{array}{cccc}
0 & N_{01} & N_{02} & N_{03} \\
N_{10} & 0 & N_{12} & N_{13} \\
N_{20} & N_{21} & 0 & N_{23} \\
N_{30} & N_{31} & N_{32} & 0
\end{array}\right]
$$

is a symmetric matrix, which satisfies

$$
A^{2}=18 I+2 A+6(J-I-A)
$$

Hence A is the adjacency matrix of a strongly regular graph with parameters $(64,18,2,6)$, which is 4-colourable. We call this graph the incidence graph of the three linked designs.
4.2.7. THEOREM. Let G be a strongly regular graph with parameters $(64,18,2,6)$ and chromatic number four. Then G is the incidence graph of three linked 2-(16,6,2) designs.

PROOF. Suppose G has adjacency matrix

$$
A=\left[\begin{array}{cccc}
0 & A_{01} & A_{02} & A_{03} \\
A_{10} & 0 & A_{12} & A_{13} \\
A_{20} & A_{21} & 0 & A_{23} \\
A_{30} & A_{31} & A_{32} & 0
\end{array}\right]
$$

A has eigenvalues 18,2 , and -6 of multiplicity 1,45 and 18 , respectively. By 2.1.5, $A_{i j}$ is square of size 16 , and all row and column sums of $A_{i j}$ are equal to 6 , for $i, j=0,1,2,3, i \neq j$. This implies that A and

$$
K:=I_{4} \otimes J_{16}
$$

have a common basis of eigenvectors. Using this, we obtain that

$$
\tilde{A}:=A-2 I+l_{2} K
$$

has eigenvalues 24,0 and -8 of multiplicity 1,48 and 15 , respectively. Thus

$$
\operatorname{rank} \tilde{\mathrm{A}}=16
$$

For $i=0,1,2,3$, put $A_{i i}:=\frac{1}{2 u}_{16}-2 x_{16}$. Then

$$
\operatorname{rank} A_{i i}=16 \quad \text { and } \tilde{A}=\left[\begin{array}{ccc}
A_{00} & \cdots & A_{03} \\
\vdots & & \vdots \\
A_{30} & \cdots & A_{33}
\end{array}\right]
$$

From rank $A_{00}=\operatorname{rank} \tilde{A}$, it follows that $A_{i 0} A_{00}^{-1} A_{0 j}=A_{i j}$ for $i, j=1,2,3$, on applying 1.1.3. By use of

$$
A_{00}^{-1}=\left(h_{2 J}-2 I\right)^{-1}=(1 / 24) J-2_{2} I \quad \text { and } \quad A_{i J} J=6 J
$$

this implies that for $i, j=1,2,3$
(*)

$$
\frac{3}{2} J-\frac{1}{2} A_{0 i}^{*} A_{0 j}=A_{i j}
$$

This completes the proof. Indeed, if $i=j$, then ($*$) implies $A_{01} A_{01}^{*}=2 J+4 I$, showing that A_{01} is the incidence matrix of a $2-(16,6,2)$ design, and if $i \neq j$, then ($*$) reflects that the designs represented by A_{01}, A_{02} and A_{03} are linked, and that $A_{i j}$ is of the desired form for $i, j=1,2,3$.

MATHON [M7] proved that there axe exactly twelve non-isomorphic triples of linked 2-(16,6,2) designs, which lead to eleven non-isomorphic incidence graphs. Hence there are precisely eleven non-isomorphic 4-colourable strongly regular graphs with parameters $(64,18,2,6)$. It is fairly easy to show that one of these graphs is the point graph of the known generalized quadrangle of order $(3,5)$ (see Chapter 5; a construction is described in 6.2.3). For completeness we list in Appendix II the systems of three linked 2-(16,6,2) designs, which provide the ten remaining graphs; these systems are taken from Mathon's paper. It is not known whether there are any further strongly regular graphs with these parameters, which are not 4colourable.

Finally, the next theorem deals with the last set of parameters of Lemma 4.1.4.
4.2.8. THEOREM. There exists no 4-colourable strongly regular graph with parameters $(77,16,0,4)$.

PROOF. Let G be a strongly regular graph with parameters (77, 16, 0,4). Then G has eigenvalues 16,2 and -6 of multiplicity 1,55 and 21 , respectively. Suppose G is 4-colourable, and let c be the size of the largest colour class. Then $c \geq\lceil 77 / 4\rceil=20$. Let

$$
A=\left[\begin{array}{cc}
0 & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where 0 is square of size c, be the adjacency matrix of G. Then G_{2}, the graph with adjacency matrix A_{22}, is 3-colourable. From 2.1.7 it follows that $c \leq \alpha(G) \leq 21$, and that $c=\alpha(G)=21$ implies that G_{2} is the Gewirtz graph.

Since the Gewirtz graph has chromatic number four, G cannot be coloured with four colours if $c=21$ (this shows that G is 5 -colourable if $\alpha(G)=21$, which is the case for the known strongly regular graph with these parameters; see[G2]): Suppose $c=20$. Now we apply 1.3 .3 to $A-(2 / 11)$, so as to obtain that

$$
\lambda_{57}\left(A_{22}-\frac{2}{11} J\right)=-6, \quad \lambda_{56}\left(A_{22}-\frac{2}{11} J\right)=-4
$$

Now 1.3.1 gives

$$
\lambda_{57}\left(A_{22}\right) \geq-6, \quad \lambda_{56}\left(A_{22}\right) \geq-4
$$

On the other hand, the average row sum of A_{22} equals $592 / 57$. Hence by 1.2.3.i (take $m=1$) we have

$$
\lambda_{1}\left(A_{22}\right) \geq 592 / 57
$$

Now the sharpened version of Hoffman's inequality for the chromatic number (see Section 2.2), applied to the 3-colourable graph G_{2} gives

$$
-\lambda_{57}\left(A_{22}\right)-\lambda_{56}\left(A_{22}\right) \geq \lambda_{1}\left(A_{22}\right)
$$

This is a contradiction, proving the theorem.

4.3. RECAPITULATION.

A1. cases of Lemma 4.1.4 have been treated now. The only thing left is to state the main theorem.
4.3.1. THEOREM. If G is a 4-colourable strongly regular graph, then one of the following hotds:
i. $\quad \gamma(G)=2$, and G is a regular complete bipartite graph, or a disjoint union of edges;

1i. $\quad \gamma(G)=3$, and G is a regular complete 3-partite graph, a disjoint union of triangles, the pentagon, the line graph of $\mathrm{K}_{3,3}$, or the Petersen graph;
i土i. $\quad \gamma(G)=4$, and G is a regular complete 4 -partite graph, a disjoint union of K_{4} ' s, the complement of the line graph of K_{6}, the line graph of $\mathrm{K}_{4,4}$, or its complement, the Shrikhande graph, the

Clebsch graph, the Hoffman-Singleton graph, the Gewirts graph, or one of the eleven incidence graphs of three linked 2-(16,6,2) designs.

CHAPTER 5

GENERALIZED POLYGONS

5.1. INTRODUCTION

A generalized n-gon of order $(s, t), \approx>0, t>0$, is a $1-(v, s+1, t+1)$ design whose incidence graph has girth 2 n and diameter n (see [T4], [D3], [F1]. [H12] or Appendix I). A generalized polygon is a generalized n-gon for some n.

Generalized n-gons were introduced by TITS [T4]. An important result is the theorem of FEIT \& HIGMAN [F1] (see also [H12], [K2]), which states that a generalized n-gon of order (s, t) is an ordinary n-gon ($s=t=1$) or $n \in\{2,3,4,6,8,12\}$.

For a generalized polygon we speak of lines rather than blocks. We shall often omit the adjective "generalized". If D is a polygon of order (s, t), then we immediately see that the dual of D (points and lines interchanged) is a polygon of order (t, s).

Suppose N is the incidence matrix of the incidence graph of an n-gon of order (s, s). Then N is the incidence matrix of a $2 n$-gon of order ($1, s$). Conversely, it can be proved easily that all generalized n-gons of order $(1, s), s>1$, are of this form. FEIT \& HIGMAN [F1] also proved that $s=1$ or $t=1$ for a 12-gon of order (s, t), thus in a sense generalized 12-gons are the same as generalized hexagons of order (s, s). Generalized n-gons of order (s, t) with $s>1, t>1$, are called thick.

A generalized 2-gon is degenerate (every point is incident with every line). It is not difficult to verify that a generalized triangle of oxder (s, t) is a $2-\left(s^{2}+s+1, s+1,1\right)$ design, which is the same as a projective plane of order s (thus $s=t$). So 3-gons of order (s, s) exist for every prime power s. For projective planes see DEMBOWSKI [D3] or HUGHES \& PIPER [H16].

Thick generalized quadrangles of order (s, t) are known to exist for $(s, t),(t, s)=(q, q),\left(q, q^{2}\right),\left(q^{2}, q^{3}\right),(q-1, q+1)$, for every prime power q (q $\ddagger 2$ for the last case). Constructions are due to AHRENS \& SZEKERES [A2], HAL工 [H6], KANTOR [K1], PAYNE [P1], [P2] and TITS [T4], see also [D3], [m3]. HIGMAN [H11] showed that

$$
t \leq s^{2} \leq t^{4}
$$

for thick quadrangles of order (s, t). Several other proofs of this inequality have been found, see [C3], [C5], [H12], [P6] and Section 3 of this chapter; some of these proofs also lead to consequences for the case of equality. There is an extended literature on generalized quadrangles. We mention the survey papers [P4], [T1] and [T3].

Thick generalized hexagons are known to exist for the orders (s^{3}, s), (s, s) and (s, s^{3}) for prime power s, see [74]. A necessary condition for existence of a hexagon of order (s, t) is that st be a square, see [F1]. HAEMERS \& ROOS [H3] showed that

$$
s \leq t^{3} \leq s^{9}
$$

for thick hexagons of order (s, t). This inequality, together with a result for the case of equality, will be the subject of the next section. For more information about generalized hexagons we refer to [M4], [R1], [S1], [T4], [Y1].

Thick generalized octagons of order (s, t) are only known to exist for $(t, s),(s, t)=\left(2^{m}, 2^{2 m}\right)$, for odd m. The construction is due to J. Tits, see [D3]. A necessary condition for existence of an octagon of order (s, t) is that 2st be a square, see [F1]. HIGMAN [H12] showed that

$$
s \leq t^{2} \leq s^{4}
$$

for thick octagons. There is hardly any literature about octagons.

Let G be a connected graph of diameter m. For vertices x and y of G, let $\rho(x, y)$ denote the distance between x and y. For $i, j=0, \ldots, m$, define

$$
p_{i j}(x, y):=|\{z \mid \rho(x, z)=i \& \rho(y, z)=j\}|
$$

If $p_{i j}(x, y)$ depends on i, j and $\rho(x, y)$ only, then G is called distance regular $\left(\right.$ see $[B 5]$), and we write $p_{i j}^{k}:=p_{i j}(x, y)$ where $k:=\rho(x, y)$, and $d_{i}:=p_{j i,}^{0}$, for $i_{i} j=0, \ldots, m$. The numbers $p_{i j}^{k}$ are called the intersection numbers of G. Clearly, a distance regular graph is regular of degree d_{1}, and a distance regular graph of diameter 2 is the same as a connected strongly regular graph (in general, a distance regular graph of diameter m is equivalent to a metric association scheme with m classes, see [D1]). For a distance regular graph G of diameter m, we define the matrices A_{0}, \ldots, A_{m}, indexed by the vertices of G, by

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & \text { if } \rho(x, y)=i \\ 0 & \text { otherwise }\end{cases}
$$

cleaxly, $A_{0}=I, \sum_{i=0}^{m} A_{i}=J$ and A_{1} is the adjacency matrix of G. Moreover,

$$
\left(A_{i} A_{j}\right)_{x y}=p_{i j}^{p(x, y)}
$$

implies

$$
A_{i} A_{j}=\sum_{k=0}^{m} p_{i j}^{k} A_{k}, \quad A_{i} J=d_{i} J, \quad \text { for } i, j=0, \ldots, m
$$

These equations show that A_{0}, \ldots, A_{m} generate an $m+1$ dimensional algebra. This type of algebra turns out to be useful in the study of distance regular graphs and similar configurations, see [B5], [B8], [D1], [H12], [w1].

The point graph of a generalized n-gon D is the graph whose vertices are the points of D, two points being adjacent whenever they are on one line of D. It is well known (see [D3], [y2]) that the point graph G of an n-gon of order (s, t) is distance regular of diameter $\left[\frac{l_{2}}{} n\right\rfloor$, and that the intersection numbers of G can be expressed in terms of s and t (in the forthcoming sections of this chapter we shall exhibit this result for $n=6$ and $n=4$).

A graph G is called geometric for an n-gon if G is the point graph of an n-gon. A graph G is called pseudo-geometrio for on n-gon if G is distance regular of diameter $\left\lfloor\frac{l_{2}}{} n\right\rfloor$ and its intersection numbers are such that G could be geometric, that is, there exist integers s and t, such that the intersection numbers of G depend on s and t as for geometric graphs.

Let D be a generalized polygon. An element of D is a point or a line of D. A sequence of $\ell+1$ elements $e_{0, \ldots, e_{\ell}}$, is called a path of length ℓ between e_{0} and e_{ℓ}, if e_{i} is incident with e_{i-1} for $i=1, \ldots, \ell$ (thus in e_{0}, \ldots, e_{2}, points and lines alternate). The distance between elements e_{0} and e_{l} of D_{l} denoted by $\lambda\left(e_{0}, e_{\ell}\right)$, is the length of the shortest path between e_{0} and e_{ℓ}. Thus, if e_{0} and e_{ℓ} are both points, then $\lambda\left(e_{0}, e_{l}\right)$ is twice the distance between e_{0} and e_{l} in the point graph of D.

In the next two sections we shall describe a method which for quadrangles and hexagons leads to the inequalities mentioned above, and to the
results in case of equality (unfortunately, this method does not work for octagons). The same method also yields a new proof of a theorem of CAMERON, GOETHALS \& SEIDEL [C5], which states that a pseudo-geometric graph for a quadrangle of order $\left(s, s^{2}\right)$ is geometric.

5.2. AN INEQUALITY FOR GENERALIZED HEXAGONS

For $n=6$ the definition of a generalized n-gon is equivalent to the following one:
5.2.1. DEFINITION. A generalized hexagon of order (s, t) is an incidence structure with points and lines, such that
i. each line has $s+1$ points,
ii. each point is on $t+1$ lines,
iii. two distinct lines meet in at most one point,
iv. for any non-incident point-Iine pair x, L there is a unique path of length <6 between \times and L.

Throughout this section H will denote a generalized hexagon of order (s, t). By use of the above definition it is straightforward to count the intersection numbers $p_{i j}^{k}$ of the point graph of H. They are exhibited in Table 1. The amount of work in computing these numbers can be reduced by use of the equalities

$$
\sum_{i=0}^{3} p_{i j}^{k}=d_{j}, \quad \sum_{j=0}^{3} d_{j}=v=(s+1)\left(s^{2} t^{2}+s t+1\right)
$$

This counting also shows that the point graph of a generalized hexagon is distance regular.

TABLE 1

k	p_{11}^{k}	p_{12}^{k}	p_{22}^{k}	p_{13}^{k}	p_{23}^{k}	p_{33}^{k}
0	$s(t+1)$	0	$s^{2} t(t+1)$	0	0	$s^{3} t^{2}$
1	$s-1$	$s t$	$s t(s-1)$	0	$s^{2} t^{2}$	$s^{2} t^{2}(s-1)$
2	1	$s-1$	$s\left(t^{2}+t-1\right)$	$s t$	$s t(s-1)(t+1)$	$s t\left(s^{2} t-s t-s+t\right)$
3	0	$t+1$	$(s-1)(t+1)^{2}$	$(s-1)(t+1)$	$(t+1)\left(s^{2} t-s t-s+t\right)$	$t(t-1)\left(s^{2} t-s+t\right)$

Let A_{0}, \ldots, A_{3} be the matrices of the point graph of H. Define

$$
E:=A_{2}-(s-1) A_{1}+\left(s^{2}-s+1\right) I-\frac{1}{s+1} J
$$

Then we have the following lemma.
5.2.2. LEMMA. The eigenvalues of E are

$$
0 \text { and } s^{2}+s t+t^{2}
$$

of multiplicity

$$
1+s t(s+1)(t+1) \frac{s^{2} t+s t^{2}-s t+s+t}{s^{2}+s t+t^{2}} \text { and } s^{3} \frac{s^{2} t^{2}+s t+1}{s^{2}+s t+t^{2}},
$$

respectively.

PROOF. It is clear that $E J=0$, and that

$$
\left(E-\left(s^{2}-s+1\right) I+\frac{1}{s+1} J\right)^{2}=(s-1)^{2} A_{1}^{2}-(s-1)\left(A_{1} A_{2}+A_{2} A_{1}\right)+A_{2}^{2}
$$

From $A_{1} A_{j}=\sum_{k=0}^{3} p_{i j}^{k} A_{k}$ and Table 1 we have

$$
\begin{aligned}
& A_{2}^{2}=s^{2} t(t+1) I+s t(s-1) A_{1}+\left(s t^{2}+s t-s\right) A_{2}+(s-1)(t+1)^{2} A_{3} \\
& A_{1} A_{2}=A_{2} A_{1}=s t A_{1}+(s-1) A_{2}+(t+1) A_{3} \\
& A_{1}^{2}=s(t+1) I+(s-1) A_{1}+A_{2}
\end{aligned}
$$

By use of $A_{1}+A_{2}+A_{3}=J-I$ and $E J=0$, this leads to

$$
E\left(E-\left(s^{2}+s t+t^{2}\right) I\right)=0
$$

Hence 0 and $s^{2}+s t+t^{2}$ are the eigenvalues of E. Finally,

$$
\operatorname{trace} \mathrm{E}=\mathrm{v}\left(s^{2}-s+1-(s+1)^{-1}\right)=s^{3}\left(s^{2} t^{2}+s t+1\right)
$$

yields the multiplicities.

REMARK. In the terminology of DELSARIE [D1], the matrix $\left(s^{2}+s t+t^{2}\right)^{-1} E$ is a minimal idempotent in the Bose-Mesner algebra of the association scheme on the points of H. The underlying theory provides a moxe elegant
way to prove the previous lemma.

Let I_{0} be a line of H, let $L_{i}(i=1,2)$ denote the set of points at distance $2 i+1$ from L_{0}. Partition E according to L_{0}, L_{1} and L_{2} :

$$
E=\left[\begin{array}{lll}
E_{00} & E_{01} & E_{02} \\
E_{10} & E_{11} & E_{12} \\
E_{20} & E_{21} & E_{22}
\end{array}\right]
$$

so $\mathrm{E}_{\mathrm{i} j}=\mathrm{E}_{\mathrm{ji}}^{*}$ for $\mathrm{i}, \mathrm{j}=0,1,2$.
5.2.3. LEMMA. The eigenvalues of E_{11} are $0, \mathrm{~s}^{2}$ and st of multiplicity $s t-s+t, t\left(s^{2}-1\right)$ and s, respectively.

PROOF. Let $A_{1,11}$ and $A_{2,11}$ be the submatrices of A_{1} and A_{2}, respectively, corresponding to L_{1}. We easily see that without loss of generality

$$
I+A_{1,11}=I_{s t+t} \otimes J_{s} \quad \text { and } \quad I+A_{1,11}+A_{2,11}=I_{s+1} \otimes J_{s t}
$$

holds, hence

$$
E_{11}=I_{s+1} J_{s t}-s\left(I_{s t+t} * J_{s}\right)+s^{2} I-\frac{1}{s+1} J
$$

From the eigenvalues of $I_{s+1} * J_{s t}, I_{s t+t} * J_{s}, I$ and J, and the fact that these four matrices have a common basis of eigenvectors, the eigenvalues of E_{11} and their multiplicities follow.
5.2.4. THEOREM. A generalized hexagon with $s+1$ points on a line and $t+1$ lines through a point satisfies

```
1. t
ii. }s\leq\mp@subsup{t}{}{3}\mathrm{ , or t=1.
```

proor. From 5.2.2 and 5.2.3 it follows that

$$
\operatorname{rank} E=s^{3}\left(s^{2} t^{2}+s t+1\right) /\left(s^{2}+s t+t^{2}\right), \quad \operatorname{rank} E_{11}=s^{2} t+s-t
$$

Since rank $E_{11} \leq \operatorname{rank} E$, we have

$$
\left(s^{2} t+s-t\right)\left(s^{2}+s t+t^{2}\right) \leq s^{3}\left(s^{2} t^{2}+s t+1\right)
$$

This yields

$$
t^{2}\left(s^{2}-1\right)\left(t-s^{3}\right) \leq 0
$$

Thus $s=1$ or $t \leq s^{3}$. Applying this result to the dual of H yields (ii).

For another proof of this inequality see [H3]. Next we shall derive some additional regularity for hexagons meeting the above bound. To achieve this we need some properties of the matrices $E_{i j}$. First we observe that

$$
\left(E_{02}\right)_{x y}= \begin{cases}1-1 /(s+1) & \text { if } \lambda(x, y)=4 \\ -1 /(s+1) & \text { otherwise }\end{cases}
$$

as follows directly from the definition of E and E_{02}. This implies

$$
\left(E_{02}^{*} E_{02}\right)_{x y}= \begin{cases}1-1 /(s+1) & \text { if } \lambda(x, z)=\lambda(y, z) \text { for some } z \in L_{0} \\ -1 /(s+1) & \text { otherwise. }\end{cases}
$$

Hence, without loss of generality

$$
\begin{aligned}
& E_{02}=j^{*} \otimes I_{s+1}-\frac{1}{s+1} J_{r(s+1)} \\
& E_{02}^{*} E_{02}=J_{r} \otimes I_{s+1}-\frac{1}{s+1} J_{r(s+1)}
\end{aligned}
$$

where $x:=s^{2} t^{2}$. Now the positions of the points of L_{2} relative to the points of L_{0} give rise to a partition of E_{22} into $(s+1)^{2}$ square block matrices $F_{i j}$ of size $s^{2} t^{2}$:

$$
\mathrm{E}_{22}=\left[\begin{array}{ccc}
\mathrm{F}_{00} & \cdots & \mathrm{~F}_{0 \mathrm{~s}} \\
\vdots & & \vdots \\
\mathrm{~F}_{\mathrm{s0}} & \cdots & \mathrm{~F}_{\mathrm{ss}}
\end{array}\right]
$$

It is a matter of straightforward counting to see that $F_{i j}$ has constant row sums equal to $t^{2}\left(s-1+\delta_{i j}\right)-s^{2} t^{2} /(s+1)$ for $i, j=0, \ldots, s$. This, and the structure of E_{02} imply that

$$
E_{22} E_{02}^{*}=t^{2} E_{02}^{*}
$$

The following identities are now quickly seen to be true:

$$
\begin{aligned}
& E_{00}=s^{2}\left(I-\frac{1}{s+1} J\right), E_{i j} J=0 \text { for } i, j=0,1,2, \\
& E_{00}^{2}=s^{2} E_{00}, E_{00} E_{02}=s^{2} E_{02}, E_{02} E_{02}^{*}=t^{2} E_{00} .
\end{aligned}
$$

5.2.5. LEMMA. The matrix

$$
\tilde{E}_{22}:=E_{22}-s^{-2} E_{02}^{*} E_{02}
$$

has eigenvalues

$$
\text { 0, st + } t^{2} \text { and } s^{2}+s t+t^{2} \text {; }
$$

the multiplicity of $\mathrm{s}^{2}+\mathrm{st}+\mathrm{t}^{2}$ equals

$$
t^{2}\left(s^{2}-1\right)\left(s^{3}-t\right) /\left(s^{2}+s t+t^{2}\right) .
$$

PROOF. Define

$$
U:=\left[\begin{array}{l}
E_{00} \\
E_{20}
\end{array}\right], \quad E^{\prime}:=\left[\begin{array}{ll}
E_{00} & E_{02} \\
E_{20} & E_{22}
\end{array}\right] .
$$

Using the above formulas we obtain

$$
\begin{equation*}
U U^{*} U=s^{2}\left(s^{2}+t^{2}\right) U, E^{\prime} U=\left(s^{2}+t^{2}\right) U . \tag{*}
\end{equation*}
$$

Since rank $U=s$, the last formula reflects that the columns of U span an s-dimensional eigenspace of E^{\prime} corresponding to the eigenvalue $s^{2}+t^{2}$. Thanks to 5.2 .2 and 5.2 .3 the elgenvalues of E and E_{11} are known. By use of 1.3.3 we obtain that the non-zero eigenvalues of E ' are

$$
s^{2}+t^{2}, s t+t^{2} \text { and } s^{2}+s t+t^{2},
$$

of multiplicity

$$
s, t\left(s^{2}-1\right) \text { and } t^{2}\left(s^{2}-1\right)\left(s^{3}-t\right) /\left(s^{2}+s t+t^{2}\right)
$$

respectively. Now from (*) it follows that

$$
E^{\prime}-s^{-2} u^{*} u
$$

has just two distinct non-zero eigenvalues $s t+t^{2}$ and $s^{2}+s t+t^{2}$, with the
same multiplicities as before. On the other hand one easily verifies that

$$
E^{\prime}-s^{-2} u^{*} u=\left[\begin{array}{cc}
0 & 0 \\
0 & \tilde{E}_{22}
\end{array}\right]
$$

which proves the lemma.

The important thing in the last lemma is that the eigenvalue $s^{2}+s t+t^{2}$ disappears if $t=s^{3}$. In order to give a combinatorial interpretation of this phenomenon, we need two definitions. For a line L and points x and y of a generalized hexagon we define:

$$
p_{i j k}(L, x, y):=|\{z \mid \lambda(z, L)=2 i+1, \lambda(z, x)=2 j, \lambda(z, y)=2 k\}|
$$

for $i=0,1,2, j, k=0,1,2,3$; the configuration induced by L, x and y is the configuration formed by the points and the lines, which are on a shortest path between L and x, L and y, or x and y. For example, Figure 3 gives all possible configurations induced by L, x and y if $\lambda(L, x)=\lambda(L, y)=5$ and $\lambda(x, y)=4$.

FIGURE 3
5.2.6. THEOREM. If a generalized hexagon has order $\left(s, s^{3}\right)$, then $p_{i j k}(L, x, y)$ only depends on i, j, k and the configuration induced by L, x and y.

PROOF. First observe that

$$
\sum_{i=0}^{2} p_{i j k}(L, x, y), \sum_{j=0}^{3} p_{i j k}(L, x, y) \text { and } \sum_{k=0}^{3} p_{i j k}(L, x, y)
$$

only depend on i, j, k and the configuration induced by L, x and y (in fact, $\sum_{i=0}^{2} p_{i j k}(L, x, y)=p_{j k}^{p(x, y)}$). Subsequently, we verify (this is an easy but tiresome job), that the theorem is true if $i=0$, or $j \leq 1, o r k \leq 1$, and also if $\lambda(L, x)<5$ or $\lambda(L, y)<5$. Thus it suffices to prove the theorem for $i=j=k=2, \lambda(L, x)=\lambda(L, y)=5$. From the definitions of E, E_{22} and $p_{i j k}(L, x, y)$ it follows that

$$
\begin{aligned}
& \left(\left(E_{22}-\frac{1}{s+1} J\right)^{2}\right)_{x y}=\left(s^{2}-s+1\right)^{2} p_{200}\left(L_{0}, x, y\right)+ \\
& -2(s-1)\left(s^{2}-s+1\right) p_{201}\left(L_{0}, x, y\right)+2\left(s^{2}-s+1\right) p_{202}\left(L_{0}, x, y\right)+ \\
& +(s-1)^{2} p_{211}\left(L_{0}, x, y\right)-(s-1)\left(p_{212}\left(L_{0}, x, y\right)+p_{221}\left(L_{0}, x, y\right)\right)+ \\
& +p_{222}\left(L_{0}, x, y\right)
\end{aligned}
$$

Now take $t=s^{3}$. Lemma 5.2 .5 implies that $\widetilde{\mathrm{E}}_{22}$ has just two distinct eigenvalues 0 and $s^{4}\left(1+s^{2}\right)$. Hence

$$
\tilde{E}_{22}^{2}=s^{4}\left(1+s^{2}\right) \tilde{E}_{22}
$$

Using the formulas for the matrices $E_{i j}$ this yields

$$
\left(E_{22}-\frac{1}{s+1} J\right)^{2}=s^{4}\left(1+s^{2}\right) E_{22}-s^{2} E_{02}^{*} E_{02}+s^{8}(s+1)^{-1} J
$$

This implies that $\left(\left(E_{22}-(s+1)^{-1} J\right)^{2}\right)$ only depends on x, y and the configuration induced by I_{0}, x and y. Combination with the previous steps yields that for $x, y \in L_{2}, p_{222}\left(L_{0}, x, y\right)$ only depends on the configuration induced by L_{0}, x and y. This completes the proof.

With the available formulas the values of $p_{i j k}(L, x, y)$ are readily computed. For example, in Figure 3 we give $p_{222}(L, x, y)$ for the given configurations.

RONAN [R1], [R2] and THAS [T2], give sufficient conditions for a generalized hexagon to be one of the known ones. One hopes of course that a result like the one above will imply such a sufficient condition. Unfor-
tunately, the gap between the condition we have and the condition we need, still seems to be too large to close up. It is worthwhile to remark that the known hexagons of order (s, t) with $t \neq s^{3}$ do not satisfy the condition of the above theorem.

Finally we remark that similar techniques yield the inequality (see MATHON [M6])

$$
t \leq s^{3}+t_{2}\left(s^{2}-s+1\right)
$$

for a regular near hexagon with parameters (s, t, t_{2}), as introduced by SHULT \& YANUSHKA [S7] (see also [Y2]). If $t_{2}=0$, then a near hexagon is the same as a generalized hexagon.

5.3. GEOMETPRIC AND PSEUDO-GEOMETRIC GRAPHS FOR GENERAIIZED POLYGONS

In this section we deal with the question whether a pseudo-geometric graph is geometric for a generalized n-gon. It is clear that for $n \in\{2,3\}$ the point graph of an n mon is the complete graph. Assume G is the point graph of an $n-g o n ~ D$ with $n>3$. Then three points of D which form a triangle in G, must lie on one line of D. This implies that the graph o q cannot be an induced subgraph of G. The next result states that the converse is also true.
5.3.1. LEMMA. For a generalized n-gon with $n>3$, a pseudo-geometric graph G is geometric iff $\propto \infty$ is not an induced subgraph of G.

PROOF. Only the "if" part remains to be proved. Take n even (the case n odd is not difficult, but superfluous because of the Feit-Higman theorem) . Let D be the incidence structure whose points are the vertices of G, and whose lines are the cliques ($=$ complete subgraphs) of G of size $p_{11}^{1}+2$. For two adjacent vertices of G, there are p_{11}^{1} vertices adjacent to both, but all these vertices axe mutually adjacent since otherwise $\alpha, 0$ occurs. This means that every edge of G determines a unique line of D. This proves that D is a $1-(v, s+1, t+1)$ design, where $s=p_{11}^{1}+1$ and $t=p_{1, n-1}^{n}-1$.
Let $G^{\prime \prime}$ denote the incidence graph of D. Then, because $p_{i, k-i}^{k}=1$ for $k=0, \ldots, \frac{1}{2} n-1, i=0, \ldots, k$, the girth of G^{\prime} is at least $2 n$. Now, since each point of D is incident with $p_{1, n-1}^{n}$ lines, it follows that the distance between a point and a line of D (regarded as vertices of G^{\prime}) is at most
$\mathrm{n}-1$. Hence G^{\prime} has diameter n and girth 2 n . This proves that D is an $\mathrm{n}-\mathrm{gon}$, whose point graph is G.

A direct consequence of this lemma (which was pointed out to me by D.E. Taylor) is the following.
5.3.2. COROLLARY, For a generalized n-gon with $n>4$, a pseudo-geometric graph is geometric.

PROOF. If $n>4$, then $p_{11}^{2}=1$. Hence $\propto<0$ does not occur in a pseudogeometric graph. Now 5.3.1 gives the result.

What remains to be studied are generalized quadrangles. A very easy counting argument shows that the point graph G of a quadrangle of order (s, t) is strongly regular with intersection numbers $p_{11}^{1}=s-1, p_{11}^{2}=t+1$, $p_{11}^{0}=d_{1}=s(t+1)$ (this proves that the point graph of an n-gon is distance regular, in the case $n=4$). This implies (see [C5], [T1] or Appendix I) that the eigenvalues of G, and hence the eigenvalues of any pseudo-geometric graph for a quadrangle of order (s, t), are

$$
s(t+1), s-1 \text { and }-t-1
$$

of multiplicity

$$
1, s^{2}(s t+1) /(s+t) \text { and } s t(s+1)(t+1) /(s+t)
$$

respectively.
There exist many pseudo-geometric graphs for quadrangles, which are not geometric. The Shrikhande graph (see cover) is one of them. More examples (including an infinite family) are given in Section 6.2. The following theorem, which is due to CAMERON, GOETHALS \& SEIDEL [C5], gives a sufficient condition for a pseudo-geometric graph to be geometric, as well as the extension of Higman's inequality to pseudo-geometric graphs for generalized quadrangles.
5.3.3. THEOREM. Let G be a pseudo-geometric graph for a thick genevalized quadrangle of order (s, t). Then
i. $\quad t \leq s^{2}$,
ii. if equality holds, then \mathbf{G} is geometric,
iii. equality implies that all subconstituents of G are strongly regular.

PROOF. Let A be the adjacency matrix of G. Define

$$
E:=-(s+1) A+\left(s^{2}-1\right) I+J
$$

Then from the eigenvalues of A it follows that E has just one non-zero eigenvalue $(s+1)(s+t)$ of multiplicity $s^{2}(s t+1) /(s+t)$. Hence
(*) $\quad \operatorname{rank} E=s^{2}(s t+1) /(s+t)$.
Lat x be a vertex of G. Partition A and E according to x; the vertices adm jacent to x, and the vertices not adjacent to x :

$$
A=\left[\begin{array}{lll}
0 & j^{*} & 0 \\
j & A_{11} & A_{12} \\
0 & A_{21} & A_{22}
\end{array}\right], \quad E=\left[\begin{array}{ccc}
s^{2} & -s^{*} & j^{*} \\
-s j & E_{11} & E_{12} \\
j & E_{21} & E_{22}
\end{array}\right]
$$

where $A_{12}=A_{21}^{*}$ and $E_{12}=E_{21}^{*}$. For $i=1,2$, let G_{i} be the graph with adjacency matrix $A_{i i}$ (so G_{i} is a subconstituent of G). Then G_{1} has $s(t+1)$ vertices, and is regular of degree $p_{11}^{1}=s-1$. Hence $s-1$ is an eigenvalue of A_{11} of multiplicity c, say. It is known (see [B5], [C12] or Appendix I) that c equals the number of components of G_{1}. Clearly each component has at least s vertices. Hence
(**)

$$
c s \leq s(t+1)
$$

The matrices A_{11}, I and J have a common basis of eigenvectors. Using this it follows that E_{11} has an eigenvalue 0 of multiplicity $c-1$ (one of the eigenvalues s-1 of A_{11} corresponding to the eigenvector j leads to the eigenvalue $s(t+1)$ of $\left.E_{11}\right)$. Hence

$$
\operatorname{rank} E_{11}=s(t+1)-(c-1)
$$

Now using (*) and (**) we have

$$
s(t+1)-t \leq \operatorname{rank} E_{11} \leq \operatorname{rank} E=s^{2}(s t+1) /(s+t)
$$

This yields

$$
t(s-1)\left(t-s^{2}\right) \leq 0
$$

proving (i). Suppose equality holds. Then we must have equality in (**), which means that G_{1} is a disjoint union of complete graphs on s vertices. Since x is arbitrary, this yields that α o does not occur in G. Now (ii) follows on applying 5.3.1.

Since the disjoint union of complete graphs of the same size is strongly regular, it only remains to be proved that G_{2} is strongly regular. This we shall prove analogously to the proof of 5.2 .5 . We know that the eigenvalues of E_{11} are $0, s(s+1)$ and $s\left(s^{2}+1\right)$ of multiplicity $s^{2},(s-1)\left(s^{2}+1\right)$ and 1 . respectively. Now using 1.3 .3 and the eigenvalues of E, we obtain that the matrix

$$
E^{\prime}:=\left[\begin{array}{ll}
s^{2} & j^{*} \\
j & E_{22}
\end{array}\right]
$$

has eigenvalues $0, s^{2}(s+1)$ and $2 s^{2}$, where $2 s^{2}$ is a simple eigenvalue with eigenvector $\left[s^{2} j^{*}\right]^{*}$. Hence E_{22}, and also A_{22}, has just two distinct eigenvalues not belonging to the eigenvector j. This proves that G_{2} is strongly regular.

From (iii) of the above theorem it follows that the number of points adjecent to three mutually non-adjacent points of a quadrangle of order $\left(s, s^{2}\right)$ is constant. This result was first proved by BOSE [B7].

A quadrangle of order (s, t) is the same as a partial geometry with paxametexs ($s, t, 1$) (see [H11], [T1] or Appendix I). For pseudo-geometric graphs for a partial geometry with parameters (s, t, α), where $\alpha>1$, a result like Lemma 5.3.1 does not hold anymore. Therefore the question in the beginning of this section is much more difficult to answer for these geometries.

CHAPTER 6

CONSTRUCTIONS

6.1. SOME 2-(71,15,3) DESIGNS

In this section we shall construct eight non-isomorphic $2-(71,15,3)$ designs. First we shall construct a $2-(56,12,3)$ design D, which satisfies the hypothesis of Theorem 3.2.4. Next we show that D is embeddable in a 2- $(71,15,3)$ design. A less extensive treatment of this construction appeared in [B2]. Designs with these parameters seem to be new (see [C4] p.104, or [H5] p.297).

The most important ingredient for our construction is F_{8}, the field with eight elements. Let G be the full automorphism group of F_{8}, that is, the group of order 168 defined by $x \neq a x^{2^{i}}+b, a, b \in \mathbb{F}_{8}, a \neq 0, i \in \mathbb{Z}$. We shall identify \mathbb{F}_{8} with $A G(3,2)$, the 3 -dimensional affine space over \mathbb{F}_{2} * Although G is the full automorphism group of F_{8}, G is not the full automorphism group of $A G(3,2)$. Yet G acts transitively on the elements (we reserve the word points for points of a design), the lines (i.e. unordered pairs of elements), the planes (sets of four linearly dependent elements), and the sets of four linearly independent elements. Moreover, the stabilizer of a line L has four orbits on lines: L itself, the lines intersecting L, the lines parallel to L, and the lines skew to L.

Now we shall define the incidence structure D. The points of D are the fiftysix ordered pairs of distinct elements of F_{8} : The blocks of D are the seventy 4 -subsets of F_{8}. Let α, satisfying $\alpha^{3}=\alpha+1$, be a primitive element of F_{8}. The point $(0,1)$ is defined to be incident with the following blocks:

$$
\left\{0,1, \alpha, \alpha^{3}\right\},\left\{0,1, \alpha, \alpha^{2}\right\},\left\{0,1, \alpha^{2}, \alpha^{3}\right\},\left\{\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}\right\},\left\{\alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}\right\}
$$

$$
\begin{align*}
& \left\{0,1, \alpha^{2}, \alpha^{6}\right\},\left\{0,1, \alpha^{2}, \alpha^{4}\right\},\left\{0,1, \alpha^{4}, \alpha^{6}\right\},\left\{\alpha, \alpha^{2}, \alpha^{4}, \alpha^{6}\right\},\left\{\alpha, \alpha^{3}, \alpha^{4}, \alpha^{6}\right\} \tag{*}\\
& \left\{0,1, \alpha^{4}, \alpha^{5}\right\},\left\{0,1, \alpha, \alpha^{4}\right\},\left\{0,1, \alpha, \alpha^{5}\right\},\left\{\alpha, \alpha^{2}, \alpha^{4}, \alpha^{5}\right\},\left\{\alpha, \alpha^{2}, \alpha^{5}, \alpha^{6}\right\}
\end{align*}
$$

Now we let G act on D. This defines D, because G acts transitively on the points of D, and because the map $x \rightarrow x^{2}$, which fixes the point $(0,1)$, also fixes the set of blocks incident with $(0,1)$. A point (x, y) is called
equivalent to a point (w, z) if $\{x, y\}=\{w, z\}$. Two blocks $b \in \mathbb{F}_{8}$ and $b^{\prime} \in \mathbb{F}_{8}$ are called equivalent if $b=b^{\prime}$, or $b n^{\prime} b^{\prime}=\emptyset \quad$ (i.e. $b u b^{\prime}=F_{8}$). We know that G has two orbits on the blocks of D. The first orbit contains fiftysix blocks, they are the linearly independent 4-subsets of F_{8}; these blocks will be called blocks of type 1 . The second orbit consists of the fourteen linearly dependent 4 -subsets of F_{8} (i.e. planes), that is, they have the form $\{x, y, z, x+y+z\}$; these blocks are of type II. It is clear that equivalent blocks are of the same type.
6.1.1. LEMMA. Let (x, y) be a point of D. Let $b \in \mathbb{F}_{8}$ and $b^{\prime} \subset F_{8}$ be distinct equivalent blocks of D.
i. If (x, y) is incident with b, then $\{x, y\} \subset b$ or $\{x, y\} \subset b^{\prime}$.
ii. If $\{x, y\} \subset b, b$ of type I, then exactly one of the following two statements is true.

1. (x, y) is incident with b and not with b^{\prime}, and (y, x) is incident with b^{\prime} and not with $b ;$
2. (x, y) is incident with b^{\prime} and not with b and (y, z) is incident with b and not with b^{\prime}.
iii. If b is of type II, then (x, y) is incident with b iff $\{\mathrm{x}, \mathrm{y}\} \mathrm{c} \mathrm{b}$. iv. $\quad b$ and b^{\prime} have no points of D in common.

PROOF. Without loss of generality take $(x, y)=(0,1)$. We may do so, because G is transitive on the points of D. Blocks incident with $(0,1)$ are given in (*). On applying the map $x \mapsto x+1$ to ($*$) we find that the blocks incident with $(1,0)$ are the following ones:
(**)

$$
\begin{aligned}
& \left\{0,1, \alpha, \alpha^{3}\right\},\left\{0,1, \alpha^{3}, \alpha^{6}\right\},\left\{0,1, \alpha, \alpha^{6}\right\},\left\{\alpha, \alpha^{3}, \alpha^{5}, \alpha^{6}\right\},\left\{\alpha, \alpha^{4}, \alpha^{5}, \alpha^{6}\right\}, \\
& \left\{0,1, \alpha^{2}, \alpha^{6}\right\},\left\{0,1, \alpha^{5}, \alpha^{6}\right\},\left\{0,1, \alpha^{2}, \alpha^{5}\right\},\left\{\alpha^{2}, \alpha^{3}, \alpha^{5}, \alpha^{6}\right\},\left\{\alpha, \alpha^{2}, \alpha^{3}, \alpha^{5}\right\} \\
& \left\{0,1, \alpha^{4}, \alpha^{5}\right\},\left\{0,1, \alpha^{3}, \alpha^{5}\right\},\left\{0,1, \alpha^{3}, \alpha^{4}\right\},\left\{\alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right\},\left\{\alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{6}\right\}
\end{aligned}
$$

The first column of (*) and (**) consists of blocks of type II, all other blocks are of type I. Now (i), (ii) and (iii) are just a matter of verification. (iv) follows immediately from (ii) for blocks of type I, and from (iii) for blocks of type II.

From (ii) and (iii) of this lemma we conclude the following. If each point of D is replaced by its equivalent partner and each block of D of type I by its equivalent partner, then incidence is not changed. Hence the permutation of the points of D, which interchanges the equivalent pairs of points, is an automorphism of D. This automorphism is diffexent from, and commutes with, the automorphisms provided by the group G.
6.1.2. THEOREM. D is a $2-(56,12,3)$ design.
pROOF. First we prove that D is a 1 -design. since every point is incident with fifteen blocks, the average number of points incident with a block equals twelve. By 6.1.1.iii a block of type II is incident with exactly twelve points. Now, since G acts transitively on blocks of the same type, also the blocks of type I are incident with exactly twelve points. We have seen that G has three orbits on the (unordered) pairs of lines of F_{8} (intersecting, parallel, skew), for which the following pairs are representatives:

$$
\{\{0,1\},\{0, \alpha\}\},\left\{\{0,1\},\left\{\alpha, \alpha^{3}\right\}\right\},\left\{\{0,1\},\left\{\alpha^{2}, \alpha^{4}\right\}\right\}
$$

From this it follows that the group $2 \times G$, which is an automorphism group of D, has seven orbits on the (unordered) pairs of points of D, for which the following ones are representatives:

$$
\begin{aligned}
& \{(0,1),(0, \alpha)\},\left\{(0,1),\left(\alpha, \alpha^{3}\right)\right\},\left\{(0,1),\left(\alpha^{2}, \alpha^{4}\right)\right\} \\
& \{(1,0),(0, \alpha)\},\left\{(1,0),\left(\alpha, \alpha^{3}\right)\right\},\left\{(1,0),\left(\alpha^{2}, \alpha^{4}\right)\right\} \\
& \{(1,0),(0,1)\} .
\end{aligned}
$$

Blocks incident with (0,1) and (1,0) are given in (*) and (**), respectiveIy. Using the maps $x \rightarrow \alpha, x, x \rightarrow x+\alpha$ and $x \mapsto \alpha(x+\alpha)$, we obtain the blocks incident with $(0, \alpha),\left(\alpha, \alpha^{3}\right)$ and $\left(\alpha^{2}, \alpha^{4}\right)$. The blocks incident with $(0, \alpha)$ are

$$
\begin{aligned}
& \left\{0, \alpha, \alpha^{2}, \alpha^{4}\right\},\left\{0, \alpha, \alpha^{2}, \alpha^{3}\right\},\left\{0, \alpha, \alpha^{3}, \alpha^{4}\right\},\left\{\alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}\right\},\left\{\alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right\}, \\
& \left\{0,1, \alpha, \alpha^{3}\right\},\left\{0, \alpha, \alpha^{3}, \alpha^{5}\right\},\left\{0,1, \alpha, \alpha^{5}\right\},\left\{1, \alpha^{2}, \alpha^{3}, \alpha^{5}\right\},\left\{1, \alpha^{2}, \alpha^{4}, \alpha^{5}\right\}, \\
& \left\{0, \alpha, \alpha^{5}, \alpha^{6}\right\},\left\{0, \alpha, \alpha^{2}, \alpha^{5}\right\},\left\{0, \alpha, \alpha^{2}, \alpha^{6}\right\},\left\{\alpha^{2}, \alpha^{3}, \alpha^{5}, \alpha^{6}\right\},\left\{1, \alpha^{2}, \alpha^{3}, \alpha^{6}\right\}
\end{aligned}
$$

The blocks incident with $\left(\alpha, \alpha^{3}\right)$ are

$$
\begin{aligned}
& \left\{0,1, \alpha, \alpha^{3}\right\},\left\{0, \alpha, \alpha^{3}, \alpha^{4}\right\},\left\{1, \alpha, \alpha^{3}, \alpha^{4}\right\},\left\{0,1, \alpha^{2}, \alpha^{4}\right\},\left\{1, \alpha^{2}, \alpha^{4}, \alpha^{6}\right\}, \\
& \left\{\alpha, \alpha^{3}, \alpha^{4}, \alpha^{5}\right\},\left\{a, \alpha^{2}, \alpha^{3}, \alpha^{4}\right\},\left\{a, \alpha^{2}, \alpha^{3}, \alpha^{5}\right\},\left\{0, \alpha^{2}, \alpha^{4}, \alpha^{5}\right\},\left\{0,1, \alpha^{2}, \alpha^{5}\right\}, \\
& \left\{a, \alpha^{2}, \alpha^{3}, \alpha^{6}\right\},\left\{0, \alpha, \alpha^{2}, \alpha^{3}\right\},\left\{0, \alpha, \alpha^{3}, \alpha^{6}\right\},\left\{0, \alpha^{2}, \alpha^{4}, \alpha^{6}\right\},\left\{0, \alpha^{4}, \alpha^{5}, \alpha^{6}\right\}
\end{aligned}
$$

The blocks incident with $\left(\alpha^{2}, \alpha^{4}\right)$ are

$$
\begin{aligned}
& \left\{0, \alpha, \alpha^{2}, \alpha^{4}\right\},\left\{0, \alpha^{2}, \alpha^{4}, \alpha^{5}\right\},\left\{\alpha, \alpha^{2}, \alpha^{4}, \alpha^{5}\right\},\left\{0, \alpha, \alpha^{3}, \alpha^{5}\right\},\left\{1, \alpha, \alpha^{3}, \alpha^{5}\right\}, \\
& \left\{\alpha^{2}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right\},\left\{\alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}\right\},\left\{\alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{6}\right\},\left\{0, \alpha^{3}, \alpha^{5}, \alpha^{6}\right\},\left\{0, \alpha, \alpha^{3}, \alpha^{6}\right\}, \\
& \left\{1, \alpha^{2}, \alpha^{3}, \alpha^{4}\right\},\left\{0, \alpha^{2}, \alpha^{3}, \alpha^{4}\right\},\left\{0,1, \alpha^{2}, \alpha^{4}\right\},\left\{0,1, \alpha^{3}, \alpha^{5}\right\},\left\{0,1, \alpha^{5}, \alpha^{6}\right\} .
\end{aligned}
$$

Blocks incident with (0,1) are marked by © Blocks incident with (1,0) are marked by b. We see that for each of the seven pairs of points there are exactly three blocks incident with both points. Hence D is a $2-(56,12,3)$ design.

Next we shall see that D satisfies the hypothesis of 3.2 .4 . The line graph of a geometry is the graph whose vertices are the lines, two vertices being adjacent iff the lines intersect.
6.1.3. THEOREM. D has just three intersection numbers 3, 2 and $0(=k-r+\lambda)$. The class graph of D is the complement of the line graph of PG(3,2).

Proof. Let $b_{1} \subset F_{8}$ and $b_{2} \subset F_{8}$ be non-equivalent blocks of D. Let b_{1}^{\prime} and b_{2}^{\prime} be the equivalent partners of b_{1} and b_{2}, respectively. Let B_{1}, B_{2}, B_{1}, B_{2}^{\prime} be the sets of points incident with $b_{1}, b_{2}, b_{1}^{\prime}, b_{2}^{\prime}$, respectively. Then by 6.1 .1

$$
\left|B_{1} \cap B_{1}^{\prime}\right|=\left|B_{2} \cap B_{2}^{\prime}\right|=0=k-x+\lambda .
$$

Hence by 3.2.1.1i

$$
\left|B_{1} \cap B_{2}\right|=\left|B_{1} \cap B_{2}^{\prime}\right|=\left|B_{1}^{\prime} \cap B_{2}\right|=\left|B_{1}^{\prime} \cap B_{2}^{\prime}\right| .
$$

This implies

$$
\left|\left(B_{1} \cup B_{1}^{\prime}\right) \cap\left(B_{2} \cup B_{2}^{1}\right)\right|=4\left|B_{1} \cap B_{2}\right| .
$$

From (ii) and (iii) of 6.1.1 it follows that

$$
\begin{aligned}
& \left|\left(B_{1} \cup B_{2}^{\prime}\right) \cap\left\{B_{2} \cup B_{2}^{\prime}\right)\right|= \\
& =\mid\left\{(x, y) \in F_{8}^{2} \mid x \neq y,\{x, y\} \subset b_{1} \text { or }\{x, y\} \subset b_{1}^{\prime}\right. \\
& \left.\qquad\{x, y\} \subset b_{2} \text { or }\{x, y\} \subset b_{2}^{\prime}\right\} \mid= \\
& =\left\{\begin{array}{r}
8 \text { iff }\left|b_{1} \cap b_{2}\right|=2, \\
12 \text { if }\left|b_{1} \cap b_{2}\right| \in\{1,3\} .
\end{array}\right.
\end{aligned}
$$

Hence 3. 2 and 0 are the intersection numbers of D. It is clear that the thirtyfive equivalence classes of blocks of D can be represented by the 4-subsets of \mathbb{F}_{8} containing 0 . Therefore, they can also be represented by all 3-subsets of $F_{8}-\{0\}$. Now using Result 4.2 .3 we see that the class graph of D is indeed the complement of the line graph of $P G(3,2)$.

By the above theorem, there exists a $2-1$ correspondence between the blocks of D and the lines of PG(3,2), such that two blocks have no point in common iff they correspond to the same line of PG $(3,2)$, two blocks have two points in common iff they correspond to intersecting lines and two blocks have three points in common iff they correspond to skew lines.
6.1.4. THEOREM. D is embeddable in a symmetric 2-(71,15,3) design.

PROOF. We extend D to D_{1} with fifteen points (called new points), being the points of PG $(3,2)$ and one block (new block). The points incident with the new block are precisely the new points. We define a new point to be incident with an old block (block of D) iff the line of PG(3,2) corresponding to that block contains that point. Now it is easily seen that D_{1} is a 1-(71,15,15) design, and that any two distinct blocks of D_{1} have three points in common. This proves that the dual of D_{1}, and therefore D_{1} itself, is a symmetric 2-(71,15,3) design.

From 6.1:1.iii it follows that the seven equivalence classes of blocks of type il of D correspond to seven mutually intersecting lines of $P G(3,2)$. For these lines we may take seven lines through one point or seven lines in one plane. Let D_{1} be the embedding of D in which blocks of type II correspond to lines through one point, and let D_{2} be the other embedding of D. Define D_{1}^{*} and D_{2}^{*} to be the dual of D_{1} and D_{2}, respectively. We shall show
that these four 2-(71,15,3) designs are non-isomorhic. To achieve this we define a block B of a $2-(71,15,3)$ design to be special if the derived design with respect to B (i.e. the $2-(15,3,2)$ subdesign of the $2-(71,15,3)$ design, formed by the points of B and the blocks distinct from B) consists of two identical copies of a $2-(15,3,1)$ design. It is not difficult to see that the residual design with respect to a special block B (i.e. the $2-(56,12,3)$ subdesign of the $2-(71,15,3)$ design, formed by the points off B and the blocks distinct from B) satisfies the hypothesis of Theorem 3.2.4 and that its class graph is isomorphic to the complement of the block graph of the $2-(15,3,1)$ design associated to B (which clearly is quasi-symmetric, since $\lambda=1$). From the proof of 6.1 .4 it follows that the new blocks of D_{1} and D_{2} are special. Moreover, 6.1.1.iii implies that the new point of D_{1} which is incident with all old blocks of type $I I$, is a special block of D_{1}^{*}. By verification it turns out that these are the only special blocks of D_{1}, D_{1}^{*} and D_{2}. However, D_{2}^{*} has seven special blocks. They axe the seven new points of D_{2}, which lie in the plane of PG $(3,2)$ corresponding to the old blocks of type II. This already shows that

$$
\mathrm{D}_{2} \nsim \mathrm{D}_{2}^{*}, \mathrm{D}_{2} \nleftarrow \mathrm{D}_{1}, \mathrm{D}_{2} \not \approx \mathrm{D}_{1}^{*}, \mathrm{D}_{2}^{*} \nsim \mathrm{D}_{1}, \mathrm{D}_{2}^{*} \notin \mathrm{D}_{1}^{*}
$$

We know that any $2-(15,3,1)$ design associated to a special block of D_{1} or D_{2} is the design formed by the points and lines of PG $(3,2)$. By use of 6.1.1.iii it follows that also the $2-(15,3,1)$ design associated to the special block of D_{1}^{*} is the design which comes from PG(3,2). Let D^{*} be the residual design of D_{1}^{*} with respect to the special block. Then the class graph of D^{*} is again the complement of the line graph of PG $(3,2)$. This means that, similarly as for the design D, interchanging points and planes of PG(3,2) yields a second embedding of D^{*} into a $2-(71,15,3)$ design. Let D_{3}^{*} be this $2-(71,15,3)$ design and let D_{3} be the dual of D_{3}^{*}. By verification it follows that D_{3}^{*} has just one special block (the one we started with), but that D_{3} has seven special blocks. This already shows that $D_{1}^{*} \% D_{3}^{*}$. By further investigation it turns out that the $2-(15,3,1)$ design associated to any of the seven special blocks of D_{3} is again the design obtained from PG $(3,2)$, however, the seven special blocks of D_{2}^{*} give other $2-(15,3,1)$ designs (in fact all seven of them give the second design in the list of WHITE, COLE \& CUMMINGS [W3]). This proves that $D_{2}^{*} \not \approx D_{3}$, and therefore $D_{1} \not \& D_{1}^{*}$. Hence $D_{1}, D_{1}^{*}, D_{2}, D_{2}^{*}, D_{3}$ and D_{3}^{*} are all non-isomorphic. But there is still more. As remarked before, the 2-(15,3,1) design associ-
ated to one of the seven special blocks of D_{3} (these seven special blocks form an orbit under the automorphism group of D_{3}) is the design formed by the points and lines of $\operatorname{PG}(3,2)$. This implies that once again we can make another 2-(71,15,3) design by taking away the (two identical) 2-(15,3,1) designs and putting them back again after having interchanged points and planes. Call this new design D_{4}, and let D_{4}^{*} be its dual. It turns out that D_{4} has one special block, and that D_{4}^{*} has seven special blocks. Hence D_{4} is not isomorphic to $D_{1}, D_{1}^{*}, D_{2}^{*}, D_{3}$ and D_{4}^{*}. In addition, D_{4} is not isomorphic to D_{2} and D_{3}^{*}, since otherwise D_{3} would have been isomorphic to D_{1} or D_{1}^{*}.

Because of time considerations we did not check whether it is possible to produce still more $2-(71,15,3)$ designs by playing once again the same game with respect to a special block of D_{4}^{*}. Thus we have the following result.
6.1.5. THEOREM. There exist at least eight 2-(71,15,3) designs.

The designs $D_{1}^{*}, D_{2}^{*}, D_{3}^{*}$ and D_{4}^{*} are given explicitly in Appendix II. By taking residual designs with respect to various special blocks we obtain (at least) four non-isomorphic 2-(56,12,3) designs which satisfy the hypothesis of Theorem 3.2.4. One of these designs has a class graph which is non-isomorphic to the class graph of the other ones.

An oval in a $2-(71,15,3)$ design is a set S of six points such that any block has two or no points with s in common, see [A4]. Let S be an oval. It is clear that exactly twentysix blocks do not meet S. Therefore, by 3.1.1 an oval of a $2-(71,15,3)$ design is equivalent to an empty subdesign with six points and twentysix blocks. From 3.1.1.ii (see also [A4]) it follows that the subdesign of the $2-(71,15,3)$ design formed by the points off S and the blocks not meeting S is the dual of a $2-(26,6,3)$ design. By verification it follows that the following blocks of D provide an oval in D_{1}^{*} :

$$
\begin{aligned}
& \left\{1, \alpha, \alpha^{2}, \alpha^{3}\right\},\left\{1, \alpha, \alpha^{2}, \alpha^{5}\right\},\left\{0,1, \alpha, \alpha^{5}\right\} \\
& \left\{1, \alpha^{2}, \alpha^{4}, \alpha^{5}\right\},\left\{\alpha, \alpha^{2}, \alpha^{4}, \alpha^{5}\right\},\left\{0, \alpha^{3}, \alpha^{4}, \alpha^{6}\right\} .
\end{aligned}
$$

We conclude this section with a remark about automorphism groups. The group $2 \times G$ of order 336 is an automorphism group of D_{1}, D_{2}, D_{3} and their
duals. The designs D_{4} and D_{4}^{*} have an automorphism group of order 48, viz. the stabilizer of a special block of D_{3}. F.C. Bussemaker has verified by use of a computer that the groups mentioned above are the full automorphism groups.

ACKNOWLEDGEMENT. I thank H.J. Beker, F.C. Bussenaker, R.H.F. Denniston and M. Hall $J x$. for various contributions to this section.

6.2. SOME STRONGLY REGULAR GRAPHS

Suppose A is the adjacency matrix of a strongly regular graph G on n vertices of degree d. Furthermore, assume that A admits the following structure:

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 m} \\
\vdots & & \vdots \\
A_{m 1} & \cdots & A_{m m}
\end{array}\right]
$$

where $A_{i j}$ is a square matrix of size $c:=n / m$ having constant row sums equal to $b_{i j}$ say, for $1, j=1, \ldots$. 1 . From 1.2.3.iii it follows that the eigenvalues of the matrix $B:=\left(b_{i j}\right)$ satisfy

$$
\begin{equation*}
\lambda_{1}(B)=\lambda_{1}(A)=d, \quad \lambda_{i}(B) \in\left\{\lambda_{2}(A), \lambda_{n}(A)\right\} \text { for } i=2, \ldots, m \tag{*}
\end{equation*}
$$

Hence (*) yields directives for the construction of strongly regular graphs, whose adjacency matrix admits this block structure. Let us consider two special cases of this structure.

CASE 1: All diagonal entries of B are equal to r_{0}, say, and all off-diagonal entries of B are equal to r_{1}, say, that is,

$$
B=\left(r_{0}-r_{1}\right) I+r_{1} J .
$$

Hence by (*)

$$
(m-1) r_{1}+x_{0}=d \quad \text { and } \quad x_{0}-r_{1} \in\left\{\lambda_{2}(A), \lambda_{n}(A)\right\} .
$$

This implies

$$
x_{0}=\left(\lambda_{2}(A)(m-1)+d\right) / m, \quad x_{1}=\left(d-\lambda_{2}(A)\right) / m,
$$

or

$$
x_{0}=\left(\lambda_{n}(A)(m-1)+d\right) / m, \quad x_{1}=\left(d-\lambda_{n}(A)\right) / m
$$

6.2.1. EXAMPLE. We wish to construct a strongly regular graph G with parameter set $\left(q^{3}+q^{2}+q+1, q^{2}+q, q-1, q+1\right)$, admitting the block structure of case 1 with $m=q^{2}+1$ and $c=q+1$. Then (see Appendix I) $\lambda_{2}(G)=q-1$, $\lambda_{n}(G)=-q-1$ and the formulas above yield $x_{0}=q, r_{1}=1$. It is indeed possible to construct G, by use of this framework. To do so we define the permutation matrices P and Q of size $q+1$ by

$$
P:=\left[\begin{array}{ll}
0 & I_{q} \\
1 & 0
\end{array}\right] \quad \text { and } \quad(Q)_{i j}:= \begin{cases}1 & \text { if } i+j=q+2, \\
0 & \text { otherwise. }\end{cases}
$$

It easily follows that

$$
\begin{aligned}
& P^{q+1}=I, \quad\left(P^{k}\right)^{*}=P^{q+1-k}=P^{-k}, Q^{2}=I, \\
& P^{k} Q=\left(P^{k} Q\right)^{*}=Q P^{-k}, \sum_{i=0}^{q} P^{i}=J .
\end{aligned}
$$

For $k=1, \ldots, q$, define $R_{k}:=P^{k} Q=Q P^{-k}$. Then

$$
R_{k}^{*}=R_{k}, \quad R_{k} R_{\ell}=p^{k-\ell}, \sum_{i=0}^{q} R_{i}=J, \sum_{i=0}^{q} \sum_{j=0}^{q} R_{i} R_{j}=(q+1) J,
$$

for $k, l=1, \ldots, q$. Let $p_{1}, \ldots, p_{v}\left(v:=q^{2}\right)$ be the points, and let c_{1}, \ldots, c_{q+1} be the parallel classes of an affine plane of order q. For $i, j=1, \ldots \ldots q^{2}+1$, define the $(q+1) \times(q+1)$ matrices

$$
A_{i j}:= \begin{cases}J-I & \text { if } i=j, \\ I & \text { if } i \neq j, i=q^{2}+1 \text { or } j=q^{2}+1, \\ R_{k} & \text { if } i \neq j, i \leq q^{2}, j \leq q^{2}, \text { and } c_{k} \text { contains the } \\ & \text { line through } p_{i} \text { and } p_{j} .\end{cases}
$$

By use of the formulas above it is straightforward to verify that the square matrix A of size $q^{3}+q^{2}+q+1$, built up with these block matrices $A_{i j}$, satisfies

$$
(A+I)^{2}=(q+1) J+q^{2} I .
$$

Therefore, A is the adjacency matrix of the desired strongly regular graph.

A strongly regular graph with the same parameters is provided by the point graph of a generalized quadrangle of order (q,q) (see Section 5.1). However, for $q>4$ the graphs constructed above need not be geometric. Indeed, we can order the points and the parallel classes of an affine plane of order in such a way that the graph we obtained by our construction has $\alpha, 0$ as an induced subgraph. Then by 5.3.1, this graph is not geometric, and therefore non-isomorphic to any of those which come from generalized quadrangles.

As a second example of graphs admitting the block structure of case 1 we mention the eleven inciaence graphs of three linked $2-(16,6,2)$ designs (see Section 4.2).

CASE 2: All diagonal entries of B are equal to r_{0}, say. The off-diagonal entries of B take exactly two values r_{1} and r_{2}, say ($r_{1}>x_{2}$). Then by (*) the $(0,1)$ matrix

$$
\widetilde{\mathrm{B}}:=\frac{1}{r_{1}-r_{2}}\left(\mathrm{~B}-r_{2}(\mathrm{~J}-\mathrm{I})-r_{0} \mathrm{I}\right)
$$

has just three distinct eigenvalues, one of which is simple and belongs to the eigenvector j. Hence \tilde{B} is the adjacency matrix of a strongly regulax graph G ' with eigenvalues

$$
\begin{aligned}
& d^{\prime}:=\lambda_{1}\left(G^{\prime}\right)=\left(d-r_{2} m+r_{2}-r_{0}\right) /\left(x_{1}-r_{2}\right) \\
& \lambda_{2}\left(G^{\prime}\right)=\left(\lambda_{2}(A)+r_{2}-r_{0}\right) /\left(r_{1}-r_{2}\right) \\
& \lambda_{m}\left(G^{\prime}\right)=\left(\lambda_{n}(A)+r_{2}-r_{0}\right) /\left(r_{1}-x_{2}\right)
\end{aligned}
$$

6.2.2. EXAMPLE. We wish to construct a strongly regular graph G with parameters $(40,12,2,4)$, admitting the block structure of case 2 with $m=10$, $c=4, r_{0}=r_{2}=0, r_{1}=2$. From $\lambda_{2}(G)=2, \lambda_{40}(G)=-4$ and the above formulas it follows that $a^{\prime}=6, \lambda_{2}\left(G^{\prime}\right)=1, \lambda_{10}\left(G^{\prime}\right)=-2$. Hence G^{\prime} is the complement of the Petersen graph. For $h=0,1$ and $i, j=2,3,4$, define the square (0,1) matrices $T_{h i j}$ of size four, by

$$
\left(T_{h i j}\right)_{k \ell}:=\left\{\begin{array}{l}
h \quad \text { if }(k, \ell) \in\{(1,1),(1, \ell),(k, 1),(k, l)\}, \\
1-h \text { otherwise. }
\end{array}\right.
$$

Then we have for $h, h^{\prime}=0,1 ; i, j, i^{\prime}, j^{\prime}=2,3,4$,

$$
\begin{aligned}
& T_{h i j}=T_{h j i}^{*}, \quad T_{h i j} J=2 J, \quad T_{h i j}+T_{(1-h) i j}=J, \\
& T_{h i j} T_{h}^{*} i^{\prime} j^{\prime}=J \text { if } j \neq j^{\prime}, \quad T_{h i j} T_{h i^{\prime} j}^{*}=2 T_{1 i i}, \\
& T_{h i j} T_{(1-h) i^{\prime} j}=2 T_{0 i i^{\prime}} .
\end{aligned}
$$

With the help of these properties it is relatively easy to check that the following two matrices are adjacency matrices of strongly regular graphs with parameters ($40,12,2,4$).

MATHON [M5] used the block structure of case 2 for the construction of strongly regular graphs with parameters $\left(\mathrm{pq}^{2}, \frac{3}{2}\left(\mathrm{pq}^{2}-1\right), \frac{1}{4}\left(\mathrm{pq}^{2}-5\right), \frac{3}{2}\left(\mathrm{pq}^{2}-1\right)\right)$ for prime powers p and $q, p \equiv 1, q \equiv-1(\bmod 4)$. The strongly regular graph G^{\prime}, which provides the framework for Mathon's construction has parameters ($\left.p, \frac{1}{2}(p-1), \frac{1}{4}(p-5), \frac{1}{4}(p-1)\right)$.

Any graph constructed in one of the examples above has the property that $p_{11}^{1}+2=p_{11}^{2}$. This implies that its adjacency matrix A satisfies

$$
(A+I)^{2}=p_{11}^{2} J+\left(d+1-p_{11}^{2}\right) I,
$$

where d denotes the degree of the graph. This yields the well-known fact that $A+I$ is the incidence matrix of a symmetric $2-\left(n, d+1, p_{11}^{2}\right)$ design. Similarly, if a strongly regular graph satisfies $p_{11}^{1}=p_{11}^{2}$, then its adjacency matrix itself is the incidence matrix of a symmetric $2-\left(n, d, p_{11}^{1}\right)$ design. This phenomenon is behind the next example, where we derive a strongly regular graph with $p_{11}^{1}+2=p_{11}^{2}$ from one with $p_{11}^{1}=p_{11}^{2}$.
6.2.3. EXAMPLE. We start with a description of the generalized quadrangle Q of order $\left(2^{\ell}-1,2^{\ell}+1\right)$, \& $\in \mathbb{N}$, due to HALL [H6]. Consider AG $(3, q)$, the three dimensional affine geometry over \mathbb{F}_{q}, with $q=2^{2}$. Let s be a set of $m:=q+2$ lines from $A G(3, q)$ passing through one point, such that no three lines lie in one plane. Such a set exists, because it corresponds to a complete oval in the projective plane PG(2,q), which exists iff q is even, see [D3]. It is easy to prove that each plane of $A G(3, q)$ contains two or no lines from S. The points of Q are the points of $A G(3, q)$; the lines of Q are the lines of S, and the lines of $A G(3 ; q)$ which are parallel to a line of S; a point and a line are incident in Q, iff they are incident in $A G(3, q)$. Now it is easy to prove that 2 is a generalized quadrangle of order $(q-1, q+1)$. Let us partition the adjacency matrix A of the line graph of Q (i.e. the point graph of the aual of Q) into m^{2} square block matrices of size q^{2}, according to the m parallel classes in Q :

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 m} \\
\vdots & & \vdots \\
A_{m 1} & \cdots & A_{m m}
\end{array}\right]
$$

From the structure of Q it follows that we may arrange the lines such that

$$
\begin{aligned}
& A_{i j}=0 \text { if } i=j ; \\
& A_{i j}=I_{q} J_{q} \text { ifiodd and } j=1+i \text {; or } j \text { odd and } i=j+1 ; \\
& A_{i j}=\left[\begin{array}{ccc}
P_{11} & \cdots & P_{1 q} \\
\vdots & & \vdots \\
P_{q 1} & \cdots & P_{q q}
\end{array}\right]
\end{aligned}
$$

for all other values of i, j, where $P_{k \ell}$ is a permutation matrix of size q, for $k, l=1, \ldots, q$. Now we derive a new matrix \tilde{A} from A by replacing

$$
\left[\begin{array}{ll}
A_{i i} & A_{i, i+1} \\
A_{i+1, i} & A_{i+1, i+1}
\end{array}\right] \quad \text { by }\left[\begin{array}{ll}
A_{i, i+1} & A_{i i} \\
A_{i+1, i+1} & A_{i+1, i}
\end{array}\right]
$$

for $i=1,3, \ldots, m-1$. Then $i t$ follows that

$$
\widetilde{A}^{2}=\AA^{2}=q J+q^{2} I
$$

Since \tilde{A} is symmetric with all diagonal entries equal to one, the matrix
$\tilde{A}-I$ is the adjacency matrix of a strongly regular graph with parameters $\left\langle q^{2}(q+2), q^{2}+q-1, q-2, q\right)$. For $q=2$ this graph is the clebsch graph (see Section 4.1, Figure 2), but for all other values of $q=2^{l}$ these strongly regular graphs seem to be new.

We remark that in the above example A has the block structure of case 1, whilst \tilde{A} has the block structure of case 2 with the cocktailparty graph on m vertices (complete ${ }^{1} m$-partite graph) as the underlying strongly regular graph.

The remainder of this section will be devoted to strongly regular graphs with parameters ($40,12,2,4$). For convenience we call such graphs $40-g r a p h s$. Examples $6.2 .1(q=3)$ and 6.2 .2 provide 40 -graphs. The point graph of a generalized quadrangle of order (3,3) is a 40-graph. PAYNE [P5] proved that there are exactly two generalized quadrangles of order $(3,3)$ (one being the dual of the other). In fact, these two geometric 40-graphs are the graph of Example 6.2 .1 with $q=3$, and the second graph of Example 6.2.2. From $p_{11}^{1}=2$ it follows that a subgraph of a 40 -graph induced by all vertices adjacent to a given vertex, is regular of degree two, so a disjoint union of cycles. But we can say more.
6.2.4. LEMMA. Let G be a 40 -graph. Let x be a vertex of G and let G be the subgroph of G induced by the vertices adjacent to x. Then G is one of the following graphs:

```
i. a 12-cycle;
```

ii. the disjoint union of a 9-oycle and a triangle;
iii. the disjoint union of two 6-cucles;
iv. the disjoint union of a 6-cycle and two triangles;
v. the disjoint union of four triangles.

PROOF. We only have to prove that the number of vertices of any component of G_{x} is divisible by three. If G_{x} is connected, there is nothing to prove. Suppose G_{x} has a component C of size $c<12$. We partition A into sixteen block matrices according to: the vertex x, the vertices of C, the remaining vertices of G, and the vertices not adjacent to x. Then the entries of

$$
B:=\left(\begin{array}{cccc}
0 & c & 12-c & 0 \\
1 & 2 & 0 & 9 \\
1 & 0 & 2 & 9 \\
0 & c / 3 & 4-c / 3 & 8
\end{array}\right]
$$

are the average row sums of the block matrices of A. It is easy to see that

$$
\lambda_{1}(B)=12, \quad \lambda_{2}(B)=\lambda_{3}(B)=2, \quad \lambda_{4}(B)=-4 .
$$

On the other hand we know

$$
\lambda_{1}(A)=12, \quad \lambda_{2}(A)=\lambda_{3}(A)=2, \quad \lambda_{40}(A)=-4 .
$$

So the eigenvalues of B interlace the eigenvalues of A tightly, Hence, by 1.2.3.ii the row sums of the block matrices are constant, so $\mathrm{c} / 3$ is an integer.

We associate with a 40 -graph a 5 -tuple (a_{1}, \ldots, a_{5}), where a_{1}, \ldots, a_{5} denote the number of vertices x for which G_{x} has the form (i), \ldots (v), respectively, of the above lemma. Using 5.3 .1 we observe that a 40 -graph is the point graph of a generalized quadrangle iff its 5 -tuple is ($0,0,0,0,40$) . The first graph of Example 6.2 .2 has 5-tuple $(0,0,4,24,12)$. R. Mathon (private communication) constructed a 40 -graph with 5 -tuple ($0,0,0,36,4$).

WEISFEILER [W1] describes an algorithm for generating strongly regular graphs with a given parameter set, based on the principle of backtracking. By use of this algorithm we wrote a computer program (in Algol 60) for the construction of 40 -graphs. Weisfeiler's algorithm rejects isomorphism only partially. This means that some of the produced 40 -graphs may be isomorphic. We had our program run for about ten minutes. It turned out that, although we obtained about twohundred (not necessarily non-isomoxphic) 40-graphs, the process of finding all 40-graphs still was in the beginning phase. For this reason thexe was no hope for completing the whole search. It seems that there are thousands of 40 -graphs. Still we wanted to test the few hundred 40 -graphs we found on isomorphism. A complete test on isomorphisms would have been too expensive. Therefore we just computed the 5-tuple of each 40-graph. It turned out that twentyone of these 40 -graphs had different 5-tuples. So we found at least twentyone non-isomorphic 40-graphs. One of these is the first graph of Example 6.2.2. But none of these graphs has the

5-tuple of a geometric 40-graph or Mathon's 40-graph. So we have the following result.
6.2.5. THEOREM. There exist at least twentyfour strongly regular graphs with parameters $(40,12,2,4)$.

These 40-graphs are given in Appendix II, except for the three 40graphs that are already exhibited in the Examples 6.2.1 and 6.2.2. The first graph in the list is Mathon's 40-graph.

We noticed already that a 40 -graph gives a $2-(40,13,4)$ design. There is no reason why non-isomorphic graphs should lead tot non-isomorphic designs. However, it has been checked that our twentyfour 40-graphs do produce twentyfour non-isomorphic $2-(40,13,4)$ designs.

An oval in a $2-(40,13,4)$ design is a set S of four points, such that any block has at most two points in common with S , see [A4]. Easy counting arguments give that twelve blocks are disjoint from S and four blocks have exactly one point in common with S. Suppose we have a 40 -graph with a coclique of size four, such that any vertex is adjacent to two or to no vertices of that coclique. Then this coclique of the 40 -graph produces an oval in the corresponding 2-(40,13,4) design. Conversely, it can be proved that any oval in a $2-(40,13,4)$ design, obtained from a 40-graph, corresponds to such a coclique. We see that the two 40 -graphs of Example 6.2.2 produce 2-(40,13,4) designs with ten disjoint ovals. Also the last six 40 -graphs of Appendix II supply designs with ovals. The remaining sixteen 40-graphs have no ovals.

In 4.2.2 we saw that the chromatic number of any 40 -graph is at least five. Since the complement of the Petersen graph is 5 -colourable, it follows that the two 40 -graphs of Example 6.2.2 are 5-colourable as well.

APPENDIX I

GRAPHS AND DESIGNS

This appendix contains the basic concepts and results from the theory of graphs and designs, which are used in the present monograph. Some general references are [B5], [C12], [H8], [W6] for graphs, [D3], [H5], [H17], [R3] for designs, and [B7], [C6] for both. We shall assume knowledge of section 1.1.

A graph consists of a finite non-empty set of vertices together with a set of edges, where each edge is an unordered pair of vertices (so our graphs are finite, undirected and without loops or multiple edges). The two vertices of an edge are called adjacent (or joint). A graph is complete if every pair of vertices is an edge. The complete graph on n vertices is denoted by K_{n}. A graph without edges is called void (or null). The complement of a graph G is the graph \bar{G} on the same vertex-set as G, where any two vertices are adjacent whenever they are not adjacent in G. The disjoint union of a collection of graphs G_{1}, \ldots, G_{m} on disjoint vertex sets is the graph whose vertex-set is the union of all vertex-sets, and whose edge-set is the union of all edge-sets of $G_{1} \ldots \ldots G_{m}$. A graph is disconnected if it is the disjoint union of two or more graphs. Any graph G is the disjoint union of one or more connected ($=$ not disconnected) graphs, called the components of G.

Let G be a graph on n vertices. A sequence of distinct vertices x_{0}, \ldots, x_{ℓ} of G is a path of length ℓ between x_{0} and x_{ℓ} if $\left\{x_{i-1}, x_{i}\right\}$ is an edge for $i=1, \ldots, k$. The distance $\rho(x, y)$ between two vertices x and y is the length of the shortest path between x and $y(\rho(x, y)=\infty$ if x and y are in distinct components of G). The diometer of G is the largest distance in G. A sequence of vertices x_{0}, \ldots, x_{l} is a circuit of length $\&$ if x_{1}, \ldots, x_{l} are distinct, $x_{0}=x_{\ell}, \ell>2$ and $\left\{x_{i-1}, x_{i}\right\}$ is an edge for $i=1, \ldots, \ell$. The girth of G is the length of the shortest circuit in G. The adjacency matrix of G is the $n \times n$ matrix A, indexed by the vertices of G, defined by
$(A)_{X y}= \begin{cases}1 & \text { if }\{x, y\} \text { is an edge, } \\ 0 & \text { otherwise. }\end{cases}$

Obviously, \bar{G} has adjacency matrix J-A-I. The eigenvalues of G are the eigenvalues of A; they are denoted by λ_{1} (G) $\geq \ldots \geq \lambda_{n}$ (G) (the eigenvalues are real, because A is symmetric). We easily have that

$$
\lambda_{1}\left(K_{n}\right)=n-1, \quad \lambda_{2}\left(K_{n}\right)=\ldots=\lambda_{n}\left(K_{n}\right)=-1
$$

The incidence matrix N of G, whose rows are indexed by the vertices and whose columns are indexed by the edges, is defined by

$$
(N)_{X, E}= \begin{cases}1 & \text { if } x \in E \\ 0 & \text { otherwise }\end{cases}
$$

The graph with adjacency matrix $\mathrm{N}^{*} \mathrm{~N}-2$ is called the line graph of G, denoted by $L(G)$. The subgraph of G induced by a set S of vertices of G is the graph with vertex-set S, where two vertices are adjacent whenever they are adjacent in G (a subgraph is always an induced subgraph). Note that the adjacency matrix of a subgraph of G is a principal submatrix of A. A clique is a complete subgraph; a coclique (or independent set of vertices) is a void subgraph. The size of the largest clique and coclique is denoted by $\omega(G)$ and $\alpha(G)$, respectively. A colouring of G is a colouring of the vertices, such that adjacent vertices have different colours (i.e. a partition of the vertices into cocliques). Vertices which are coloured with the same colour form a colour class. G is k-colouroble if G admits a colouring with k colours; the smallest possible value of k is the chromatio number of G, denoted by $\gamma(G)$. It easily follows that

$$
\gamma(G) \geq \omega(G), \quad Y(G) \alpha(G) \geq n
$$

If $y(G)=2$, then G is bipartite. By use of 1.1 .2 it follows that if G is bipartite, then

$$
\lambda_{i}(G)=-\lambda_{n+1-i}(G) \quad \text { for } i=1, \ldots, n
$$

Conversely, $\lambda_{1}(G)=-\lambda_{n}(G)$ implies that G is void or bipartite; this follows from the Perron-Frobenius theorem on non-negative matrices (see [c12], [M3]) . If G can be coloured with γ colours, such that all pairs of differently coloured vertices are edges, then G is complete γ-partite (i.e. the complement of the disjoint union of complete graphs). The complete bipartite graph ($\gamma=2$) is denoted by $K_{l, m}$, where ℓ and m are the sizes of the two colour classes. By use of 1.1.2 it follows that

$$
\lambda_{1}\left(\mathrm{~K}_{\ell, \mathrm{m}}\right)=-\lambda_{\ell+\mathrm{m}}\left(\mathrm{~K}_{\ell, \mathrm{m}}\right)=\sqrt{\ell \mathrm{m}}, \quad \lambda_{i}\left(\mathrm{~K}_{\ell, \mathrm{m}}\right)=0 \text { for } i=2, \ldots, \ell+\mathrm{m}-1 .
$$

The degree (or valency) of a vertex is the number of vertices adjacent to that vertex. A graph is regular (of degree d) if all its vertices have the same degree (equal to d).

Let G be regular of degree d. Then $A j=d j$, hence d is an eigenvalue of G with eigenvector j. Moreover, the matrices A, J and I have a common basis of eigenvectors. By use of this we obtain

$$
\lambda_{1}(\bar{G})=n-a-1, \quad \lambda_{i}(\bar{G})=-\lambda_{n+2-i}(G)-1 \text { for } i=2, \ldots, n
$$

If G is connected, then the Perron-Frobenius theorem yields that d is the largest eigenvalue of G with multiplicity one. Hence, $d=\lambda_{1}(G)$ and its multiplicity equals the number of components of G (see [B5] for an elementary proof). If G is connected and $d=2$, then G is called an n-cycle (or circuit). G is strongly regular if G is not void or complete and the adjacency matrix A satisfies

$$
\begin{equation*}
A J=d J, \quad\left(A-\lambda_{2}(G) I\right)\left(A-\lambda_{n}(G) I\right)=p_{11}^{2} J, \tag{1}
\end{equation*}
$$

for some number p_{11}^{2}. This is equivalent to requiring that A has precisely two distinct eigenvalues not belonging to the eigenvector j.

Now let G be strongly regular. Then also \bar{G} is strongly regular. Computation of the diagonal entries and the row sums of both sides of the second equality of (1) yields

$$
\begin{equation*}
d+\lambda_{2}(G) \lambda_{n}(G)=p_{11}^{2}, \quad\left(d-\lambda_{2}(G)\right)\left(d-\lambda_{n}(G)\right)=p_{11}^{2} n \tag{2}
\end{equation*}
$$

Define $p_{11}^{1}:=\lambda_{2}(G)+\lambda_{n}(G)+p_{11}^{2}$. Then (1) becomes

$$
A J=d J, \quad A^{2}=d I+p_{11}^{1} A+p_{11}^{2}(J-A-I)
$$

This reflects that G satisfies the following three properties: G is regulax of degree d; for any pair of adjacent vertices there are exactly p_{11}^{1} vertices adjacent to both; for any pair of non-adjacent vertices there are exactly p_{11}^{2} vertices adjacent to both. The integers $n, d, p_{11}^{1}, p_{11}^{2}$ are the parameters of G. Let f be the multiplicity of the eigenvalue $\lambda_{2}(G)$. Then

$$
0=\operatorname{trace} A=d+f \lambda_{2}(G)+(n-f-1) \lambda_{n}(G)
$$

whence

$$
f=\frac{d+(n-1) \lambda_{n}(G)}{\lambda_{n}(G)-\lambda_{2}(G)}, \quad \lambda_{n}(G)(n-2 f-1)=-d-f\left(p_{11}^{1}-p_{11}^{2}\right)
$$

So, if $n \neq 2 f+1$, then $\lambda_{n}(G)$ is rational, and therefore λ_{2} (G) and λ_{n} (G) are integers. It is an easy exercise (see [C6]) to show that $n=2 f+1$ implies

$$
n-1=2 d=4 p_{11}^{2}=4\left(p_{11}^{1}+1\right), \quad \lambda_{2}(G)=-\lambda_{n}(G)-1=-\frac{1}{2}+\frac{1}{2} \sqrt{n}
$$

By use of the above results and trace $A=0$, it follows that $\lambda_{2}(G) \geq 0$ and $\lambda_{n}(G) \leq-1$. From (2) we have that $\lambda_{2}(G)=0$ iff $p_{11}^{2}=d$. It is easily seen that $p_{11}^{2}=d$ reflects that G is a complete γ-partite graph. If $\lambda_{n}(G)=-1$, then $\lambda_{2}(\bar{G})=0$, hence G is the disjoint union of complete graphs and $p_{11}^{2}=0$. Conversely, by (1) $p_{11}^{2}=0$ implies $d=\lambda_{2}(G)$ and $\lambda_{n}(G)=-1$. These two families of strongly regular graphs are called impmimitive. Let x be a vertex of G. The two subconstituents of G with respect to x are the subgraphs of G induced by the vertices adjacent to x and by the vertices nonadjacent to x. The subconstituents are regular of degree p_{11}^{1} and $d-p_{11}^{1}$, respectively. Examples of primitive ($=$ not imprimitive) strongly regular graphs are: the pentagon (5-cycle), $L\left(K_{m}\right)$ for $m \geq 5$ (= triangular graph), $I\left(K_{m, m}\right)$ for $m \geq 3(=$ Zattice $g r a p h)$ and their complements. The Petersen graph is the complement of $L\left(\mathrm{~K}_{5}\right)$ and has parameters $(10,3,0,1)$.

An inoidence structure consists of a finite non-empty set V_{1} of pointe and a finite non-empty set V_{2} of blocks, together with a subset of $V_{1} \times V_{2}$ of flags. A point and a block are incident if they form a flag. Often blocks are identified with the sets of points with which they are incident; if so, blocks are denoted by capitals, otherwise we use small types. An incidence structure without flags is called empty.

Let D be an incidence structure with v points and b blocks. An incidence structure D^{\prime} formed by points and blocks of D is a substructure of D whenever a point and a block are incident in D^{\prime} iff they are incident in D. The incidence matrix N of D, whose rows are indexed by the points and whose columns are indexed by the blocks, is defined by
$(N)_{X, B}= \begin{cases}1 & \text { if } x \in B, \\ 0 & \text { otherwise. }\end{cases}$

The incidence structures with incidence matrices N^{*} and $J-N$ are called the dual and the complement of D, respectively. The graph with adjacency matrix $\left[\begin{array}{ll}0 & N \\ N^{*} & 0\end{array}\right]$ is the incidence graph of D. Clearly D and its dual have the same incidence graph. We call D a $t-(v, k, \lambda)$ design (or t-design with parameters ($v, k, \lambda)$) if all blocks have size k, and if any set of t points is contained in exactly λ blocks. A $t-(v, k, \lambda)$ design with $k<t$ or $v-k<t$ is degenerate. A design is a t-design for some t. A subdesign is a substructure which is a design. Note that we allow repeated blocks (two or more blocks incident with exactly the same points).

Let D be a non-degenerate $t-(v, k, \lambda)$ design. The complement of D is also a non-degenerate t-design. By elementary counting we see that for $t \geq 1$ D is also a $(t-1)-(v, k, \lambda(v-t+1) /(k-t+1))$ design. In particular, D is a 1-(v, k, r) design, where

$$
x:=\binom{v-1}{t-1} /\binom{k-1}{t-1}
$$

r equals the number of blocks incident with any point. Counting flags yields $\mathrm{bk}=\mathrm{vx}$. If D is a $1-(\mathrm{v}, \mathrm{k}, \mathrm{r})$ design, then rk is the largest eigenvalue of NN^{*} and hence by 1.1.2 $\sqrt{\mathrm{rk}}$ is the largest singular value of N. A 2-design is also called (balanced incomplete) block design. Now let D be a nondegenerate $2-(v, k, \lambda)$ design. In terms of the incidence matrix N this means

$$
\begin{equation*}
N^{*} J=k J, N J=r J, \quad N N^{*}=\lambda J+(r-\lambda) I . \tag{3}
\end{equation*}
$$

$N N^{*}$ has eigenvalues $\lambda v+x-\lambda=r k$ and $x-\lambda$ of multiplicity 1 and $v-1$, respectively. By 1.1.2 these eigenvalues are the squares of the singular values of N. From $r k \neq 0, r-\lambda \neq 0$, it follows that $v=r a n k N N^{*}=r a n k N$, hence $\mathrm{b} \geq \mathrm{v}$ (Fisher's inequality). If $\mathrm{b}=\mathrm{v}$ (i.e. $\mathrm{r}=\mathrm{k}$), D is called symmetric. Formula (3) yields $N\left(N^{*}-(\lambda / r) J\right)=(x-\lambda) I$. If D is symmetric, N is square, hence $\left(\mathbb{N}^{*}-(\lambda / r) J\right) N=(x-\lambda) I$, i.e. $N^{*} N=\lambda J+(x-\lambda) I$, and therefore the dual of D is a symmetric $2-(v, k, \lambda)$ design as well. Let D be symmetric, and let B be a block of D. The subdesign formed by the points incident with. B and the blocks distinct from B is a $2-(k, \lambda, \lambda-1)$ design (possibly degenerate), called the derived design of D with respect to B . Similarly, the subdesign formed by the points not incident with B and the blocks distinct from B is a $2-(v-k, k-\lambda, \lambda)$ design (possibly degenerate). called the residual design of D with respect to $B, A 2-(v-k, k-\lambda, \lambda)$ design D^{\prime} is embeddable in D if D^{\prime} is a residual design of D. For example, the
points and lines of $\operatorname{PG}(2, q)$, the projective plane of order q, form a symmetric $2-\left(q^{2}+q+1, q+1,1\right)$ design; the degenerate $2-(q+1,1,0)$ design is a derived design, and the affine plane of order q, which is a $2-\left(q^{2}, q, 1\right)$ design, is a residual design.

A partial geometry with paraneters $(s, t, \alpha), s, t, \alpha \in \mathbb{N}$, is a $1-(v, s+1, t+1)$ design satisfying the following two conditions:
any two blocks have at most one point in common; for any non-incident point-block pair (x, B) the number of blocks incident with x and intersecting B equals α.

For a partial geometry we speak of lines rather than blocks. Let D denote a partial geometry with parameters (s, t, α) and incidence matrix N. The graph with adjacency matrix $\mathrm{NN}^{*}-(t+1)$ I is the point graph of D . The line graph of D is the point graph of the dual of D. From the definition it readily follows that the point graph G of D is strongly regular with parameters

$$
(v, s(t+1), t(\alpha-1)+s-1, \alpha(t+1))
$$

By use of our identities for strongly regular graphs we obtain

$$
\begin{aligned}
& \lambda_{1}(G)=s(t+1), \lambda_{2}(G)=s-\alpha, \lambda_{n}(G)=-t-1 \\
& v=(s+1)(s t+\alpha) / \alpha, b=(t+1)(s t+\alpha) / \alpha
\end{aligned}
$$

Hence NN^{*} has the eigenvalues $(\mathrm{s}+1)(\mathrm{t}+1), 0$ and $\mathrm{s}+\mathrm{t}+1-\alpha$ of multiplicity 1, $s(s+1-\alpha)(s t+\alpha) / \alpha(s+t+1-\alpha)$ and $s t(s+1)(t+1) / \alpha(s+t+1-\alpha)$, respectively. By 1.1 .2 the square roots of these eigenvalues are the singular values of N. A partial subgeometry is a substructure, which itself is a partial geometry. Let D^{\prime} be a partial subgeometry of D with parameters ($\left.s^{\prime}, t^{\prime}, \alpha\right)$. Then the point graph of D^{\prime} is an induced subgraph of the point graph of D. This can be seen as follows. Let x and y be two points of D^{\prime} and suppose thexe exists a line L of D, which is not a line of D^{\prime}, incident with x and y. Let M be a line of D^{\prime} incident with x. By (4) there are α lines of D^{\prime} incident with x and intersecting M. Hence there are at least $\alpha+1$ such lines in D. This is a contradiction. So two points are on a line of D^{\prime} iff they are on a line of D, which proves the claim. A partial geometry with parameters ($s, t, 1$) is the same as a generalized quadrangle of order (s, t).

APPENDIX II

TABLES

First we list the twentyone strongly regulax graphs with parameters $(40,12,2,4)$, as promised in Section 6.2 . Together with the ones of Examples 6.2.1 and 6.2.2 they form the twentyfour 40-graphs of Theorem 6.2.5. The respective 5 -tuples of the 40 -graphs listed below are:

$(0,0,0,36,4)$	$(8,18,2,9,3)$	$(16,14,4,5,1)$
$(12,18,6,3,1)$	$(4,20,4,10,2)$	$(18,18,0,3,1)$
$(12,12,0,14,2)$	$(9,18,0,9,4)$	$(18,20,0,0,2)$
$(6,22,6,3,3)$	$(18,12,9,0,1)$	$(27,12,0,0,1)$
$(0,32,0,0,8)$	$(0,12,0,18,10)$	$(0,36,0,0,4)$
$(0,24,0,12,4)$	$(8,8,0,20,4)$	$(6,12,12,10,0)$
$(2,8,12,16,2)$	$(10,8,18,4,0)$	$(0,16,6,12,6)$.

 $\begin{array}{llllllllllll}6 & 8 & 9 & 10 & 14 & 19 & 23 & 24 & 32 & 33 & 34 & 39\end{array}$ $\begin{array}{llllllllllll}4 & 7 & 12 & 15 & 16 & 19 & 23 & 24 & 30 & 31 & 35 & 39\end{array}$
 $\begin{array}{lllllllllll}7 & 9 & 12 & 14 & 18 & 20 & 21 & 22 & 28 & 31 & 34 \\ 39\end{array}$
 $\begin{array}{lllllllllll}3 & 5 & 10 & 11 & 14 & 16 & 18 & 24 & 33 & 36 & 37 \\ 38\end{array}$

 $\begin{array}{llllllllllll}1 & 2 & 4 & 7 & 12 & 13 & 22 & 25 & 29 & 33 & 38 & 39\end{array}$

 $\begin{array}{llllllllllll}4 & 6 & 10 & 11 & 16 & 19 & 22 & 28 & 28 & 31 & 34 & 37\end{array}$
 $\begin{array}{llllllllllll}1 & 3 & 6 & 8 & 11 & 14 & 21 & 26 & 29 & 31 & 38 & 39\end{array}$ $\begin{array}{llllllllllll}1 & 3 & 7 & 9 & 13 & 20 & 23 & 26 & 29 & 32 & 34 & 36\end{array}$

 $\begin{array}{llllllllllll}1 & 4 & 5 & 11 & 12 & 15 & 23 & 27 & 32 & 33 & 34 & 37\end{array}$
 $2 \quad 3 \quad 6 \quad 16 \quad 18 \quad 21 \quad 22 \quad 27 \quad 28 \quad 29 \quad 30 \quad 37$ $\begin{array}{llllllllllll}1 & 2 & 3 & 7 & 8 & 17 & 25 & 27 & 28 & 31 & 34 & 37\end{array}$
 $\begin{array}{llllllllllll}3 & 14 & 15 & 16 & 17 & 18 & 25 & 27 & 33 & 34 & 35 & 35\end{array}$ $\begin{array}{lllllllllll}19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 36 & 37 & 38 \\ 39\end{array}$

 | 8 | 10 | 12 | 14 | 15 | 16 | 20 | 23 | 25 | 28 | 37 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllll}3 & 4 & 9 & 11 & 14 & 17 & 22 & 23 & 25 & 34 & 38 & 40\end{array}$ $\begin{array}{lllllllllllll}3 & 5 & 6 & 13 & 15 & 20 & 22 & 24 & 25 & 32 & 33 & 40\end{array}$ $\begin{array}{llllllllllll}1 & 2 & 4 & 14 & 16 & 18 & 19 & 21 & 25 & 31 & 36 & 40\end{array}$

 $\begin{array}{llllllllllll}1 & 3 & 8 & 9 & 12 & 18 & 19 & 22 & 26 & 33 & 37 & 40\end{array}$ $\begin{array}{lllllllllllll}1 & 7 & 8 & 11 & 12 & 16 & 17 & 22 & 26 & 32 & 39 & 40\end{array}$ $\begin{array}{rrrrrrlllllll}6 & 7 & 8 & 11 & 12 & 16 & 17 & 22 & 27 & 32 & 39 & 40 \\ 4 & 6 & 7 & 9 & 13 & 14 & 21 & 24 & 27 & 29 & 35 & 40\end{array}$ $\begin{array}{rrrrrrrrrrrr}4 & 6 & 7 & 9 & 13 & 14 & 21 & 24 & 27 & 29 & 35 & 40 \\ 1 & 6 & 7 & 10 & 15 & 16 & 19 & 20 & 27 & 30 & 34 & 40\end{array}$ $\begin{array}{lllllllllllll}1 & 6 & 7 & 10 & 15 & 18 & 15 & 20 & 27 & 30 & 34 & 40 \\ 2 & 3 & 4 & 5 & 9 & 10 & 15 & 26 & 27 & 28 & 36 & 40\end{array}$ $\begin{array}{llllllllllll}24 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39\end{array}$

[^0]| | | | | 17 | | | | 28 | 32 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 8 | 9 | 14 | 15 | 19 | 23 | 24 | 3 | 32 | 33 | 3 | |
| | 6 | 10 | 12 | 16 | 19 | 23 | 24 | 3 | 3 | 35 | | |
| | 8 | 10 | 13 | 17 | 18 | 20 | 21 | 30 | 32 | 37 | | |
| 7 | 9 | 12 | 14 | 18 | 20 | 21 | 22 | 28 | 31 | 34 | | |
| 3 | 9 | 11 | 14 | 15 | 17 | 18 | 23 | 31 | 6 | 37 | | |
| 2 | 5 | 10 | 12 | 13 | 16 | 18 | 24 | 33 | 36 | 37 | | |
| 2 | 4 | 11 | 15 | 18 | 20 | 22 | 24 | 29 | 34 | | | |
| 1 | 2 | 5 | 6 | 11 | 16 | 20 | 25 | 30 | 35 | 37 | | |
| | 3 | | 7 | 11 | 14 | 22 | 25 | 29 | 33 | 3 3 | | |
| 6 | 8 | a | 10 | 13 | 19 | 21 | 25 | 28 | 33 | 34 | | |
| 3 | 5 | 7 | 15 | 17 | 19 | 21 | 25 | 29 | 30 | 35 | | |
| 4 | | 11 | 15 | 16 | 19 | 22 | 26 | | 30 | 31 | | |
| 2 | 5 | 6 | 10 | 17 | 19 | 22 | 26 | 29 | 32 | 34 | | |
| | | 6 | 8 | 12 | 13 | 21 | 26 | 29 | 31 | 38 | | |
| 1 | 3 | 7 | 9 | 13 | 20 | 23 | 26 | 29 | 32 | 34 | | |
| | | 6 | 12 | 14 | 20 | 24 | 26 | 28 | 30 | 3 | | |
| 4 | 5 | 6 | 7 | 8 | 23 | 25 | 26 | 28 | 32 | | | |
| 2 | | 11 | 12 | 13 | 14 | 20 | 27 | 28 | 32 | 35 | | |
| 4 | | | 9 | 16 | 17 | 19 | 27 | 2 | 31 | 33 | | |
| | | 5 | 11 | 12 | 15 | 23 | 27 | 32 | 33 | 34 | | |
| | | 8 | 10 | 13 | 14 | 23 | 27 | 30 | 31 | 35 | | |
| 2 | 3 | 6 | 16 | 14 | 21 | 22 | 27 | 28 | 29 | 30 | | |
| 1 | 2 | 3 | 7 | 0 | 17 | 25 | 27 | 28 | 31 | 34 | | |
| 9 | 10 | 11 | 12 | 18 | 24 | 26 | 27 | 29 | 30 | | | |
| 3 | 14 | 15 | 16 | 17 | 10 | 25 | 7 | - | 34 | | | |
| 9 | 20 | 21 | 22 | 23 | 24 | 25 | 28 | 36 | 37 | | | |
| | | 11 | 13 | 17 | 18 | 19 | 23 | | 29 | 39 | | |
| 8 | 10 | 12 | 14 | 15 | 16 | 20 | 23 | | 28 | | | |
| | | | 12 | 13 | 17 | 22 | 23 | 2. | 34 | 38 | | |
| 3 | 5 | 6 | 13 | 15 | 20 | 22 | 24 | 25 | 32 | | | |
| | 2 | 4 | 14 | 16 | 18 | 19 | 21 | 25 | 31 | 36 | | |
| 2 | 7 | 10 | 11 | 17 | 20 | 21 | 23 | 26 | 31 | 35 | | |
| 3 | 5 | 8 | 11 | 14 | 16 | 21 | 24 | 26 | 30 | 38 | | |
| | 3 | 8 | 9 | 12 | 18 | 19 | 22 | 26 | 33 | 37 | | |
| | 7 | 8 | 1 | 12 | 16 | 1.7 | 2 | 27 | 32 | 3 | | |
| 4 | 6 | 7 | 9 | 13 | 14 | 21 | 24 | 27 | 29 | 35 | | |
| 1 | 6 | 7 | 10 | 15 | 18 | 19 | 20 | 27 | 30 | 32 | | |
| 2 | 3 | 4 | 5 | 9 | 10 | 15 | 26 | 27 | 28 | 36 | | |
| 8 | 29 | 30 | | 32 | 重 | 34 | 35 | 36 | 37 | | | |

| | 10 | 15 | 16 | 17 | 21 | 22 | 24 | 20 | 32 | 35 | 38 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 \(\begin{array}{llllllllllll}7 & 8 & 9 & 14 & 15 & 19 & 23 & 24 & 30 & 32 & 33 & 39\end{array}\)

$\begin{array}{lllllllllllll}2 & 4 & 11 & 15 & 18 & 20 & 22 & 24 & 29 & 34 & 35 & 16\end{array}$

$1 \begin{array}{llllllllllllllll}1 & 3 & 4 & 7 & 11 & 14 & 22 & 25 & 29 & 33 & 32 & 39\end{array}$

$\begin{array}{lllllllllll}5 & 6 & 10 & 17 & 19 & 22 & 26 & 29 & 32 & 34 & 37\end{array}$
$\begin{array}{llllllllll}2 & 6 & 8 & 12 & 13 & 21 & 26 & 29 & 31 & 38\end{array} 39$

$\begin{array}{lrrlllllllll}5 & 8 & 9 & 16 & 17 & 19 & 27 & 29 & 31 & 33 & 38 \\ 4 & 5 & 11 & 12 & 15 & 23 & 27 & 32 & 33 & 34 & 37\end{array}$
$\begin{array}{llllllllll}8 & 10 & 13 & 14 & 25 & 27 & 30 & 31 & 35 & 36\end{array}$
$\begin{array}{lllllllll}6 & 16 & 10 & 21 & 22 & 27 & 28 & 29 & 30 \\ 33\end{array}$
$\begin{array}{lllllllllll}2 & 3 & 7 & 8 & 17 & 25 & 27 & 28 & 31 & 34 & 37\end{array}$

$\begin{array}{llllllllllll}1 & 5 & 11 & 13 & 17 & 18 & 19 & 23 & 24 & 29 & 39 & 40\end{array}$
$\begin{array}{llllllllllllllllllll}9 & 10 & 12 & 14 & 15 & 16 & 20 & 23 & 25 & 20 & 37 & 40\end{array}$

$\begin{array}{llllllllll}10 & 11 & 17 & 20 & 21 & 23 & 26 & 31 & 35 & 40\end{array}$

$811 \quad 12161722 \quad 26$ 33 3740
$\begin{array}{llllllllllll}7 & 9 & 13 & 14 & 21 & 24 & 27 & 29 & 35 & 40\end{array}$
$\begin{array}{lllllllllll}7 & 10 & 15 & 18 & 19 & 20 & 27 & 30 & 34 & 40 \\ 4 & 5 & 9 & 10 & 15 & 26 & 27 & 28 & 36 & 40\end{array}$

$6 \quad 6 \quad 10 \quad 1219 \quad 23 \quad 4433 \quad 3435 \quad 39$
474151619232430343239

	10	12	16	19	23	24	30	31	32	39

$\begin{array}{llllllllllll}9 & 1 & 2 & 14 & 18 & 20 & 21 & 22 & 28 & 31 & 34 & 30\end{array}$

$\begin{array}{rrrrrrrrrrr}4 & 11 & 14 & 15 & 16 & 22 & 24 & 29 & 34 & 36 & 39 \\ 2 & 5 & 6 & 11 & 14 & 16 & 25 & 30 & 37 & 38 & 39\end{array}$

$\begin{array}{cccccccccccc}6 & 8 & 9 & 17 & 19 & 22 & 26 & 29 & 32 & 34 & 37\end{array}$
$\begin{array}{lllllllllllllllllllllll}6 & 8 & 11 & 20 & 21 & 26 & 29 & 31 & 39\end{array}$

$\begin{array}{llllllllll}6 & 12 & 14 & 20 & 24 & 26 & 28 & 30 & 33 & 36\end{array}$
$\begin{array}{lllllllllll}5 & 6 & 7 & 8 & 23 & 25 & 26 & 28 & 32 & 35 & 38\end{array}$
$\begin{array}{lllllllllll}3 & 11 & 12 & 13 & 14 & 20 & 27 & 28 & 32 & 35 & 38\end{array}$

$\begin{array}{lllllllllll}4 & 5 & 11 & 12 & 15 & 23 & 27 & 32 & 33 & 34 & 37 \\ 5 & 8 & 10 & 13 & 14 & 23 & 27 & 30 & 31 & 35 & 36\end{array}$

$\begin{array}{lllllllllll}3 & 6 & 16 & 18 & 21 & 22 & 27 & 28 & 29 & 30 & 33\end{array}$
$\begin{array}{lllllllllll}2 & 3 & 7 & 8 & 17 & 25 & 27 & 28 & 31 & 34 & 37\end{array}$

$\begin{array}{llllllllllll}13 & 14 & 15 & 16 & 47 & 18 & 25 & 27 & 33 & 34 & 35 & 39\end{array}$

$\begin{array}{llllllllll}1 & 3 & 6 & 10 & 14 & 10 & 19 & 21 & 25 & 34 \\ 36 & 40\end{array}$
$\begin{array}{llllllllllll}7 & 10 & 11 & 14 & 17 & 21 & 23 & 26 & 31 & 39 & 40\end{array}$
$\begin{array}{llllllllllll}2 & 5 & 0 & 1 & 3 & 16 & 20 & 21 & 24 & 26 & 30 & 32\end{array} 40$

$7811121617 \quad 2227 \quad 323940$
$\begin{array}{lllllllllll}6 & 7 & 9 & 13 & 14 & 21 & 24 & 27 & 29 & 35 & 40\end{array}$
$\begin{array}{lllllllllll}4 & 5 & 9 & 16 & 18 & 19 & 20 & 27 & 31 & 33 & 40\end{array}$
$\begin{array}{lllllllllll}.29 & 30 & 3 & 3 & 3 & 3 & 33 & 34 & 26 & 27 & 38 \\ 36 & 36 & 40 \\ 37 & 38 & 39\end{array}$

$\begin{array}{llllllllllllllll}10 & 15 & 16 & 17 & 21 & 22 & 24 & 28 & 32 & 35 & 30\end{array}$ | 9 | 9 | 12 | 15 | 19 | 23 | 24 | 30 | 33 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllllllll}610 & 14 & 16 & 19 & 24 & 24 & 32 & 34 & 39\end{array}$

 $\begin{array}{lllllllllll}5 & 10 & 14 & 14 & 16 & 18 & 24 & 33 & 36 & 37 & 38\end{array}$ $\begin{array}{lllllllllll}5 & 10 & 1 & 14 & 16 & 18 & 24 & 33 & 36 & 37 & 38 \\ 4 & 13 & 15 & 18 & 20 & 22 & 24 & 29 & 32 & 34 & 36\end{array}$ $\begin{array}{rrrrrrrrrrr}4 & 13 & 15 & 18 & 20 & 22 & 24 & 29 & 32 & 34 & 36 \\ 2 & 5 & 6 & 17 & 16 & 20 & 25 & 30 & 32 & 37 & 39\end{array}$ $\begin{array}{lllllllllll}2 & 5 & 6 & 13 & 16 & 20 & 25 & 30 & 32 & 37 & 39 \\ 3 & 4 & 7 & 12 & 13 & 22 & 25 & 29 & 33 & 30 & 39\end{array}$ $\begin{array}{rrrrrrrrrrr}3 & 4 & 7 & 12 & 13 & 22 & 25 & 29 & 33 & 36 & 39 \\ 7 & 13 & 15 & 16 & 19 & 21 & 25 & 29 & 30 & 31 & 36\end{array}$ $\begin{array}{llllllllllll}7 & 13 & 15 & 16 & 19 & 21 & 25 & 29 & 30 & 35 & 36 \\ 5 & 6 & 10 & 17 & 19 & 21 & 25 & 29 & 34 & 35 & 36\end{array}$ $\begin{array}{lllllllllll}6 & 9 & 10 & 11 & 19 & 22 & 26 & 28 & 33 & 34 & 37\end{array}$
 $\begin{array}{llllllllllll}2 & 6 & 8 & 11 & 14 & 21 & 26 & 29 & 31 & 38 & 39\end{array}$ $\begin{array}{lllllllllllll}3 & 7 & 9 & 11 & 20 & 21 & 26 & 29 & 34 & 35 & 36\end{array}$

 $\begin{array}{lllllllllll}5 & 8 & 9 & 6 & 17 & 19 & 27 & 29 & 34 & 33 & 36\end{array}$

 $\begin{array}{lllllllllll}10 & 1 & 12 & 18 & 24 & 26 & 27 & 29 & 30 & 31 & 32\end{array}$ $\begin{array}{llllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 25 & 27 & 33 & 34 & 35 & 39\end{array}$ $\begin{array}{llllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 25 & 27 & 33 & 34 & 35 & 39 \\ 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 36 & 37 & 38 & 39\end{array}$ $\begin{array}{rllllllllll}20 & 21 & 22 & 23 & 24 & 25 & 26 & 36 & 37 & 38 & 39 \\ 5 & 11 & 13 & 17 & 18 & 19 & 23 & 24 & 29 & 39 & 40\end{array}$ $\begin{array}{ccccccccccccc}5 & 11 & 1.3 & 17 & 18 & 19 & 23 & 24 & 29 & 39 & 40 \\ 10 & 12 & 14 & 15 & 16 & 20 & 23 & 25 & 20 & 37 & 40\end{array}$ $\begin{array}{lllllllllll}4 & 9 & 11 & 14 & 17 & 22 & 23 & 25 & 34 & 38 & 40\end{array}$ $\begin{array}{llllllllllll}5 & 6 & 11 & 15 & 20 & 22 & 24 & 25 & 32 & 35 & 40\end{array}$ $\begin{array}{lllllllllll}3 & 8 & 9 & 14 & 18 & 19 & 21 & 25 & 33 & 36 & 40\end{array}$ $\begin{array}{lllllllllll}7 & 10 & 13 & 17 & 20 & 21 & 23 & 26 & 31 & 32 & 40\end{array}$ $\begin{array}{lllllllllll}5 & 9 & 12 & 13 & 16 & 21 & 24 & 26 & 30 & 38 & 40\end{array}$ $2 \begin{array}{llllllllll}2 & 4 & 12 & 16 & 18 & 19 & 22 & 26 & 31 & 37 \\ 40\end{array}$ $\begin{array}{llllllllll}7 & 8 & 11 & 12 & 16 & 17 & 22 & 27 & 32 & 39 \\ 7 & 40\end{array}$ $\begin{array}{lllllllllll}7 & 8 & 11 & 12 & 16 & 17 & 22 & 27 & 32 & 39 & 40 \\ 6 & 7 & 0 & 13 & 14 & 21 & 24 & 27 & 29 & 35 & 40\end{array}$ $\begin{array}{lllllllllll}6 & 7 & 9 & 13 & 14 & 21 & 24 & 27 & 29 & 35 & 40 \\ 6 & 7 & 10 & 15 & 18 & 19 & 20 & 27 & 30 & 34 & 40\end{array}$ $\begin{array}{rrrrrrrrrrrr}6 & 7 & 10 & 15 & 18 & 19 & 20 & 27 & 30 & 34 & 40 \\ 3 & 4 & 5 & 9 & 10 & 15 & 26 & 27 & 28 & 36 & 40\end{array}$ 2625
$10121416 \quad 172022 \quad 2428 \quad 32 \quad 35 \quad 38$ $7 \quad 910151623$ 24 $3232 \quad 37 \quad 38$ $\begin{array}{llllllllllll}8 & 11 & 12 & 14 & 19 & 23 & 24 & 30 & 34 & 35 & 39\end{array}$ $\begin{array}{llllllllllll}3 & 11 & 13 & 17 & 14 & 21 & 22 & 51 & 3 & 38 & 39\end{array}$ $\begin{array}{llllllllllll}3 & 10 & 12 & 13 & 17 & 18 & 20 & 30 & 36 & 37 & 39\end{array}$
 $\begin{array}{llllllllllllllllllll}5 & 144 & 16 & 18 & 19 & 21 & 24 & 29 & 31 & 35 & 36\end{array}$
 $\begin{array}{lllllllllll}8 & 10 & 11 & 13 & 14 & 19 & 25 & 28 & 33 & 36 & 38\end{array}$ $\begin{array}{lllllllllll}2 & 5 & 6 & 9 & 21 & 22 & 25 & 30 & 34 & 35 & 39\end{array}$ $\begin{array}{lllllllllllll}4 & 6 & 9 & 16 & 17 & 20 & 25 & 29 & 35 & 36 & 37\end{array}$

 $\begin{array}{llllllllllll}6 & 8 & 14 & 17 & 19 & 22 & 26 & 29 & 30 & 32 & 37\end{array}$
 $\begin{array}{lllllllllll}4 & 5 & 11 & 15 & 21 & 24 & 26 & 28 & 30 & 33 & 36\end{array}$ $\begin{array}{lllllllllll}5 & 6 & 7 & 8 & 23 & 25 & 26 & 26 & 32 & 35 & 38\end{array}$

 $\begin{array}{lllllllllll} & 6 & 1 & 16 & 16 & 19 & 27 & 31 & 32 & 37 & 39 \\ 6 & 7 & 10 & 12 & 17 & 19 & 27 & 29 & 33 & 34 & 38\end{array}$
 $\begin{array}{llllllllll}3 & 6 & 12 & 16 & 13 & 22 & 27 & 28 & 30 & 33 \\ 36\end{array}$

 $\begin{array}{lllllllllllllllllllll}14 & 15 & 16 & 17 & 18 & 25 & 27 & 33 & 34 & 35 & 39\end{array}$ $\begin{array}{lllllllllll}20 & 21 & 22 & 23 & 24 & 25 & 26 & 36 & 37 & 38 & 39\end{array}$ $\begin{array}{lllllllllll}6 & 9 & 13 & 17 & 10 & 19 & 23 & 24 & 29 & 39 & 40\end{array}$ $\begin{array}{lllllllllll}8 & 11 & 12 & 15 & 16 & 21 & 22 & 25 & 28 & 39 & 40\end{array}$
 $\begin{array}{lllllllllll}6 & 7 & 13 & 14 & 20 & 22 & 24 & 25 & 30 & 33 & 40\end{array}$
 $\begin{array}{llllllllllll}8 & 9 & 12 & 17 & 20 & 21 & 23 & 26 & 31 & 35 & 40\end{array}$ $\begin{array}{lllllllllll}8 & 9 & 12 & 17 & 20 & 21 & 23 & 26 & 31 & 35 & 40 \\ 6 & \mathrm{E} & 10 & 13 & 16 & 21 & 24 & 20 & 32 & 36 & 40\end{array}$ $\begin{array}{lllllllllll}6 & 8 & 10 & 13 & 16 & 21 & 24 & 26 & 32 & 36 & 40 \\ 3 & 7 & 10 & 11 & 18 & 19 & 22 & 26 & 33 & 37 & 40\end{array}$ $\begin{array}{lllllllllll}3 & 7 & 10 & 11 & 18 & 19 & 22 & 26 & 33 & 37 & 40 \\ 7 & 9 & 11 & 14 & 17 & 77 & 22 & 27 & 32 & 34 & 40\end{array}$ $\begin{array}{lllllllllll}7 & 9 & 11 & 14 & 17 & 22 & 23 & 27 & 32 & 34 & 40\end{array}$

$\begin{array}{llllllllll}9 & 10 & 15 & 16 & 17 & 21 & 22 & 24 & 28 & 32\end{array} 3549$ $\begin{array}{llllllllllll}9 & 7 & 10 & 12 & 15 & 19 & 23 & 24 & 30 & 34 & 35 & 39\end{array}$ $\begin{array}{llllllllllll}4 & 6 & 9 & 14 & 16 & 19 & 23 & 24 & 31 & 32 & 33 & 39\end{array}$
 $\begin{array}{llllllllll}9 & 12 & 14 & 18 & 20 & 21 & 22 & 28 & 31 & 34 \\ 39\end{array}$

 $\begin{array}{lllllllllll}4 & 12 & 13 & 15 & 18 & 22 & 24 & 29 & 34 & 36 & 38\end{array}$ $\begin{array}{rrrrrrrrrrr}4 & 12 & 13 & 15 & 18 & 22 & 24 & 29 & 34 & 36 & 38 \\ 3 & 5 & 6 & 12 & 13 & 16 & 25 & 30 & 37 & 38 & 39\end{array}$ $\begin{array}{lllllllllll}3 & 5 & 6 & 12 & 13 & 16 & 25 & 30 & 37 & 38 & 39 \\ 2 & 4 & 7 & 13 & 20 & 22 & 25 & 29 & 32 & 33 & 39\end{array}$

 $\begin{array}{lllllllllll}5 & 6 & 9 & 17 & 19 & 21 & 25 & 29 & 33 & 35 & 36\end{array}$ $\begin{array}{lllllllllll}8 & 9 & 10 & 11 & 19 & 22 & 26 & 26 & 33 & 34 & 37\end{array}$ $\begin{array}{lllllllllll}5 & 7 & 15 & 17 & 19 & 22 & 26 & 29 & 30 & 32 & 37\end{array}$ | 2 | 6 | 9 | 11 | 1 | 4 | 21 | 26 | 29 | 31 | 38 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | | | | | | | | | | | $\begin{array}{lllllllllll}3 & 7 & 9 & 11 & 20 & 25 & 26 & 29 & 34 & 35 & 36\end{array}$ $\begin{array}{lllllllllll}4 & 6 & 12 & 14 & 20 & 24 & 26 & 28 & 30 & 33 & 36\end{array}$ $\begin{array}{llllllllll}5 & 6 & 7 & 8 & 23 & 25 & 26 & 28 & 32 & 35\end{array} 38$ $\begin{array}{lllllllllll}3 & 11 & 12 & 13 & 14 & 20 & 27 & 28 & 32 & 35 & 38\end{array}$ $\begin{array}{llllllllllll}5 & 6 & 10 & 16 & 17 & 19 & 27 & 29 & 34 & 34 & 36\end{array}$ $\begin{array}{lllllllllll}4 & 5 & 11 & 12 & 15 & 23 & 27 & 32 & 33 & 34 & 37\end{array}$ $\begin{array}{lllllllllll}5 & 9 & 10 & 13 & 14 & 23 & 27 & 30 & 31 & 35 & 36\end{array}$ $3616 \begin{array}{llllllll}3 & 61 & 22 & 27 & 28 & 29 & 30 & 33\end{array}$ $\begin{array}{lllllllllll}2 & 3 & 7 & 17 & 25 & 27 & 28 & 31 & 34 & 37\end{array}$ $101112182426 \quad 21203031 \quad 32$ $\begin{array}{llllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 25 & 27 & 3 & 34 & 35 & 39\end{array}$ $\begin{array}{llllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 25 & 27 & 3 & 34 & 35 & 39 \\ 19 & 20 & 24 & 22 & 23 & 24 & 25 & 26 & 36 & 37 & 39 & 39\end{array}$ $\begin{array}{lllllllllll}20 & 21 & 22 & 23 & 24 & 25 & 26 & 36 & 37 & 38 & 39 \\ 5 & 11 & 13 & 17 & 18 & 19 & 23 & 24 & 29 & 39 & 40\end{array}$ $\begin{array}{lllllllllll}5 & 1 & 13 & 17 & 18 & 19 & 23 & 24 & 29 & 39 & 40 \\ 10 & 12 & 14 & 15 & 16 & 20 & 23 & 25 & 28 & 37 & 40\end{array}$ $\begin{array}{rrrrrrrrrrr}10 & 12 & 14 & 15 & 16 & 20 & 23 & 25 & 28 & 37 & 40 \\ 4 & 9 & 1 & 1 & 14 & 17 & 22 & 23 & 25 & 34 & 38\end{array} 40$ $\begin{array}{lllllllllll}5 & 6 & 11 & 15 & 15 & 22 & 24 & 25 & 33 & 35 & 40\end{array}$ $\begin{array}{lllllllllll}3 & 6 & 10 & 14 & 18 & 15 & 21 & 25 & 34 & 36 & 40\end{array}$ $\begin{array}{lllllllllll}7 & 10 & 12 & 13 & 17 & 21 & 23 & 26 & 31 & 39 & 40\end{array}$

 $\begin{array}{lllllllllll}2 & 4 & 12 & 16 & 18 & 19 & 22 & 26 & 31 & 37 & 40 \\ 7 & 8 & 11 & 12 & 16 & 17 & 22 & 27 & 32 & 39 & 40\end{array}$ $\begin{array}{ccccccccccc}7 & 8 & 11 & 12 & 16 & 17 & 22 & 27 & 32 & 39 & 40 \\ 6 & 7 & 9 & 43 & 34 & 21 & 24 & 27 & 29 & 35 & 40\end{array}$ $\begin{array}{lllllllllll}6 & 7 & 9 & 13 & 14 & 21 & 24 & 27 & 29 & 35 & 40 \\ 7 & 8 & 9 & 15 & 15 & 19 & 20 & 27 & 30 & 33 & 40\end{array}$ $\begin{array}{rrrrrrrrrrrr}7 & 8 & 9 & 15 & 15 & 19 & 20 & 27 & 30 & 33 & 40 \\ 3 & 4 & 5 & 9 & 10 & 15 & 26 & 27 & 28 & 36 & 40\end{array}$

$\begin{array}{lllllllllll}10 & 12 & 14 & 16 & 17 & 20 & 22 & 24 & 28 & 32 & 35\end{array} 30$
 $\begin{array}{lllllllllllll}4 & 8 & 11 & 12 & 14 & 19 & 3 & 24 & 30 & 34 & 35 & 39\end{array}$
 $\begin{array}{llllllllllll}7 & 11 & 12 & 13 & 17 & 18 & 20 & 30 & 37 & 30 & 39\end{array}$ $\begin{array}{lllllllllll}10 & 11 & 14 & 15 & 18 & 20 & 21 & 23 & 28 & 31 & 34\end{array} 37$ $\begin{array}{lllllllllll}5 & 14 & 16 & 18 & 19 & 21 & 24 & 29 & 31 & 35 & 36\end{array}$ $\begin{array}{llllllllll}4 & 9 & 15 & 16 & 18 & 20 & 24 & 29 & 33 & 37 \\ 38\end{array}$ $\begin{array}{llllllllll}6 & 10 & 11 & 13 & 1 & 16 & 19 & 25 & 28 & 33 \\ 36 & 38\end{array}$

 $\begin{array}{lllllllllll}3 & 5 & 1.3 & 14 & 21 & 23 & 25 & 29 & 32 & 33 & 37\end{array}$

 $\begin{array}{lllllllllll}6 & 8 & 14 & 17 & 19 & 22 & 26 & 29 & 30 & 32 & 37\end{array}$

 | 4 | 5 | 1 | 1 | 15 | 21 | 24 | 26 | 28 | 30 | 33 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllll}5 & 6 & 7 & 6 & 23 & 25 & 26 & 28 & 32 & 35\end{array} 38$ $\begin{array}{llllllllll}7 & 9 & 13 & 15 & 20 & 21 & 27 & 28 & 30 & 32\end{array} 35$ $\begin{array}{llllllllllll}5 & 6 & 8 & 11 & 16 & 19 & 27 & 31 & 32 & 33 & 39\end{array}$

 $\begin{array}{lllllllllll}2 & 4 & 11 & 13 & 15 & 23 & 27 & 29 & 32 & 35 & 38\end{array}$

 $\begin{array}{lllllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 25 & 27 & 33 & 34 & 35 & 39\end{array}$

 $\begin{array}{llllllllll}6 & 11 & 12 & 15 & 16 & 21 & 22 & 25 & 28 & 39\end{array} 40$ $\begin{array}{lllllllllllll}5 & 10 & 15 & 16 & 17 & 19 & 23 & 25 & 31 & 38 & 40\end{array}$ $\begin{array}{llllllllll}6 & 7 & 13 & 14 & 20 & 22 & 24 & 25 & 30 & 33\end{array} 40$ $2 \quad 4121516192025 \quad 343640$

 $\begin{array}{lllllllllll}3 & 7 & 10 & 11 & 18 & 19 & 22 & 26 & 33 & 37 & 40\end{array}$ $\begin{array}{llllllllllllllllll}7 & 9 & 11 & 14 & 16 & 17 & 23 & 27 & 32 & 37 & 40\end{array}$
 $\begin{array}{lllllllllll}5 & 8 & 9 & 14 & 18 & 21 & 22 & 27 & 30 & 34 & 40 \\ 3 & 4 & 5 & 10 & 14 & 20 & 26 & 27 & 39 & 29 & 40\end{array}$ $\begin{array}{llllllllllll}29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39\end{array}$

0	12	14	16	17	20	22	24	26	32	35	5 38
5	7	10	15	16	19	23	24	30	32	34	39
4	8	11	12	1.4	19	23	24	31	33	35	39
3	5	10	13	17	18	21	22	30	32	37	39
2	7	11	12	13	17	18	20	31	36	38	39
1.0	1.1	1.4	1.5	18	20	21	23	28	31	34	37
2	5	9	1.4	18	21	22	24	29	33	35	37
3	4	3	15	16	18	20	24	29	34	36	38
7	8	10	13	14	19	20	25	28	30	33	36
1	2	4	6	9	12	15	25	35	'36	37	39
3	5	*	14	16	17	19	25	29	32	36	37
1	3	\%	10	13	21	23	25	29	33	34	38
4	5	9	12	16	19	22	26	28	31	34	37
1	3	6	7	9	11	22	26	30	34	34	39
2	6	8	10	17	19	22	26	29	31	31	38
1	2	8	11	13	20	23	26	89	30	35	37
1	4	3	11	15	21	24	26	28	30	33	36
4	5	6	7	6	23	25	26	28	32	35	36
2	3	9	11	13	15	21	27	28	32	35	38
1	5	6	8	9	16	21	27	31	32	33	39
4	6	7	12	17	19	20	27	29	30	34	35
!	4	7	13	4	45	23	27	29	31	32	36
2	3	6	12	16	18	22	27	28	30	33	36
1	2	3	7	E	17	25	27	28	31	34	37
9	10	4	12	18	24	26	27	29	30	3:	32
13	14	15	16	57	18	25	27	33	34	35	39
19	20	21	22	23	24	25	26	36	37	38	39
1	6	9	13	17	18	19	23	24	29	39	40
7	8	11	12	15	16	21	22	25	28	39	40
2	4	9	14	16	17	21	23	25	31.	38	40
3	5	6	13	15	20	22	24	25	30	35	40
1	2	4	11	16	19	20	22	25	33	34	40
3	7	9	12	15	17	20	23	26	32	37	40
2	6	8	12	13	14	21	24	26	32	36	40
1	3	7	10	16	18	19	21	26	31	36	40
5	8	9	10	12	17	22	23	27	34	35	40
4	6	7	10	11	13	16	24	27	33	38	40
1	3	8	12	14	15	18	19	27	30	37	40
2	3	4	5	10	14	20	26	27	28	29	40
23	29	30	31	32	33	34	35	36	37	38	8

$\begin{array}{lllllllll}10 & 12 & 14 & 16 & 17 & 20 & 22 & 24 & 28 \\ 32 & 35 & 38\end{array}$ | 10 | 12 | 14 | 16 | 17 | 20 | 24 | 24 | 82 | 35 | 38 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 5 | 12 | 15 | 16 | 19 | 23 | 24 | 31 | 32 | 34 |

 $\begin{array}{lllllllllllll}10 & 11 & 14 & 15 & 18 & 20 & 21 & 23 & 28 & 31 & 34 & 37\end{array}$
 $3413161020212429 \quad 3233 \quad 37$
 $\begin{array}{llllllllllll}1 & 3 & 4 & 6 & 9 & 15 & 16 & 25 & 30 & 37 & 38 & 39\end{array}$

 4. $8 \quad 9 \quad 12 \quad 1419 \quad 22 \quad 26 \quad 28 \quad 30 \quad 34 \quad 37$ $\begin{array}{llllllllllll}1 & 3 & 6 & 7 & 12 & 13 & 21 & 26 & 31 & 32 & 36 & 39\end{array}$
 $\begin{array}{lllllllllllll}1 & 2 & 8 & 9 & 10 & 21 & 23 & 26 & 29 & 34 & 35 & 36\end{array}$ $\begin{array}{rrrrrrrrrrrr}1 & 4 & 5 & 11 & 15 & 21 & 24 & 26 & 28 & 30 & 33 & 36 \\ 4 & 5 & 6 & 7 & 8 & 23 & 25 & 26 & 28 & 32 & 35 & 38\end{array}$
 $\begin{array}{lllllllllllll}1 & 5 & 6 & 8 & 9 & 11 & 22 & 27 & 32 & 33 & 34 & 39\end{array}$ $\begin{array}{lllllllllllll}5 & 6 & 8 & 14 & 16 & 17 & 19 & 27 & 29 & 30 & 31 & 38\end{array}$
 $\begin{array}{llllllllllll}2 & 3 & 6 & 1 & 16 & 18 & 22 & 27 & 28 & 30 & 33 & 36\end{array}$
 $\begin{array}{llllllllllll}9 & 10 & 11 & 12 & 18 & 24 & 26 & 27 & 29 & 30 & 31 & 32\end{array}$ $\begin{array}{lllllllllllll}3 & 14 & 15 & 16 & 17 & 18 & 25 & 27 & 33 & 34 & 35 & 39\end{array}$ $\begin{array}{llllllllllll}19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 36 & 37 & 38 & 39\end{array}$
 $7 \quad 111215162122 \quad 25 \quad 28 \quad 3940$

 $4 \quad 7 \quad 9 \quad 11 \begin{array}{llllllllll}4 & 14 & 16 & 17 & 23 & 27 & 32 & 37 & 40\end{array}$
 147101215192127 3等 3440
 $\begin{array}{lllllllllllll}24 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39\end{array}$

$\begin{array}{llllllllllll}10 & 12 & 14 & 16 & 17 & 20 & 22 & 24 & 28 & 32 & 35 & 38\end{array}$

 $\begin{array}{lllllllllll}4 & 7 & 10 & 11 & 12 & 19 & 23 & 24 & 33 & 34 & 35 \\ 39\end{array}$ $\begin{array}{llllllllllll}5 & 8 & 14 & 15 & 16 & 19 & 23 & 24 & 30 & 31 & 32 & 39\end{array}$ $\begin{array}{lllllllllll}8 & 10 & 13 & 17 & 18 & 21 & 22 & 31 & 32 & 36 & 39 \\ 7 & 11 & 12 & 13 & 17 & 16 & 20 & 30 & 37 & 30 & 39\end{array}$ $\begin{array}{cccccccccccc}3 & 7 & 11 & 12 & 13 & 17 & 18 & 20 & 30 & 37 & 36 & 39 \\ 10 & 11 & 14 & 15 & 18 & 20 & 21 & 23 & 20 & 31 & 34 & 37\end{array}$ $\begin{array}{ccccccccccccc}0 & 11 & 14 & 15 & 16 & 20 & 21 & 23 & 26 & 31 & 34 & 37 \\ 2 & 5 & 9 & 14 & 15 & 16 & 22 & 24 & 29 & 34 & 36 & 39\end{array}$ $\begin{array}{lllllllllll}2 & 5 & 9 & 14 & 15 & 16 & 22 & 24 & 29 & 34 & 36 \\ 3 & 36 \\ 4 & 9 & 16 & 18 & 20 & 21 & 24 & 29 & 33 & 35 & 37\end{array}$ $\begin{array}{lrlllllllll}4 & 9 & 16 & 16 & 20 & 21 & 24 & 29 & 33 & 35 & 37 \\ 8 & 10 & 13 & 14 & 19 & 20 & 25 & 28 & 30 & 33 & 36\end{array}$ $\begin{array}{lllllllllll}2 & 4 & 6 & 9 & 15 & 16 & 25 & 30 & 37 & 38 & 39\end{array}$ $\begin{array}{lllllllllll}5 & 6 & 16 & 17 & 19 & 20 & 25 & 29 & 31 & 35 & 36\end{array}$

 $\begin{array}{rrrrrrrrrrr}5 & 9 & 12 & 16 & 19 & 22 & 26 & 28 & 31 & 34 & 37 \\ 3 & 6 & 7 & 9 & 12 & 21 & 26 & 3! & 35 & 36 & 39\end{array}$ $\begin{array}{ccccccccccc}3 & 6 & 7 & 9 & 12 & 21 & 26 & 34 & 35 & 36 & 39 \\ 6 & 7 & 10 & 17 & 19 & 22 & 26 & 29 & 32 & 33 & 37\end{array}$ $\begin{array}{lllllllllll}6 & 7 & 10 & 17 & 19 & 27 & 26 & 29 & 32 & 33 & 37 \\ 3 & 8 & 10 & 11 & 13 & 23 & 26 & 29 & 34 & 36 & 38\end{array}$ $\begin{array}{lllllllllll}3 & 8 & 10 & 1 & 1 & 1 & 23 & 26 & 29 & 34 & 36 \\ 4 & 38 \\ 4 & 5 & 14 & 15 & 21 & 24 & 26 & 28 & 30 & 33 & 36\end{array}$ $\begin{array}{ccccccccccc}4 & 5 & 11 & 15 & 21 & 24 & 26 & 28 & 30 & 33 & 36 \\ 5 & 6 & 7 & 8 & 23 & 25 & 26 & 28 & 32 & 35 & 38 \\ 3 & 5 & 11 & 13 & 15 & 21 & 27 & 28 & 32 & 35 & 38\end{array}$ $\begin{array}{rrrrrrrrrrr}3 & 9 & 1 & 1 & 1 & 1 & 5 & 21 & 27 & 28 & 32 \\ 5 & 6 & 8 & 3 & 1 & 1 & 22 & 27 & 38 & 32 & 33 \\ 54 & 39\end{array}$ $\begin{array}{rrrrrrrrrrrr}5 & 6 & 8 & 3 & 1 & 22 & 27 & 32 & 33 & 34 & 39 \\ 6 & 8 & 12 & 14 & 17 & 19 & 27 & 29 & 30 & 34 & 38\end{array}$ $\begin{array}{lllllllllllll}4 & 7 & 12 & 14 & 15 & 20 & 23 & 27 & 29 & 30 & 31 & 35\end{array}$ $\begin{array}{lllllllllll}3 & 6 & 12 & 16 & 18 & 22 & 27 & 20 & 30 & 33 & 36\end{array}$
 $\begin{array}{lllllllllllll}9 & 10 & 11 & 12 & 18 & 24 & 26 & 27 & 29 & 30 & 31 & 32\end{array}$ $\begin{array}{llllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 25 & 27 & 33 & 34 & 35 & 39\end{array}$ $\begin{array}{lllllllllllllllllll}9 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 36 & 37 & 38 & 39\end{array}$ $\begin{array}{lllllllllll}6 & 9 & 13 & 17 & 18 & 19 & 23 & 24 & 29 & 39 & 40\end{array}$
 $\begin{array}{llllllllllll}8 & 11 & 12 & 15 & 16 & 21 & 22 & 25 & 28 & 39 & 40 \\ 5 & 9 & 10 & 17 & 21 & 22 & 23 & 25 & 34 & 35 & 40\end{array}$ $\begin{array}{lllllllllll}5 & 9 & 10 & 17 & 21 & 22 & 23 & 25 & 34 & 35 & 40 \\ 4 & 6 & 11 & 13 & 14 & 22 & 24 & 25 & 33 & 38 & 40\end{array}$ $\begin{array}{lllllllllll}6 & 11 & 13 & 14 & 22 & 24 & 25 & 33 & 38 & 40 \\ 4 & 12 & 15 & 1 & 19 & 19 & 20 & 25 & 34 & 36 & 40\end{array}$ $\begin{array}{llllllllll}4 & 12 & 15 & 15 & 19 & 20 & 25 & 34 & 36 & 40 \\ 9 & 12 & 15 & 17 & 20 & 23 & 26 & 31 & 38 & 40\end{array}$ $\begin{array}{llllllllll}9 & 2 & 15 & 17 & 20 & 23 & 26 & 31 & 38 & 40 \\ 7 & 13 & 16 & 20 & 21 & 24 & 26 & 30 & 32 & 40\end{array}$ $\begin{array}{lllllllllll}2 & 8 & 11 & 14 & 18 & 19 & 22 & 26 & 30 & 37 & 40 \\ 7 & 9 & 11 & 14 & 16 & 17 & 23 & 27 & 32 & 37 & 40\end{array}$ $\begin{array}{llllllllllll}7 & 9 & 1 & 1 & 14 & 16 & 17 & 23 & 27 & 32 & 37 & 40 \\ 6 & 9 & 10 & 12 & 13 & 15 & 24 & 27 & 35 & 36 & 40\end{array}$
 $\begin{array}{lllllllllll}3 & 3 & 4 & 5 & 10 & 14 & 20 & 26 & 27 & 28 & 29\end{array} 40$

$\begin{array}{llllllllll}10 & 12 & 14 & 16 & 17 & 20 & 22 & 24 & 28 & 32\end{array} 3538$ 57 $4 \quad 8 \quad 11 \begin{array}{llllllllllllllll}4 & 1 & 14 & 19 & 23 & 24 & 30 & 34 & 35 & 39\end{array}$
 $\begin{array}{llllllllllll}3 & 6 & 1 & 13 & 17 & 18 & 21 & 22 & 31 & 32 & 36 & 39 \\ 2 & 7 & 11 & 12 & 13 & 17 & 18 & 30 & 30 & 37 & 38 & 39\end{array}$
 $\begin{array}{llllllllllllll}2 & 5 & 9 & 14 & 10 & 21 & 22 & 24 & 29 & 34 & 35 & 36\end{array}$

 $\begin{array}{lllllllllll}5 & 6 & 14 & 16 & 17 & 19 & 25 & 29 & 32 & 36 & 37\end{array}$ $\begin{array}{llllllllllllll}1 & 3 & 5 & 10 & 13 & 21 & 23 & 25 & 29 & 33 & 34 & 38\end{array}$ $\begin{array}{llllllllllll}4 & 5 & 9 & 12 & 16 & 19 & 22 & 26 & 29 & 31 & 34 & 37\end{array}$ $\begin{array}{lllrlllllllllllllllll}1 & 3 & 6 & 7 & 9 & 11 & 22 & 26 & 31 & 33 & 30 & 39\end{array}$ $\begin{array}{llllllllllll}2 & 6 & B & 10 & 17 & 19 & 22 & 26 & 29 & 39 & 34 & 30\end{array}$ $\begin{array}{llllllllllll}1 & 2 & 8 & 11 & 13 & 20 & 23 & 26 & 29 & 31 & 35 & 36\end{array}$ $\begin{array}{lllllllllllll}1 & 4 & 5 & 11 & 15 & 21 & 24 & 26 & 28 & 30 & 33 & 36\end{array}$ $\begin{array}{lllllllllllll}4 & 5 & 6 & 7 & 8 & 23 & 25 & 26 & 28 & 32 & 35 & 38\end{array}$ $\begin{array}{llllllllllll}2 & 3 & 9 & 11 & 13 & 15 & 21 & 27 & 28 & 32 & 35 & 38\end{array}$ $\begin{array}{lllllllllllll}1 & 5 & E & B & 9 & 16 & 21 & 27 & 30 & 32 & 34 & 39\end{array}$
 $\begin{array}{llllllllllll}4 & 6 & 7 & 12 & 17 & 19 & 20 & 27 & 29 & 31 & 33 & 35 \\ 1 & 4 & 7 & 13 & 14 & 15 & 23 & 27 & 29 & 30 & 32 & 37\end{array}$ $\begin{array}{llllllllllll}1 & 4 & 7 & 13 & 14 & 15 & 23 & 27 & 29 & 30 & 32 & 37 \\ 2 & 3 & 6 & 12 & 16 & 18 & 22 & 27 & 28 & 30 & 33 & 36\end{array}$ $\begin{array}{llllllllllll}2 & 3 & 6 & 12 & 16 & 18 & 22 & 27 & 28 & 30 & 33 & 36 \\ 1 & 2 & 3 & 7 & 8 & 17 & 25 & 27 & 28 & 31 & 34 & 37\end{array}$ $\begin{array}{llllllllllll}1 & 2 & 3 & 7 & 8 & 17 & 25 & 27 & 28 & 31 & 34 & 37 \\ 9 & 10 & 11 & 12 & 18 & 24 & 26 & 27 & 29 & 30 & 31 & 32\end{array}$ $\begin{array}{lllllllllllll}9 & 10 & 11 & 12 & 18 & 24 & 26 & 27 & 29 & 30 & 31 & 32\end{array}$ $\begin{array}{lllllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 25 & 27 & 33 & 34 & 35 & 39\end{array}$ $\begin{array}{lllllllllll}19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 36 & 37 & 38 \\ 39\end{array}$ $\begin{array}{llllllllllllllllllll}1 & 6 & 3 & 13 & 17 & 18 & 19 & 23 & 24 & 29 & 39 & 40\end{array}$

 $\begin{array}{llllllllllll}2 & 4 & 6 & 13 & 24 & 19 & 21 & 24 & 25 & 30 & 38 & 40 \\ 1 & 2 & 4 & 11 & 18 & 19 & 20 & 22 & 2 \% & 37 & 34 & 46\end{array}$ $\begin{array}{llllllllllll}1 & 2 & 4 & 11 & 18 & 19 & 20 & 22 & 2 \pi & 37 & 34 & 46 \\ 2 & 9 & 9 & 12 & 14 & 17 & 21 & 23 & 26 & 32 & 37 & 40\end{array}$ $\begin{array}{llllllllllll}\mathbf{2} & 8 & 9 & 12 & 14 & 17 & 21 & 23 & 26 & 32 & 36 & 40 \\ 3 & 6 & 7 & 12 & 13 & 15 & 20 & 24 & 26 & 32 & 36 & 40\end{array}$

 $\begin{array}{lllllllllllll}1 & 5 & 8 & 12 & 14 & 15 & 18 & 19 & 27 & 31 & 36 & 40\end{array}$ $\begin{array}{rrrrrrrrrrrr}2 & 3 & 4 & 5 & 10 & 14 & 20 & 26 & 27 & 28 & 29 & 40 \\ 29 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 27 & 34 & 39\end{array}$ $\begin{array}{rrrrrrrrrrrr}10 & 12 & 14 & 16 & 17 & 20 & 22 & 24 & 28 & 32 & 35 & 30 \\ 5 & 7 & 10 & 15 & 16 & 19 & 23 & 24 & 31 & 32 & 33 & 39\end{array}$ $\begin{array}{llllllllllll}4 & 8 & 11 & 12 & 14 & 19 & 23 & 24 & 30 & 34 & 35 & 39\end{array}$ $\begin{array}{llllllllllll}4 & 8 & 11 & 12 & 14 & 19 & 23 & 24 & 30 & 34 & 38 & 99 \\ 3 & 8 & 10 & 13 & 17 & 18 & 21 & 22 & 31 & 32 & 36 & 39\end{array}$ $\begin{array}{llllllllllllll}2 & 7 & 11 & 12 & 13 & 17 & 18 & 20 & 30 & 37 & 38 & 39\end{array}$ $\begin{array}{llllllllllll}10 & 11 & 14 & 16 & 18 & 20 & 21 & 23 & 28 & 31 & 34 & 37\end{array}$ $\begin{array}{llllllllllll}2 & 5 & 9 & 14 & 18 & 21 & 22 & 24 & 29 \cdot 34 & 35 & 36\end{array}$ $\begin{array}{lllllllllllllllllllllll}3 & 4 & 9 & 15 & 16 & 18 & 20 & 24 & 29 & 33 & 37 & 38\end{array}$ $\begin{array}{lllllllllllllllllllllll}7 & 5 & 10 & 13 & 14 & 19 & 20 & 25 & 20 & 30 & 33 & 36\end{array}$ $\begin{array}{llllllllllll}1 & 2 & 4 & 5 & 9 & 16 & 21 & 25 & 30 & 35 & 37 & 39\end{array}$ $\begin{array}{lllllllllllll}3 & 5 & 5 & 16 & 17 & 19 & 20 & 25 & 29 & 31 & 35 & 36\end{array}$ $\begin{array}{llllllllllll}1 & 3 & 5 & 13 & 14 & 21 & 23 & 25 & 29 & 32 & 33 & 37\end{array}$ $\begin{array}{lllllllllll}4 & 5 & 9 & 12 & 16 & 19 & 22 & 26 & 28 & 31 & 34\end{array} 37$ $\begin{array}{llllllllllll}4 & 5 & 9 & 12 & 16 & 19 & 22 & 26 & 28 & 31 & 34 & 37 \\ 1 & 3 & 6 & 7 & 9 & 12 & 15 & 26 & 31 & 36 & 38 & 39\end{array}$ $\begin{array}{llllllllllll}1 & 3 & 6 & 7 & 9 & 12 & 15 & 26 & 31 & 36 & 38 & 39 \\ 2 & 6 & 9 & 14 & 17 & 19 & 22 & 26 & 29 & 30 & 32 & 37\end{array}$ $\begin{array}{llllllllllll}2 & 6 & 9 & 14 & 17 & 19 & 22 & 26 & 29 & 30 & 32 & 37 \\ 1 & 2 & 8 & 10 & 11 & 13 & 27 & 26 & 20 & 34 & 36 & 36\end{array}$ $\begin{array}{llllllllllll}1 & 2 & \mathrm{~B} & 10 & 11 & 13 & 23 & 26 & 29 & 34 & 36 & 38 \\ 1 & 4 & 5 & 11 & 15 & 21 & 24 & 26 & 28 & 30 & 33 & 36\end{array}$ $\begin{array}{rrrrrrrrrrrr}1 & 4 & 5 & 11 & 15 & 21 & 24 & 26 & 28 & 30 & 33 & 36 \\ 4 & 5 & 6 & 7 & 8 & 23 & 25 & 26 & 28 & 32 & 35 & 38\end{array}$ $\begin{array}{rrrrrrrrrrrr}4 & 5 & 6 & 7 & 9 & 23 & 25 & 26 & 28 & 32 & 35 & 38 \\ 2 & 3 & 9 & 11 & 13 & 15 & 21 & 27 & 28 & 32 & 35 & 38\end{array}$
 $46 \quad 71012171927 \quad 2933 \quad 3438$

 $\begin{array}{llllllllll}9 & 10 & 11 & 12 & 18 & 24 & 25 & 27 & 29 & 30 \\ 3 & 34 & 32\end{array}$

 $\begin{array}{lllllllllllll}1 & 2 & 4 & 12 & 15 & 18 & 19 & 20 & 25 & 34 & 36 & 40\end{array}$ $\begin{array}{llllllllllll}1 & 2 & 4 & 12 & 15 & 18 & 19 & 20 & 25 & 34 & 36 & 40 \\ 2 & 8 & 9 & 12 & 17 & 20 & 21 & 23 & 26 & 31 & 35 & 40\end{array}$ $\begin{array}{lllllllllllll}3 & 6 & 7 & 13 & 16 & 20 & 21 & 24 & 26 & 30 & 32 & 40\end{array}$
 $\begin{array}{llllllllllll}4 & 7 & 9 & 11 & 14 & 16 & 17 & 23 & 27 & 32 & 37 & 40\end{array}$
 $\begin{array}{llllllllllll}1 & 5 & 6 & 14 & 16 & 18 & 19 & 21 & 27 & 30 & 31 & 40\end{array}$ $\begin{array}{llllllllllll}2 & 3 & 4 & 5 & 10 & 14 & 20 & 26 & 27 & 28 & 29 & 40\end{array}$

42
 $\begin{array}{llllllllll}6 & 8 & 12 & 18 & 20 & 22 & 24 & 25 & 27 & 29\end{array} 32$

 $\begin{array}{lllllllllll}3 & 6 & 7 & 14 & 16 & 2 & 24 & 26 & 27 & 33 & 36\end{array}$

 $\begin{array}{llllllllllll}2 & 5 & 11 & 14 & 16 & 17 & 19 & 29 & 31 & 34 & 36\end{array}$ $\begin{array}{ccccccccccccc}2 & 5 & 11 & 14 & 16 & 17 & 19 & 29 & 31 & 34 & 36 \\ 8 & 10 & 11 & 17 & 22 & 26 & 29 & 35 & 36 & 37 & 38 \\ 7 & 9 & 12 & 19 & 21 & 25 & 30 & 35 & 36 & 37 & 38\end{array}$ $\begin{array}{lllllllllll}7 & 9 & 12 & 18 & 21 & 25 & 30 & 35 & 36 & 37 & 38\end{array}$ $\begin{array}{lllllllllll}7 & 10 & 11 & 20 & 24 & 27 & 31 & 33 & 34 & 37 & 38\end{array}$ $\begin{array}{llllllllllll}8 & 9 & 12 & 19 & 23 & 28 & 32 & 33 & 34 & 37 & 38\end{array}$ $\begin{array}{llllllllllll}4 & 7 & 12 & 13 & 22 & 25 & 31 & 32 & 33 & 37 & 39\end{array}$

 $\begin{array}{lllllllllll}2 & 6 & 7 & 15 & 23 & 28 & 29 & 30 & 36 & 37 & 39\end{array}$ $\begin{array}{llllllllllll}2 & 6 & 3 & 15 & 23 & 28 & 29 & 30 & 36 & 37 & 39 \\ 4 & 8 & 11 & 14 & 15 & 27 & 20 & 29 & 33 & 37 & 40\end{array}$ $\begin{array}{rrrrrrrrrrr}4 & 8 & 11 & 14 & 14 & 27 & 29 & 29 & 33 & 37 & 40 \\ 3 & 5 & 9 & 13 & 17 & 27 & 28 & 30 & 34 & 37 & 40\end{array}$ $\begin{array}{llllllllllll}3 & 5 & 11 & 16 & 20 & 25 & 26 & 32 & 35 & 37 & 40\end{array}$
 $\begin{array}{llllllllllll}3 & 8 & 11 & 14 & 17 & 23 & 24 & 30 & 33 & 38 & 39\end{array}$
 $\begin{array}{lllllllllll}2 & 9 & 11 & 15 & 15 & 19 & 21 & 22 & 32 & 35 & 38 \\ 39\end{array}$

 $\begin{array}{llllllllllll}4 & 6 & 10 & 14 & 19 & 20 & 22 & 25 & 34 & 38 & 40 \\ 3 & 6 & 12 & 15 & 17 & 18 & 24 & 28 & 35 & 35 & 40\end{array}$ $\begin{array}{llllllllllll}3 & 6 & 12 & 15 & 17 & 18 & 24 & 28 & 35 & 35 & 40 \\ 4 & 7 & 10 & 16 & 17 & 18 & 23 & 27 & 36 & 38 & 40\end{array}$ $\begin{array}{llllllllllllllllllllll}6 & 9 & 10 & 15 & 16 & 17 & 21 & 25 & 29 & 39 & 10\end{array}$
 $\begin{array}{lllllllllll}6 & 7 & 8 & 13 & 14 & 19 & 23 & 27 & 31 & 39 & 40\end{array}$

 $\begin{array}{llllllllllll}7 & 18 & 19 & 20 & 25 & 26 & 27 & 28 & 33 & 34 & 35 & 36\end{array}$

$\begin{array}{llllllllllll}9 & 9 & 10 & 12 & 17 & 20 & 21 & 23 & 26 & 27 & 30 & 31\end{array}$
 $\begin{array}{llllllllll}7 & 8 & 9 & 10 & 16 & 15 & 22 & 23 & 25 & 28 \\ 29 & 32\end{array}$ $\begin{array}{llllllllllll}5 & 8 & 9 & 10 & 18 & 19 & 22 & 23 & 25 & 28 & 29 & 32 \\ 5 & 6 & 7 & 11 & 17 & 19 & 21 & 24 & 26 & 28 & 30 & 32\end{array}$

 $\begin{array}{llllllllll}6 & 12 & 13 & 15 & 21 & 24 & 25 & 28 & 34 & 35\end{array}$ $\begin{array}{lllllllllll}3 & 6 & 7 & 14 & 16 & 27 & 24 & 26 & 27 & 33 & 36\end{array}$

 $\begin{array}{lllllllllll}7 & 9 & 12 & 16 & 21 & 25 & 30 & 35 & 36 & 37 & 38\end{array}$ $\begin{array}{lllllllllllll}5 & 7 & 8 & 10 & 20 & 24 & 27 & 32 & 33 & 34 & 37 & 38\end{array}$ $\begin{array}{lllllllllll}9 & 11 & 12 & 19 & 23 & 28 & 31 & 33 & 34 & 37 & 38\end{array}$ $\begin{array}{lllllllllll}4 & 7 & 12 & 13 & 22 & 25 & 31 & 32 & 23 & 37 & 39\end{array}$ $\begin{array}{lllllllllll}3 & 6 & 10 & 14 & 21 & 26 & 31 & 32 & 34 & 37 & 39\end{array}$

 $\begin{array}{lllllllllll}3 & 5 & 9 & 1 & 3 & 17 & 27 & 28 & 30 & 34 & 37 \\ 40\end{array}$
 $\begin{array}{lllllllllll}8 & 9 & 15 & 19 & 25 & 26 & 31 & 36 & 37 & 40\end{array}$ $\begin{array}{lllllllllll}3 & 8 & 11 & 14 & 17 & 23 & 24 & 30 & 33 & 38 & 39\end{array}$ $\begin{array}{lllllllllll}5 & 9 & 13 & 18 & 23 & 24 & 29 & 34 & 38 & 39\end{array}$

 $\begin{array}{lllllllllll}4 & 6 & 12 & 15 & 17 & 18 & 23 & 27 & 36 & 38 & 40\end{array}$ $\begin{array}{llllllllllll}6 & 9 & 10 & 15 & 16 & 17 & 21 & 25 & 29 & 39 & 40\end{array}$
 $\begin{array}{lllllllllll}6 & 7 & 6 & 13 & 14 & 19 & 23 & 27 & 31 & 39 & 40\end{array}$ $\begin{array}{llllllllllll}9 & 10 & 11 & 12 & 13 & 14 & 20 & 24 & 28 & 32 & 39 & 40\end{array}$

 $\begin{array}{lllllllllll}7 & 18 & 10 & 20 & 25 & 26 & 27 & 28 & 33 & 34 & 35\end{array} 36$ $\begin{array}{llllllllllll}17 & 18 & 19 & 20 & 25 & 26 & 27 & 28 & 33 & 34 & 35 & 36 \\ 21 & 22 & 23 & 24 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36\end{array}$
$\begin{array}{llllllllll}8 & 10 & 12 & 17 & 20 & 22 & 23 & 25 & 27 & 30\end{array} 31$

 $\begin{array}{llllllllllll}6 & 7 & 11 & 17 & 19 & 22 & 24 & 25 & 28 & 30 & 32\end{array}$

 $\begin{array}{llllllllll}2 & 6 & 12 & 13 & 16 & 21 & 24 & 25 & 28 & 34 \\ 35\end{array}$ $\begin{array}{lllllllllll}3 & 6 & 7 & 14 & 16 & 22 & 24 & 26 & 27 & 33 & 16\end{array}$

 $\begin{array}{lllllllllll}3 & 5 & 8 & 14 & 15 & 17 & 19 & 29 & 32 & 34 & 36\end{array}$
 $\begin{array}{lllllllllll}7 & 9 & 12 & 18 & 21 & 25 & 30 & 35 & 36 & 37 & 38\end{array}$
 $\begin{array}{lllllllllll}8 & 9 & 10 & 19 & 23 & 28 & 32 & 33 & 34 & 37 & 38\end{array}$ $\begin{array}{llllllllll}4 & 7 & 12 & 1 & 21 & 21 & 26 & 31 & 32 & 33 \\ 37 & 39\end{array}$ $\begin{array}{lllllllllll}3 & 6 & 10 & 1 & 4 & 22 & 25 & 31 & 32 & 34 & 37 \\ 39\end{array}$
 $\begin{array}{lllllllllll}2 & 6 & 7 & 15 & 23 & 28 & 29 & 30 & 36 & 37 & 39\end{array}$ $\begin{array}{lllllllllll}2 & 6 & 1 & 15 & 23 & 28 & 29 & 30 & 36 & 37 & 39 \\ 3 & B & 11 & 14 & 17 & 27 & 28 & 30 & 33 & 37 & 40\end{array}$ $\begin{array}{lllllllllll}3 & 8 & 11 & 14 & 17 & 27 & 28 & 30 & 33 & 37 & 40 \\ 4 & 5 & 9 & 13 & 18 & 27 & 28 & 29 & 34 & 37 & 40\end{array}$ $\begin{array}{lllllllllll}4 & 5 & 9 & 13 & 18 & 27 & 28 & 29 & 34 & 37 & 40 \\ 3 & 5 & 11 & 16 & 20 & 25 & 26 & 32 & 35 & 37 & 40\end{array}$ $4 \quad 8 \quad 9 \quad 1519$ 立 243136 37 40 $4811141423242933 \quad 3 \% 19$ $\begin{array}{llllllllll} & 3 & 5 & 9 & 13 & 17 & 23 & 24 & 30 & 34\end{array} 3839$ 4 9111519212232353639 $45 \% 1620212231353830$
 $4 \quad 6 \quad 1014192021 \quad 26343840$
 $\begin{array}{lllllllllll}4 & 6 & 12 & 16 & 17 & 18 & 23 & 27 & 36 & 38 & 40\end{array}$ $\begin{array}{lllllllllll}6 & 9 & 10 & 15 & 16 & 17 & 21 & 25 & 29 & 39 & 40\end{array}$ $\begin{array}{lllllllllll}5 & 11 & 12 & 15 & 16 & 18 & 22 & 26 & 30 & 39 & 40\end{array}$ $\begin{array}{lllllllllll}6 & 7 & 9 & 13 & 14 & 19 & 23 & 27 & 31 & 39 & 40\end{array}$ $\begin{array}{llllllllll}10 & 11 & 18 & 13 & 14 & 20 & 24 & 28 & 32 & 39 \\ 40\end{array}$ $\begin{array}{lllllllllll}3 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\ 24\end{array}$ $\begin{array}{lllllllllll}13 & 14 & 15 & 16 & 25 & 26 & 27 & 28 & 29 & 30 & 31\end{array} \quad 32$ $\begin{array}{lllllllllllll}7 & 18 & 19 & 20 & 25 & 26 & 27 & 2 \mathrm{~N}_{2} & 33 & 34 & 35 & 34\end{array}$

 $\begin{array}{rrrrrrrrrrr}4 & 3 & 11 & 13 & 15 & 18 & 20 & 30 & 31 & 33 & 35 \\ 4 & 8 & 9 & 14 & 16 & 17 & 20 & 29 & 32 & 34 & 35\end{array}$ $\begin{array}{llllllllll}8 & 9 & 14 & 16 & 17 & 20 & 29 & 32 & 34 & 35\end{array}$ $\begin{array}{llllllllll}7 & 10 & 13 & 15 & 21 & 24 & 25 & 28 & 34 & 35\end{array}$
 $\begin{array}{lllllllllll}2 & 5 & 8 & 13 & 16 & 18 & 19 & 30 & 32 & 35 & 36\end{array}$ $\begin{array}{llllllllllllllll}4 & 12 & 13 & 16 & 21 & 25 & 27 & 34\end{array}$ $\begin{array}{lllllllllll}5 & 11 & 14 & 15 & 17 & 19 & 29 & 31 & 34 & 36\end{array}$

 $\begin{array}{llllllllllll}3 & 7 & 12 & 13 & 21 & 26 & 31 & 32 & 35 & 37 & 39\end{array}$ $\begin{array}{lllllllllll}4 & 6 & 10 & 14 & 22 & 25 & 31 & 32 & 34 & 37 & 39 \\ 4 & 10 & 12 & 16 & 24 & 27 & 29 & 30 & 35 & 37 & 39\end{array}$ $\begin{array}{rrrrrrrrrrr}4 & 10 & 12 & 16 & 24 & 27 & 29 & 30 & 35 & 37 & 39 \\ 2 & 6 & 7 & 15 & 23 & 28 & 29 & 30 & 36 & 37 & 39\end{array}$ $\begin{array}{lllllllllll}2 & 6 & 7 & 15 & 23 & 28 & 29 & 30 & 36 & 37 & 39 \\ 4 & 6 & 11 & 14 & 17 & 27 & 20 & 30 & 33 & 37 & 40\end{array}$
 $\begin{array}{llllllllll}3 & 11 & 16 & 20 & 25 & 26 & 32 & 35 & 37 & 40\end{array}$ $\begin{array}{llllllllll}8 & 9 & 15 & 19 & 25 & 26 & 31 & 36 & 37 & 40\end{array}$ $\begin{array}{llllllllll}8 & 11 & 14 & 19 & 23 & 24 & 29 & 3 & 38 & 39\end{array}$ $\begin{array}{lllllllllll}4 & 5 & 9 & 13 & 17 & 23 & 24 & 30 & 34 & 38 & 39\end{array}$ $\begin{array}{llllllllllll}9 & 11 & 15 & 19 & 21 & 22 & 32 & 35 & 38 & 39\end{array}$

 $\begin{array}{llllllllllll}4 & 7 & 10 & 15 & 17 & 18 & 23 & 27 & 36 & 38 & 40 \\ 6 & & 10 & 15 & 16 & 17 & 21 & 25 & 20 & 39 & 80\end{array}$ $\begin{array}{llllllllllll}6 & 9 & 10 & 15 & 16 & 17 & 21 & 25 & 29 & 39 & 40\end{array}$ $\begin{array}{lllllllllll}8 & 11 & 12 & 15 & 16 & 18 & 22 & 26 & 30 & 39 & 40\end{array}$ $\begin{array}{lllllllllll}6 & 7 & 3 & 13 & 14 & 19 & 23 & 27 & 31 & 39 & 40\end{array}$ $\begin{array}{llllllllll}10 & 1 & 1 & 12 & 13 & 14 & 20 & 24 & 20 & 32 \\ 39 & 40\end{array}$

 $\begin{array}{lllllllllllll}13 & 1 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 4 \\ 13 & 14 & 15 & 16 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}$ | 17 | 10 | 19 | 20 | 25 | 26 | 27 | 28 | 33 | 34 | 35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | | | | | | | | | | | $\begin{array}{lllllllllll}21 & 22 & 23 & 24 & 29 & 30 & 31 & 32 & 33 & 34 & 35\end{array} 36$

$\begin{array}{llllllll}910 & 12 & 18 & 20 & 22 & 25 & 27 & 29\end{array}$ $\begin{array}{lllllllllll}7 & 10 & 11 & 17 & 20 & 21 & 24 & 26 & 27 & 30 & 31\end{array}$ $\begin{array}{llllllllll}8 & 9 & 12 & 17 & 19 & 21 & 25 & 26 & 28 & 30\end{array} \quad 32$

 $\begin{array}{lllllllllll}4 & 9 & 11 & 13 & 15 & 18 & 20 & 30 & 31 & 33 & 35\end{array}$ $\begin{array}{lllllllllll}4 & 9 & 9 & 14 & 16 & 17 & 20 & 29 & 32 & 34 & 35\end{array}$ $\begin{array}{lllllllllll}7 & 10 & 13 & 15 & 21 & 24 & 25 & 28 & 34 & 35\end{array}$ $\begin{array}{lllllllllll}3 & 6 & 7 & 14 & 16 & 22 & 24 & 26 & 27 & 33 & 36\end{array}$

 $\begin{array}{lllllllllll}3 & 5 & 11 & 14 & 15 & 17 & 19 & 29 & 31 & 34 & 36\end{array}$

3	7	12	1	3	22	25	31	32	33	37

 $\begin{array}{llllllllll}4 & 10 & 12 & 16 & 24 & 27 & 29 & 30 & 35 & 37 \\ 39\end{array}$ $\begin{array}{lllllllllll}2 & 6 & 7 & 15 & 23 & 28 & 29 & 30 & 36 & 37 & 39\end{array}$ $\begin{array}{lllllllllll}3 & 8 & 11 & 14 & 18 & 27 & 28 & 29 & 33 & 37 & 40\end{array}$ $\begin{array}{lllllllllll}4 & 5 & 9 & 13 & 17 & 27 & 28 & 30 & 34 & 37 & 40\end{array}$ $\begin{array}{lllllllllll}3 & 5 & 11 & 16 & 20 & 25 & 26 & 32 & 35 & 37 & 40\end{array}$ $\begin{array}{lllllllllll}4 & 8 & 9 & 15 & 19 & 25 & 25 & 31 & 36 & 37 & 419\end{array}$ $\begin{array}{lllllllllll}4 & 9 & 11 & 14 & 17 & 23 & 24 & 30 & 33 & 38 & 39\end{array}$ $\begin{array}{lllllllllll}3 & 5 & 9 & 1 & 1 & 18 & 23 & 24 & 29 & 34 & 38\end{array} 39$

 $\begin{array}{llllllllllll}4 & 7 & 12 & 13 & 19 & 20 & 21 & 26 & 33 & 38 & 40\end{array}$ $\begin{array}{lllllllllll}3 & 6 & 10 & 14 & 10 & 20 & 22 & 25 & 34 & 30 & 40\end{array}$ $\begin{array}{lllllllllll}2 & 6 & 12 & 16 & 17 & 18 & 24 & 28 & 35 & 3.0 & 40\end{array}$
 $\begin{array}{lllllllllll}6 & 9 & 10 & 1 & 5 & 16 & 17 & 21 & 25 & 29 & 39\end{array} 40$ $\begin{array}{llllllllllll}8 & 11 & 12 & 1 & 5 & 16 & 18 & 22 & 26 & 30 & 39 & 40\end{array}$ $\begin{array}{lllllllllll}6 & 7 & 8 & 13 & 14 & 19 & 23 & 27 & 31 & 39 & 40\end{array}$ $\begin{array}{llllllllll}10 & 11 & 12 & 13 & 14 & 20 & 24 & 26 & 32 & 39 \\ 40\end{array}$
 $\begin{array}{llllllllllll}13 & 14 & 15 & 16 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 \\ 17 & 18 & 19 & 20 & 25 & 26 & 27 & 28 & 33 & 34 & 35 & 34\end{array}$

Here are listed the ten systems of three linked $2-(16,6,2)$ designs, as promised in Section 4.2. The incidence graphs of these systems, together with the point graph of the generalized quadrangle of order $(3,5)$ form the eleven 4-colourable strongly regular graphs with parameters $(64,18,2,6)$ of Theorem 4.3.1.

Here we give the $2-(71,15,3)$ designs $D_{1}^{*}, D_{2}^{*}, D_{3}^{*}$ and D_{4}^{*}, which are constructed in Section 6.1. Together with their duals they form the eight 2-(71,15,3) designs of Theorem 6.1.5.
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ $\begin{array}{lllllllllllllll}1 & 2 & 3 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27\end{array}$ $\begin{array}{lllllllllllllll}1 & 2 & 3 & 28 & 29 & 30 & 31 & 32 & 32 & 34 & 35 & 36 & 37 & 38 & 39\end{array}$

$1 \quad 4 \quad 5 \quad 10 \quad 19 \quad 30 \quad 3148 \quad 49 \quad 50 \quad 515253 \quad 5445$ $1 \quad 6 \quad 716173031565758596061 \quad 6263$ $1 \quad 6 \quad 7181928 \quad 296465666768697071$

 | 1 | 10 | 1 | 1 | 20 | 21 | 34 | 35 | 44 | 45 | 52 | 53 | 60 | 61 | 58 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllllll}1 & 10 & 11 & 22 & 23 & 32 & 33 & 46 & 47 & 54 & 55 & 62 & 63 & 70 & 71\end{array}$ $\begin{array}{lllllllllllllll}1 & 12 & 13 & 24 & 25 & 36 & 37 & 40 & 4 & 50 & 51 & 60 & 61 & 70 & 71\end{array}$ $\begin{array}{lllllllllllllllllllllll}1 & 12 & 13 & 26 & 27 & 38 & 39 & 42 & 43 & 48 & 49 & 62 & 63 & 68 & 69\end{array}$ $\begin{array}{lllllllllllllll}1 & 14 & 15 & 24 & 25 & 38 & 39 & 44 & 45 & 54 & 55 & 56 & 57 & 66 & 67\end{array}$ $\begin{array}{llllllllllllllllllll}1 & 14 & 15 & 26 & 27 & 36 & 37 & 46 & 47 & 52 & 53 & 58 & 59 & 64 & 65\end{array}$ $\begin{array}{llllllllllllllll}2 & 4 & 6 & 20 & 22 & 36 & 38 & 40 & 42 & 52 & 54 & 56 & 58 & 68 & 70\end{array}$ $\begin{array}{lllllllllllllll}2 & 4 & 5 & 21 & 23 & 37 & 39 & 41 & 43 & 53 & 55 & 57 & 59 & 69 & 71\end{array}$

 $\begin{array}{llllllllllllllll}2 & 5 & 7 & 21 & 23 & 36 & 38 & 45 & 47 & 49 & 51 & 61 & 63 & 65 & 67\end{array}$

 $\begin{array}{lllllllllllllll}2 & 9 & 11 & 24 & 26 & 29 & 31 & 43 & 45 & 51 & 53 & 56 & 62 & 64 & 70\end{array}$ $\begin{array}{llllllllllllllll}2 & 9 & 1 & 1 & 25 & 27 & 28 & 30 & 42 & 44 & 50 & 52 & 57 & 63 & 65 & 71\end{array}$
 $\begin{array}{lllllllllllllll}2 & 12 & 14 & 17 & 19 & 33 & 35 & 41 & 45 & 50 & 54 & 59 & 62 & 65 & 69\end{array}$

 $\begin{array}{lllllllllllllll}3 & 4 & 7 & 25 & 26 & 33 & 34 & 41 & 43 & 52 & 54 & 62 & 63 & 64 & 66\end{array}$ $\begin{array}{lllllllllllllll}3 & 5 & 6 & 24 & 27 & 33 & 34 & 44 & 46 & 49 & 51 & 56 & 58 & 69 & 71\end{array}$ $\begin{array}{lllllllllllllll}3 & 5 & 6 & 25 & 26 & 32 & 35 & 45 & 47 & 48 & 50 & 57 & 59 & 68 & 70\end{array}$ $\begin{array}{llllllllllllllll}3 & 1 & 11 & 16 & 19 & 37 & 38 & 41 & 44 & 49 & 52 & 59 & 62 & 67 & 70\end{array}$ $\begin{array}{llllllllllllllll}3 & 8 & 11 & 17 & 18 & 36 & 39 & 40 & 45 & 48 & 53 & 58 & 6 & 6 & 66 & 71\end{array}$ $\begin{array}{lllllllllllllll}3 & 9 & 10 & 16 & 19 & 36 & 39 & 43 & 46 & 51 & 54 & 57 & 60 & 65 & 68\end{array}$
 $\begin{array}{lllllllllllllll}3 & 12 & 15 & 20 & 23 & 29 & 30 & 40 & 47 & 51 & 52 & 57 & 62 & 66 & 69\end{array}$ $\begin{array}{llllllllllllllll}3 & 12 & 15 & 21 & 22 & 28 & 31 & 41 & 46 & 50 & 53 & 56 & 63 & 67 & 68\end{array}$ $\begin{array}{lllllllllllllll}3 & 13 & 14 & 20 & 23 & 28 & 31 & 43 & 44 & 48 & 55 & 58 & 61 & 65 & 70\end{array}$
 $\begin{array}{llllllllllllllll}4 & 6 & 13 & 18 & 23 & 25 & 30 & 34 & 37 & 45 & 46 & 56 & 62 & 65 & 68\end{array}$ $\begin{array}{lllllllllllllll}4 & 8 & 13 & 19 & 22 & 24 & 31 & 35 & 36 & 44 & 47 & 57 & 63 & 64 & 69\end{array}$ $\begin{array}{lllllllllllllll}4 & 9 & 12 & 18 & 21 & 26 & 30 & 33 & 39 & 44 & 47 & 58 & 60 & 67 & 70\end{array}$ $\begin{array}{lllllllllllllll}4 & 9 & 12 & 19 & 20 & 27 & 31 & 32 & 38 & 45 & 46 & 59 & 61 & 66 & 71\end{array}$ $4 \begin{array}{llllllllllllllll}4 & 10 & 15 & 16 & 21 & 25 & 28 & 35 & 38 & 48 & 51 & 58 & 62 & 64 & 71\end{array}$ $\begin{array}{lllllllllllllllllllllllll}4 & 10 & 15 & 17 & 20 & 24 & 29 & 34 & 39 & 49 & 50 & 59 & 63 & 65 & 70\end{array}$ $\begin{array}{lllllllllllllll}4 & 11 & 14 & 16 & 23 & 26 & 28 & 32 & 36 & 49 & 50 & 56 & 60 & 66 & 69\end{array}$ $\begin{array}{lllllllllllllll}4 & 11 & 14 & 17 & 22 & 27 & 29 & 33 & 37 & 48 & 51 & 57 & 61 & 67 & 68\end{array}$ $\begin{array}{lllllllllllllll}5 & 8 & 12 & 16 & 22 & 26 & 29 & 35 & 39 & 52 & 55 & 56 & 61 & 65 & 71\end{array}$ $\begin{array}{llllllllllllllllllllllllll}5 & 8 & 12 & 17 & 23 & 27 & 28 & 34 & 38 & 53 & 54 & 57 & 60 & 64 & 70\end{array}$ $\begin{array}{lllllllllllllll}5 & 9 & 13 & 16 & 20 & 25 & 29 & 32 & 37 & 53 & 54 & 58 & 6 & 67 & 69\end{array}$ $\begin{array}{lllllllllllllll}5 & 9 & 13 & 17 & 21 & 24 & 28 & 33 & 36 & 52 & 55 & 59 & 62 & 66 & 68\end{array}$ $\begin{array}{lllllllllllllll}5 & 10 & 14 & 18 & 20 & 26 & 31 & 34 & 36 & 41 & 42 & 57 & 62 & 67 & 71\end{array}$ $\begin{array}{llllllllllllllll}5 & 10 & 1 & 14 & 19 & 21 & 27 & 30 & 35 & 37 & 40 & 43 & 56 & 63 & 66 & 70\end{array}$ $\begin{array}{lllllllllllllll}5 & 11 & 15 & 18 & 22 & 25 & 21 & 33 & 38 & 40 & 43 & 59 & 60 & 65 & 69\end{array}$ $\begin{array}{lllllllllllllll}5 & 11 & 15 & 19 & 23 & 24 & 30 & 32 & 39 & 41 & 42 & 58 & 61 & 64 & 68\end{array}$ $\begin{array}{lllllllllllllll}6 & 8 & 15 & 18 & 21 & 27 & 29 & 32 & 36 & 43 & 44 & 50 & 54 & 61 & 62\end{array}$ $\begin{array}{lllllllllllllll}6 & 8 & 15 & 19 & 20 & 26 & 28 & 33 & 37 & 42 & 45 & 51 & 55 & 60 & 63\end{array}$ $\begin{array}{lllllllllllllll}6 & 9 & 14 & 16 & 23 & 24 & 29 & 35 & 38 & 41 & 46 & 48 & 52 & 60 & 63\end{array}$ $\begin{array}{lllllllllllllll}6 & 9 & 14 & 19 & 22 & 25 & 28 & 34 & 39 & 40 & 47 & 49 & 53 & 64 & 62\end{array}$

 $\begin{array}{lllllllllllllll}6 & 11 & 12 & 16 & 21 & 24 & 31 & 34 & 37 & 42 & 47 & 48 & 54 & 65 & 66\end{array}$ $\begin{array}{lllllllllllllll}6 & 11 & 12 & 17 & 20 & 25 & 30 & 35 & 36 & 43 & 46 & 49 & 55 & 64 & 67\end{array}$ $\begin{array}{llllllllllllllll}7 & 8 & 14 & \downarrow 6 & 20 & 24 & 30 & 33 & 36 & 43 & 47 & 50 & 53 & 66 & 71\end{array}$ $\begin{array}{lllllllllllllll}7 & 8 & 14 & 17 & 21 & 25 & 31 & 32 & 39 & 42 & 46 & 51 & 52 & 69 & 70\end{array}$ $\begin{array}{llllllllllllllll}7 & 9 & 15 & 16 & 22 & 27 & 30 & 34 & 36 & 41 & 45 & 48 & 55 & 69 & 70\end{array}$ $\begin{array}{llllllllllllllll}7 & 9 & 15 & 17 & 23 & 26 & 31 & 35 & 37 & 40 & 44 & 49 & 54 & 68 & 71\end{array}$ $\begin{array}{lllllllllllllll}7 & 10 & 12 & 10 & 22 & 24 & 28 & 32 & 37 & 43 & 45 & 49 & 52 & 57 & 58\end{array}$ $\begin{array}{lllllllllllllll}7 & 10 & 12 & 19 & 23 & 25 & 29 & 33 & 36 & 42 & 44 & 48 & 53 & 56 & 59\end{array}$ $\begin{array}{lllllllllllllllll}7 & 11 & 13 & 18 & 20 & 27 & 26 & 35 & 39 & 41 & 47 & 51 & 54 & 56 & 59\end{array}$ $\begin{array}{lllllllllllllllllllll}7 & 11 & 13 & 19 & 21 & 26 & 29 & 34 & 38 & 40 & 46 & 50 & 55 & 57 & 58\end{array}$

						1011				
1	2	16	1718	1920	21	2223	2324	2425	25	26
1	2	28	2930	3132	33	3435	3536	3637	3738	38
1.	4	16	1726	2940	41	4243	4344	4445	45	4647
	4	18	1930	3148	49	5051	5152	5253	53	5455
1	6	16	1730	3156	57	5859	5960	6061	6162	62
1	6	18	1928	2964	65	6667	6768	6869	69	7071
1	8	20	2132	33	41	4849	4956	5657	576	64
1	8	22	2334	3542	43	5051	5158	5859	596	66
1	10	1120	21	35	45	5253	5360	6061	61	6869
	10	1122	2332	33	47	5455	5562	62	6370	7071
	12	1324	2536	3742	43	4849	4962	62	63	68
1	12	13	27	3940	415	5051	60	60.61	61	7071
	141	1524	2538	39	47	5253	5358	5859	59	6465
1	14	1526	2736	3744	45	5455	5556	56	5	6667
2	4	24	2632	34	46	4850	50	5658	58	6870
		25	2733	35	474	4951	57	5759	59	6971
2		24	2633	3540	42	5254	5460	6062	62	6466
2		725	2732	34	43	5355	55	6	636	6567
2	81	10	1836	38	45	\$1 55	55	58	62	6468
2	81	1017	1937	39	47	4953	5356	5660	60	6670
2	91	1115	1837	3940	44	5054	5459	59	6	6569
	91	17	1936	38	46	2	5257	5761	616	6771
2	12	1420	2228	3042	45	5152	5256	5663	63	5
2	12	1421	23	3140	47	4954	5458	58	6	6768
2	131	20	2229	31	46	4855	5559	5960	606	669
	131	1521	23	30	44	5053	5357	5762	62	4
	4	20	2336	3944	46	4951	5160	60	626	6567
3		721	22	3845	47	O	5061	6163	636	6466
		20	2337	3840	42	5355	5556	5658	58	6971
3	5	21	2236	3941	43	5254	5457	5759	59	6870
3	E	11	2728	3142	475	55	55	5760	606	65 68
		1125	2689	3040	45	4853	5359	59	6	770
3	91	24	29	3041	44	4952	5258	5863	63	6
3	9	1025	2628	3143	46	54	54	5661	616	469
	1215	1516	32	3541	47	5052	5256	56	6	6769
3	121	1517	33	3443	45	4854	5458	58	60	5571
	131	1416	33	40	46	53	53	5	636	6668
3	13	14	1832	3542	44	4955	5559	59	61	470
	8	1216	2024	28 32	36	5354	5459	5961	61	671
		1217	2326	34	39	5255	5557	5763	63	6469
	9	1316	2125	33	37	5255	5558	5860	60	6770
4	9	1317	2227	2935	38	5354	54	56	626	6568
	10	1418	2224	3032	38	4043	4357	5760	60	67
	10	1419	2126	3134	37	4142	4259	5962	62	65
	11	1518	2325	3033	39	414	42	5661	61	6668
	11	15	2027	3135	36	4043	4358	5863	63	64
	8	1318	2124	35	39	4546	4656	5663	63	6771
5	8	13	2226	33	36	4447	4758	5861	61	65
5		1218	2025	3134	38	4447	4757	5762	62	66
	9	1219	2	3032	37	4546	4659	5960	60	64
	10	1516	24	2935	37	485	5257	5761	61	65
5	10	1517	2026	33	38	4950	5059	5963	63	67
5	12	1416	2	2934	36	4950	5036	5660	60	84
	11	1417	2127	2832	39	4851	5158	5862	626	66
	8	1418	2027	2933	37	4346	4650	5052	526	61
		1419	23	35	38	414	4448	4854	546	60
	9	1518	2126	2932	36	4247	4751	5153	536	60
6	91	1519	24	2834	39	4045	4549	4955	556	61
6	101	16		3133	32	424	4448	4853	536	64
	10	1217	2125	3035	36	4046	4650	5055	556	6566
6	11	1316	2326	3132	38	4345	4549	4952	526	65
6	1	1317	2024	34	3	4147	4751	5154	54	64
	81	1516	2127	3034	38	4246	4649	4954	546	69
	8	1517	2225	3132	37	4044	4451	5152	526	68
7	91	1416	20	$30 \quad 35$	39	4347	4748	4855	55	6871
	91	1417	2324	3133	36	4145	4550	5053	536	69
	10	1318	2327	2334	36	4047	4748	4852	525	56
7	10	1319	2025	2932	39	4245	4550	5054	54	57
	1	12 18	22	2835	37	4146	4649	4953	535	57
	111	12	21	2933	38	4344	4451	5155	55	

$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$ | 1 | 2 | 3 | 16 | 17 | 16 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{llllllllllllllllll}4 & 5 & 18 & 19 & 30 & 31 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55\end{array}$ $6 \quad 7161730315657595960616263$
$\begin{array}{llllllllllll}6 & 7 & 18 & 19 & 28 & 296465666768697071\end{array}$ $\begin{array}{llllllllllllllllll}8 & 9 & 20 & 21 & 32 & 33 & 40 & 41 & 48 & 49 & 56 & 57 & 64 & 65\end{array}$
 1011202134354445525360616869 $1 \begin{array}{llllllllllllllllll}10 & 11 & 22 & 23 & 32 & 33 & 46 & 47 & 54 & 55 & 62 & 63 & 70 & 71\end{array}$ 1213242536374243484962636869
 $\begin{array}{llllllllllllllllllllll}14 & 15 & 24 & 25 & 38 & 39 & 46 & 47 & 52 & 53 & 58 & 59 & 64 & 65\end{array}$ $\begin{array}{llllllllllll}14 & 15 & 26 & 27 & 36 & 37 & 44 & 45 & 54 & 55 & 56 & 57 \\ 56 & 67\end{array}$ $\begin{array}{lllllllllllllllllllllll}4 & 6 & 24 & 26 & 32 & 34 & 44 & 46 & 48 & 50 & 60 & 62 & 64 & 66\end{array}$ $\begin{array}{lllllllllllll}4 & 6 & 25 & 27 & 33 & 35 & 45 & 47 & 49 & 51 & 61 & 63 & 65 \\ 67\end{array}$ $\begin{array}{llllllllllllll}5 & 7 & 20 & 24 & 34 & 36 & 40 & 47 & 51 & 54 & 56 & 58 & 68 & 70\end{array}$

 $\begin{array}{llllllllllllll}8 & 10 & 17 & 19 & 36 & 39 & 43 & 44 & 50 & 53 & 57 & 63 & 65 & 70\end{array}$

 $121418 \quad 2230324042445459616569$ $\begin{array}{llllllllllllll}2 & 12 & 14 & 19 & 23 & 31 & 33 & 41 & 43 & 45 & 55 & 58 & 60 & 64 \\ 68\end{array}$ $\begin{array}{lllllllllllll}2 & 13 & 15 & 20 & 22 & 28 & 30 & 43 & 47 & 48 & 52 & 57 & 60\end{array} 6771$
 $\begin{array}{llllllllllllll}4 & 7 & 22 & 26 & 32 & 39 & 43 & 45 & 49 & 53 & 56 & 58 & 69 & 71\end{array}$ $\begin{array}{lllllllllllll}4 & 7 & 23 & 27 & 33 & 38 & 42 & 44 & 48 & 52 & 57 & 59 & 68 \\ 70\end{array}$ $\begin{array}{lllllllllllllllllllllll}5 & 6 & 20 & 22 & 36 & 39 & 41 & 42 & 52 & 55 & 61 & 63 & 64 & 66\end{array}$
 $\begin{array}{lllllllllllllll}8 & 11 & 24 & 26 & 29 & 31 & 42 & 47 & 51 & 55 & 57 & 60 & 65 & 69\end{array}$

 $\begin{array}{llllllllllllllllllllll}9 & 10 & 19 & 24 & 31 & 36 & 40 & 45 & 46 & 48 & 59 & 61 & 67 & 71\end{array}$ $\begin{array}{llllllllllllllllll}12 & 15 & 16 & 18 & 32 & 34 & 41 & 46 & 51 & 53 & 57 & 63 & 67 & 68\end{array}$

 $\begin{array}{llllllllllllll}13 & 14 & 17 & 21 & 29 & 35 & 44 & 48 & 51 & 54 & 58 & 63 & 64 & 71\end{array}$ $\begin{array}{lllllllllllll}4 & 8 & 12 & 16 & 20 & 25 & 29 & 33 & 36 & 53 & 54 & 59 & 60 \\ 66 & 71\end{array}$
 $\begin{array}{lllllllllllllllllllllll}4 & 9 & 13 & 16 & 19 & 23 & 34 & 37 & 39 & 47 & 54 & 57 & 61 & 64 & 69\end{array}$

 $\begin{array}{lllllllllllllllllllll}5 & 9 & 12 & 22 & 24 & 27 & 29 & 30 & 35 & 45 & 53 & 57 & 62 & 64 & 70\end{array}$

 $\begin{array}{llllllllllllllllllll}5 & 10 & 15 & 17 & 23 & 27 & 28 & 32 & 36 & 49 & 51 & 59 & 60 & 64 & 69\end{array}$

 $\begin{array}{llllllllllll}6 & 9 & 14 & 16 & 21 & 26 & 30 & 33 & 36 & 43 & 46 & 51 \\ 52 & 69 & 70\end{array}$ $\begin{array}{lllllllllllllll}6 & 9 & 14 & 17 & 20 & 27 & 31 & 32 & 37 & 42 & 47 & 50 & 53 & 68 & 71\end{array}$

 $\begin{array}{lllllllllllllllllllllll}6 & 11 & 13 & 18 & 23 & 25 & 29 & 32 & 36 & 40 & 45 & 50 & 52 & 57 & 58\end{array}$ | 6 | 11 | 13 | 19 | 22 | 24 | 28 | 33 | 37 | 41 | 44 | 51 | 53 | 56 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 199

 $\begin{array}{llllllllllllllllll}9 & 15 & 18 & 21 & 24 & 28 & 33 & 39 & 42 & 45 & 50 & 54 & 60 & 63\end{array}$ | 9 | 15 | 19 | 20 | 25 | 29 | 32 | 38 | 43 | 44 | 51 | 55 | 61 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{lllllllllllllllllll}7 & 10 & 13 & 17 & 25 & 26 & 30 & 33 & 34 & 40 & 42 & 53 & 55 & 64 & 67\end{array}$ $\begin{array}{lllllllllllllll}7 & 11 & 12 & 16 & 21 & 22 & 31 & 36 & 38 & 44 & 47 & 49 & 50 & 64 & 67\end{array}$

REFERENCES

[A1] H. AGRAWAL, On the bounds of the number of common treatments between blocks of certain two associate PBIB designs, Calcutta Statist. Assoc. Bull. 13 (1964), 76-79.
[A2] R.W. AHRENS \& G. SEEKERES, On a combinatorial generalization of the 27 Iines associated with a cubic surface, J. Austral. Math. Soc. 10 (1969), 485-492.
[A3] N. ARONSZAJN, Rayleigh-Ritz and A. Weinstein method for approximation of eigenvalues. I. Operators in a Hilbert space, Proc. American Nat. Acad. Sci. 34 (1948), 474-480.
[A4] E.F. ASSMUS, Jr. \& J.H. van LINT, Ovals in projective designs, J. Combinatorial Theory A (to appear).
[B1] H.J. BEKER, Constructions and decompositions of designs, Ph.D. Thesis, University of London, 1976.
[B2] H.J. BEKER \& W. HAEMERS, 2-designs having an intersection number $k-n$, J. Combinatorial Theory A (to appear).
[B3] H.J. BEKER \& C.J. MITCHEL, A constmuction method for point divisible designs, J. Statist. Planning and Inference $\underline{2}$ (1978), 293-306.
[B4] N. BIGGS, Finite groups of automorphisms, London Math. Soc. Lecture Notes No. 6, Cambridge University Press, London, 1971.
[B5] N. BIGGS, Algebraic Graph Theory, Cambridge tracts in math. No. 67, Cambriage University Press, Cambridge, 1974.
[B6] R.C. Bose, Strongly regular graphs, partial geometries and partially balonced designs, Pacific J. Math. 13 (1963), 389-419.
[B7] R.C. BOSE, Graphs and designs, in "Finite geometric structures and their applications", C.I.M.E., Bressanone, 1972, pp. 3-104.
[B8] R.C. BOSE \& D.M. MESNER, On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Statist. 30 (1959), 21-38.
[B9] C. BUMILLER, Pointwise products of incidence matrices of subgraphs (preprint).
[B10] K.A. Bush, Bounds for the number of conmon symbols in balanced and certain partially balanced designs, J. Combinatorial Theory A 23 (1977), 46-51.
[B11] F.C. BUSSEMAKER \& J.J. SEIDEL, Symmetwic Hadamard matrices of order 36, Ann. N.y. Acad. Sci. 175 (1970), 66-79; also: Report Techn. Univ. Eindhoven 70-WSK-02.
[C1] P.J. CAMERON, On groups with several doubly-transitive permutation representations, Math. z. 128 (1972), 1-14.
[C2] P.J. CAMERON, Extending symmetric designs, J. Combinatorial Theory A 14 (1973), 215-220.
[c3] P.J. CAMERON, Partial quadrangles, quart. J. Math. oxford (3) 25 (1974), 1-13.
[c4] P.J. Cameron, Parallelisms of Complete Designs, London Math. Soc. Lecture Notes 23, Cambridge University Press, Cambridge, 1976.
[C5] P.J. CAMERON, J.M. GOETHALS \& J.J. SEIDEL, Strongly regular graphs having strongly regular subconstituents, J. Algebra 55 (1978), 257-280.
[c6] p.J. CAMERON \& J.H. van LINT, Graph theory, coding theory and block designs, London Math. Soc. Lecture Notes No. 19, Cambridge University Press, Cambridge, 1975.
[c7] F. de clerck, Partial geometries: a combinatomial survey, Bull. Belgisch Wiskundig Genootschap B $\underline{2}$ (1979) (to appear).
[C8] W.S. CONNOR, On the structure of balanced ineomplete block designs, Ann. Math. Statist. 23 (1952), 57-71.
[C9] W.S. CONNOR \& W.H. CLATWORTHY, Some theorems for partially balanced designs, Ann. Math. Statist. 25 (1954), 100-112.
[c10] G.m. CoNWELL, The 3-space PG(3,2) and its group, Ann. Math. 11 (1910), 60-76.
[C11] D.M. CVETKovic̈, Graphs and their spectra, Thesis, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 354-356 (1971), 1-50.
[C12] D.M. CVETKOVIĆ, M. DOOB \& H. SACHS, Spectra of Grpahs, a Monograph, V.E.B. Deutscher Verlag der Wissenschaften, Berlin, 1979.
[D1] P. DELSARTE, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973).
[D2] P. Delsarte, J.m. goethals \& J.J. seidel, Sphemical codes and designs, Geometriae Dedicata 6 (1977), 363-388.
[D3] P. DEMBOWSKI, Finite Geometries, Springer Verlag, Berlin-HeidelbergNew York, 1968.
[F1] W. FEIT \& G. HIGMAN, The non-existence of certain generalized polygons, J. Algebra 1 (1964), 114-131.
[G1] A. GEWIRTZ, The uniqueness of $g(2,2,10,56)$, Trans. New York Acad. Sci. 31 (1969), 656-675.
[G2] J.M. GOETHALS \& J.J. SEIDEL, Strongly regular graphs derived from combinatorial designe, Canad. J. Math. 22 (1970), 597-614.
[H1] W. HAEMERS, A generalization of the Higman-Sims technique, Proc. Kon. Nederl. Akad. Wetensch. A 81 (= Indag. Math. 40) (1978), 445-447.
[H2] W. HaEMERS, Eigenvalue methods, in: Packing and Covering in Combinatorics" (A. Schrijver ed.), Tract 106, Mathematical Centre, Amsterdam, 1979, pp. 15-38.
[日3] W. HAEMERS \& C. ROOS, An inequality for generalized hexagons, Geometriae Dedicata (to appear).
[H4] W. HAEMERS \& M.S. SHRIKHANDE, Some remarks on subdesigns of symmetric designs, J. Statist. Planning and Inference (to appear).
[H5] M. HALL, Jx., Combinatorial Theory, Blaisdell, Weltham-Toronto-London, 1967.
[H6] M. HALL, Jx., Affine generalized quadritaterals, in: "Studies in pure mathematics" (L. Mirsky ed.), Academic Press, 1971, pp. 113-116.
[E7] h.L. hamburger \& M.E. Grimshaw, Linear transformations in n-dimensional vector space, Cambridge University Press, London-New York, 1951.
[H8] F. HARARY, Groph Theory, Addison-Wesley, Reading, Mass., 1969.
[H9] E.v. HAYNSWORTH, Applications of a theorem on partitioned matrices, J. Res. Nat. Bur. Standards B 63 (1959), 73-78.
[H10] M.D. hestenes \& D.G. higman, Rank 3 groups and strongly regular graphe, in: "Computers in Algebra and Number Theory" (G. Birkhoff \& M. Hall, Jr., eds.), SIAM-AMS Proc. IV, Amer. Math. Soc., Providence, R.I., 1971, pp. 141-159.
[H11] D.G. HIGMAN, Partial geometries, generalized quadrangles and strongly regular graphs, in: Atti Convegno di Geometria e sue Applicazioni", Perugia, 1971, pp. 263-293.
[H12] D.G. HIGMAN, Invariant relations, coherent configurations and generalized polygons, in: "Combinatorics; part 3: combinatorial group theory" (M. Hall, Jr. \& J.H. van Lint, eds.), Tract 57, Mathematical Centre, Amsterdam, 1974, pp. 27-43
[H13] A.J. HOFFMAN, On eigenvalues and coloumings of grophs, in: "Group Theory and its Applications" (B. Harris, ed.), Acad. Press, New York, 1970, pp. 79-91.
[H14] A.J. HOFFMAN, Eigenvalues of grophs, in: "Studies in Graph Theory; part II" (D.R. Fulkerson, ed.), M.A.A. Studies in Math., 1975, pp. 225-245.
[日15] A.J. HOFFMAN \& R.R. SINGLeton, On Moore graphs of diameters 2 and 3, I.B.M. J. Res. Develop. 4 (1960), 497-504.
[H16] D.R. HUGHES \& F.C. PIPER, Projective Planes, Springer Verlag, Berlin-Heidelberg-New York; 1973.
[H17] D.R. HUGHES \& F.C. PIPER, Block Designs (in preparation).
[K1] W.M. KANTOR, Generalized quadrangles associated with $G_{2}(q)$ (preprint).
[K2] R. KILMOYER \& L. SOLOMON, On the theorem of Feit-Higman, J. Combinatorial Theory A 15 (1973), 310-322.
[L1] J.H. van LINT \& H.J. RYSER, Block designs with repeated blocks, Discrete Math. 3 (1972), 381-396.
[L2] L. LOVÁSz, On the Shannon capacity of a graph, IEEE Trans. Information Theory 25 (1979), 1-7.
[M1] K.N. MAJUMDAR, on some theorems in combinatorics relating to incomplete block designs, Ann. Math. Statist. 24 (1953), 379-389.
[M2] H.B. MANN, A note on balanced incomplete block designs, Ann. Math. Statist. 40 (1969), 679-680.
[M3] M. MARCUS \& H. MINC, A sumvey of matmix theomy and matrix inequalities, Allyn \& Bacon, Boston, 1964.
[M4] R. MATHON, 3-class association schemes, in: "Proc. Conf. on Algebraic Aspects of Combinatorics", (D.G. Corneil \& E. Mendelsohn, eds.), Congressus Numerantium XIII, Utilitas, Winnipeg, 1975, pp. 123-155.
[M5] R. MATHON, Symmetric conference matwices of order $\mathrm{pq}^{2}+1$, canad. J. Math. 30 (1978), 321-331.
[M6] R. MATHON, On primitive association schemes with three classee (in preparation).
[M7] R. MATHON, The systems of linked (16,6,2) designs (submitted to Ars Combinatoria).
[M8] C.J. MITCHELL, An infinite family of symmetric designe, Discrete Math. 26 (1979), 247-250.
[N1] B. NOBLE \& J.W. DANIEL, Applied Linear Algebra (second edition), Prentice-Hall, Englewood Cliffs, 1977.
[P1] S.E. PAYNE, Nonisomorphic generalized quadrangles, J. Algebra 18 (1971), 201-212.
[P2] S.E. PAYNE, Generalized quadrangles of order (s-1,s+1), J. Algebra 22 (1972) , 97-119.
[P3] S.E. PAYNE, A restriction on the parameters of a subquadrangle, Bull. Amer. Math. Soc. 79 (1973), 747-748.
[P4] S.E. PAYNE, Finite generatized auadrangles: a survey, in: "Proc. Int. Conf. on Projective Planes", Wash. State Univ. Press, 1973, pp. 291261.
[P5] S.E. PAYNE, All generalized quadrangles of order 3 are known, J. Combinatorial Theory A 18 (1975), 203-206.
[P6] S.E. PAYNE, An inequality for generalized quadrangles, Proc. Amer. Math. Soc. 71 (1978), 147-152.
[R1] M.A. RONAN, A geometric characterization of Moufang hexagons, Ph. D. Thesis, University of Illinois, 1978.
[R2] M.A. RONAN, A combinatorial characterization of the dual Moufang hexagon (preprint).
[R3] H.J. RYSER, Combinatorial Mathematios, Carus Mathematical Monograph 14, Wiley, New York, 1963.
[S1] G.J. Scheluekens, On a hexagonic structure I \& II, Proc. Kon. Nederl. Akad. Wetensch. A 65 (= Indag. Math. 24) (1962), 201-217, 218-234.
[s2] A.J. SCHWENK \& R.J. WILSON, Eigenvatues of graphs, in: "Selected Topics in Graph Theory" (L.W. Beineke \& R.J. Wilson, eds.), Academic Press, London-New York-San Francisco, 1978, pp. 307-336.
[S3] J.J. SEIDEL, Strongly regular graphs with ($-1,1,0$) adjacency matrix having eigenvalue 3, Linear Algebra and Appl. 1 (1968), 281-298.
[S4] J.J. SEIDEL, Strongly regular grophs, in: "Surveys in Combinatorics" (B. Bollobas, ed.), London Math. Soc. Lecture Notes No. 38, Cambridge University Press, Cambridge, 1979, pp. 157-180.
[S5] M.S. SHRIKHANDE, Strongly regular grophe and quasi-symmetric designs, Utilitas Mathematica 3 (1973), 297-309.
[s6] S.s. SHRIKHANDE, The uniqueness of the I_{2} association scheme, Ann. Math. Statist. 30 (1959), 781-798.
[S7] E.E. SHULT \& A. YANUSHKA, Near n-gons and line systems, Geometriae Dedicata (to appear).
[T1] J.A. THAS, Combinatorics of partial geometries and generalized quadrangles, in: "Higher Combinątorics", (M. Aigner, ed.), Reidel, Dordrecht, 1977, pp. 183-199.
[T2] J.A. THAS, A remark on the theorem of Yanushka-Ronan characterizing the generalized hexagon $H(q)$ arising from the group $G_{2}(q)$ (preprint).
[T3] J.A. THAS \& S.E. PAYNE, Classical finite generalized quadrangles: a combinatorial study, Ars Combinatoria 2 (1976), 57-110.
[T4] J. TITS, Sur le trialité et certains groupes qui s'en deduisent, Publ. Math. I.H.E.S. $\underline{2}$ (1959), 14-60.
[W1] B. WEISFEILER, On Construction and Identification of Graphs, Lecture Notes in Math. No. 558, Springer Verlag, Berlin-Heidelberg-New York, 1976.
[W2] H. WEYL, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Honlrownotrahlung), Math. Ann. 71 (1912), 441-479.
[W3] H.S. WHITE, F.N. COLE \& L.D. CUMMINGS. Complete classification of the triad systems on fifteen elements, Memoir Nat. Acad. Sci. 14, second memoir (1925), 1-89.
[W4] H.A. WILBRINK \& A.E. BROUWER, A (57,14,1) strongly regular graph does not exist, Report ZW 121/78, Math. Centre Amsterdam, 1978.
[W5] J.H. WILKINSON, The Algebraic Eigenvalue Problem, clarendon, Oxford, 1965.
[W6] R.J. WILson, Introduction to groph Theory (second edition), Longman, London, 1979.
[y1] A. YANUSHKA, Generalized hexagons of order (t, t), Isxael. J. Math. 23 (1976), 309-324.
[y2] A. YaNUSHKA, A sufficient condition for the existence of an association scheme (preprint).

NOTATHONS

A*	hermitian transpose of matrix A.	
(A) ${ }_{\text {ij }}$	fij-th entry of matrix A	
$\left(b_{i j}\right)$	matrix with entries $b_{i j}$.	
$\lambda_{1}(A) \geq \ldots \geq \lambda_{n}(A)$	eigenvalues (if real) of matrix A .	
A * B	Kronecker product of matrices A and B.	
$\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$	diagonal matrix with diagonal entries a_{1}, \ldots, a_{n}.	
I or I_{n}	$\mathrm{n} \times \mathrm{n}$ identity matrix.	
\checkmark	all-one matrix.	
J_{n}	$\mathrm{n} \times \mathrm{n}$ all-one matrix.	
j	all-one vector.	
\\|u \|	length of vector u.	
$\begin{aligned} & \left\langle u_{1}, \ldots, u_{n}\right\rangle \\ & \left\langle u_{1}, \ldots, u_{n}\right\rangle \end{aligned}$	linear span of vectors u_{1}, \ldots, u_{n}. orthogonal complement of $\left\langle u_{1}, \ldots, u_{n}\right\rangle$.	
\bar{G}	complement of graph G.	
α (G)	size of largest clique of G.	
$\gamma(G)$	chromatic number of G.	
$\omega(\mathrm{G})$	size of largest coclique of G.	
$\lambda_{1}(G) \geq \ldots \geq \lambda_{n}(G)$	eigenvalues of 6 .	
$\mathrm{f}_{\mathrm{i}}(\mathrm{G})$	multiplicity of eigenvalue $\lambda_{1}(G)$.	
L(G)	line graph of G.	
$D(G, G)$	incidence structure formed by G and G_{1}, see p. 17.	
K_{n}	complete graph on n vertices.	
$K_{\ell, m}$	complete bipaxtite graph on $\ell+\mathrm{m}$ vertices.	
$\rho(\mathrm{x}, \mathrm{y})$	distance between vertices x and y . see p. 79.	
$p_{i j}(x, y) \text { or } p_{i j}^{k}$	intersection numbers of a graph, see p. 51 and p. 81.	
$\lambda\left(e_{1}, e_{2}\right)$	distance between elements of an n-gon, see p .52.	
$p_{i j k}(\underline{L}, x, y)$	see p. 58.	
\mathbb{Z}	integers.	
IN	positive integers.	
${ }^{\mathrm{F}} \mathrm{q}$	fleld with q elements.	
PG (n, q)	n-dimensional projective geometry over \mathbb{F}_{q}.	
$A G(n, q)$	n-dimensional affine geometry over F_{q} *	
$\delta_{i j}$	1 if $1=j$; 0 if $i \neq j$.	
[x]	lower integer part of real number x.	
$\lceil\mathrm{x}\rceil$	uppex integer part of real number x.	

INDEX

adjacency matrix	79	distance regular graph	51
adjacent vertices	79	dual of an incidence structure	83
balanced incomplete block design	83	edge	79
bipartite graph	80	eigenvalues of a graph	15,80
block	82	element of a generalized n-gon	52
block design	83	embedable	83
block graph	35	empty incidence structure	82
Cauchy inequalities	8	equivalent blocks	34,65
chromatic number	80	equivalent points	65
circuit	79,81	flag	82
class graph	35	(generalized) n-gon	50
Clebsch graph	39	(generalized) hexagon	53
clique	80	(generalized) polygon	50
coclique	80	(generalized) quadrangle	84
colour class	80	geometric graph	52
colourable, t-	80	Gewirtz graph	42
colouring	80	girth	79
complement of a graph	79	graph	79
complement of an inc. structure	83	graph, 40-	76
complete graph	79	Higman-Sims technique	10
complete γ-partite graph	80	Hoffman-Singleton graph	42
component	79	imprimitive str. reg. graph	37,82
connected graph	79	incidence	82
cycle, n -	81	incidence graph	46.83
degenerate design	83	incidence matrix	80,82
degree	81	incidence structure	82
derived design	83	induced configuration	58
design	83	induced subgraph	80
design, t-	83	independent set of vertices	80
design, $t-(v ; k, \lambda)$	83	interlacing eigenvalues	7
diameter	79	intersection numbers of a design	31
disconnected graph	79	intersection numbers of a graph	51
disjoint union of graphs	79	joint vertices	79
distance in a graph	79	lattice graph	82
distance in a generalized n -gon	52	length of a circuit	79

length of a path in a graph	79	quasi-symmetric 2-design	35
length of a path in a gen. n-gon	52	regular graph	81
line graph	67,84	residual design	83
linked 2-(16,6,2) designs	45	Schlăfli graph	26
new biock	68	Shrikhande graph	cover
new point	68	singular values	5
null graph	79	special block	69
order of a generalized n-gon	50	strongly regular graph	81
oval	70.78	subconstituent	82
parameters of a t-design	83	subalesign	83
parameters of a partial geometry	84	subgraph	80
parameters of a str. reg. graph	81	substructure	82
partial geometry	84	symmetric 2-design	83
partial subgeometry	84	thick generalized n-gon	50
path in a generalized n-gon	52	tight interlacing	7
path in a graph	79	triangular graph	82
Petersen graph	82	type I, II block	65
point	82	valency	81
point graph	52,84	vertex	79
primitive str. reg. graph	37,82	void graph	79
pseudo-geometric graph	52		

SAMENVATTING

Matrices en eigenwaarden zijn al vaak benut bij het bestuderen van eindige grafen en incidentiestructuren (designs). Dit gebeurt ook in dit proefschrift. Het uitgangspunt is een stelling over de eigenwaarden van gepartitioneerde matrices. Het toepassen van deze stelling op matrices geassocieerd met grafen of designs levert grenzen voor de grootte van deelgrafen, de afmetingen van subdesigns en de doorsnijdingsgetallen van designs. Het geval dat deze grenzen worden bereikt wordt ook behandeld. De genoemde stelling geeft bovendien aanleiding tot een nieuw bewijs voor de ongelijkheden van A.J. Hoffman, betreffende de eigenwaarden van gepartitioneerde matrices. Deze ongelijkheden leveren grenzen voor het kleuringsgetal van een graaf. Mede dankzij die grenzen is het mogelijk alle 4-kleurbare sterk reguliere grafen te bepalen.

De behandeling van het bovenstaande gebeurt in de eerste vier hoofdstukken. Hoofdstuk 5 behandelt de ongelijkheid $t \leq s^{3}$, alsook het geval van gelijkheid, voor veralgemeende zeshoeken van de orde (s, t), $s \neq 1$. Dit gebeurt met behulp van eigenwaardetechnieken. Dezelfde methode toegepast op veralgemeende vierhoeken levert nieuwe bewijzen voor een aantal bekende stellingen.

Met de hulp van eigenwaardemethoden kan men richtlijnen opstellen voor het construeren van designs en grafen met speciale eigenschappen. Langs deze weg worden er in Hoofastuk 6 nieuwe 2 -designs en sterk reguliere grafen geconstrueerd.

CURRICULUM VITAE

De schrijuer van dit proefschrift werd op 29 december 1948 te Eindhoven geboren. In 1967 behaalde hij zijn H.B.S.-b diploma aan het van der puttlyceum te Eindhoven. Daarna studeerde hij aanvankelijk natuurkunde en later wiskunde aan de Technische Hogeschool te Eindhoven. In oktober 1975 behaalde hij het diploma wiskundig ingenieur. Gedurende de laatste 2 jaren van zijn studie was hij student-assistent bij het rekencentrum van de hogeschool. Zijn afstudeerwerk, dat werd verricht onder leiding van Prof.dr. J.J. Seidel, bestond uit het onderzoeken van relaties tussen sterke grafen en 2-designs. Sinds zijn afstuderen werkt hij aks wetenschappelijk ambtenaar aan de Technische Hogeschool te Eindhoven bij Prof.dr. J.J. Seidel.

STELLINGEN

behorende bij het proefschrift

Eigenvalue techniques in design and graph theory
door
W.H. Haemers

STELLINGEN

1

Stel men wil boodschappen overseinen die gevormd worden met letters uit een alfabet A van n letters genumerd van $1 t / m n$, warvan somige paren letters met elkaar verwarbaar zijn. Beschouw een nxn matrix M over een willekeurig Lichaam, die voldoet aan $(M)_{i, i} \neq 0$ voor $i=1, \ldots, n$ en $(M)_{i, j}=0$ als de i^{e} en j^{e} letter van A niet verwarbaar zijn. Dan is de Shannon capaciteit van A, die een mat is voor de hoeveelheid foutloos overseinbare informatie, ten hoogste gelijk aan de rang van M.

Ref.: Willem Haemers, An upperbound for the Shannon capacity of a graph, Proc. Conf. Algebraic Methods in Graph Theory, Szeged, 1978 (te verschijnenl.

2

Het antwoord op de vragen van Probleem 1, 2 en 3 uit [2] is ontkennena.
Ref.: [1] Willem Haemers, On some problems of Lovasz concerning the Shannon capacity of a graph, IEEE Trans. Information Theory 25 (1979) 231 - 232.
[2] Lászlo Lovăsz, On the Shannon capacity of a graph, IEEE Trans. Information Theory 25 (1979) $1-7$.

Zoals bekend verscheen een speciaal geval van de stelling van Turán reeds als opgave 28 in het tiende deel van "Wiskundige Opgaven met de Oplossingen" (1910). De aldaar afgedrukte oplossing is echter onjuist.

4
Er bestaat geen sterk reguliere graf met 49 hoekpunten en grad 16.
Ref.: F.C. Bussemaker, W. Haemers, R. Mathon \& H.A. Wilbrink, The nonexistence of a strongly regular graph with parameters $(49,16,3,6)$ (in voorbereiding).

Het is bekend dat de verbindingsmatrix van een sterk reguliere graaf soms tevens de incidentiematrix van een symmetrisch 2-design is. Het is mogelijk dat op deze manier twee niet isomorfe grafen isomorfe 2 -designs opleveren. Dit is echter niet mogelijk als een van de grafen een automorfismegroep heeft van oneven orde. Met de resultaten van het onderstaande rapport voigt hieruit dat er tenminste 15531 niet isomorfe 2-(36, 15, 6) designs $2 i j n$.

Ref. : F.C. Bussemaker, R. Mathon \& J.J. Seidel, Tables of two-graphs, T. H.-rapport (in voorbereiding).

6
Voor het bestaan van een $3-\left(\frac{1}{2} k^{2}-1 k+1, k, 2\right)$ design is nodig dat $k-3$ een twadvoud is.

7
Als er voor $n>1$ een projectief vlak van de orde $2^{2 n}-1$ bestaat, dan bestaat er een "near-square λ-linked design" met $2^{4 n}-2^{2 n}$ punten en $\lambda=2^{4 n-2}-3.2^{3 n-2}+$ $-2^{n-1}+1$, en is dus het antwoord op de eerste vraag van het probleem uit 59 van onderstaand artikel, bevestigend.

Ref.: D.R. Woodall, Square $\lambda-1$ inked designs, Proc. London Math. Soc. 20 (1970) 669-687.

8
Laat $A=\left[\begin{array}{ll}O & B \\ B^{*} & C\end{array}\right]\left(B^{*}\right.$ is der hermitisch geconjungeerde van $\left.B\right)$ een hermitische matrix zijn met grootste eigenwaarde λ^{+}en kleinste eigenwaarde λ^{-}. Veronderstel B heeft afmetingen mxn en gemiddelde rijsom r. Dan geldt

$$
-\lambda^{+} \lambda^{-} \geq r^{2} m / n
$$

9
Beschouw een rechthoekig veld, betegeld met een eindig aantal rechthoekige tegels. Een tegel heet zuiderbuur van een andere tegel als de noordkant van de eerste op dezelfde lijn ligt als de zuidkant van de andere tegel. Een noordzuid pad is een rijtje tegels waarbij elke tegel (behalve de eerste) zuiderbuur is van zijn voorganger. Analoog is een oost-west pad gedefinieerd. Er geldt nu dat elk paar tegels op een nocrd-zuid pad of op een oost-west pad ligt.

De enige samenhangende planaire sterk reguliere grafen zijn:

11
Meetkundig inzicht is een van de meest toepasbare dingen die men zich binnen de wiskunde kan verwerven. Daarom is het treurig dat het gewijzigde onderwijsprograma het ruimtelijk voorstellingsvermogen van de doorsnee middelbare-school-verlater in tien jaar tifd met ongeveer een dimensie heeft doen dalen.

[^0]: $\begin{array}{lllllllllll}9 & 10 & 15 & 16 & 17 & 21 & 22 & 24 & 28 & 32 & 35\end{array} 38$ $\begin{array}{llllllllllllllllll}6 & 3 & 9 & 10 & 14 & 19 & 23 & 24 & 32 & 33 & 34 & 39\end{array}$ $4 \begin{array}{lllllllllllll}4 & 7 & 12 & 15 & 16 & 19 & 23 & 24 & 30 & 31 & 35 & 39\end{array}$
 $\begin{array}{lllllllllll}7 & 9 & 12 & 14 & 18 & 20 & 21 & 22 & 28 & 31 & 34 \\ 39\end{array}$ $\begin{array}{lllllllllll}9 & 11 & 15 & 17 & 18 & 20 & 23 & 31 & 35 & 36 & 37\end{array}$

 | 5 | 10 | 11 | 14 | 16 | 18 | 24 | 33 | 36 | 36 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 4 | 12 | 13 | 15 | 18 | 28 | 24 | 29 | 34 | 36 | $\begin{array}{llllllllllll}2 & 4 & 12 & 13 & 15 & 18 & 22 & 24 & 29 & 34 & 36 & 38 \\ 1 & 2 & 5 & 6 & 12 & 13 & 16 & 24 & 30 & 37 & 38 & 39\end{array}$ $\begin{array}{llllllllllll}1 & 2 & 5 & 6 & 12 & 13 & 16 & 24 & 30 & 77 & 38 & 39 \\ 1 & 2 & 4 & 7 & 11 & 20 & 22 & 25 & 79 & 35 & 35 & 39\end{array}$ $\begin{array}{cccccccccccc}1 & 2 & 4 & 7 & 11 & 20 & 22 & 25 & 79 & 35 & 35 & 39 \\ 6 & 7 & 10 & 13 & 15 & 19 & 21 & 25 & 2 & 30 & 34 & 36\end{array}$

 571517192020203237
 $\begin{array}{llllllllllll}3 & 7 & 9 & 13 & 20 & 23 & 26 & 29 & 32 & 34 & 36\end{array}$

 $4 \begin{array}{llllllllllllllllllll}4 & 5 & 6 & 10 & 16 & 17 & 19 & 27 & 29 & 31 & 34 & 38\end{array}$ $\begin{array}{llllllllllll}4 & 5 & 11 & 12 & 15 & 23 & 27 & 32 & 33 & 34 & 37\end{array}$
 $\begin{array}{llllllllllll}2 & 3 & 6 & 16 & 18 & 21 & 22 & 27 & 28 & 29 & 30 & 33\end{array}$
 $\begin{array}{lllllllllll}9 & 10 & 11 & 12 & 18 & 24 & 26 & 27 & 29 & 30 & 31\end{array} 32$ $\begin{array}{llllllllllll}13 & 14 & 15 & 16 & 17 & 18 & 25 & 27 & 33 & 34 & 35 & 39\end{array}$ $\begin{array}{llllllllllll}19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 36 & 37 & 38 & 39\end{array}$ $\begin{array}{llllllllllllllllll}1 & 5 & 11 & 13 & 17 & 18 & 19 & 23 & 24 & 29 & 39 & 40\end{array}$ $\begin{array}{llllllllllll}8 & 10 & 12 & 14 & 15 & 16 & 20 & 23 & 25 & 28 & 37 & 40\end{array}$ $\begin{array}{rrrrrrrrrrrrr}8 & 10 & 12 & 14 & 15 & 16 & 20 & 23 & 25 & 28 & 37 & 40 \\ 3 & 4 & 9 & 11 & 14 & 17 & 24 & 23 & 25 & 34 & 38 & 40\end{array}$

 $\begin{array}{llllllllllll}1 & 7 & 8 & 9 & 15 & 10 & 15 & 20 & 27 & 30 & 33 & 40\end{array}$
 $\begin{array}{llllllllllll}28 & 29 & 30 & 31 & 32 & 5 & 3 & 34 & 35 & 36 & 37 & 38 \\ 38\end{array}$

