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Eigenvalue topology optimization via efficient multilevel solution of

the Frequency Response
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Abstract

The article presents an efficient solution method for structural topology optimization aimed at
maximizing the fundamental frequency of vibration. Nowadays this is still a challenging problem,
mainly due to the high computational cost required by spectral analyses. The proposed method
relies on replacing the eigenvalue problem with a frequency response one, which can be tuned and
efficiently solved by a multilevel procedure. Connections of the method with multigrid eigenvalue
solvers are discussed in details. Several applications demonstrating more than 90% savings of the
computational time are presented as well.

Keywords: Topology optimization; Eigenvalue optimization; Fast solvers; Vibrations; Large–scale
problems

1. Introduction

In this work we focus on the problem of maximizing the natural frequency of vibration of a
structure by means of topology optimization [1, 2, 3, 4, 5]. This classical problem finds important
application in the design of engineering structures, whenever they must be protected against low
frequency resonance [6, 7]. Within the context of a nested approach [8], the solution of this problem
by a gradient–based method requires the formulation and the direct solution of an eigenvalue
problem at each optimization step, since the sensitivities depend on the eigenpairs [9, 10]. This
direct approach still presents some challenges compared to other simpler problems of topology
optimization (e.g. the compliance problem). In particular, the following two difficulties can be
pointed at.

First, eigenvalues are likely to become repeated, and the corresponding sensitivities non–smooth,
during the optimization [11, 12]. This theoretical difficulty has been extensively studied in the last
decades and several methods have been proposed for computing sensitivities of repeated eigenvalues
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[13, 14], or for working with smooth functions of them [15, 16, 17]. Other approaches overcome this
issue by recurring to methods of semi–definite programming, or non–convex optimization [12, 18,
19]. A second, practical limitation, is due to the high computational cost required by the solution
of a large eigenvalue problem at each optimization step. Even with the availability of modern
computer resources, this is still the main hurdle for bringing eigenvalue optimization to large scale.

To reduce the computational demand of the analysis, researchers have mainly resorted to ap-
proximate reanalysis procedures [20, 21], and in particular to the so–called Combined Approxima-
tions (CA), originally introduced for static reanalysis [22] and then extended to vibration problems
[23, 24]. CA have been applied to topology optimization, for the compliance problem [25], and also
for free vibrations [26], obtaining remarkable computational savings. However, the direct solution
of a full eigenvalue problem was still considered, even if only at few steps, and this may not be
affordable for very large scale optimization problems.

Our aim is to set up a procedure which does not require the solution of any large scale eigenvalue
problem. In [27] the foundations of such a method have been established, by surrogating the
eigenvalue problem by a frequency response one, requiring the solution of linear systems only. It
has been shown that, upon proper tuning of the harmonic excitation parameters, the frequency
response surrogate approach gives essentially the same outcome as obtained for direct eigenvalue
optimization. In particular, the amplitude of the harmonic load must be capable of exciting the
fundamental mode and its driving frequency should be dynamically updated to stay close and, most
important, below the first frequency peak. This last point is crucial to ensure the increase of the
fundamental eigenvalue, and therefore a lower bound to its current value has to be determined.

Although the idea was proven to work, the computational procedure proposed in [27] left much
space for improvings. First, the load amplitudes were defined in a rather heuristic way, barely
generalizable, and only for the first optimization step, then kept fixed for the whole process. Second,
the driving frequency was computed with a simple but potentially expensive procedure: a line search
algorithm where several LU factorizations of the system matrix were needed. Last, the resulting
frequency response problem was solved accurately by a direct method (Cholesky factorization), a
prerogative that will be ruled out by the transition to large scale problems.

In this work we extend and enhance all these points, introducing a strategy based on multilevel
discretizations. The general idea is to compute accurate eigenpairs only on the coarsest discretiza-
tion, solving an eigenvalue problem way smaller than the original one. The coarse grid modes are
projected and smoothened up to the finest scale, and here used as load vectors for the frequency
response linear system. This is then solved by a conjugate gradient method, preconditioned by
a multigrid cycle which is built on the same multilevel discretization. During the multilevel pro-
jection we can also compute upper and lower bounds to the fundamental eigenvalue. The latter,
which is used for bounding the range of admissible driving frequencies, is now computed at the
cost of solving an additional linear system. In this way, the overall method has multigrid efficiency,
meaning that the computational effort scales almost linearly with the problem size [28].

The remainder of the paper is organized as follows. In Section 2 the general setting and the
formulation of the two optimization problems are given. In subsection 2.1 we shortly discuss the
influence of the harmonic load parameters on the effectiveness of the surrogation. Section 3 is
devoted to the description of the multilevel method, and in subsection 3.1 we also discuss its
connection with some multigrid eigenvalue solvers. Numerical tests on 2D and 3D model problems
are discussed in Section 5, demonstrating the effectiveness of the method and the computational
savings achievable. Conclusions and some future perspectives are summarized in Section 6.
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Figure 1: Geometrical description of the cantilever beam (a), optimized topology (b), and optimization history
obtained by the direct solution of problem P, defined by (2a)–(2b) (c)

2. Formulation of the two optimization problems

Let us refer to the cantilever depicted in Figure 1 (a), modeled with plane stress assumptions.
We aim at maximizing its fundamental frequency of vibration through the optimal distribution
of a given amount of material V ≤ V ∗ in Ω. Following the standard approach of density–based
topology optimization [1], Ω is discretized by a uniform and regular grid of d finite elements, with
characteristic size h, and to each element is assigned a design variable xe ∈ [0, 1]. Stiffness and
density are related to the vector x = {xe}de=1 by the modified SIMP interpolation [29]

E (x) = E0 + xp (E1 − E0) , ρ (x) = ρ0 + x (ρ1 − ρ0) (1)

where E1 and ρ1 are the Young modulus and density of the solid material, E0 and ρ0 of the weak
one and p is a penalization parameter. The Poisson’s ratio is independent of x and set to ν = 0.3.

The problem under consideration can be formulated as

P

{

max
x∈Fad

min
l=1,...,n

λl (2a)

st. K (x)φ = λ (Ms (x) +M0)φ , φ 6= 0 (2b)

where Fad =
{

x ∈ R
d | h2

V ∗

∑d
e=1 xe − 1 ≤ 0 , 0 ≤ xe ≤ 1

}

is the feasible set, n is the total number

of Degrees Of Freedom (DOFs) and K (x) andMs (x) are the stiffness and structural mass matrices,
symmetric and positive definite for all x ∈ Fad. The matrix M0 accounts for non–structural masses
and is symmetric and positive semi–definite. For the sake of brevity, the dependence on x of K and
Ms will be omitted and we will frequently refer to M =Ms +M0.

With these assumptions, (2b) has n solutions (λi, φi), depending implicitly on x. The eigenval-
ues, proportional to the squared natural frequencies, can be ordered as 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn.
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Figure 2: (a) shows the FRFs corresponding to two load cases, for the uniform cantilever structure (continuous curves)
and for the optimized design of Figure 1 (b) (dashed curve). φ2 is an axial mode and therefore λ2 is represented
only in the FRF associated with the axial force. (b) shows the influence of the excitation frequency σ on the shift of
the first frequency peak induced by problem P∗. Here, five optimization steps were considered for each case

The eigenvectors, representing the natural modes of vibration, fulfill the orthogonality relationships

φTi (Ms +M0)φj = δij , φTi Kφj = λiδij (3)

In Figure 1 (b)–(c) we see the optimization outcome for the particular parameters L = 1,
V ∗ = 0.3 and M0 = 0.2ρV ∗.

Let us now consider a set of harmonic loads f̂l = fle
i
√
σt, l = 1, . . . , q, defined by the amplitude

vectors fl and the excitation frequency
√
σ, such that σ > 0 is distinct from every eigenvalue. The

harmonic response amplitudes ul are computed by solving the linear systems

S (x;σ)ul = fl , l = 1, . . . , q (4)

where S (x;σ) := K − σM is the dynamic stiffness matrix, which inherits the symmetry of K and
M but is positive definite only for σ < λ1. To each pair (fl, ul) we can associate the functional

J∗
l (x, σ) :=

∣

∣uTl fl
∣

∣ =
∣

∣uTl S (x;σ)ul
∣

∣ (5)

that is a measure of the so–called dynamic compliance of the structure subjected to fl [30] and,
as a function of σ, also represents the system Frequency Response Function (FRF) [7]. Provided
that a given load fl can excite the l–th mode, that is fTl φl 6= 0, the FRF shows a peak at σ = λl,
independently of the particular shape of fl (see Figure 2 (a)).

On the same feasible set we consider the problem of minimizing the FRF associated with the
worst load case, at the specific location of the spectrum determined by σ

P∗

{

min
x∈Fad

max
l=1,...,q

J∗
l (x, σ) (6a)

s.t. (4) (6b)
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As a side effect, the FRF peak nearest to σ will move away from σ itself, and this can be
used to indirectly obtain a larger eigenvalue [3, 31, 27], as depicted in Figure 2 (b). To ensure
the effectiveness of such an indirect effect, the harmonic parameters defining the load have to be
properly selected and updated in the optimization proceeds, as discussed below.

2.1. Selection of the harmonic load parameters

Focusing first on the single mode case (i.e. λ1 < λ2), we highlight the role of the harmonic
parameters fl and σ by expanding the response on the modal basis. Due to the relationships (3)
the inverse of the dynamic stiffness matrix can be expressed as [7, 32]

S (x;σ)
−1

=

n
∑

i=1

φiφ
T
i

φTi (K − σM)φi
=

n
∑

i=1

φiφ
T
i

λi − σ

Without loss of generality we consider a mass proportional load fl =Mψl, where ψl is normalized
as ψT

l Mψl = 1. Introducing the modal forces γil = φTi Mψl, such that
∑n

i=1 γil = 1, we can write

ul = S (x;σ)
−1
fl =

n
∑

i=1

γil
λi − σ

φi (7)

Again, exploiting the orthogonality (3), the dynamic compliance (5) can be written as

J∗
l =

n
∑

i=1

γ2il
|λi − σ| =

γ21l
|λ1 − σ| + ̺ (8)

where in the rightmost expression we split the modal force associated with φ1 from the other terms,
collected into a remainder ̺ = ̺(γil), i > 1.

As long as the applied load has a dominant contribution on the mode associated with λ1, γ1l
will be close to one, and from (8) we conclude that the minimization of J∗

l is achieved mainly by
increasing |λ1 − σ|. If we further fix σ < λ1, this can only mean increasing λ1 itself.

The derivative of (8) with respect to xe reads

∂J∗
l

∂xe
=

n
∑

i=1

2γil
|λi − σ|

∂γil
∂xe

− sign (λi − σ) γ2il
|λi − σ|2

∂λi
∂xe

(9)

and we can split it between a main term, proportional to γ1l, and a remainder ˜̺

∂J∗
l

∂xe
= − sign (λ1 − σ) γ1l

|λ1 − σ|2
∂λ1
∂xe

+ ˜̺ (10)

Again, provided σ < λ1, the descent direction for the dynamic compliance (that is −∂eJ∗
l )

contains, up to a scale factor, the increasing direction of the eigenvalue ∂eλ1, plus the contribution
of the remainder term ˜̺. Recalling the definition of the coefficients γil, the latter reads

˜̺ = −
n
∑

i=2

sign (λi − σ) γ2il
|λi − σ|2

∂λi
∂xe

+

n
∑

i=1

∂

∂xe

(

ψTMφi
)

(11)

Eqs.(8) and (10) formalize the idea behind the surrogation of eigenvalue optimization, as de-
fined by P, with the frequency response minimization problem P∗ [27]. It is apparent that the

5



Ω0

Ω1

Ω2

Figure 3: Sketch of the multilevel procedure for the solution of the state equation, for the particular case of m = 2
coarsening levels. The picture also show qualitatively the coarsening of 2D and 3D structured grids

surrogation is more effective when the remainder term ̺ is small, and therefore ψl is a close ap-
proximation to φ1. The ideal case, producing a decoupled FRF, would be ψl = φ1. This is however
not convenient, taking us back to the accurate solution of the eigenvalue problem. We only aim at
computing an approximation of it and a (possibly tight) lower bound λlb < λ1. The latter will give
an upper bound for the excitation frequency, so that with σ ∈ [0, λlb], S is positive definite and (5)
is quadratic.

Moreover, since the modal features evolve with the structural changes, the pair (ψl, σ) should be
updated during the optimization. Doing this we can assure that ψl is always a good approximation
of the current modal shape, and σ is close to the frequency peak.

3. Multilevel solution of the state equation

At each optimization step the linear system (4) is solved by a Preconditioned Conjugate Gradient
(PCG) method, where preconditioning is achieved by a multigrid V–cycle [33]. The same set of
nested grids used for it can also be exploited for cheaply computing the harmonic parameters. In
short, the idea is to directly solve the eigenvalue problem only on a coarse mesh and then to use
the projection of the eigenpairs as approximations of the harmonic parameters on finer scales.

Besides Ω0, the discretization where P and P∗ are originally formulated, we consider (m− 1)
auxiliary discretizations Ωj , obtained by geometrical coarsening, such that hj = 2jh. We may
refer to Ω0 as the fine level, and to Ωm as the coarse level. For j > 0 we denote vectors and
matrices defined on Ωj by the corresponding apex, and inter–grid operations are performed by the

prolongation Ijj+1 and restriction Ij+1
j operators. Here, Ij+1

j is the linear interpolation operator

from Ωj+1 to Ωj and I
j+1
j is the full weighting operator (see [34, 33] for details and implementation).

We refer to Figure 3 for a sketch of the procedure. We start solving the eigenvalue equation
restricted to Ωm, computing (λmi , φ

m
i ) such that

(Km − λmMm)φm = 0 , φm 6= 0 (12)

6



We emphasize that (λmi , φ
m
i ) are the only exact (up to numerical precision) eigenpairs computed

during the whole process. The number of eigenpairs we need to compute depends on the expected
multiplicity of λ1, and may be relatively large. However, this requires only a small amount of the
computational effort needed for solving the eigenvalue problem on Ω0, due to the rapid reduction
of DOFs, especially for 3D problems (see Figure 3).

Let us for now focus only on the fundamental eigenpair (λm, φm), removing the subscripts for
brevity. The procedure will be extended to a larger set of eigenpairs in Section 4. Interpolation of
φm to the next grid gives the vector ψm−1 = Im−1

m φm which is a combination of the eigenvectors
defined on Ωm−1, usually with dominance of the fundamental one. Setting σ = λm, in general, the
pair (σ, ψm−1) is not an eigenpair on Ωm−1. Therefore, considering the residual equation

Sm−1 (σ)ψm−1 = rm−1 (13)

the vector ψm−1 coincides with the error, since Sm−1 is not singular. The application of a few
smoothing steps to (13) filters out very rapidly the high frequency components of ψm−1, leaving
the lower ones essentially untouched. For this we use a damped Jacobi iteration, with damping
factor of 2/3, and a number of iterations ranging from 5 to 10. We may denote this operation as
ψ̃m−1 = J (rm−1). Given the smoothed vector ψ̃m−1, its Rayleigh quotient R(ψ̃m−1) is used for
updating σ, improving the approximation to the eigenvalue on the current grid (i.e. σ > σ̃ > λm−1).

The procedure is repeated on the next level Ωm−2, with the projection ψm−2 = Im−2
m−1 ψ̃

m−1, and

so on until Ω0 is reached. Now we have the pair (σ̃, ψ̃), where ψ̃ is a good approximation of φ and
is used to set up the load amplitude f =Mψ̃, and σ̃ is an upper bound to λ, from here on denoted
as λub. The fine scale linear system then reads

S (σ)u =Mψ̃ (14)

and for the reason discussed in subsection 2.1, as well as for ensuring the convergence of the PCG
iteration, we need to select σ ∈ [0, λlb], where λlb < λ. A lower bound can be computed using a
complementarity technique suggested in [35], requiring the computation of the fine scale vector,

w = K−1r =
(

I − σ̃K−1M
)

ψ̃ (15)

relating the fine scale residual with the distance |σ̃ − λ1| /λ1 (see [35], Theorem 3.4 for details).
Solution of (15) can also be efficiently obtained by the PCG method.

The stopping criterion for the PCG iteration is usually based on the norm of the residual

‖r(k)‖ ≤ τ1‖Mψ̃‖ (16)

for a tight value of the tolerance τ1 (e.g. from 10−6 to 10−10). It has long been recognized [36, 37, 38]
that, for the sake of running the optimization, such a stopping criterion results in unduly accurate
approximations u(k), with corresponding increase of computational cost. Therefore, we consider an
early termination of the PCG iteration, according to the criterion

∣

∣

∣
uT(k)Mψ̃ − uT(k)Su(k)

∣

∣

∣
≤ τ2u

T
(k)Su(k) (17)

that is a particularization of what was originally suggested in [37].
To motivate the use of (17) we can look at Figure 4, showing a plot of the quantity 1− sT s(k),

where s is the sensitivity computed from an accurate u and s(k) the one computed from an u(k)
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Figure 4: Accuracy of the sensitivities defined by an approximate solution u(k) satisfying (16) or (17) for a given
tolerance τ1 or τ2, repsectively (a), and number of PCG iterations required for meeting the stopping criteria (b)

fulfilling (16) or (17) for a given tolerance. For all x ∈ Fad but stationary points, the smaller this
quantity is, the closer s(k) will be to the steepest descent direction. A tight tolerance of 10−6 or
10−10 in (16) essentially gives accurate sensitivities, but requires many PCG iterations, as shown
in Figure 4 (b). On the other hand, using (17) with τ2 = 10−5, still gives a sensitivity s(k) differing
from the accurate one of less than 1%, which is accurate enough to effectively run the optimization,
as we will show in Section 4. We note that only a minimum number of PCG iterations (set to 3) is
now required for the presented results.

3.1. Connections with preconditioned inverse iteration

The described procedure can be interpreted as a particular application of preconditioned inverse
iteration (PInvIt) for solving the eigenvalue problem on Ω0. Given a shift σ and a starting vector
u(0), inverse iterations [39, 40] involve the solution of a sequence of linear systems

S (σ)u(α) =Mu(α−1) (18)

When this is achieved by a preconditioned iterative method, a class of inner–outer iterative
schemes, known as Preconditioned Inverse Iteration (PInvIt), is obtained [41]. The outer step is

given by (18) and the inner one is, for example, the PCG iteration computing u
(α)
(k) .

The behaviour of PInvIt has been extensively analyzed in the last decades, with special regard to
the influence of inner iteration accuracy on the convergence of the outer one [42, 43, 44], and to the
role of the preconditioner [45, 46]. As discussed in [47, 48], provided that R0 = R(u(0)) ∈ (λ1, λ2),
the sequence Rα = R(u(α)) converges at least linearly to λ1, and this is neither affected by the
number of unknowns, nor by preconditioning. This behaviour, along with its matrix–free nature,
characterizes PInvIt as the simplest multigrid solver for eigenvalue problems [49].

Furthermore, the initial guess u(0) = ψ̃, computed with little computational effort as described
above, gives a very accurate result after a single outer iteration, as we can see from Figure 5.
Starting with e.g. a null vector, three steps of inverse iterations are required to reduce the Rayleigh
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Figure 5: Error reduction for the Rayleigh quotient against the number of outer steps of inverse iterations (InvIt)
for the uniform structure and for the optimized one. Black curves refer to application of InvIt with initial guess
u(0) = 0. Blue curves refer to the choice u(0) = ψ̃, computed by the multilevel method and the orange ones take into
account the effect of the inexact solution of (18) by the PGC, with the stopping criterion (17)

quotient error below 10−6 for the initial structure, and five for the optimized one, with high contrast
in material distribution. On the other hand, setting u(0) = ψ̃, after one iteration the error is cut
below 10−7 for the initial structure and to an order of 10−5 for the optimized one. This allows for
a single solution on the fine scale system (14), which is the most expensive part of the procedure.
Finally, the orange curves show that, as expected, the effect of preconditioning and inexact solution
only marginally affects the error reduction rate.

4. Extension to multiple load cases

For the likely situation where eigenvalues become clustered or even repeated and mode switching
occurs [11], solving P∗ for a single load may results in very poor convergence, or even in evidently
non-optimal solutions [27].

When λ1 becomes, say q–repeated, an invariant subspace Φ = {φ1, . . . , φq}, can be associated
with it. A single load vector is likely to become orthogonal to some element of Φ, which will turn
into the new fundamental mode. As a consequence, λ1 will be no more directly excited. Thus, in
general we need to consider a set of loads sufficiently large to account for the expected multiplicity
of λ1, and minimize the maximum of the associated dynamic compliances.

The procedure described above can be extended to a preconditioned inverse subspace method [50,
51, 52] to compute an approximation to the invariant subspace Φ. The general idea for computing
the harmonic parameters is essentially unchanged. The whole set Ψj = {ψj

1, . . . , ψ
j
q} is projected

through levels, and the smoothing is performed on residuals Rj = {rj1, . . . , rjq}, transforming (13)
in a block system. We point out that the Rayleigh quotient step for enhancing the upper bound
to λ1, is now replaced by a Ritz projection (still denoted by R) in order to ensure that Ψj is an

9



invariant subspace. The Ritz values, collected in the diagonal matrix Σ̃j = diag{σ̃j
1, . . . , σ̃

j
q}, are

upper bounds to the eigenvalues.
On the fine level, the block version of PCG [53, 54] is used for solving the fine level equations

(15) and (14), computing the sets U(k) = {u1(k), . . . , uq(k)} and W(k) = {w1(k), . . . , wq(k)}. Again,
the iteration is stopped according to (17), applied to each ui(k) and wi(k), respectively.

Considering this more general situation, Algorithm 1 lists the operations involved in the com-
putation of the harmonic load parameters with the multilevel method. This is then inserted within
a standard procedure for topology optimization, as listed in Algorithm 2.

As it can be expected, clustering of eigenvalues makes the procedure more delicate. In particular,
it cannot be strictly ensured that passing from Ωj+1 to Ωj the quantity σ = mini Σ̃

j+1 stays enclosed

between (λj1, λ
j
2). This does not automatically cause the method to fail, since it has been observed

that the Rayleigh quotient is still likely to converge to λj1 [48]. However, this circumstance can not
be assured theoretically, but only supported by numerical experience. Also the reliability of the
lower bound λlb can no longer be strictly guaranteed.

The above issues can be bonded to another delicate point, concerning the selection of the coarse
level Ωm. The maximum grid size hm generally depends on the magnitude of λ1, on the distance
(λ2−λ1), as well as on the order of finite element approximation and of inter–grid operators [55, 56].

Here we selected the coarse level Ωm to have a sufficiently accurate description of the structural
properties, still substantially reducing the computational effort for the direct eigenvalue solution. In
this way we have not experienced fails in convergence even for the examples where λ1 was repeated.
However, we do not claim that the method is completely free from the above mentioned troubles,
when applied to more involved problems.

Algorithm 1 Computation of harmonic pa-
rameters

1: compute (λmi , φ
m
i ), i = 1, . . . , q

2: set Ψm = {φmi }qi=1, Σ
m = diag{λmi }

3: for j = m− 1, . . . , 0 do

4: Ψj = Ijj+1Ψ
j+1 ⊲ project modes

5: σ = mini Σ
j+1 ⊲ set current shift

6: Rj = Sj(σ)Ψj ⊲ compute residuals
7: Ψj = J (Rj) ⊲ smooth
8: Σj = R(Ψj) ⊲ Ritz projection
9: end for

10: Solve KW(k) ≈ S(σ)Ψ and compute λlb

Algorithm 2 Topology optimization

1: set x0, q, m, µ = 1,
2: build Ijj+1, j = 1, . . . ,m− 1
3: while µ ≤ µmax do

4: assemble Kµ, Mµ

5: restrict Kj
µ, M

j
µ, j = 1, . . . ,m

6: compute Ψµ, λlb from Algorithm 1
7: set Fµ =MµΨµ

8: solve SµUµ = Fµ

9: compute sensitivities
10: update design variables with MMA
11: µ = µ+ 1
12: end while

5. Numerical examples

We now demonstrate the performance of the proposed approach which has been implemented
in Matlab. Besides the 2D cantilever example introduced in Section 2, we consider a 2D example
with closely spaced eigenvalues and two 3D beams with bending and torsional fundamental modes,
respectively. The material parameters used in (1) are E0 = ρ0 = 10−3 and E1 = ρ1 = 1, and the
penalization is set to p = 4. The occurrence of spurious vibration modes in regions where x goes
to zero is prevented by the relatively high lower bound on stiffness. However, the application to
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higher contrast problems is demonstrated and discussed at the end of Subsection 5.1. The fine dis-
cretizations Ω0 are set up with (ex, ey) bilinear quadrilaterals and (ex, ey, ez) trilinear hexahedrons
for the 3D example and a convolution filter with radius δ0, scaling with the mesh size, is applied
to design variables [57, 58]. The eigenvalue equations (2b) and (12) are solved with the Matlab
function eigs, and the MMA [59] is used for updating the design variables. In this work we are not
concerned with a detailed study of the behavior of the optimizer, which can be significantly affected
by the asymptotes and step length parameters. We fix these parameters for each example and
keep them constant during the whole optimization. We also do not consider a rigorous convergence
criterion, but simply run the optimization for a fixed number of steps. In the following, the fine
scale eigenvalues obtained while solving P and P∗ are denoted as λi and λ∗i , respectively. We
remark that the latter play no role in the proposed approach, and are computed only for the sake
of comparison.

5.1. Cantilever beam with tip non–structural mass

We consider again the cantilever of Figure 1 (a), with a fine level discretization Ω0 = (144, 48)
and δ0 = 2h. For this example λ1 is well separated from the other eigenvalues for each x ∈ Fad, and
therefore we can consider the single load case f1 =Mψ̃1. The multilevel scheme is built considering
m = 2 additional grids, with the coarse level Ω2 = (36, 12) reducing the DOFs number of about 15
times. The harmonic parameters ψ̃1 and λlb are updated at each optimization step.

The main results are shown in Figure 6. The direct approach gives a final eigenvalue λ1 = 8.7586·
10−2 and by FRF minimization we obtain, in the same number of iterations, λ∗1 = 8.7699 · 10−2.
Figure 6 (a), referring to the case where (14) is solved for σ = 0, shows that the evolution of the
two is almost indistinguishable during the whole optimization. Figure 6 (b) shows the outcome
for the case when the shift σ = λlb is considered in (14). Although λ∗1 evolves on a different path
from λ1, it ends up again at essentially the same value (λ∗1 = 8.7587 · 10−2). In both cases we
observe that λub is very tight and λlb is reliable. Furthermore, the smoothness of the dynamic
compliance minimization curve witnesses the ability of the load vector to continuously adapt to
structural changes.

The effectiveness of the load amplitude ψ̃1 can be seen also from Figure 12 (a), showing the
magnitude of the first four coefficients γi1, defined in subsection 2.1. For all the optimization steps,
the load contribution is almost entirely on φ1 and it is also interesting to note that the smaller
contribution is on φ2 which remains a purely axial deformation.

Figure 6 (c)–(d) show a plot of the quantity

Dσ =
σ − λ1
λ1

(19)

measuring the accuracy of fine grid eigenvalue approximations (generically denoted as σ) computable
during the multilevel approach. Starting from a coarse level estimate (λ4h) which may be quite
far from the fine grid eigenvalue, the approximation is substantially improved by the multilevel
projection, arriving to λub. The PCG iteration on the fine scale further improves the estimate,
given by Rk = R(u(k)). As expected, the iteration on a shifted system generally leads to a better
estimate of the current eigenvalue (see Figure 6 (d)).

Keeping the same coarse level, we now consider three refinements of Ω0 and therefore we intro-
duce more projection levels (up to m = 5). The optimization problems P and P∗ are therefore
referred to grids Ω+

0 = (288, 96), Ω2+
0 = (576, 192) and Ω3+

0 = (1152, 384) elements. The latter cor-
responds to 885, 810 degrees of freedom and a single spectral analysis on it would take, on average,
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Figure 6: Results of FRF minimization for the 2D cantilever example. (a) and (b) show the evolution of λ1 and of
the computable bounds. Against the right axis is plotted the dynamic compliance minimization history. (c) and (d)
show the accuracy, as defined by (19), of some computable eigenvalue approximations
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n on Ω0 λ1 (10−2) λ∗

1 (10−2) r.d. (10−3) ‖ǫx‖ (10−2) Tλ (s) T∗ (s) Tλ/T∗

14,210 (15) 8.75858 8.76989 1.290 1.88 74.45 16.64 4.47
56,066 (58) 8.27404 8.22228 -6.437 8.59 328.30 58.09 5.66

222,722 (231) 7.90160 7.89473 -0.870 11.17 1765.77 235.99 7.48
885,810 (921) 7.53106 7.54480 1.825 9.75 9448.16 914.92 10.33

Table 1: Results for the 2D cantilever example optimized on different fine levels. In the first column between brackets
is the DOFs reduction achieved on the coarse level. The last three columns list the overall computational time for
the direct eigenvalues analysis, the one for the proposed multilevel method and respective saving factors

Density Ki Mi

Ω2

Ω0

Ω3+
0

Figure 7: Plot of the physical properties on three scales. The quantities Ki and Mi are normalized with respect to
their maximum value

43s and 8.1Gb of memory. On the coarse level Ω0, reducing the DOFs number of a factor of about
921, the spectral analysis takes approximatively 0.42s and 49Mb of memory.

Table 1 contains the final values of the fundamental eigenvalue, their relative difference and the
norm of ǫx = x − x∗, measuring the difference of the two topologies. Figure 7 shows, for three
different levels, the distribution of x∗ and of an isotropic measure of nodal stiffness and mass, Ki

and Mi, i = 1, . . . , nnodes. These latter are defined as

Ki =
(

k2x,i + k2y,i
)1/2 Mi =

(

m2
x,i +m2

y,i

)1/2
, i = 1, . . . , nnodes (20)

where kx,i, ky,i andmx,i,my,i are the diagonal elements of the stiffness and mass matrices associated
with the two DOFs of node i. From this figure we see how a very rough distribution of the structural
properties on the coarse level can be used for obtaining a much more refined design on the fine one.

Considerations about computational savings can be drawn from the last three columns of Table 1
and from Figure 8. Here Tλ denotes the overall time spent for spectral analyses while solving P, and
T∗ the one spent for the harmonic analyses with the multilevel approach. The saving factors (Tλ/T∗)
are substantial and, more important, they increase with the problem size, as can be grasped from
Figure 8 (a). In this figure we also report the saving factors from the approach of [27], considering
an occasional update of the harmonic parameters, and from static compliance optimization, either
considering a direct [60] and a multigrid solution [33] of the equilibrium system. The current
method is clearly much cheaper than the previous one, even considering a step–by–step update of
the harmonic parameters. Moreover, it follows essentially the same trend of the multigrid solution
for a static analysis. Finally, from Figure 8 (b) we see the relative cost of the main operations
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Figure 8: Saving factors, w.r.t the full eigenvalue approach, for the proposed method and for other procedures,
discussed in the text (a). The relative computational cost of the fine grid PCG solutions (tPCG), computation of
ψ̃1 from multilevel projection (tML), Jacobi smoothing (tJac), projection of the matrices (tProj) and coarse grid
eigenvalue solution (tEigCS), are shown in (b)

involved in the multilevel procedure. The most expensive part is the solution of the fine scale
systems (14)–(15), while the time spent on coarser grids for computing ψ̃1 becomes less and less
important, stabilizing (for the present case) to less than 25% of the total one.

The contrast in material coefficients considered so far was quite low (E1/E0 = ρ1/ρ0 = 103).
However, the method has also been successfully tested for higher contrasts, a condition which is
likely to trigger spurious vibration modes [1, 5, 61]. Figure 9 shows the result, for the contrast
E1/E0 = ρ1/ρ0 = 106. The convergence curve in Figure 9 (a) shows a sudden dip of the eigen-
value directly computed on the fine scale, in connection with the appearance of small regions of
disconnected material, clearly visible from Figure 9 (b), at iteration 73. However, the coarse scale
eigenvalue (λCS

1 ) and all the fine scale approximations derived from it are still smoothly increasing.
This is due to the material smearing on the coarse scale, which makes it less sensitive with respect
to fine details (see Figure 9 (c)). The final design looks identical to the one in Figure 7 and the final
eigenvalue is λ∗1 = 8.81 · 10−2, slightly higher than before, due to the better material distribution
associated with the higher contrast. Of course, for even higher contrast values, the coarse scale may
also be affected by spurious modes. In this case, the use of other interpolation schemes than (1) is
recommended [14, 62].

5.2. Example with repeated eigenvalues

We now test the method on a case where the fundamental eigenvalue is repeated. The ge-
ometrical settings are shown in Figure 10 (a). We set L = 1, V ∗ = 0.2 and the magnitude of
non–structural mass is 20% of the structural one. The fine level discretization is Ω0 = (80, 80) and
δ0 = 2h.

The optimized design, obtained after 300 iterations of the direct approach P, is shown in
Figure 10 (b). The two lowest eigenvalues of the initial structure are λ1 = 2.3557 · 10−2 and
λ2 = 2.3686 · 10−2 and they remain closely spaced during all the optimization history ending up to
the values λ1 = 0.2969 and λ2 = 0.2977.
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Figure 9: Evolution of the fine scale eigenvalue (λFS
1 ) and of its approximations computed by the multilevel procedure,

for the higher contrast case E1/E0 = ρ1/ρ0 = 106 (a). (b) and (c) show intermediate designs on the fine and coarse
scales at iteration 73, explaining the dip in λFS

1 in (a)

For this example we must consider at least two independent load vectors in order to ensure that,
at each iteration, the eigenmode associated with the lowest eigenvalue is excited. We consider four
load vectors, proportional to the amplitudes ψ̃i, i = 1, . . . , 4. These are computed by the multilevel
method, that is built again considering m = 2 coarser levels, with Ω2 = (20, 20).

The main results are shown in Figure 11. From Figure 11 (a) we see that after about 30 iterations
J∗
1 and J∗

2 become practically coincident and therefore they both drive the optimization. Again,
the smoothness of these curves indicates that the load amplitudes properly follow the structural
modification. Figure 12 (b) shows the maximum modal forces on φ1 and φ2 for each optimization
step, measured as maxl γil, for i = 1, 2. Due to the frequent mode switching, now we do not expect
a smooth behaviour of these. However, we observe that, as long as we consider multiple loads,
the first two modes are always excited by a high modal force, and therefore the optimization is
always effective. The final eigenvalues obtained with P∗ are λ∗1 = 0.33247 and λ∗2 = 0.33401 and
their coalescence can be clearly seen from Figure 11 (b), where the eigenvalues obtained by solving
P are also reported as dashed curves. The result of the direct approach is clearly converging to
the one obtained by FRF minimization, but at a slower rate. Therefore, with the fixed number of
iterations, for this example we obtained λ∗1 > λ1. The slower convergence of the direct approach
is reflected in the final topologies. The design obtained with the direct approach, Figure 10 (b), is
clearly an early stage of the one in (c) and shows some small details and blurred zones which are
very rapidly removed during FRF minimization.

In Figure 11 (c) we also see the behaviour of the upper and lower bounds, whose accuracies
appear slightly deteriorated compared to the cantilever example, where eigenvalues were well sepa-
rated. However, they are still reliable in bounding the evolution of λ∗1 and the Rayleigh quotient
associated with the fine scale approximation, Rk, can still be used as a good approximation of the
actual eigenvalue (see Figure 11 (d)).

Similar to the cantilever example previously discussed, here we consider two refinements of the
fine level. Problem P∗ is formulated on the discretizations Ω+

0 = (160, 160) and Ω2+
0 = (320, 320),

thus up to m = 5 projection levels are introduced. Ω2+
0 corresponds to n = 206, 082, and on the
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Figure 10: Geometrical setting (a) a design obtained solving P (b) and P∗ (c) for the structure showing a repeated
fundamental eigenvalue.

coarse mesh we achieve a reduction of this number of about 233 times. Even in this case, that is
much more sensible to imperfections compared to the cantilever one, due to coalescence of λ1 and
λ2, an accurate design is obtained on the fine levels (see Figure 13).

5.3. 3D beams

We finally provide two moderately large 3D examples. First, we consider the 3D cantilever
shown in Figure 14 (a). The non–structural masses are distributed over the nodes of the bottom
edge, with a total magnitude

∑ez
i=1M0,i = 0.2ρV ∗, and are active on all the three DOFs. The

following fine levels are considered Ω0 = (96, 32, 32), Ω+
0 = (188, 64, 64), Ω2+

0 = (288, 96, 96) and
the filter radius is set to δ0 = 1.2h.

We point out that on Ω0, containing n = 316, 899 DOFs, one direct spectral analysis requires
approximatively 20–25 minutes. Eigenvalue problems on Ω+

0 and Ω2+
0 , where n = 2, 446, 275 and

n = 8, 157, 603, respectively, clearly leave no chance for a direct solution with a single processor
Matlab implementation. We use the coarse level Ωm = (24, 8, 8) for problems on Ω0 and Ω+

0 , and
Ωm = (18, 6, 6) for the one on Ω2+

0 , introducing m = 2, 3, 4 projection levels, respectively. On these
levels, containing few thousands of DOFs, one spectral analysis requires, on average, 0.45–0.58s.
The two lowest eigenvalues of the initial structure are almost coinciding with λ1 = 1.666 · 10−3 and
λ2 = 1.685 ·10−3. Therefore, we considered four independent load vectors in solving P∗, accounting
for the possible coalescence of higher eigenvalues. The topologies resulting after 100 optimization
steps are shown in Figure 14 (b)–(d).

The design corresponding to Ω2+
0 is at an earlier convergence stage, due to the huge number

of design variables. However, it is clearly converging towards the one obtained on the other levels.
For the optimized design the first two eigenvalues, computed on Ω0, are practically coinciding with
λ∗1 = λ∗2 = 0.1009. The compliance minimization history and the curves showing the eigenvalue
evolution, along with the upper and lower bounds are shown in Figure 15.

We point out that for this example, considerably more CG iterations (from 8 to 30) were needed.
This is partly due to the selection of a smaller filter radius, slowing down the error smoothing of
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Figure 11: Results for the case with repeated eigenvalues: (a) dynamic compliance minimization history, (b) evolution
curves for the first four eigenvalues, obtained from P∗ (continuous curves) and P (dashed curves), (c) evolution of
eigenvalues, together with computable bounds on λ∗1, (d) plot of coefficients Dσ , defined in (19)
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Figure 12: Plots of coefficients γil, as defined in subsection 2.1, for the 2D cantilever beam example, solved with a
single load condition (a) and for the example with repeated eigenvalues (b)
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Figure 13: Plot of the physical properties on three scales for the example with a repeated fundamental eigenvalue

the iterative solver [33]. However, their overall number has been observed to be essentially mesh–
independent. Concerning computational savings, for the fine level Ω0 the proposed method requires
about 55s of analysis time per iteration. Therefore we estimate a saving factor of more than 20
times, compared to the full eigenvalue solution. For levels Ω+

0 and Ω2+
0 , the analysis time is, on

average, of 3.9 and 13.5 minutes, and therefore makes possible the solution of the problems within
a reasonable amount of time. From the scaling curves reported in Figure 16 we can see how the
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Figure 14: Geometry for the 3D cantilever beam example (a) and topology optimized on the three fine level considered.
The threshold value of 0.8 is adopted for plotting densities in (b) and (c), while 0.6 is used for (d), since the design
is at an earlier stage

cost of direct eigenvalue analysis is fast increasing in the 3D case. With the proposed method the
complexity is almost linear, both in 2D and in 3D.

We now refer to the geometry depicted in Figure 17 (a), where elements in the end–cap of the
beam (≈ 0.05 ex) are fixed to be solid. No explicit non–structural masses are considered. Imposing
the axial symmetry around a, which is the axis passing through the centroid of each (y, z) section,
the fundamental mode is forced to be torsional. We therefore model only one quarter of the problem.

We start by considering the discretization Ω0 = (64, 8, 8) and the coarse level is Ω1 = (32, 4, 4).
The allowed structural volume for the active elements is V ∗ = 0.085 and the filter radius is δ0 =

√
2h.

The design obtained after 500 optimization steps is shown in Figure 17 (b).
Keeping the same coarse scale Ω1 and the same filter radius (i.e. the absolute filter size is

now decreasing with mesh refinement), we solve the problem on fine scales Ω+
0 = (128, 16, 16),

Ω2+ = (256, 32, 32) and Ω3+ = (512, 64, 64). The resulting designs are shown in the first row
of Figure 18. As the discretization becomes finer, the optimized topology changes from a truss
structure to a closed hollow structure, which is known to be optimal for a rod element subjected
to torsion [63]. However, it has been recognized that such a configuration is hindered on coarse
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Figure 15: Results for the 3D cantilever. Compliance minimization history (a) and eigenvalues evolution curves (b).
Both these figures show that the first two eigenvalues remain almost coincident during the whole optimization.

meshes [64, 65] (or larger filter sizes), which cannot resolve the small length scale required by the
thin–walled true optimum. This finding is further supported by the designs in the second row of
Figure 18, which are obtained with a filter radius fixed with respect to the size of the geometry. As
expected, we just obtain a refinement of the truss–like design on Ω0.

We can consistently compare the two sets of results by looking at the relative compliance re-
duction gJ = J∗

(initial)/J
∗
(j) and at the eigenvalue gain gλ = λ∗(j)/λ

∗
(initial). These are plotted in

Figure 19 (c) and (d), respectively and for the problem solved on Ω0 their final values are gJ = 3.98
and gλ = 23.29. On the three finer grids we obtain gJ = [2.274, 1.508, 1.409] when considering
the filter size scaling with the mesh, and gJ = [4.35, 4.39, 4.93] when the filter size is fixed with
respect to the geometry. The associated values of the eigenvalue gains are gλ = [41.4, 62.3, 66.1]
and gλ = [21.7, 21.4, 19.4], respectively.

This example confirms that fine meshing is needed to resolve pertinent features of optimized
3D designs. The case considered here result in up to a factor three improvement in objective
values compared to coarse scale or length–scale limited designs. However, it also demonstrates the
robustness of the proposed approach. Despite the coarse scale solution not being able to resolve
the fine scale geometry in this case, the solution procedure and its convergence does not seem to
be disturbed.

6. Concluding discussion

We have presented a method for solving the eigenvalue topology optimization problem having
the same order of complexity as the simpler compliance minimization problem. This has been
achieved by resorting to the idea, first proposed in [27], of surrogating the eigenvalue problem by
a frequency response one. The computation of the harmonic parameters defining the frequency
response problem and its solution procedure have been significantly improved, by introducing a
strategy based on a multilevel discretization and iterative solvers. Eigenvalues and eigenvectors
are accurately computed only on the coarsest discretization, where the eigenvalue problem can be
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Figure 16: Scaling curves for a single eigenvalue analysis performed by eigs and of a single frequency response
analysis with the proposed multilevel procedure, for both the 2D and the 3D cantilever example. The slope of the
eig curves is approximatively 1.16 in 2D and 1.98 in 3D. For the the multilevel solution of the FR we have, in both
cases, a slope near 1

solved with small computational effort. Then, recovering of the fine scale harmonic loads and the
solution of the fine scale linear system only involve cheap operations. This provides the method with
multigrid efficiency, meaning that the computational cost scales almost linearly with the dimensions
of the fine discretization.

Moderately large scale 2D and 3D applications have been used to prove the feasibility of the
method, also for situations where eigenvalues coalesce. Computational savings, compared to direct
eigenvalue optimization, are remarkable. For 2D problems with about 8.6 · 105 DOFs, the analysis
time is reduced by more than 10 times and for a 3D problem with about 3.2 · 105 DOFs, the
saving is of about 20 times. We also solved larger 3D problems, up to 8.1 · 106 DOFs, within a
reasonable analysis time (about 13.5 minutes per iteration) a task that, within a single–core Matlab
implementation, would be impracticable with a direct eigenvalue–based solution. The last example
clearly indicates increased reduction of the computational cost for larger problems.

The approach was here tested in a simple Matlab implementation, limiting the testing to mod-
erately large problems. Future studies will include testing the approach in a parallel PETSc-based
framework [66] in order to evaluate its potential for solving truly large problems, c.f. up to a billion
elements [67]. Other future studies will address improvement of the robustness of the method for
situations where a large number of eigenvalues are coalescing. We also believe that the method
could be made even more efficient, designing different multilevel cycles [28] and by tuning an op-
timal update strategy for the harmonic parameters. Finally, it should be pointed out that the
proposed method applies to unstructured meshes as well. An unstructured mesh can be generated
for the coarsest level, and all other levels can be obtained by refinement. The solution procedure,
in this case, remains the same as for the structured mesh. On the other hand, for complicated
geometries with unstructured mesh representing the finest possible level, construction of geometry–
based inter–grid operators might be difficult. The solution procedure in these cases can be built
on prolongation and restriction operators based on algebraic multigrid [68]. However, the inter–
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Figure 17: Geometry for the 3D torsion example, with fixed solid elements at the end–cap (a). The geometry actually
modeled is the one on the right, where axial symmetry conditions have been imposed w.r.t. a (i.e. ux = uy = 0 on
plane P3 and ux = uz = 0 on plane P4). (b) shows the optimized design achieved on Ω0
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Figure 18: Designs obtained for the torsion example on progressively refined meshes and considering minimal filter
radius fixed with respect to element size (top) and fixed with respect to structure size (bottom)

grid operators are usually constructed by using the stiffness matrix and might not provide a good
representation of the eigenvalue problem on the coarse solution space. Thus, possible coarsening
strategies could follow procedures presented in [69] and utilized for topology optimization in [70].
Such an extension would require further investigations and is left for future research.

22



0 100 200 300 400 500

10
0

10
1

10
2

(a)

0 100 200 300 400 500

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b)

0 100 200 300 400 500

10
1

10
2

(c) gJ value

0 100 200 300 400 500

0

10

20

30

40

50

60

(d) gλ value

Figure 19: (a)–(b) Results from the optimization of the 3D torsion example on the discretization Ω0. Compliance
reduction ratio gJ (c) and eigenvalue gain gλ (d) compared for the various meshes, for filters fixed with respect to
mesh and geometry (δ0 fixed), respectively
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