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ABSTRACT 

LBL-24l4 

We approximate (lesser positive) eigenvalues and corresponding 

eigenfunctions for the partial differential equation ~nd boundary 

conditions pertinent to the electromagnetic field for a linear accelera­

tor cavity. We assume azimuthal independance. Symmetry requirements 

enable us to confine our computation to one-quarter of the cavity.l 

We use a rectilinear grid on the domain of solution and along any . 
grid line the eigenfunction is assumed (with certain exceptions) to be 

a cubic spline2 in the pertinent variable with knots at the mesh­

points. The requirement that this spline satisfy the differential 

equation at the mesh·points leads to a linear system in which the 

(unknown) eigenvalue appears. Finally, the differential eigenvalues 

are approximated by eigenvalues of a matrix derived from the linear 
. 3 

system. For any such real positive distinct eigenvalue, a corres-

ponding approximate eigenfunction is obtained by finding a (non­

zero) solution to the system. 

Several eigenvalues (having least values) may be approximated and 

corresponding eigenfunctions obtained. 

The advantages of the "matrix" method3 ,described, over optimi­

zation techniques l (minimization of a Rayleigh quotient) are that: 
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1. Several lower value eigenvalues are obtained rather than just 

the least. 

2. Extensive iteration is not required. 

The advantages of using a cubic spline formulation rather than 

finite difference formulas are that: 

1. The approximation to the eigenfunction is a (cubic spline) 

function rather than a set of approximate solution values at mesh­

pOints. 

2. Processes of differentiation (up to second order), integration 

and interpolation can be more easily applied. 
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INTRODUCTION 

In connection with the electromagnetic field calculations for 

drift-tube loaded cavities of linear acceleratorsl,S we are required to 

consider: 

1. A partial differential equation in two variables 
2. 2 

a u 1 aut aUt ----z- ----z- AU = 0 
ar r ar az 

2. A domain (see Figure 1) 
D = (O,ZL)X(O,RH)U(O,ZG)X(RH,RB)U(O,ZL)X(RB,RC) 

3. And boundary conditions 

au = 0 
an 

u(z,O) = 0 

We seek positive values for ~ (eigenvalues) for which a non­

trivial solution u exists and solutions, u. (eigenfunctions) corre­

sponding to such eigenvalues. 

Computational procedures for finding the. least positive value of A 

and a corresponding solution, u, by use of finite difference formulas 

and iteration to minimize a Rayleigh-Ritz ratio are outlined in 

References 1 and S. 

If the domain. D, is a simple rectangle (ZG = ZL), the problem can 

be solved by the cubic spline formulation for the matrix method as is 

shown in Example 2 of Reference'4. 

Essentially, we extend that method to the more general domain in 

question, but we limit our consideration to the partial differential 

equation and boundary conditions above. We are able, without ex­

tensive iteration, to approximate not only the least eigenvalue. but 

some of the successively higher ones. For such eigenvalues we con­

struct an approximation for corresponding eigenfunctions. 
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DRIFT TUBE CELL (1/4) 

au/or = 0 

u rr -u r / r + uzz + Xu = 0 

ou/or=O 

au loz = 0 

ZG 
MV 

au / or = 0 

u = 0 au / or = 0 

Fig. 1. 
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DISCRETIZATION 

For some m greater than or equal to four we partition each of the 

intervals {see Figure D 
(O,ZG), (ZG,ZL), (O,RH), (RH,RB), and (RB,RC) 

into m-l subintervals obtaining a rectilinear grid with gridpoints, 

(Z. , 
1 

and 

for 

r.) where 
J 

zl -0, zm = ZG Z = ZL with r = 0, r = RH and with , 2m-lIm 
r 2m- 1 =RB, r 3m- 2 = RC 

Z zl = 0, m = ZG otherwise, 

a total of 5m2 - 4m gridpoints including all boundaries. 

Since the singularity of the differential equation for r = r l 
(=0) is offset by the boundary condition that the solution be zero 

here, we confine our computation of an approximate solution-to the 

remaining 5m2 - 6m + I gridpoints. 

THE LINEAR SYSTEM 

Upon the function approximating the (unknown) solution u we 

impose the requirements that it satisfy the boundary conditions at all 

boundary gridpoints and that it and its derivatives satisfy the partial 

differential equation at all gridpoints except those involving r l . We 

shall show that by suitable choices of linear spaces in which the 

approximating function is sought and by convenient choices of bases 

(functions) for these spaces and by expressing the approximating 

function as a linear combination of these basic functions which must 

satisfy the partial differential equation we obtain a linear system 

of the form: 
~ ~ 

Au + AI u = 0 (1) 
2 where u is an (unknown) vector with 5m - 6m + I components consisting 

of values for the approximating function at the gridpoints (except 

those for r = r 1). Approximations for A are obtained as the negatives 

,-
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of the eigenvalues of the matrix, A. Zero, positive and multiple 

(if any) eigenvalues for A are discarded to obtain only distinct posi­

tive values for A. For any approximation, A*' we obtain values for a 

corresponding solution by solving the homogeneous system 
-.. 

(A + ).*I)u = 0 

SOLUTION SPACES AND BASES 

For the gridline r = r.for j = 2 to m-l or j = 2m to 3m-2 (see 
J 

Figure 1) we shall seek our approximate solution as a cubic spline in 

z with knots at z. for i = I to 2m-1 and with zero first derivatives 
I 

6 at zl and z2m-I' The linear space of all such cubic splines has di-

mension 2m-I. A convenient b~sis for this space consists of the 2m-l 

cubic splines, s., all of which have zero first derivatives at zl and 
1 . 

z2m-l and such that 

For the g ridlines r 

imate solution is 'sought 

s. (z.) = 1 
·1 1 

s. (z.) = 0 j# i 
1 J 

= r. for j = m + 1 to 2m - 2 the approx­
J 

as a cubic spline in z with knots at z. for 
1 

i = I to m and with zero first derivatives at zl and zm' The 

space has dimension m. The basis used for this space consists 

cubic splines, Pi' with zero first derivatives at zland zm and 

linear 

of m 

such 

that 

P. (z ) = 1 
I i 

P. (z ) = o jFi 
I j 

The situation for r = rand r = r is complicated by the fact m 2m-l 
that ~ must vanish at (z ,r ) and (z , r 2 1) Th l' m m m . m-. e lnear space az 
and basis as described in the first paragraph of this section are 

modified to meet this added requirement. This is done by using a 

higher (than cubic) degree in the subintervals (z I Z ) and"(z z 1) m- , m m, m+ . 
For the gridlines z = z. for i = I to m-l the approximate so­

l 

lution space is a space of segmente~ polynomials with continuous 

-. 
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second derivatives, the functions having zero first derivatives at r l , 

and r 3m- 2 and being cubics except on the interval [rl ,r2]. For this 

first interval a special formulation is used reflecting the fact that 

u is an evert function of r which vanishes at r=O .. The space has di­

mension 3m-3. The convenient basis consists of functions, f
k

,k=l, 

3m-3 meeting the desired boundary conditions and such,that 

fk(rj)=l j=k+l 

fk(r.)=O j,k+l 
J 

For the.gridline z=z the above linear space and basis are 
m 

modified. to accomodate the fact that au/ar must vanish at (z ,r ) m m 
and (z , r

2 
·1 ) 

m . m-

F.or the g. ridlincs Z=Z. for i=m+l to 2m-1 and for r=r.,j=2 to m 
1 J .. 

the space is similar to that for i=l to m-l except that it, has di-

mens ion m and that the first derivatives vanish at r. However for 
m 

r=r. , 
J 

j=2m-l to3m-2 the approximation is again sought in a linear 

space of cubic splines in r with knots at r. for j=2m-1 to 3m-2 and J . 
with zero first derivatives at r 2m- 1 and r 3m- 2 the basis consists of 

m cubic splines, tk for k=l to m such that 

with j=2n-l to 3m-2 

tk(r. )=1 
J 

tk(rj)=o 

for j=k+2m-2 

for j#k+2m-2 

The convenience of the various bases appears in the fact that 

when the approximation is expressed as a linear combination of the 

pertinent bases the coefficients are in fact gridpoint values of the 

approximating function. 
-+-

Definition of the Vector, u, and Construction of the Matrix, A. 
-+- ? 

As stated earlier u is a vector of 5m--6m+l components con-

sisting of values for the approximating function at gridpoints 

(excluding those for r=rl , where u is zero). A sensible ordering of 

the comp··onents, u , for n=l to 5m2 -6m+l in relation to the indices i . n 
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and j of z and r respectively is attained by 

n = i + (2m-I) (j-2) for j=2 to m 
2 ". '.' 

2m -2m+l+i+m(j-m-l) for j=m+l to 2m-2 (2) n = 
n = 3m2-4m+l+i+(2m-l) (j-2m)' for j=2m-1 to 3m-2 

The "component u then represents the approximate value of'u(z. r.) for n . 1, J 
all points in the domain of computation (points (zi,r1) are not in-

cluded). Thus the columns of the matrix A are coefficients for the 

unknown vector u in the component order described above. 

The linear system (Equation (1)) is constructed .. by evaluating the 

partial differential equation successively at the gridpoints(in the 

order described above}. In particular let us consider in detail how 

this is done at the first such g~idpoint, (zl,r2). For the fixed ar­

gument z = Zl' our approximate sOluti~~ is ass~med to be a function in 

r from the linear space whose basis consists of a set of functions, 

f k , described earlier. Thus for any r in approximation 

u(zl,r) (3) 

, (4) 

lu 3m-3 c f"Cr) (5) ~zl'r) = 
2: ar 

k k 

k=l 

where derivatives indicated are with respect to r. 

Applying Equation (3) for r. for j=2, 3m-2 we obtain 
J 

(6) 



-7- LBL-24l4 

and since fk(r
j

) is 1 for j=k+l and zero otherwise we have 

ck = u(zl,rk+l ) for k=l to 3m-3 (7) 

Using the above and applying Equations (4) and (5) at r
2 

we have 

(8) 

(9) 

A similar process applied to the basis, sk for k=l to 2m-l for fixed 

r=r 
2 

(10) 

The required simple derivatives for Equations (8), (9) and (10) 

are computed in the construction of the pertinent basis functions. , 
Consequently we are able to write the first equation of our linear sys-

tem by substituting from Equations (8), (9) and (10) into the partial 

differential equation, obtaining, in approximation: 

3m-3 
.2: 
k=l 

(11) 

Using the indeAing rule for the components of the unknown vector, 

u, . we have 

+ AU I = 0 

From the above we are able to construct the first row of the 
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matrix, A a~d verify the first row of the identity matrix, I, in 

Equation (I). 

A similar process applied at the remaining gridpoints in the order 

of n yields the entire matrix, A, and justifies completely the use of 

the identity matrix, I for Equation (1). 

EIGENVALUES AND EIGENFUNCTIONS 

Approximate differential eigenvalues can be obtained as follows: 

Let }J = -A 

then from Equation '(1) we obtain 

-+ -+ 
Au - }JIu = 0 (12) 

and }J is seen to be an eigenvalue and u an eigen~ector of the known 

matrix, A. Several algorithms are available for determining the eigen­

values of a real matrix. In the Examples solved later, we used the QR­

a1gorithm7 By this method it is possible to obtain 5m2 - 6m of. I 

eigenvalues. Strictly complex, multiple and non-negative values for 

are discarded. For the remaining values of we set A* = -}J and obtain 

distinct strictly positive approximations for differential eigenvalues. 

The set of A* is ordered in accordance with increasing magnitude. 

Usually we are interested in only a few (the lesser ones) of these 

approximations. 

For any such A* we solve the homogeneous linear system 

-+ 
(A + A*I)U = 0 (13) 

f 
.-+ or a nontrivial solutlon vector, u. This can be done by arbitrarily 

-+ 
assigning the value one to some component of u. In all cases tried we 

were successful in finding a solution when we assigned 

usi -6m+1 =1-

And replaced the last equation of the linear system by this equation. 

With this solution we have approximate values for u at all the grid­

points. Equations (8) and (9) and similar pertinent equations can be 
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used to compute the approxim~te partial derivatives, ou/or, o2u/or2, 
2 2 au/az and a u/oz at the gridpoints. 

COHPUTER CODE 

A computer code, DTCYC, has been written in FORTRAN for the 

CDC7600 to perform all the computation described above. The value, 

m=6, is used in obtaining a matrix l4Sx14S. The comput(;r subroutine, 

EIGS, written by B.N. Parlett and others with some change in di­

mensions was used to obtain 145 eigenvalues for the matrix. The code, 

DTCYC, discards strictly complex and non-negative eigenvalues and 

arranges those left in increasing order. Some number (specified in 

input) of the least of these are used to compute approximate eigen­

functions and partial derivatives at the gridpoints.These values 

are printed out .. 

A listing of this code, together with instructions for its use may 

be obtained from the author. 

Numerical Examples 

In all examples we find approximations for the five least eigenval­

ues for the differential equation and boundary' conditions as given 

earlier. The domain is varied by specifying RH, RB, RC, ZG and ZL. 

The computer code with m=6, described in the previous section is used. 

Results are tabulated below. 

Example RH RB RC ZG ZL Eigenvalues 

1 5. 10. 15. 5. 10. 0.0152 0.0925 0.1667 0.2810 0.3684 
2 5. 10. 15. 4. 10. 0.0139 0.0855 0.1673 0.2761 0.3672 
3 5. 10. 15. 6. 10. 0.0162 0.0978 0.1639 0.2806 0.3569 
4 5. 10. 15. 5. 9. 0.0160 0.1090 0.1764 0.2894 0.3784 
5 5. 10. 15. 5. 11. 0.0143 0.0787 0.1600 0.2728 0.3537 
6 4. 10. 15. 5. 10. 0.0141 0.0934 0.1690 0.3483 0.4096 
7 6. 10. 15. 5. 10. 0.0164 0.0904 0.1603 0.2303 0.3675 
8 5. 9. 15. 5. 10. 0.0167 0.0967 0.1602 0.2810 0.3245 
9 5. 11. 15. 5. 10. O. 0141~ 0.0873 0.1690 0.2794 0.3758 
10 5. 10. 14. 5. 10. 0.0166 0.0932 0.1852 0.2887 0.4129 
11 5. 10. 16. 5. 10. 0.0140 0.0917 0.1497 0.2681 0.3143 
12 4. 8. 12. 4. 8. 0.0237 0.1446 0.2604 0.4390 0.5756 
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Conclusion 

The technique described and the computer code to perfurmit provide 

a qUick (in terms of computer time) and hence economical way to de­

t'ermine reasonable approximations for several (least) eigenvalues for 

a drift tube cell in a linear accelerator. 

Methods of improving the approximations thus obtained are being 

studied. 
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