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EIGENVALUES AND EIGENFUNCTIONS OF THE

LAPLACE OPERATOR ON AN EQUILATERAL TRIANGLE

FOR THE DISCRETE CASE*

Milan Práger, Praha

(Received October 14, 1999)

Abstract. A discretized boundary value problem for the Laplace equation with the Dirich-
let and Neumann boundary conditions on an equilateral triangle with a triangular mesh
is transformed into a problem of the same type on a rectangle. Explicit formulae for all
eigenvalues and all eigenfunctions are given.
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0. Introduction

In the previous paper [1], we have given formulae for eigenfunctions and eigenvalues

of the Laplace operator on an equilateral triangle in the continuous case. In this paper
we show that the eigenvectors for the discretization on a triangular mesh are given

by the same formulae and the eigenvalues converge to the continuous ones when the
mesh is refined. For details of some manipulations we refer the reader to [1].

Let T be a closed equilateral triangle with vertices
(−1√
3
, 0

)
,
(
1√
3
, 0

)
, (0, 1). Its

altitude is equal to one and its side is equal to 2√
3
.

For a given integer N , we define h′ = 1/N , the meshsize h = 2h′/
√
3 and we

introduce a triangular mesh Th on T , i.e. the set of points Vij = (ih/2, jh′), j =

0, . . . , N ; |i| � N − j, i+ j of the same parity as N . The mesh of all interior points
of Th will be denoted by T ◦

h .

*This research was supported by Grant No 201/97/0217 of the Grant Agency of the Czech
Republic.

231



Let R be the rectangle [0,
√
3]×[0, 1]. On this rectangle, we introduce a rectangular

mesh Rr
h as the set of points V r

ij = (ih/2, jh′), j = 0, . . . , N ; i = 0, . . . 3N , and a
triangular mesh Rh as the set of those points from Rr

h where i + j is of the same
parity as N . The mesh of all interior points of Rh will be denoted by R◦

h.

Further, let T1 = T∩R and T1h = Th∩Rh. We divide the mesh T1h into four parts:

the mesh of the interior meshpoints T ◦
1h, the mesh of the interior part of the vertical

boundary, i.e. the meshpoints (x, y) lying on the open segment x = 0, y ∈ (0, 1),
denoted by T v

1h, the meshpoints at the endpoints of the vertical boundary, i.e. the
meshpoints coinciding with the points (0, 0) and (0, 1), denoted by T c

1h, and the rest

of the boundary T r
1h.

In the following table (p(N) = 2 for N even and p(N) = 1 for N odd), the numbers

of points of the meshes are summarized:

mesh number of points

Rr
h 3N2 + 4N + 1

Rh (3N2 + 4N + p(N))/2

R◦
h (3N2 − 4N + p(N))/2

Th (N2 + 3N + 2)/2

T ◦
h (N2 − 3N + 2)/2

T1h (N2 + 4N + 2 + p(N))/4

T ◦
1h (N2 − 4N + 2 + p(N))/4

T v
1h (N − p(N))/2

T c
1h p(N)

T r
1h (3N − p(N))/2

In what follows we will use the prolongation of the vector v defined on T1h onto Rh

so that we prolong it successively by symmetry or by skew symmetry with respect
to the dotted lines (see Fig. 1).
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Figure 1. The triangle T1 and its images Ti, i = 2, . . . , 6, in R.
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Thus we introduce transformations Ki of the triangle T1 onto the triangles Ti by

the equations

x1 = ξ, x2 = 1
2

(
−ξ −

√
3η +

√
3
)
, x3 = 1

2

(
ξ −

√
3η +

√
3
)
,(1)

y1 = η, y2 = 1
2

(
−
√
3ξ + η + 1), y3 = 1

2

(√
3ξ + η + 1),

x4 = 1
2

(
−ξ +

√
3η +

√
3
)
, x5 = 1

2

(
ξ +

√
3η +

√
3
)
, x6 =

√
3− ξ,

y4 = 1
2

(
−
√
3ξ − η + 1

)
, y5 = 1

2

(√
3ξ − η + 1), y6 = 1− η.

The meshpoints of the triangular mesh are transformed by every Ki again to
meshpoints. The corresponding mesh on the triangle Ti will be denoted by Tih. We

thus have Bi = KiB where Bi = (xi, yi) ∈ Tih for B = (ξ, η) ∈ T1h.

The prolongation Pv of a vector v from T1h onto Rh is defined by

(2) Pv(Bi) = civ(B) on Ti,

where ci (equal to +1 or −1) are appropriately chosen. The choice will be specified
later in dependence on the type of the boundary conditions.

Let further u be a vector defined on Tih or Rh. We denote by H u the bound-
ary modification of u obtained by multiplication of the boundary values of u by

coefficients as follows:

on the straight parts of the boundary by 12 ,

at the vertex of angle �

m by
1
2m .

������. The multiplier is the ratio of the given angle to the angle of 2�.

Now, we define the transformationF, which we call the folding, from Rh onto T1h

as follows: Fv(B) =
6∑

i=1
civ(Bi), where B = K−1

i Bi.

Lemma 1. The equality

∑

B∈T1h

u(B)H Fv(B) =
∑

A∈Rh

Pu(A)H v(A)

holds.

������. On the right-hand side, the modification H is applied to a vector
defined on Rh.
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�����. We have the equalities

∑

B∈T1h

u(B)H Fv(B) =
∑

B∈T1h

u(B)
6∑

i=1

ciH v(KiB) =
6∑

i=1

ci

∑

B∈T1h

u(B)H v(KiB)

=
6∑

i=1

ci

∑

B∈Tih

u(K−1
i Bi)H v(Bi) =

6∑

i=1

∑

B∈Tih

Pu(Bi)H v(Bi)

=
∑

A∈Rh

Pu(A)H v(A).

The last equality is a consequence of the fact that on the interfaces of the triangles

Ti the values are added. �

We will use the discretization of the Laplace operator on the mesh Rr
h with the

usual five-point scheme with appropriate modifications on the boundary for the

Dirichlet or Neumann boundary conditions.

Similarly, we discretize the Laplace operator on Rh with the seven-point scheme

on a triangular mesh. We will use the operator −∆ because of its positiveness. We
have

−∆hu(Vi,j) =
2
3h2

[
6 u(Vi,j)− u(Vi−2,j)− u(Vi+2,j)− u(Vi−1,j+1)

− u(Vi+1,j+1)− u(Vi−1,j−1)− u(Vi+1,j−1)
]
.

At the points adjacent to the boundary or on the boundary, the scheme is modified

by the skew-symmetric prolongation for the Dirichlet boundary condition and the
symmetric prolongation for the Neumann boundary condition. For these cases, we

thus have the following stencils (apart from the factor 2
3h2 ) for the straight parts of

the boundary (Fig. 2) and for the parts of the boundary near vertices (Fig. 3).

7

−1

−1

−1

︸ ︷︷ ︸
h/2

D� 5

−1

−1

−1−1

−1

N� 6

−2
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N�
Figure 2. Discretization stencils near the straight boundary for Dirichlet (D) and Neu-

mann (N) boundary condition.
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Figure 3. Discretization stencils near the vertices for Dirichlet (D) and Neumann (N)
boundary condition and their combination.

The construction of the stencils for other possible cases is left to the reader.

1. Dirichlet boundary conditions

We will consider separately the eigenfunctions on Th with skew symmetry or sym-

metry with respect to the y-axis.

First, for the skew-symmetric case, we recall that the values of the functions
sin k�x√

3
sin l�y, k = 1, . . . , 3N − 1, l = 1, . . . , N − 1 on Rr

h are eigenvectors of the

five-point Laplace operator discretization on Rr
h with Dirichlet boundary conditions.

The values of the functions uk,l(x, y) = sin k�x√
3
sin l�y for k = 1, . . . , 3l − 1, l =

1, . . . , N − 1, and k = 3l, l = 1, . . . , [N/2] ([ ] denotes the integer part) on Rh are
the eigenvectors of the seven-point Laplace operator discretization on the triangular

mesh Rh with Dirichlet boundary conditions. This fact is easily established by direct
calculation. Their number is equal to the number of points of R◦

h.

We will show that these eigenvectors form an orthogonal system on Rh and,

because their number is equal to the number of points of R◦
h, that they thus

form a complete system of eigenvectors. First let us note that the values of

the functions uk′,l′(x, y) = sin k′
�x√
3
sin l′�y, where k′ = 3N − k, l′ = N − l, are

equal to (−1)Nuk,l(x, y) on Rh. For the values on Rr
h\Rh one has uk,l(x, y) =

−(−1)Nuk′,l′(x, y). Therefore we have

∑

(x,y)∈Rh

uk,l(x, y)um,n(x, y)

=
1
4

∑

(x,y)∈Rr
h

[uk,l(x, y) + (−1)Nuk′,l′(x, y)][um,n(x, y) + (−1)Num′,n′(x, y)]

and this is equal to zero for (k, l) �= (m, n) as a consequence of the orthogonality

of the eigenfunctions on Rr
h. On the other hand, for (k, l) = (m, n) the value is

obviously positive.
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Thus, we have a complete system of eigenvectors on Rh for the case of the Dirichlet

conditions on all sides of Rh.
For this skew-symmetric case we set in (2) ci = 1 for i = 1, 3, 4, 6 and ci = −1 for

i = 2, 5. For (x, y) ∈ T1h and k = 1, . . . , l − 1; l = 1, . . . , N − 1, k and l of the same

parity, we define

Uk,l(x, y) = Fuk,l(x, y) = sin
k�x√
3
sin l�y(3)

− sin k�

2
√
3
(−x−

√
3y +

√
3) sin

l�

2
(−
√
3x+ y + 1)

+ sin
k�

2
√
3
(x−

√
3y +

√
3) sin

l�

2
(
√
3x+ y + 1)

+ sin
k�

2
√
3
(−x+

√
3y +

√
3) sin

l�

2
(−
√
3x− y + 1)

− sin k�

2
√
3
(x+

√
3y +

√
3) sin

l�

2
(
√
3x− y + 1)

+ sin
k�(

√
3− x)√
3

sin l�(1− y).

With the help of manipulations similar to that in [1] we simplify this expression
obtaining

Uk,l(x, y) = 2 sin
k�x√
3
sin l�y(4)

− 2(−1)(k+l)/2 sin
�x

2
√
3
(k + 3l) sin

�y

2
(k − l)

+ 2(−1)(k−l)/2 sin
�x

2
√
3
(k − 3l) sin �y

2
(k + l).

The number of admissible pairs (k, l) is equal to the number of points of T ◦
1h.

Now, for the symmetric case, the eigenvectors of the discrete Laplace operator
on Rh are the values of the functions vk,l(x, y) = cos k�x√

3
sin l�y, k = 0, . . . , 3l − 1,

l = 1, . . . , N − 1 and k = 3l, l = 1, . . . , [(N − 1)/2]. For k′ = 3N − k, l′ = N − l,
we now have vk′,l′(x, y) = −(−1)Nvk,l(x, y) on Rh. Similarly to the previous case,

we prove that these functions are for (k, l) �= (m, n) orthogonal on Rh and that they
are nonzero. Instead of the usual scalar product, one must consider the sum

∑

(x,y)∈Rh

vk,l(x, y)H vm,n(x, y)

because of the presence of cosines. We thus have a complete system of eigenvectors

on Rh for the Dirichlet boundary conditions on the horizontal sides and Neumann
boundary conditions on the vertical sides.
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We prolong now the vector v defined on T1h and with zero components on T r
1h∪T c

1h.

The prolongation Pv is given by (2) with ci = 1 for i = 1, 4, 5 and ci = −1 for
i = 2, 3, 6 and the corresponding folding F uses the same coefficients.

For (x, y) ∈ T1h and k = 0, . . . , l− 1, l = 1, . . . , N − 1, k and l of the same parity,
we define

Vk,l(x, y) = Fvk,l(x, y)(5)

= cos
k�x√
3
sin l�y − cos k�

2
√
3
(−x−

√
3y +

√
3) sin

l�

2
(−
√
3x+ y + 1)

− cos k�

2
√
3
(x−

√
3y +

√
3) sin

l�

2
(
√
3x+ y + 1)

+ cos
k�

2
√
3
(−x+

√
3y +

√
3) sin

l�

2
(−
√
3x− y + 1)

+ cos
k�

2
√
3
(x+

√
3y +

√
3) sin

l�

2
(
√
3x− y + 1)

− cos k�(
√
3− x)√
3

sin l�(1− y).

Proceeding in the same way as before, we find the expression

Vk,l(x, y) = 2 cos
k�x√
3
sin l�y(6)

+ 2(−1)(k+l)/2 cos
�x

2
√
3
(k + 3l) sin

�y

2
(k − l)

− 2(−1)(k−l)/2 cos
�x

2
√
3
(3l− k) sin

�y

2
(k + l).

For this case, the number of admissible pairs (k, l) is equal to the number of the

points of T ◦
1h ∪ T v

1h.

It is easy to prove by direct calculation that the functions Uk,l and Vk,l are eigen-

functions of the operator −∆h, the corresponding eigenvalues being

(7) − 4
3h2

(
cos

k�h√
3
+ 2 cos

k�h

2
√
3
cos

l�
√
3h
2

− 3
)

.

These values converge for h → 0 to the eigenvalue �
2(k

2

3 + l2) obtained in the
continuous case.

It is clear that these functions vanish for y = 0. Since Uk,l and Vk,l are results of
the folding F of the functions sin k�x√

3
sin l�y and cos k�x√

3
sin l�y they vanish on the

side y = −
√
3x+ 1 of the triangle T and thus on the side y =

√
3x+ 1, too.
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Theorem. The values of the functions

Uk,l(x, y), k = 1, . . . , l − 1; l = 1, . . . , N − 1, k ≡ l mod 2,

and

Vk,l(x, y), k = 0, . . . , l− 1; l = 1, . . . , N − 1, k ≡ l mod 2

for (x, y) ∈ T ◦
h form a complete orthogonal system of eigenvectors.

�����. In order to prove the orthogonality (in the modified sense), we realize
first that the functions Uk,l and Vk,l are their own prolongations, i.e. u = Pu

∣∣
T1h

(cf. [1]). Therefore we have
∑

(x,y)∈Th

Vk,l(x, y)Vm,n(x, y) = 2
∑

(x,y)∈T1h

Vk,l(x, y)Vm,n(x, y)

= 2
∑

(x,y)∈Rh

Vk,l(x, y)H cos
m�x√
3
sinn�y.

This sum is, however, equal to zero for (k, l) �= (m, n). The orthogonality of the

functions Uk,l is proved in the same way and the mutual orthogonality of Uk,l and
Vk,l is obvious. �

We thus have nonzero eigenvectors the number of which is equal to the number of
the mesh points in T ◦

h .

2. Neumann boundary condition

The above approach can be used also for the Laplace operator with the Neumann

boundary condition on all the three sides of the triangle T . Boundary conditions of
different types on different sides of the triangle are not considered here.

We now show formulae for eigenfunctions for the case of the Neumann conditions.
The prolongation of the skew-symmetric part of the function is now defined by (2)
with ci = 1 for i = 1, 2, 4 and ci = −1 for i = 3, 5, 6, and the prolongation of the

symmetric part by (2) with all ci = 1.
We proceed as above concluding that

Uk,l(x, y) = 2 sin
k�x√
3
cos l�y(8)

− 2(−1)(k+l)/2 sin
�x

2
√
3
(k + 3l) cos

�y

2
(k − l)

− 2(−1)(k−l)/2 sin
�x

2
√
3
(k − 3l) cos �y

2
(k + l),

k = 1, 2, . . . , l, l = 1, 2, . . . , N, k ≡ l mod 2
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and

Vk,l(x, y) = 2 cos
k�x√
3
cos l�y(9)

+ 2(−1)(k+l)/2 cos
�x

2
√
3
(k + 3l) cos

�y

2
(k − l)

+ 2(−1)(k−l)/2 cos
�x

2
√
3
(k − 3l) cos �y

2
(k + l),

k = 0, 1, . . . , l, l = 0, 1, 2, . . . , N, k ≡ l mod 2.

The system of functions (8) and (9) is a complete orthogonal system of eigenvec-
tors of the discrete Laplace operator with the Neumann boundary conditions. The
orthogonality is again understood in the modified scalar product. The eigenvalues

are, as before, given by (7). Since we have now a singular problem, we obtain for
k = l = 0 the zero eigenvalue. The proof is essentialy the same as for the case of the

Dirichlet boundary conditions.
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