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Abstract

A wake similarity solution for symmetric uniform shear flows merging at the trailing edge
of a flat plate has associated with it an eigenfunction problem which was overlooked by Hakkinen
and O'Neil (1967). An asymptotic formula for large eigenvalues is obtained and compared with
another such formula related to both the Goldstein (1930) inner wake solution and Tillett's (1968)
similarity solution for a jet emerging from a two-dimensional channel.

1. Introduction

The problem of incompressible high Reynolds number flow past a finite flat
plate in a uniform stream is of fundamental importance in fluid dynamics. The
essentials of the trailing edge flow structure have been described by Stewartson
(1969) and Messiter (1970). Let the plate of length Lbe aligned with the unper-
turbed mainstream velocity Ux. Choose axes 0x*y* with 0 at the trailing edge
and Ox* along the wake centre line. (Asterisks label physical quantities.) The
Reynolds number Re is defined by

(1.1) e - Ke — — — ,

where v is the kinematic viscosity. Stewartson and Messiter describe a triple deck
region of extent e3L in the streamwise direction in which the transition from the
Blasius profile to the Goldstein (1930) wake profile is effected. To achieve consis-
tency, it is necessary to introduce three decks having scales e3L, £4L and £5Lin
the y*-direction. The upper deck is a region of potential flow. The middle or
main deck is inviscid in character; in this deck, the Blasius profile is convected
downstream with perturbations appearing as correction terms. The lower deck,
or sublayer, is needed to match with the Goldstein inner wake downstream and
to cope upstream with a velocity of slip over the plate associated with the main
deck perturbations. It appears likely that a favourable pressure gradient operates
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[2] Eigenvalues in trailing edge flows 211

in the upstream sublayer. Then the flow well within the lower deck very near the
plate is a shear flow for which the vorticity increases from C1*B to Q* as e~3x*
increases from — oo to 0_. Then fi*= Xfot, where At > 1 and Q* = B~4XL~1UX

is the vorticity in the Blasius shear; X = 0.33206. The limiting value of the uni-
form shear as E ~ 3 X * - > 0 _ provides the forcing flow for a region 0(e6L) in which
the full Navier-Stokes equations are strictly required to describe the flow. Hakkinen
and O'Neil (1967) found an approximate solution of the full equations in the form
of matched asymptotic expansions valid for 1 > x*2 + y*2 > s12L2 and describ-
ing the flow of three regions (i) a wake region, (ii) an inviscid region, and (iii)
an upstream lower order boundary later. Capell (1972) found similar expansions
after linearizing the equations with respect to the uniform shear, in the manner
of Oseen. The latter results are qualitatively and quantitatively consistent with
those of Stewartson (1968) who solved this approximate problem exactly. They
agree qualitatively only in part with the results of Hakkinen and O'Neil who
overlooked the eigenfunction problems associated with the similarity solutions
for regions (i) and (ii) above. Our aim here is to consider these eigenfunction
problems. The inviscid case is easy to solve but the wake problem is more difficult.
The first eigensolution is surmised to be associated, as usual, with arbitrariness
in the choice of origin. An asymptotic formula for large inner eigenvalues is de-
veloped using the method of multiple scales. The method is similar to that des-
cribed by Stewartson (1957) and Brown (1968).

The eigenvalue problems are compared with those arising in the Goldstein
wake. The two problems are very much alike but the pressure fields are different.
The Goldstein wake boundary-layer problem is identical with that of Tillett (1968)
who discussed a jet flow emerging from a two-dimensional channel. The formula
for large eigenvalues in this case has been found by Price (1968).

2. Asymptotic solution for the Navier-Stokes region

When the undisturbed flow is a uniform shear with vorticity of constant
magnitude £2*, dimensionless variables may be defined by

= pvQ*P,

(2.1)

where $* is the stream function, p* the pressure, and R2 = X2 + Y2. When the
correct vorticity Cl* = X1Q*B is used, (2.1) implies a stretching of the coordinates,
r* = s6RL(XlX)~i, the angular coordinate 9 remaining unstretched. The exact
problem for the Navier-Stokes region may now be stated non-dimensionally:

(2.2) d { x y ) - V * .
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where V2 = d2jdX2 + 82/dY2, with boundary conditions

(2.3) V = Vy = 0 at Y = 0, for X < 0,

(2.4) ¥ = ¥ y y = 0 at Y = 0, for X > 0,

(2.5) *P -*$Y2 as Y-»oo or X-> - oo.

The transformation (2.1) is that used by Hakkinen and O'Neil (1967) except
that they used £l*B instead of the correct vorticity field Q*. Otherwise, this is
precisely the problem solved asymptotically by them f o r . R > l , — j r ^ f l r g r c .
They constructed stream function expansions for each of three regions: (i) a wake
region, where inertia and viscous terms are of equal importance; (ii) an outer
region where inertia effects dominate and the flow is essentially inviscid; (iii) an
upstream lower order boundary layer to correct for a velocity of slip over the
plate arising from lower order terms of the inviscid outer expansion. The cor-
responding expansions introduced by Hakkinen and O'Neil are respectively:

(2.6) ¥ w = X2'3f0(r,) +f1{rfi + X"2/3/2(//) + X~

(2.7) ¥ " = R2G0(9) + K4/3Gj(0) + R2/3G2(6) + G3(0) + R-2/3G4(9)+ -

+ (lnR)H3(6) + (R-2lnR)H6(0) + - ,

(2.8) >FU = X2'3h0(Q + h,(0 + X~2'3h2{Q + X-4/3fc3(0 + - ,

where r\ = Y/X1'3 with X > 0, and £ = YjXl/3 with X < 0. Then XHW and T°
may be matched consistently as r\ -* oo and 6 -* 0 while *?" and *P may be matched
as 9 -»n and £ -* — oo. However, the expansions differ qualitatively from those
found by Capell (1972) who considered an Oseen type linearization of (2.2) with
respect to the uniform shear. He constructed expansions similar to (2.6), (2.7)
and (2.8) but included eigensolutions arising from inner and outer eigenfunction
problems. Our aim is to investigate the eigenfunction problems associated with
the inner and outer similarity solutions X2l3f0(t]) and R2G0(d).

3. The eigenfunction problems

In the inviscid region, the basic flow satisfying V2*P = 1 for R > 1 is the
similarity solution R2GO(6), 9 being the similarity variable. This solution is made
to satisfy conditions at 9 = 0, n but on no other boundaries. (The solution turns
out to be simply the uniform shear \R2 sin2 9.) The elliptic nature of the problem
leads to an eigenfunctio nproblem. The eigensolutions are harmonic functions
which are bounded as R -> oo and vanish on 9 = 0, n. The outer eigensolutions
are, in fact, R~ks'mk9, where k = 1, 2, 3, •••, as in the linearized problem.

In the wake, (2.2) is reduced to the boundary-layer equation
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(3.1) ^X^YYY ~ ^Y^YYX + ^YYYY = 0>

with boundary conditions

(3.2) ¥ = ¥yy = 0 at 7 = 0,

(3.3) *F->iY2 as Y->oo.

No boundary conditions are imposed at X = Xo > 0, so that eigensolutions
are expected, since (3.1) is parabolic. The boundary-layer solution is ^o*
= X2'%(r,), where

(3-4) /„"" + | / o / o " = 0,

with two boundary conditions at r\ = 0,

(3.5) /o(0)=/S(0) = 0,

since /„ must be an odd function. The vanishing of higher order even derivatives
of / 0 at r\ = 0 is guaranteed by (3.4) and (3.5). Two more boundary conditions
are found by matching (2.6) and (2.7). The asymptotic form of f0 is obtained
from (3.4). Matching shows that in this asymptotic form, namely

(3.6) /o ~ a00r,2 + a0lr\ + a02 + 00r6e~"3 / ' ) ,

we must have a00 = ^ and a01 = 0. Integration of (3.4) yields
2 , , . 1
3(3-7) /o"+ l/o/o - T / O ' 2 =

where the arbitrary constant Co is related to a pressure field Px = C0X
 1 /3 .

The unknown constants Co and a02 can be found after /o'(0) and /o"(0) have
been determined numerically through their implicit dependence on a00 and aol.
In the numerical solution, Rott and Hakkinen (1965) obtained Co = 0.4089 and
a0 = 3C0/2 = 0.6133. It is the change in boundary condition at 0, through its
incorporation in the solution through matching, that leads to the non-zero pres-
sure gradient in the problem for / 0 .

Following Libby and Fox (1963), we may set up the eigenfunction problem by
considering a small arbitrary symmetric disturbance in the near field and linear-
izing the boundary-layer equations about the basic wake similarity solution *¥o

w

The perturbed similarity solution is written

(3.8) £ = X2'*fM + Sf(X, IJ). + o(5),

where <5 is a small parameter characterizing the small disturbance in a finite neigh-
bourhood of 0 (i.e. R finite), for example, a shortening of the plate or a small
symmetric bump on the plate. Such a disturbance will not substantially alter the
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wake similarity flow yet its influence must be communicated downstream across
X = Xo as a perturbation as described by (3.8). As the coefficient of 8 when (3.8)
is substituted in (3.1) we find

(3.9) 3/,,,, + 2/0/M, + 2fifn - 3XfflXn + 3Xftfx = 0.

Let/(X,»/) = V(X)E(rf). Then (3.9) is separable. We find V = bX'"; further

(3.10) 3£"" + 2/0E" + 2fcfE" + 3n(/0'E" - /„'"£) = 0;

(3.11) £(0) = £"(0) = 0, since E is odd;

(3.12) E'(ri) -> 0 exponentially as rj -* oo .

Higher order even derivatives of E should vanish at r\ = 0 and this is gua-
ranteed by (3.10) and (3.11). The outer velocity field is matched by that of the
boundary-layer solution X2/3f0(t]) and the velocity decay in (3.12) guarantees un-
disturbed flow outside the wake. The eigenfunction E is the odd solution of (3.10)
which asymptotes to a constant as r\ -* oo. This constant remains undetermined
in the expansion procedure. The exponential decay imposed on the vorticity term
E"(TJ) is discussed in the next section.

4. Limiting behaviour of the wake vorticity

We show that the boundary-layer vorticity for fixed X has a limiting beha-
viour as Y -> oo that exhibits an exponentially small error term, the exponent of
which contains the similarity variable r\. This suggests that the double limit as
Y -> co, X -> oo is commutative which is turn leads to the assumption concerning
the wake similarity vorticity as r\ -> oo . For sufficiently large values of Y, the
boundary-layer equations reduce to the linearized form

(4.1) YWX = Wyr,

where W = 1 — *Pyy. The boundary conditions at Y = 0 are not needed here.
Following Brown and Stewartson (1965), we seek solutions of the form

(4.2) W = W(X, Y) = w(X, Y) exp[ - { Y - K(X)}'IF(X)],

where w is algebraic in Y and a > 0. When (4.2) is substituted in (4.1), a suitable
balance of terms can be achieved only when a = 3 . It is then found that
(i) F = 9(Z + S), where 8 is a constant, (ii) K = 0 , (iii) separable solutions for
w may be found, namely wa = BaY~(a+1\X + 8)2"1? Thus, for finite values of
X, there are solutions of (4.1) whose behaviour as Y -> oo is given by

(4.3) Wa = BaY-(a+1\X + <5)2ff/3exPr- ~Y3I(X +

The form of the similarity variable r\ = Y/X1/3 is comparable with that of
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the exponent in (4.3), the presence of the (finite) constant 5 corresponding to an
arbitrary choice of 0 along the X axis. The form of W for Y > 1 appears to be

(4.4) W = expf - ^Y3I{X + (5)1 f B{&)Y-(a+l\X + 5)2"l3da

where B(<x) replaces Ba. The freedom in B{&) allows description of the initial
profile. The exponential factor persists as X-* oo indicating an exponential decay
in the wake similarity eigenvorticity.

The argument may be extended to the upstream flow by letting X -*• — oo,
since the exponent in (4.4) then contains the variable £. However, unless we write
W = 0 for X < — 8, there is exponential growth of vorticity. This is consistent
with the fact that there is no eigenfunction problem for the upstream boundary-
layer flow. (Hakkinen and O'Neil found it necessary to exclude such exponential
growth from their upstream boundary-layer solution.) There is no question of
algebraic decay upstream as I - » — oo, since the dominant sublayer solution
is precisely the uniform shear.

5. Method of solution for the inner eigenvalue problem

It is easy to find the eigenfunction 2/0 — rrfo corresponding to the arbitrari-
ness in the choice of 0. Apart from the related eigenvalue n = 1/3, the eigen-
values for the problem (3.10) to (3.12) are not easily determined. An asymptotic
formula for large eigenvalues is obtained by considering the problem for the
eigenvorticity using the following argument.

Since E" -> 0 exponentially as tj -> oo, suppose E" ~ e x p [ - g(/j)] . A suitable
balance of terms in (3.10) yields g' = 2 /3 / 0 :

(5-1) £ " ~ e x p [ - |

(5-2) E" = Zfa) expf - k j"fo(rj)dfi\,

say, where k < 2/3 to ensure Z -» 0 exponentially as r\ -»• oo . There is close agree-
ment between (5.1) and (4.4) when/0(»/) is approximated by \r\2. An approximate
form of equation for Z can be found which is adequate both for i\ P 1 and r\ = 0(1).
In anticipation of rapidly oscillatory solutions of (3.10) for n P 1 and r\ = 0(1),
we ignore the terms 3H/Q"£ which is much smaller than 3n/0'£" for such solutions.
The same term is ignored for r\ $> 1, since it contains the exponentially small
factor/o" These approximations are in qualitative agreement with the equation
for the wake eigenvorticity in the linearized problem. The resulting approxi-
mate equation for Z may be simplified by the choice k = 1/3 < 2/3:
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(5-3) Z"

where N — n + 1/3. The boundary conditions are

Z(0) = 0, from (3.11)

Z ~ expl ~ 3 I fo(n)dn\

If Z could be found, integration of (5.2) together with the use of (3.11) and
(3.12) would yield the eigenfunction E(r\) at least approximately.

Solutions of (5.3), with JV > 1, are discussed for t\ > 1 and r\ = 0(1). For
rj > 1 there is a turning point problem. The solutions are exponential on one
side of the turning point and oscillatory on the other. A limit-process expansion,
valid close to the turning point, is matched with these, leading to the correct
continuation of the solution through the turning point. Another matching between
this oscillatory continuation and the solution for r\ — 0(1) imposes a condition
on N that yields an asymptotic formula for large eigenvalues.

6. Solution for r\ > 1

The coefficient ofZ in (5.3) has a positive (minimum) value at f/=0, increases
with r\, but eventually decreases through zero as t\ grows large. The turning point
occurs where i\ ~ (36N)1'3, since f0 ~ \r\2 + a02 + 0(f/~6e~"3/'). The asymptotic
form of (5.3) is

(6-1) ^

where £ = f//(36N)1/3 with e"1 = 6JV, and

(6.2) Q = « { 3 _ !) + ^ao2i2£2/3

The turning point is now at £ = 1 + 3, where 5 = 0(e2/3). The discussion
is presented in three steps.

STEP 1. Following Cole (1968), page 107, define a fast variable

(6-3) ^ e - i+s

for £ > 1 + S. Then (6.1) becomes
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where Q' = dQ/d£. Consider a two-variable expansion with | the fast variable
and I; the slow variable:

(6.5) Ztf; e) = Totf, 0 + sT.it 0 + o («T,).

Here To, Tt are permitted to depend on £ provided that ST./TQ = o(l). The lead-
ing terms in (6.4) yield

(6.6) r o ? ? - r o = 0,

Now | is real and positive, since f > 1 + 5. For a decaying solution at in-
finity, choose

(6.8) To = A(^e~l

as the appropriate solution of (6.6). A particular integral of (6.7) is then seen to
contain | e ~ ? which implies E 7 \ = 0(T0). This is avoided by choosing A(£)
= aQ~1/4, where a is a constant, for then (6.7) is homogeneous. Consequently

(6.9) To = aQ- 1 / 4 e" ? .

STEP 2. For £ < 1 +5, define the fast variable by

[6.10)
pl+S

^ s - 1 y/-Q(t;*)dt,

so that | is again real and positive in the region of interest. Repetition of the ar-
gument in step 1 leads to

;6.11) To = ( - 6 ) - 1 / 4 ( b c o s | + cs in | ) .

STEP 3. The correct choice of the constants b and c will ensure that (6.11) is
:he correct continuation of (6.9). This choice is made after matching (6.9) and
'6.11) with a limit-process expansion near the turning point. Accordingly, write
I - (1 + 5) = T. The leading terms of (6.1) near T = 0 yield

;6.12) ^ E T Z 0,
ax

since Q'(l + 5) # ° implies that £ = 1 + <5 is a simple turning point. In terms
rf f = re"2 ' 3 , (6.12) becomes

Z =

ivhere a and P are constants that may depend on e. Antosiewicz (1964), page 448,

https://doi.org/10.1017/S1446788700029505 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029505


218 K. Capell [9]

gives the asymptotic forms of the Airy functions Ai(x) and Bi{%) as | T | -> oo:

V71

Bi(t) ^ B ^ T -

V7*
Matching (6.14) with (6.9) as f -» oo, T ->0 or £ -»(1 + <5)+ shows that /? = 0 and
ae1/6 = la^Jn. Again for | z | -> oo, with | arg z | < 2rc/3,

(6.15) Xi(- z) ~ -J= z-1/4 c

Here z is real and positive with f = — z. Now, as f-» — oo, a^4i(^) matches
(6.11) as £->(l + ^ ) _ , or equivalently | - > 0 + , provided ft and c are chosen so
that

(6.16) To = B(- Qy^c

where B is related to a through a. (The actual relation is not needed).

7. Solution for rj = 0(1)

The two-variable method is now applied to (5.3) for r\ = 0(1). In this case
N/o > (1/9) /o > 0; a balance is achieved in (5.3) by writing

(7.1) Z" + Nf{,Z = 0.

The solutions are rapidly oscillatory. A suitable fast variable is

Jo

The slow variable is t]. Then (7.1) becomes

( 7 2 ) +
Z

As before, the leading term of the two-variable expansion,

Zfljf; JV) = S0(fl,t,)

is

(7.3) So = C0(rj) cos jy + Do(>/) sin fj.

https://doi.org/10.1017/S1446788700029505 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029505


[10] Eigenvalues in trailing edge flows 219

Since Z = 0 when fj = 0, Co = 0. Again So and St may depend on N but
SJ(SOyjN) = o(l). When D0(r]) is chosen to satisfy this condition — by demand-
ing homogeneity in the equation for Sx — it is found that

(7.4) S0 = D/0'-1/4c

where the constant D may depend on N.

8. Matching the solutions. The eigenvalue formula

The approximations To and So for Z are found to match provided N is
suitable restricted. These approximations are

(8.1) Z ~ 2 ) / r 1 / 4 c o s 0 , r\ = 0(1),

(8.2) Z ~ B[{(1 - £3) + A(£)]-1/4cos<D, n > 1,

where A(£) = 0(s2/3) = 0([6N]"2/3) and

Since/0 ~ i»;2 + 0(1), the coefficients of the cosines in (8.1) and (8.2) match as
t]-*oo (less rapidly than [36N]1/3) and £ -> 0. The arguments of the cosines must
also match. For r\ > 1,

0 ~ | + A /̂JV - IVNf/3/2 + 0( - exp),

where the precise order of the exponentially small error term is not required
and A = — 0.380, by an integration using the numerical solution for/0 obtained
by Rott and Hakkinen (1965). Again

n
Jt(l-t3)dt--+0([6N]-2/3).

4

Nn ~ \ ~ y*"312 + 3247^"9 / 2 + 0 ( J V"3 / 2 )

For matching of 0 and <D, N must satisfy

(8.3) Nn - %- =%~- O.38OVN+ sn,

from which the asymptotic formula for large eigenvalues n(= N — 1/3) is

(8.4) n = s- 0.121s1/2 + 0.424 + 0(s"1/2)

where 5 is a large positive integer.
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9. The Goldstein inner eigenfunction problem

The Goldstein wake solution, valid as x* -» 0, must match with the asymp-
totic form of the solution valid in Stewartson's triple deck as E~3X*-KX). Form-
ally, the same eigenfunction problem (3.10) to (3.12) arises for the sublayer
region. However, the function / 0 in this case satisfies (3.7) with Co = 0 corres-
ponding to the zero pressure gradient used by Goldstein. Here f0 ~ \{r\ + A)2 for
r\ P- 1, where A = 0.33206. For the inner region of Hakkinen and O'Neil there
is a pressure gradient and for this case, as noted earlier, f0 ~ \r\2+ a02. This
difference naturally leads to different eigenvalues and in fact necessitates a com-
plete departure from Stewartson's procedure of writing E = /oH(//) in the early
stages of the work above. Note also that in Stewartson's (1957) problem it was
necessary to consider an additional region for r\ 4, 1.

Now the eigensolutions for the sublayer as e~3x*-»oo are identical with
those described by Tillett (1968) for the boundary layer in a free jet of liquid emerg-
ing from a two-dimensional channel. An asymptotic formula for the eigenvalues
has been found by Price (1968):

(9.1) n = s + 0.126s1/2 + 0.425+ 0(s~1/2),

which is similar to (8.4). The difference in the sign and value of the coefficient
of s1/2 together with the small difference in the constant terms may be traced to
the different behaviours at infinite of the functions f0. The first eigenvalue is
again n = 1/3 for the Tillett and Goldstein problems.

10. Conclusion

As anticipated, the approximate form of E" for rj = 0(1) is rapidly oscillatory
and is therefore much larger than, the term E ignored in the approximation pro-
cedure. Again no inconsistency arises for r\ >̂ 1 through the omission of this term.
Formula (8.4) suggests that the eigenvalues are infinite in number. Although (8.3)
and (8.4) are most accurate for large eigenvalues, crude estimates of the first four
eigenvalues are found from (8.3) and compared with those found exactly
(n =k+ 1/3) for the lienarized problem (Capell (1972)):

linearized result 0.333, 1.333, 2.333, 3.333;
non-linearized result 0.323, 1.264, 2.227, 3.190.

The agreement with the first eigenvalue (1/3 for both problems) is encourag-
ing. It is clear that the expansions of Hakkinen and O'Neil must be modified in
an obvious way. The changes associated with the first inner eigensolutions are
qualitatively the same as in the linearized case (Capell (1972)).

As remarked in section 9, the work of Price provides the asymptotic formula
for large eigenvalues in the sublayer as the Goldstein inner region is approached.

The author thanks Professor K. Stewartson for suggesting the problem.
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