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1 Introduction

The study of eigenvalues of graphs has a long history. From the early days, rep-
resentation theory and number theory have been very useful for examining the
spectra of strongly regular graphs with symmetries. In contrast, recent develop-
ments in spectral graph theory concern the effectiveness of eigenvalues in studying
general (unstructured) graphs. The concepts and techniques, in large part, use es-
sentially geometric methods. (Still, extremal and explicit constructions are mostly
algebraic[19]). There has been a significant increase in the interaction between
spectral graph theory and many areas of mathematics as well as other disciplines,
such as physics, chemistry, communication theory and computer science.

In this paper, we will briefly describe some recent advances in the following
three directions.

1. The connections of eigenvalues to graph invariants such as diameter, dis-
tances, flows, routing, expansion, isopermetric properties, discrepancy, con-
tainment and, in particular, the role eigenvalues play in the equivalence
classes of so-called “quasi-random” properties.

2. The techniques of bounding eigenvalues and eigenfunctions, with special em-
phasis on the Sobolev and Harnack inequalities for graphs.

3. Eigenvalue bounds for special families of graphs, such as the convex sub-
graphs of homogeneous graphs, with applications to random walks and effi-
cient approximation algorithms.

This paper is organized as follows. Section 2 includes some basic definitions.
In Section 3, we discuss the relationship of eigenvalues to graph invariants. In
Section 4 we describe the consequences and limitations of the Sobolev and Harnack
inequalities. In Section 5, we use the heat kernel to derive eigenvalue lower bounds
which are especially useful for the case of convex subgraphs. In Section 6 some
examples and applications are illustrated. Since all proofs will not be included
here and the statements can sometimes be very brief, the reader is referred to [12]
for more discussion and details.
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2 Preliminaries

In a graph G with vertex set V = V (G) and edge set E = E(G), we define the
Laplacian L as a matrix with rows and columns indexed by V as follows:

L(u, v) =











1 if u = v

− 1√
dudv

if u and v are adjacent (uu ∼ vv)

0 otherwise

where dv denotes the degree of v. Here we consider simple, loopless graphs (since
all results can be easily extended to general weighted graphs with loops [12].) For
k-regular graphs, it is easy to see that

L = I − 1

k
A

where A is the adjacency matrix. For a general graph, we have

L = I − T− 1

2 AT− 1

2

where T is the diagonal matrix with value dv at the (v, v)-entry. The eigenvalues
of L are denoted by

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1

and

λG := λ1 = inf
f

∑

f(v)dv=0

∑

u∼v

(f(u) − f(v))2

∑

v

f(v)2dv

= inf
h

∑

h(v)
√

dv=0

〈h,Lh〉
〈h, h〉

In a way, the eigenvalues λi’s can be viewed as the discrete analogues of the
Laplace-Beltrami operator for Riemannian manifolds

λM = inf
f

∫

M

||∇f ||2
∫

M

||f ||2

where f ranges over functions satisfying
∫

M
f = 0. For a connected graph G, we

have λG > 0 and in general 0 ≤ λG ≤ 1, with the exception of G = Kn, the
complete graph (in which case λG = n/(n− 1)). Also 1 < λn−1 ≤ 2, with equality
holding for bipartite graphs.
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3 Eigenvalues and graph properties

In a graph G on n vertices, the distance between two vertices u and v, denoted by
d(u, v) is the length of a shortest path joining u and v. The diameter of G, denoted
by D(G), is the maximum distance over all pairs of vertices: A lower bound for λ1

implies an upper bound for D(G). Namely, in [6], it was shown that for regular
graphs, we have

D(G) ≤
⌈

log n − 1

log 1
1−λ1

⌉

(1)

with the exception of the complete graph Kn. (We assme in this section that
G 6= Kn and G is connected.) The proof is based on the simple observation that
D(G) ≤ t if, for some polynomial Pt of degree t and some n × n matrix M with
M(u, v) = 0 for u 6∼ v, we have all entries of Pt(M) nonzero. The above inequality
can be further extended for distances between any two subsets X, Y of vertices in
G. Here we denote the distance d(X, Y ) to be the minimum distance between a
vertex in X and a vertex in Y .

d(X, Y ) ≤
⌈

log vol V
vol Xvol Y

log 1
1−λ′

⌉

(2)

where the volume of a subset X is defined to be vol X =
∑

v∈X

dv , and λ′ is equal

to λ1 if 1 − λ1 ≥ λn−1 − 1, or else λ′ = 2λ1/(λ1 + λn−1). The above inequalities
have several generalizations. For example, the distances among k + 1 subsets
X1, · · · , Xk+1 of V are related to the k-th eigenvalue λk for k ≥ 2.

min
i6=j

d(Xi, Xj) ≤ max
i6=j

⌈

log vol V
vol Xivol Xj

log 1
1−λk

⌉

(3)

if 1 − λk ≥ λn−1 − 1; otherwise replace λk by 2λk

λk+λn−1

in (3).

This can be further generalized to eigenvalue bounds for a Laplace operator
on a smooth, connected, compact Riemannian manifold M [15]:

λk ≤ 4

t2
max
i6=j

(

log
2 vol M

√

vol Xivol Xj

)2

(4)

if there are k + 1 disjoint subsets X1, · · · , Xk+1 such that the geodesic distance
between any pair of them is at least t.

The above inequalities can be used to derive isoperimetric inequalities in the
following way. For a subset X of vertices, we define the t-boundary δt(X) = {u 6∈
X : d(u, v) ≤ t for some v ∈ X}. By substituting Y = V − δt(X) − X in (2) we
deduce

vol(δt(X))

vol (X)
≥ (1 − (1 − λ′)2t)(1 − vol X

vol V
) (5)
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We remark that the special case of (5) for regular graphs was proved by Alon [1]
and Tanner [23].

Another type of boundary for a subset X is

∂(X) = {{x, x′} ∈ E : x ∈ X, x′ 6∈ X}

The Cheeger constant hG is defined to be

hG = min
x

|vol X|≤ 1

2
vol V

|∂(X)|
vol X

and the Cheeger’s inequality states

2hG ≥ λ1 ≥ h2
G

2
.

The discrete version of Cheeger’s inequality was considered in [17, 3] with proof
techniques quite similar to those used for the continuous case by Cheeger [5], and
can be traced back to the early work of Polya and Szego [21].

The implications of the above isoperimetric inequalities can be summarized
as follows: When λ1 is bounded away from 0, i.e., λ1 ≥ c > 0 for some absolute
constant c, the diameter is “small” and the boundary of a subset X is “large”
(proportional to the volume of the subset). As an immediate consequence of the
isoperimetric inequalities, there are many paths with “small” overlap simultane-
ously joining all pairs of vertices. In fact, the following dynamic version of routing
can be achieved efficiently (in logarithmic time in n). Namely, in a regular graph
G, suppose pebbles pi are placed on vertices vi with destination vπ(i) for some
permutation π ∈ Sn. At each step, every pebble is allowed to move along some
edge to a neighboring vertex provided that no two pebbles can be placed at the
same vertex simultaneously. Then there is a routing scheme to move all pebbles
to their destinations in O( 1

λ2 log2 n) time (see [2] and [12]).
When both λ1 and λn−1 are close to 1, the graph G satisfies additional

properties. For example, for two subsets of vertices, say X and Y , the number
e(X, Y ) of pairs (x, y), x ∈ X, y ∈ Y and {x, y} ∈ E, is close to the expected value.
Here by “expected” value, we mean the expected value for a random graph with
the same edge density. To be precise, we have the following inequality:

|e(X, Y ) − vol Xvol Y

vol V
| ≤ max

i6=0
|1 − λi|

√
vol Xvol Y

When X = Y , the left hand side of the above inequality is called the discrepancy
of X .

For sparse graphs, say k-regular graphs for some fixed k, 1 − λ1 cannot be
too small. In fact, 1 − λ1 ≥ 1√

k
. However for dense graphs, 1 − λ1 can be very

close to zero. For example, almost all graphs have 1− λ1 at most c√
n
. For graphs

with constant edge density, say ρ = 1
2 , the condition of 1 − λ1 = o(1) implies

many strong graph properties. Here we will use descriptions of graph properties
containing the o(1) notation so that P (o(1)) → P ′(o(1)) means that for any ǫ > 0,
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there exists δ such that P (δ) → P ′(ǫ). Two properties P and P ′ are equivalent
if P → P ′ and P ′ → P . The following class of properties for an almost regular
graph G, with edge density 1

2 , have all been shown to be equivalent [14] (also see
[12]) and this class of graph properties is termed “quasi-random” since a random
graph shares these properties.

P1: maxi>0 |1 − λi| = o(1)

P2: For any subset X of vertices, discrepancy of X = o(1) · vol X .

For a fixed s ≥ 4,

P3(s): For any graph H on s vertices, the number of occurrences of H as an
induced subgraph of G is (1 + o(1)) times the expected number.

P4 : For almost all pairs x, y of vertices, the number of vertices w satisfies (w ∼
x and w ∼ y) or (w 6∼ x and w 6∼ y) is (1+o(1)) times the expected number.

We remark that the o(1) terms in the above properties represent the estimates
of deviations from the expectation. The problems of determining the order and
the behavior of these deviations and the relations between various estimates touch
many aspects of extremal graph theory and random graph theory. Needless to say,
many intriguing questions remain open. We remark that quasi-random classes for
hypergraphs have also been established and examined in [13].

4 Sobolev and Harnack inequalities

In this section, we will describe the Sobolev inequalities and Harnack inequali-
ties for eigenfunctions of graphs which then lead to eigenvalue bounds. The ideas
and proof techniques are quite similar to various classical methods in treating the
eigenvalues of connected smooth compact Riemannian manifolds. In general, there
are often various obstructions to applying continuous methods in the discrete do-
main. For example, many differential techniques can be quite hard to utilize since
the eigenfunctions for graphs are defined on a finite number of vertices and the
task of taking derivatives can therefore be difficult (if not impossible). Further-
more, general graphs usually represent all possible configurations of edges, and, as
a consequence, many theorems concerning smooth surfaces are simply not true for
graphs. Nevertheless, there are many common concepts that provide connections
and interactions between spectral graph theory and Riemannian geometry. As a
successful example, the Sobolev inequalities for graphs can be proved almost en-
tirely by classical techniques which can be traced back to Nash [25]. The situation
for the Harnack inequalities for graphs is somewhat different since discrete ver-
sions of the statement for the continuous cases do not hold in general. However, we
will describe a Harnack inequality which works for eigenfunctions of homogeneous
graphs and some special subgraphs that we call “strongly convex.”

We first consider Sobolev inequalities which holds for all general graphs. To
start with, we define a graph invariant, the so-called isopermetric dimension, which
is involved in the Sobolev inequality.
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We say that a graph G has isoperimetric dimension δ with an isoperimetric
constant cδ if for all subsets X of V (G), the number of edges between X and the
complement X̄ of X , denoted by e(X, X̄), satisfies

e(X, X̄) ≥ cδ(vol X)
δ−1

δ

where vol X ≤ vol X̄ and cδ is a constant depending only on δ. Let f denote an
arbitray function f : V (G) → R. The following Sobolev inequalities hold.

(i) For δ > 1,
∑

u∼v

|f(u) − f(v)| ≥ cδ

δ − 1

δ
min

m
(
∑

v

|f(v) − m| δ
δ−1 dv)

δ−1

δ

(ii) For δ > 2,

(
∑

u∼v

|f(u) − f(v)|2) 1

2 ≥ cδ

δ − 1√
2δ

min
m

(
∑

v

|(f(v) − m)αdv)
1

α

where α = 2δ
δ−2 .

The above two inequalities can be used to derive the following eigenvalue inequal-
ities for a graph G (see [9]):

∑

i>0

e−λit ≤ c
vol V

t
δ
2

(6)

λk ≥ c′(
k

vol V
)

2

δ (7)

for suitable contants c and c′ which depend only on δ.
In a way, a graph can be viewed as a discretization of a Riemannian manifold

in Rn where n is roughly equal to δ. The eigenvalue bounds in (7) are analogues
of the Polya conjecture for Dirichlet eigenvalues of a regular domain M .

λk ≥ 2π

wn

(
k

vol M
)

2

n

where wn is the volume of the unit disc in Rn.
From now on, we assume that f is an eigenfunction of the Laplacian of

G. The usual Harnack inequality concerns establishing an upper bound for the
quantity max

x∼y
(f(x)−f(y))2 by a multiple of λ and maxx f2(x). Such an inequality

does not hold for general graphs, (for example, for the graph formed by joining
two complete graphs Kn by an edge.) We will show that we can have a Harnack
inequality for certain homogeneous graphs and some of their subgraphs.

A homogeneous graph is a graph Γ together with a group H acting on the
vertices satisfying:

1. For any g ∈ H, u ∼ v if and only if gu ∼ gv.
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2. For any u, v ∈ V (Γ) there exists g ∈ H such that gu = v.

In other words, Γ is vertex transitive under the action of H and the vertices of Γ
can be labelled by cosets H/I where I = {g|gv = v} for a fixed v. Also, there is
an edge generating set K ⊂ H such that for all vertices v ∈ V (Γ) and g ∈ K, we
have {v, gv} ∈ E(Γ).

A homogeneous graph is said to be invariant if K is invariant as a set under
conjugation by elements of K, i.e., for all a ∈ K, aKa−1 = K.

Let f denote an eigenfunction in an invariant homogeneous graph with edge
generating set K consisting of k generators. Then it can be shown [10] that

1

k

∑

a∈K

(f(x) − f(ax))2 ≤ 8λ sup
y

f2(y)

An induced subgraph S of a graph Γ is said to be strongly convex if for all pairs
of vertices u and v in S, all shortest paths joining u and v in Γ are contained in
S. The main theorem in [10] asserts that the following Harnack inequality holds.

Suppose S is a strongly convex subgraph in an abelian homogeneous graph with

edge generating set K consisting of k generators. Let f denote an eigenfunction

of S associated with the Neumann eigenvalue λ. Then for all x ∈ S, x ∼ y,

|f(x) − f(y)|2 ≤ 8kλ sup
z∈S

f2(z)

The Neumann eigenvalues for subgraphs will be defined in the next section. A
direct consequence of the Harnack inequalities is the following lower bound for the
Neumann eigenvalue λ of S:

λ ≥ 1

8kD2

where k is the maximum degree and D is the diameter of S. Such eigenvalue
bounds are particularly useful for deriving polynomial approximation algorithms
when enumeration problems of combinatorial structures can often be represented
as random walk problems on “convex” subgraphs of appropriate homogeneous
graphs. However, the condition of strongly convex subgraph poses quite severe
constraints, which will be relaxed in the next section.

5 Eigenvalue inequalities for subgraphs and con-

vex subgraphs

Let S denote a subset of vertices in G. An induced subgraph on S consists of all
edges with both end points in S. While a graph corresponds to a manifold with no
boundary, an induced subgraph on S can then be associated with a submanifold
with a boundary. Next, we define the Neumann eigenvalue for an induced subgraph
on S. Let Ŝ denote the extension of S formed by all edges with at least one end
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point in S. The Neumann eigenvalue λS for S is defined to be

λS = inf
f

∑

{x,y}∈Ŝ

(f(x) − f(y))2

∑

x∈S

f2(x)dx

= inf
g

〈g,Lg〉
〈g, g〉

where f ranges over all functions f : S ∪ δS → R satisfying
∑

x∈S

f(x)dx = 0,

g(x) = f(x)
√

dx and L denotes the Laplacian of S.
Let φi denote the eigenfunction for the Laplacian corresponding to eigenvalue

λi. Then φi satisfies

Lφi(x) =

{

λiφi(x) if x ∈ S
0 if x ∈ δS

We now define the heat kernel of S as a n × n matrix

Ht =
∑

eλitPi

= e−tL

= I − tL +

∑2

2
L + · · ·

where L =
∑

λiPi is the decomposition of the Laplacian L into projections on its
eigenspaces. In particular, we have

• H0 = I

• F (x, t) =
∑

y∈S∪δS

Ht(x, y)f(y) = (Htf)(x)

• F (x, 0) = f(x)

• F satisfied the heat equation

∂F

∂t
= −LF

• Ht(x, y) ≥ 0

By using the heat kernel, the following eigenvalue inequality can be derived, for
all t > 0:

λS ≥

∑

x∈S

inf
y∈S

Ht(x, y)

√
dx

√

dy

2t
.

One way to use the above theorem is to bound the heat kernel of a graph
by the (continuous) heat kernel of the Riemannian manifolds, for certain graphs
that we call convex subgraphs. We say Γ is a lattice graph if Γ is embedded into a
d-dimensional Riemannian manifold M with a metric µ such that ǫ = µ(x, gx) =
µ(y, g′y) for all g, g′ ∈ K. An induced subgraph of a homogeneous graph Γ is said
to be convex if the following conditions are satisfied:
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1. There is a submanifold M ⊂ M with a convex boundary such that

V (Γ) ∩ M − ∂M = S

2. For any x ∈ S, the ball centered at x of S of radius ǫ/2 is contained in M.

We need one more condition to apply our theorem on convex subgraphs.
Basically, ǫ has to be “small” enough so that the count of vertices in S can be
used to approximate the volume of the manifold M . Namely, let us define

r =
U |S|
vol M

(8)

where U denotes the volume of Vononoi region which consists of all points in M
closest to a lattice point. Then the main result in [11] states that the Neumann
eigenvalue of S satisfies the following inequality:

λ1 ≥ c r ǫ2

d2D2(M)

for some absolute constant c, which depends only on Γ, and D(M) denotes the
diameter of the manifold M . We note that r in (8) can be lower bounded by a
constant if the diameter of M measured in L1 norm is at least as large as ǫd.

6 Applications to random walks and rapidly mix-

ing Markov chains

As an application of the eigenvalue inequalities in the previous sections, we consider
the classical problem of sampling and enumerating the family S of n× n matrices
with nonnegative integral entries with given row and column sums. Although
the problem is presumed to be computationally intractable, (in the so-called #P -
complete class), the eigenvalue bounds in the previous section can be used to obtain
a polynomial approximation algorithm. To see this, we consider the homogeneous
graph Γ with the vertex set consisting of all n × n matrices with integral entries
(possibly negative) with given row and column sums. Two vertices u and v are
adjacent if u and v differ at just the four entries of a 2× 2 submatrix with entries
uik = vik + 1, ujk = vjk − 1, uim = vim − 1, ujm = vjm + 1. The family S of
matrices with all nonnegative entries is then a convex subgraph of Γ.

On the vertices of S, we consider the following random walk. The probability
π(u, v) of moving from a vertex u in S to a neighboring vertex v is 1

k
if v is in S

where k is the degree of Γ. If a neighbor v of u (in Γ) is not in S, then we move
from u to each neighbor z of v, z in S, with the (additional) probability 1

d′

v
where

d′v = |{z ∈ S : z ∼ v in Γ}| for v 6∈ S. In other words, for u, v ∈ S,

π(u, v) =
wuv

du

+
∑

z 6∈S
u∼z,v∼z

wuz

dvd′z
wzv
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where wuv denotes the weight of the edge {u, v} (wuv = 1 or 0 for simple graphs)

and du =
∑

u∼v

duv.

The stationary distribution for this walk is uniform. Let λπ denote the second
largest eigenvalue of π. It can be shown [11] that

1 − λπ ≥ λS

In particular, if the total row sum (minus the maximum row sum) is ≥ c′ n2,
we have 1 − λπ ≥ c

kD2 . This implies that a random walk converges to the uni-
form distribution in O( 1

1−λπ
) = O(k2D2) steps (measured in L2 norm) and in

O(k2D2(log n)) steps for relative pointwise convergence.
It is reasonable to expect that the above techniques can be useful for de-

veloping approximation algorithms for many other difficult enumeration problems
by considering random walk problems in appropriate convex subgraphs. Further
applications using the eigenvalue bounds in previous sections can be found in [15].
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