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Abstract. We show that the eigenvalues of the Laplacian of a closed manifold

M is approximated in a certain sense by the eigenvalues of the Laplacian of the

graph of a --net in M as n —* oo . Our approximation needs no assumption

on M except for dimension.

1. Introduction and statement of the main Theorem

In this paper, we study the relationship between the eigenvalues of the Lapla-

cian of a closed Riemannian manifold and those of its net, a graph which

approximates the manifold.

To recall the definition of the Laplacian on a graph [B], [F], let T be a

connected finite graph, V(T) the set of its vertices, and E(F) the set of its

directed edges. We assume there are no edges joining a vertex with itself and if

two distinct vertices x and y are joined by an edge, which we denote x ~ y,

then there are exactly two edges of opposite directions between them. We denote

the edge from x to y, if it exists, by [x, y] or -\y, x].

Length function I : E(T) —> R+ is a positive function on E(T) with l([x, y])

— %, x]) ■ We define a weight function mi on V(T) by

"!,(*) = £/([*,)>]),

where Ylx~y means t0 take the sum over all the vertices y connected to x,

and we sometimes write m instead of m¡ for simplicity. We put

L2(V(Y)) = {f:V(D^R},

L2(E(T)) = {4> : E(T) - R | <f>(-e) = -<t>{e)} ,

and define inner products for f, g e L2(V) and (f), y/ e L2(E) by

(f,g)=   £   m(x)f(x)g(x),        (<t>,v) = ¿  £  l{e)4>{e)v{e).
x€V(V) e€E(V)
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As an analogue of the exterior derivative, we define an operator d : L2(V) —►

L2(E) by

df{[x'y]) = ñW^ for /GL2(F)-

The adjoint operator 5 : L2(E) —► L2(V) is then given by

¿0(*) = ¿y $>([*,>'])   for   <¡>eL2(E).

We define the Laplacian on (T, I) by

Af(x) = ôdf(x).

Then we obtain (A/, /) = (df, df), and we can rewrite

A/W     «W¿   l([x,y])   ■

The smallest eigenvalue X0(T, /) for A is always 0 and the one-dimensional

eigenspace for 0 consists of the constant functions, since T is connected. We

denote the k-th positive eigenvalue of A by X^ÇT, I):

0 = X0 < X\ < À2 < ■■■ < X„,    where   n = jV-l.

Before discussing the general case for approximating the eigenvalues of the

Laplacian on a closed Riemannian manifold by graphs, we give a simple exam-

ple. Let S"1 be the unit circle and X^S1) denote the k-lh eigenvalue of the

Laplacian on Sl . It is known that

{Xk(Sl)}?=1 = {0,l,22,32,42,...}.

mult. =2

Let (C„ , /„) be a circle graph of «-vertices with length function /„ = 2n/n. We

may directly calculate the values for Xf,(Cn, /„), which we denote by spec (C„).

If n is odd,

2

spec(C„) = (^;)   x <

If n is even,

0, 2(1 — cos — 1 ,...,2(1- cos-n

mult. =2

spec(C„)= (y)2 x I0, 2(1-cos— ) ,...,2(l-cos£-3ac >.

mult. =2

Since lim„(¿)22(l - cos^^) = k2 ,  we have

lim Afc(C„) = Xk{Sx)     for each k.
n—»oo

To approximate the eigenvalues of the Laplacians on a closed Riemannian

manifold M, we take an e-net in M, which is a graph obtained in the fol-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



eigenvalues of laplacians on a manifold and its nets 2587

lowing way for e > 0. A subset of M is called e-separated if d\f(x, y) > e

for distinct points x, y of the set. Take a maximal (with respect to inclu-

sion of sets) e-separated subset V in M, and join distinct points x and y

of V by two directed edges from x to y and from y to x if and only if

diuix, y) < 3e . The resulting graph is termed an e-net in M. It is known that

a maximal e-separated set exists for any e > 0 and the graph obtained from it

is always connected [K]. It is clear from the construction that an e-net in M

approximates the manifold M as a metric space. Moreover, it approximates

the eigenvalues of Laplacian, which we state in the following theorem.

Theorem. Let Md be a d-dimensional closed Riemannian manifold and (r„, /„)

a —net in M with length function l„ = l/n for each n e N. Then

— lim sup 4(r„, /„) <Xk(M) < Climinf4(r„, /„)

for each k, where Xk(M) is the k-th eigenvalue of the Laplacian on M and C

is a number depending only on the dimension of the manifold, which satisfies
C <2-50d.

To show the inequalities in the Theorem, we do not need any assumptions

on M except for dimension, and the inequalities hold for any sequence of £-

nets. But the rate of the convergence depends on the curvature of M. We will

discuss this in the next section before giving the proof, since it would be needed

for application.
At present, the constant C depends exponentially on the dimension. How-

ever, from this theorem, we can know the rough behavior of the eigenvalues

of the Laplacian on M from that of Yn, which is easier to compute since

the function space over Tn has finite dimension for each n . We may expect

sharper estimates for the eigenvalues taking a nice sequence of graphs, but the

author does not know, for example, if the inequalities in the Theorem hold

for a constant C independent of the dimension for a suitably nice sequence

of graphs for M. But it seems that we can choose a sequence of nets of a
manifold whose eigenvalues do not converge to the ones of the manifold.

There have been many results on Laplacians on graphs using different def-

initions. For example, Dodziuk [D] studied a certain combinatorial Laplacian

which carries more geometric information of the manifold than ours.

The author thanks Professor Steven Rosenberg, who brought him to this

problem and gave valuable suggestion. He appreciates the comments of the

referee on the proof.

2. Proof of the Theorem

To prove the Theorem, we will need the following Lemma (see [B] and Chap-

ter 1 of [C]) called the minimax principle. In this section, we write Y instead

of V(Y) for simplicity, and accordingly denote L2(V(Y)) by L2(r).

Lemma.

4(r) (resp. Xk{M)) = inf sup {-%^

where S?k+\ runs over linear subspaces of L2(Y) (resp. L2(M)) of dimension

k+l.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2588 KOJI FUJIWARA

The expression (df, df)/(f, f) is called the Rayleigh quotient of /.
The proof consists of two parts. First, to show Xk(M) < Climinf„4(r„),

we construct a linear operator for each n

Sn : L2(r„) -> C°°(M)

which satisfies

(dSn(f),dSn(f))M     r(df,df)r.
(Sn(f),Sn(f))M   -      (f,f)r„   '

for sufficiently large n. Next, to show limsup„4(r„) < CXk(M), we construct

a linear operator

Tn : C°°(M) - L2(r„)

for each n with the following property. Let & be a finite-dimensional linear

subspace of C°°(Ai), and 9~{\) denote the subset {/ e ^"|(/, /) = 1}. Then
for any e > 0, taking sufficiently large n , we have

(dTn(f), dTn(f))Tn        (df, df)M + e

(Tn(f),T„(f))r,    -      (f,f)M-e  '

for each / € Sr(\). From the above two estimates of the Rayleigh quotient,

applying the Lemma, we can obtain the inequalities in the Theorem.

Constants. Here we list up in advance several geometric constants which we

will use in the proof. For a point jc e M, we write the set {y £ M\d(x, y) < r}

by B(x, r) and denote its volume in M by vol B(x, r). There exist positive

constants C\, Ci, ... , C% which depend only on the dimension of the manifold
d and satisfy the following properties: taking sufficiently large n, we have, for

any x, e Y„ ,

(i) C, < ${Xj e r„ ; x, ~ Xj} < C2,
(ii) ndvo\B(Xi, ¿)<C3,

(iii) C4<ndyolB(Xi, £),

(iv) C5<ndyo\B(xi,^)<C6,

(v) voIB(xí,1¡)<Ctvo\B(xí,¿¡),

(vi) »(r^Cg/i'volM.

We will show C = max{2C2C3/C4, I8C2C3/C1C5} is the required constant

in the Theorem. We explain how to choose C\, ... , C8 with the emphasis

especially on their independence on the curvature, since this is the reason why

we do not need any assumption on the curvatures of M in this paper.

Let BRlt(r) be the ball of radius r in Rd , where d is the dimension of M,

and vo\BRd(r) denote its volume in R^ . Then
-

,.m vol B(Xj, r)
hm-——— = 1 ,
r^o vo\BRd(r)

for any x, £ M. We call this the limit formula. In the limit formula, the rate

of convergence depends on the curvature at x¡, however, the convergence is

uniform since M is compact.
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(i) Since V(Yn) is ¿-separated, {B(x¡, j¿)}Xiern are disjoint and if x, ~ x7,

then B(Xj, ¿¿) C B(x¡, \ + ¿). Thus for any x, e Yn ,

£vd*(*,,¿)<vol*(*,,¿).
X¡~Xj x ' v '

From the limit formula, we can take C2 - vol5R¿(¿)/vol.SRl,(¿) + 1 =

ld + 1. From the construction of ¿-nets, B(x¡, j¡) c \JX.„X B(Xj, ¿), for

any x, £ Yn. Therefore, vo\B(Xj, %) < J2Xi~x b(xj'> «)• We can take Ci =

volB&i^/volB&iJi) - 1 = 2d - 1 by the limit formula.
(ii)-(iv) From the limit formula, the existence of Cj, ... , Cß of the required

properties is clear. Using the obvious inequalities

(V2r)d <volBRd(r)<(2r)d,

we can take C3 = 2d, C4 = (V2/3)d, C5 = (Vï/2)d, C6 = 1.
(v) Take C7 = 2d + 1.

(vi) Since {B(Xi, j¿)}x,er„ are disjoint in M, E^6r„ vol£(x,-, ¿) < volAf.

Since C5/«rf < vol(x,, ¿) for any x, G Yn, #YnC5/nd < vol A/. Take

Q = l/C5 = (V2)d.
As stated in the introduction, our result does not need any curvature as-

sumptions on M, but the rate of convergence in the Theorem depends on the

curvature since the rate of convergence of the limit formula depends on the

curvature at x,.

Proof of the Theorem. Fix n and denote {Jf/lj^j = V(T„). Take a partition

of unity {unj}j on M with the following properties:

(i)   supp(w„ j) c B ( Xj■, - )    for each   j,

(ii)    u„,j = 1    on   b(xj, ^J ,

(iii)    (dunj(x),du„j(x))<n2,    for any   x £ M.

Since £7«n,, = 1,

(1) ^2dunJ = 0.
j

For x e M, if i/(x, x7) > £ , then

(2) dunJ(x) = 0.

We define a linear operator for each n,

Sn : L2(r„) -. C°°(M)

by

Sn(f)(x)= £ f(xj)uHj(x)
xjern

for / e L2(T„). From the definition of S„, 5„ is injective. Thus, for any

linear subspace y in L2(f„), we have dim SF = dim S„(^).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2590 KOJI FUJIWARA

Claim 1. Taking sufficiently large n,

(dSn(f), dSn(f))M < 2-^ß±(df, df)Tn

for any f £ L2(Yn).

Proof of Claim 1. For each x £ M, take xk £ Yn with d(x, xk) < ¿ , and fix
it. Then

dSn(f)(x)= Y Axj)du„j(x)
Xj€T„

= J2(f(xj) - f(Xk))dunJ(x)
j

+ f(xk)Y^dunJ(x),    by using (1),

i

= Y^(S(XJÎ - f(xk))du„j(x),    by using (2),

Y (f(Xj)-f(xk))dun,j(x).
Xjer„;d(x,Xj)<¿

Since d(x, Xj) < \ and d(x, xk) < ¿ imply d(Xj, xk) < jj- ,

\dSn(f)(x)\ <       Y       \f(Xj)-f(xk)\\dunJ(x)\
Xj-,d(Xj,xk)<i

<    Y   \ftxj)-f(*k)\n.
Xj\Xj~Xk

Thus,

(dSn(f)(x), dSn(f)(x)) < n2 I    Y    \f(Xj)-f(xk)\
\Xj;Xj~xk t

<n2C2    Y   (f(Xj)-f(Xk))2-
Xj-,Xj~Xk

Therefore,

(dSn(f), dSn(f)) < n2C2 Y \    Y   CK*/) - /(^))2yolß (xk . ¿) |
^er„ \Xj\Xj~xk ^ ' J

<c2c '  y-  v (/(X|)-/te))2

xkernxj;xj^xk

C/a/w 2. For sufficiently large n, we have

_C4
C2n

for any / e L2(r„).

(Sn(f),Sn(f))M>7^(f,f)Tn
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Proof of Claim 2.

(/, /)r„ = Y f2(Xj)mln(Xj) <^Y f2^)
Xj£T„ Xj€T„

< %d~] [ (Sn(f),Sn(f))dV = %d-l(Sn(f),S„(f))M.   □
L-4 JM l4'M

From Claim 1 and Claim 2 we have the next claim.

Claim 3. For sufficiently large n, we have

(dSn(f), dSn(f))M < 2C2Q(df,df)rn
(Sn(f), Sn(f))M   -    Q      (/,/>„

for any f £ L2(Yn).

Using Claim 3, we can show Xk(M) < —pMliminf„ Xk(Yn , l„) as follows.

From the Lemma, for any e > 0, we can take a (k + 1 )-dimensional linear

subspace y of L2(r„) such that

(3) ™P{d/f,dÁ] <4(r„) + e.

From Claim 3, for sufficiently large « , we have

u\ «„n    (dg,dg) ^2C2C3        (df,df)(4) sup < ——— sup .
¿^■U?")   (¿?>c?) M    /e,^   (/,./)

Since dim(y) = dim^y)) = fc + 1, we have

(5) Xk(M)<    sup    (^'y ,
ge5„(.^)    Kg, 8)

from the Lemma. Combining (3)-(5), we have

(6) Xk(M)<-ßr^(Xk(Yn)+E),
c4

for sufficiently large n . Since e was arbitrary, we thus showed

2C2Ci
(7) 4(M)<—MliminfA^r,,,/,,).

C4 71—»OO

Next, we define a linear operator for each n

T„:C°°(M)^L2(Yn)

by

Tn(f)(x,)=JB{Rf
vo\B(x,, j¡)

for / £ Coc(M) and each x, e Yn .
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This direction, i.e., C°°(M) -> L2(Yn), needs more subtle treatment than the

other direction. The reason is, technically, the linear operator Tn may decrease

the dimension of a subspace of C°°(M), or philosophically, we have to lose

something in this procedure because Tn is an approximation of an infinite-

dimensional space C°°(M) by a finite-dimensional space L2(r„). Therefore,
we have to deal with the error terms, such as eCjvolM in Claim 4, etc., in the

following argument.

Let y be a finite-dimensional linear subspace of C°°(M). We defined y(l)

to denote the set {/ e y |(/, /) = 1} . Then for any e > 0, taking sufficiently

large n, we have

Claim 4.

(f,f)M<-^¿r¡(Tn(f),Tn(f))r„+eC7volM,    for any   /e/(l).

Proof of Claim 4. Taking n sufficiently large, we have

/        (f,f)dV<{2(Tn(f)(Xi))2 + e}vo\
JB(Xi,\)

for any x¡ £ Yn and / £ y(l) since y is finite dimensional. Therefore

(f,f)M<YÍ       (f'f)dV

< 2Y(Tn(f)(Xi))2volB (Xi, XA +e£volß (x,, i)
i i

^ ^r E( wx*,))2 +eC? Evo15 (*< > ¿)

^ C^ £(r»tO(*<))2»»i.(*i) + eC7vol M

3 -(r„(/),r„(/))r„+eC7volM.   D

*i.¿)

c,«^-1

Also, for any e > 0, taking sufficiently large n , we have

Claim 5.

(dTn(f),dTn(f))r„

<nd-lS^(df,df)M + e^rvo\M}    for any   /eF(l).

Proof of Claim 5. Since y is finite dimensional, taking n sufficiently large, we

have, for any x,, Xj £ Y„ with x, ~ x¡,

í2fR(r  ±Adf,df)dV      )
(Tn(f)(Xl) - Tn(f)(xj))2 < {-(-^f¿--+ e \ d2(Xi, xj),

1        vol B(x¡, ¿) J
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and since d2(x¡, x,) < ^ ,

_ 18 nd  f ...   ._ ._,     9
<^yr (df,df)dV + ^e.

n2C5JB(Xi^n)y n2

Therefore,

(dTn(f),dTn(f))rn = i E (WX*,) - WX*,))2«

-E /      (¿/,¿/)^ + A(r„)
'5     xier/*<*.¿)

[ (df,df)>
Jm

^9C2nd~l  f ...   ._ .__      9C2«d-'    , „
<—^- / (df,df)dV + s    2       vol M

9C2«¿"1/ ,,   ._ 9C2«</-1    , ..
= —^-(df,df)M + e^ç—vol TW.   D

Combining Claim 4 and Claim 5, we have the next claim.

Claim 6. Let y be a finite-dimensional linear subspace of C°°(M). Then for

any small e > 0, taking sufficiently large n, we have

(dTn(f), dTn(f))Yn      18C2C3 (df, df)M + e

(Tn(f),Tn(f))Tn    -   QC5     (f,f)M-e   '

for any feP{l).

Using Claim 6, for any e > 0, taking sufficiently large n , we can show that

(8) Xk(Yn,ln)<^j^(Xk(M) + e)
C1C5

as we showed (6) from Claim 3. The argument is similar, except that the

linear operator Tn may decrease the dimension of a subspace of C°°(M),
however, for any finite-dimensional subspace y of C°° (M) and any e > 0,

we can take a subspace y by slightly perturbing y in C°°(M) such that
dim y = dim 9r' = dim T^') and

(df, df) (df, df)
sup y ' /; < sup y ' /;+e.

Filling out the details is left to the reader. From (8), we have

(9) limsup4(r„, /„) < X-^2ß±Xk(M).
n—>oo C1C5

Therefore, taking C = max{2C22C3/C4, 18C2C3/dC5}, we have the The-

orem from (7) and (9). It is easy to check C < 2 • 50d from the values of

C\, ... ,C% explicitly given before.   0
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