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EIGENVALUES OF THE LAPLACIAN IN TWO DIMENSIONS*

J. R. KUTTLER AND V. G. SIGILLITO"

Abstract. The eigenvalue problem for the Laplace operator in two dimensions is classical in mathematics
and physics. Nevertheless, computational methods for estimating the eigenvalues are still of much current in-
terest, particularly in applications to acoustic and electromagnetic waveguides. Although our primary inter-
est is with the computational methods, there are a number of theoretical results on the behavior of the eigen-
values and eigenfunctions that are useful for understanding the methods and, in addition, are of interest in
themselves. These results are discussed first and then the various computational methods that have been used
to estimate the eigenvalues are reviewed with particular emphasis on methods that give error bounds. Some
of the more powerful techniques available are illustrated by applying them to a model problem.

1. Introduction. The eigenvalue problem for the Laplace operator is

(1.1) -/Xu= u inR

Also known as the Helmholtz equation [56], it arises from separating the time variable
out of the wave equation, and so occurs in many applications. Equation (1.1) is to be
considered on a bounded, two-dimensional region R having boundary C with

(1.2) u=0 onC

Equations (1.1), (1.2) may represent the vibration of a fixed membrane, with the
eigenvalue k2, where k is proportional to a principalfrequency of vibration, and
the eigenfunction u represents .the shape of a mode of vibration. These are also the
frequencies and modes of the simply supported plate of the same shape. Equations
(1.1), (1.2) may also represent the propagation of a wave down a waveguide (either
acoustical or electrical), with cross section R, where k is proportional to a cutofffre-
quency and u is called either an E-mode or TM-mode in an electrical waveguide
[28].

This paper divides naturally into two parts, although we do not formally designate
them this way. In 2 through 11, we review theoretical results on the eigenvalues and
eigenfunctions that have some application to numerical methods. Variational prin-
ciples, inequalities, smoothness of the eigenfunctions, nodal lines, symmetry, transfor-
mations of the problem, and asymptotic formulas are discussed. We particularly note
regions for which the problem has exact solutions in terms of elementary or special
functions.

In 12 through 17, we review numerical methods for estimating the eigenvalues
and eigenfunctions. Rayleigh-Ritz, finite elements, intermediate methods, finite differ-
ences, point matching, a posteriori-a priori inequalities, Galerkin, and other methods
are discussed. We have especially included references to papers containing specific
numerical results for particular regions.

In 18, we observe that the more powerful of these numerical methods become
much more effective when combined with conformal transformations. This is illus-
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trated by applying Rayleigh-Ritz, intermediate methods, finite differences, and a pos-
teriori-a priori inequalities to the same nontrivial waveguide problem.

2. Variational formulation and consequences. Pockels [115] first showed that
(1.1), (1.2) has a spectrum of infinitely many positive eigenvalues

(2.1)

with no finite accumulation point. The associated eigenfunctions u,/12, u3, can
be normalized so they form a complete orthonormal set for Lz(R), i.e.,

(2.2)
R

where 60. is Kronecker’s delta.
The eigenvalues satisfy the minimaxprinciple

f [(OulOx) + (OulOy) dxdy

(2.3) X,, min max

f R u2 dxdy

where the maximum is over all linear combinations of the form

(2.4) u=al4l + a242 + + anon,
and the minimum is over all choices of n linearly independent continuous and piece-
wise-differentiable functions 41, h2, 4,, vanishing on C. The ratio of quadratic
forms on the right side of (2.3) is called the Rayleigh quotient. A good discussion of the
history of the minimax and related variational principles is given in 140] and an inter-
esting history of the membrane problem in the 19th century is given in 37 ].

One important consequence of the minimax principle is the Rayleigh-Ritz method
for obtaining upper bounds for eigenvalues that will be discussed in 12. Another con-
sequence of the minimax principle is domain monotonicity. Let R’ be a region that
properly contains the region R,

(2.5) R C R’.

Let u, u2, u, be the first n eigenfunctions for R and extend them as zero in
R’ R. They are then admissible functions in the minimax principle for R’ and so

(2.6) h,,’ _< X,

where X,,’ is the nth eigenvalue ofR ’. The larger region has smaller eigenvalues.

3. Elementary solutions. We quote Rayleigh 128 who says, "The theory of the
free vibrations of a membrane was first successfully considered by Poisson 116]. His
theory in the case of the rectangle left little to be desired." For the rectangle 0 _< x _<

a, 0 <_ y <_ b, the eigenfunctions are

(3.1) u,,,, sin (mTrx)... sin (nTry),
with associated eigenvalues

(3.2) X,,,, 7r: [(m)2 (n)2]--d- + m,n=l,2, ’..
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Rayleigh goes on to say, "Clebsch [27] gives the general theory of the circular
membrane." For the circle of radius a, the eigenfunctions are, in polar coordinates,

(3.3) u,,, J,,,
/{j,,,.,r \) [A cos mO + B sin mO

,17 a /

with eigenvalues

(3.4) X,,,, m=0,1,2,...
a

where j,,,., is the nth zero of the mth Bessel function,

(3.5)

n 1,2,

J,,, (j,,,.,) O.

A table of zeros of Bessel functions is given in [2 ]. Note that asymptotically

(n rn 1)(3.6) J’"’ +
2 4

r asn .
Rayleigh also observes that the circular sector 0 _< 0 _< - has eigenfunctions

(3.7) u,,,.n J,,,/ a(J""r ) sin ( mO )
given in terms of Bessel functions of fractional order. When 2 and m is odd, these
reduce to algebraic and trigonometric functions.

The annulus a r b has eigenfunctions

(3.8) u,,,,, [Y,,,(k,,,,J,,,( k’’’"r ) ( )]J,,, (k,,,,) Y,,, k,,,.,r
[A cos mO + B sin mO

a a

where Y,,, is the mth Bessel function of the second kind. The eigenvalues are

(3.9) X,,,, m 0 2,... n 2
a

where k,,,.n is the nth root of

(3.10)

Tables of these roots are given in [66]. Sectors of an annulus can also be treated
similarly.

4. Inequalities. The Faber-Krahn inequality states that the circular region has the
smallest XI of all regions with the same area. Or, from (3.4),

27r
(4.1) XI _> -- j20,,

where A is the area of the region. This inequality was first conjectured by Rayleigh and
proved independently by Faber [44] and Krahn [72]. It has been generalized to
regions lying inside circular sectors in 111 ].

Barta’s inequality [5] states that if is a positive, twice continuously dif-
ferentiable function on R,

(4.2) inf(--A0) _< X _< sup().
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The inequality

(4.3) X.+ _< 3X,

was shown in 108 ], where it was conjectured that X2/Xl attains its maximum for the
circular regions, i.e.,

)k2 (Jl,l)_< 2.5387 ....(4.4)
hl "J0,1

See [60] for related inequalities.
The eigenfunction U associated with the first eigenvalue X does not change sign

in R (see 6) and may be taken to be positive. It satisfies

(4.5) 4 u dxdy X u dxdy
R R

with equality only for the circle 109 ]. In 110 ], it was shown that for convex R

U dxdy max u,(4.6)
2A e n

and

(4.7) u (P) _<
-(P)

U dxdy,
A

where d(P) is the distance from a point P in R to the boundary C. Generalizations for
Lp norms oful are in [71] and [23].

Many additional inequalities can be found in the monograph of Pblya and Szeg6
[118], the book of Bandle [4] with 123 references, and the excellent review article of
Payne 107 with 192 references.

5. Smoothness of eigenfunctions. The eigenfunctions have the unique continu-
ation property, that is, a function cannot satisfy (1.1) in a region and vanish on an open
subset of the region without vanishing identically in the region.

Each eigenfunction un is infinitely differentiable (Coo) at the interior points of R
[13]. At a straight segment of the boundary, u,, can be reflected as an odd function
across the boundary. The resulting function satisfies (1.1) in a full neighborhood of
that portion of the boundary and so is Coo across the boundary on straight segments.
Indeed, un can be reflected as a Coo function across any part of the boundary that is
Coo.

At a corner of R formed by two straight lines meeting at an interior angle of 7r/m
for m integer, the eigenfunction un can be reflected m times, resulting in a Coo function
in a region locally bounded by a simple straight line through the point that was the
corner. A final reflection shows that u, can be extended as a Coo function in the neigh-
borhood of such corners. The same is true if the 7r/m angle is formed by the intersec-
tion of Coo arcs, which become a single C arc after m reflections.

For example, the eigenfunctions of the equilateral triangle may be extended by re-
flection as Coo functions to the entire plane. This fact, plus the necessary periodicity of
such an extension, led Lam6 [83] to the discovery of the eigenfunctions and eigen-
values of the equilateral triangle. These are also given in the more accessible paper
112 ]. For the triangle 0 < y < x, y < (1 x)V, the eigenvalues are

167r
(5.1) k (m + n mn) m,n O, 4-1, 4-2,

27
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where 3 divides m + n, m # 2n, and n ; 2m. The eigenfunctions are

(2b- a)y (27ri
where (a,b) runs over (-n,m n), (-n,.-m), (n m,-m), (n re, n,), (m,n),
(m,m n) with the + sign alternating.

At a more general corner of R, the behavior of u, may not be as nice. If two C
arcs meet at the corner with interior angle 7r/c and the origin of coordinates is placed
on the corner so that the lines 0 0 and 0 7r/c are tangent to the bounding curves,
then in [91 it is shown that there is a constant -y, such that

(5.3) u,, %,r" sin (0) + o(r’) as r---0.

If is not an integer, the results obtained by formally differentiating are valid. When a

equals an integer m, slightly better results hold: the result of formally differentiating is
valid for derivatives of order <m; the derivatives of order _<2m are bounded; the
derivatives of order 2m are O(log r); and those of order n > 2m are O(r2’"-").

6. Nodal lines. The set of points in R where u, 0 is the nodal set of u,,. By the
unique continuation property, it consists of curves that are Coo in the interior of R.
Where nodal lines cross, they form equal angles [31 ]. Also, when nodal lines intersect
a C portion of the boundary, they form equal angles. Thus, a single nodal line inter-
sects the Coo boundary at right angles, two intersect it at 60* angles, and so forth. (This
simple observation is occasionally overlooked in drawings of nodal patterns in some
papers.)

Courant’s nodal line theorem [31] states that the nodal lines of the nth eigen-
function divide R into no more than n subregions (called nodal domains). In par-
ticular, Ul has no interior nodes and so hi is a simple eigenvalue (has multiplicity one).
If R is convex, u has convex level curves [1 ]. A demonstration of the nodal line
theorem in 114 is based on the minimax property and unique continuation, and it is
also observed that equality cannot hold for more than a finite number of n. This is a
consequence of combining the Faber-Krahn inequality (4.1) for each nodal domain
and Weft’s law, which is the asymptotic relation for the nth eigenvalue

47rn
(6.1) h, as n oo,

A
whereA is the area of R.

We remark that the nth eigenvalue h,, of a region R is the first eigenvalue for each
of its nodal domains and a higher eigenvalue for a union of nodal domains. By such
reasoning, particular eigenvalues of special regions may be found. For example, the
square, 0 < x,y < r, has the eigenvalues ,2 ,3 5, of multiplicity two, with the
two-dimensional family of eigenfunctions

(6.2) u A sin x sin 2y + B sin 2x sin y.

ForA 0, u has a vertical nodal line, for B 0, a horizontal nodal line, forA +/- B,
a diagonal nodal line, but for other values ofA and B the nodal line is the curve spec-
ified by the transcendental equation

(6.3) Acosy+Bcosx=0

Thus, , 5 is the first eigenvalue for all of all of the regions bounded by sides of the
square and the curves (6.3). For A 1, B 2, this looks like the lid of a grand piano
(Fig. la).
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y

(a) (b)

FIG. l. Nodal lines ofeigenfunctions of the square (a) cos y + 2cosx 0, (b)sin2x + sin2y 3/2.

Similarly, X5 k 10 with eigenfunctions

(6.4) u A sin x sin 3y + B sin 3x sin y,

which forA B has the closed, ring-like, nodal curve

(6.5) sinZx + sinZy 3/2

Thus, X 10 is the first eigenvalue for the region (Fig. lb) enclosed by (6.5), as well as
for the complementary region consisting of the square with a hole of this shape.

7. Symmetry. The eigenfunctions of a region possessing symmetry can be
partitioned into classes according to that symmetry. If x 0 is an axis of mirror
symmetry for R and u is an eigenfunction of R with eigenvalue X, so are

u(x,y) +/- u(-x,y)

Thus, every eigenfunction of such a region may be classified as even (symmetric) or
odd (antisymmetric) about the axis. Eigenfunctions in one symmetry class are orthogo-
nal to those in the other. Regions with more than one axis of symmetry may have their
eigenfunctions further partitioned. For example, the rectangle has four symmetry
classes corresponding to functions that are even or odd across horizontal and vertical
axes, while the square has eight symmetry classes when diagonal symmetry is also
considered.

The odd eigenfunctions have the line of symmetry as a nodal line. By a complete-
ness consideration, the odd eigenfunctions are all the eigenfunctions of the half-region.
Thus, the eigenfunctions and eigenvalues of the isosceles right triangle are those of the
square that are odd about a diagonal, and those of the 30 -60- 90 triangle are
those of the equilateral triangle that are odd about an altitude.

A region is centro-symmetric if (x,y) E R implies (-x,-y) R. The
eigenfunctions of such regions can be classified as even or odd about the center point.
For example, a trapezoid is symmetric about its midpoint, but generally has no other
symmetry.

A third type of symmetry is the reflection symmetry of Hersch [59]. An example
will show the idea. Let R be the L-shaped region that is the union of three unit squares:
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[0,1 [0,1 ], 1,2 [0,1 ], [0,1 1,2 (see Fig. 2). Let u satisfy/u + hu 0
in R, let (x,y) E [0,1 x [0,1 ], and consider the points (2 x,y), (x,2 y), which are
the reflections in the lines x and y 1, respectively. The function

f(x,y) u(x,y) u(2- x,y) u(x,2-y)

satisfies -/xf kfin the basic square [0,1 [0,1 and vanishes on its boundaries.
Thus, k is either an eigenvalue of the square, orfvanishes identically, in which case

(7.1) u(2 x,y) + u(x,2 y) u(x,y)

This is the reflection symmetry relation. It can be used whenever a region is formed by
reflecting a basic region two or more times about straight sides.

Use of symmetry classes is a valuable device in numerical calculations as it permits
quadratures to be performed on basic regions, reduces multiplicities of eigenvalues,
increases separation between successive eigenvalues, and specializes the form of trial
functions used in Rayleigh-Ritz and other estimation procedures.

FIG. 2. The reflection symmetry ofHersch on the L-shaped region that is the union ofthree squares.

8. Multiplicities of eigenvalues. Regions with symmetries will often have eigen-
values with multiplicities greater than one. We have seen that the square of side r has
eigenvalues

(8.1) X= m + n2, m,n 1,2,..-

Whenever rn ; n, X will have multiplicity at least two. A little number theory allows us
to say more. If

(8.2) X= 2p( pfk ql q,,,
is the decomposition of k into distinct primes, where the Pi are of the form 4t + and
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the q; of the form 4t + 3, then all of the s; must be even and the multiplicity of , is
[55]

k

(8.3) I-I (r; + 1).
i=1

Thus, the multiplicity of 5 is two, of 25 is three, of 65 5 13 is four, and so forth. In
particular, there are eigenvalues of arbitrarily large multiplicity. Eigenvalues with high
multiplicity will have large families of eigenfunctions, some combinations of which will
have interesting nodal patterns.

This behavior is not typical, however, of general regions. It is shown in [133 ],
134 that for "most" regions (a) the eigenvalues are all simple, (b) the nodal lines of

the eigenfunctions do not cross, and (c) the critical points of the eigenfunctions are
simple maxima or minima. Given any region, there will be arbitrarily small
perturbations of it that will have these properties. Thus, multiple eigenvalues will
become distinct and nodal crossings will pull apart.

9. Transformations. The eigenvalues are unchanged by translations or rotations
of the region. A dilation of the form x’ ax, y’ ax, by a constant a results in the
eigenvalues being divided by a:,
(9.1) ,’ ,/a

Relation (9.1) permits calculations to be performed on standard regions.
The affine transformation

(9.2) x’ x + ycos 0, y’ ysin 0

maps the rectangle [0,a] [0,b] onto a parallelogram with the same side lengths and
interior angle 0 (Fig. 3). If -Au ,u on the parallelogram and we define U(x,y)
u (x’, y’), then, by the chain rule, U satisfies

[02U 02U 02U](9.3)
sin:O -2cosOoxoy +

Oy----- XU

FIG. 3. The parallelogram that is the image of a rectangle of sides a and b under an affine trans-

formation.
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on the rectangle. Hence, solving (9.3) with U 0 on the boundary of the rectangle is
equivalent to solving (1.1), (1.2) on the parallelogram.

Consider an analytic function

(9.4) w f(z)
which maps a rectangle in the z-plane onto the region R in the w-plane. If U(z)
u (w), then (1.1), (1.2) is equivalent to

(9.5) -AU= k z U

on the rectangle with U 0 on its boundary. Equation (9.5) represents either a mem-
brane with nonuniform density or a waveguide with nonuniform dielectric coefficient.

We may also consider regions R that are the images of the unit circle Izl _< under
a conformal map (9.4). Then (1.1), (1.2) is equivalent to (9.5) on the circle with U 0
on its boundary. It will be shown in 18 that the result (9.5) greatly extends the applica-
bility of many computational methods.

10. Separation of variables. We have seen in 3 that (1.1) can be solved by
separating the variables in rectangular and polar coordinates. In [103] it is shown
that the solution of (1.1) by separation of variables on a region R is equivalent to the
solution of (9.5) on the rectangle by separation of variables in Cartesian coordinates,
i.e.,

(10.1) zz f(x) + g(y)

It is further shown that this can happen only when w is either (a) a quadratic poly-
nomial of z, or (b) of the form ae + be-. These correspond to (a) parabolic coordi-
nates, or (b) elliptic coordinates, the only coordinate systems in which (1.1) can be
solved by separation of variables (rectangular and polar coordinates being special
cases).

We consider elliptic coordinates first. The function

(10.2) w sin z,

maps the rectangle [-7r/2,Tr/2] [-k,k] in the z-plane onto the interior of the
ellipse

)2 + ( / )2 =1((10.3)
’, cosh k "inh k

in the w-plane with slits from the foci (4-1,0) to the tips of the major semi-axes
4- cosh k,0) (see Fig. 4). Thus

idw 12(10.4) zz (cs 2x + cosh 2y).

Putting this in (9.5) and assuming U X(x) Y(y) leads to the simultaneous equations

(10.5) -X" +
2
X cos 2x X,

(10.6) Y" --hcosh2y Y
2
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FIG. 4. Thefunction w sin : maps rectangles in the z,-plane to ellipses in the w-plane.

where a is a separation constant. Equation (10.5) is a form of Mathieu’s equation and
(10.6) is an associated Mathieu equation. Mathieu [93 first found the eigenvalues of
the elliptical membrane. To eliminate the effect of the slits, we associate odd solutions
of (10.6) with solutions of (10.5) that satisfy

(10.7) X + 0

corresponding to eigenvectors of the ellipse that are antisymmetric about the major
axis. We associate even solutions of (10.6) with solutions of (10.5) that satisfy

(0.8) x’ + =o,

giving symmetric eigenfunctions of the ellipse. In both cases, the boundary conditions
for (10.6) are

(10.9) Y(+k) 0

Symmetry about the minor axis corresponds to symmetry in the solutions to (10.5).
Modern papers on the eigenvalues of the ellipse are [73 and, particularly 132 ],

where X, for n 1, 25 is given graphically as a function of eccentricity e, mode
shapes are shown, and approximations for XI and k are given as polynomials in e. A
power series in e is also given for X in [67 ].

The problems of annular regions between confocal ellipses and sectors of ellipses
bounded by orthogonal confocal hyperbolas can also be reduced to solving pairs of
Mathieu equations by separation of variables. A few eigenvalues of the slit ellipse are
found in [43]. Of course, those eigenvalues corresponding to modes antisymmetric
about the major axis are the same as those of the full ellipse.

We now consider parabolic coordinates. The function

(10.10) w-- z
2

maps the rectangle [0,1 x [- 1,1 in the z-plane to a region bounded by symmetric
orthogonal parabolas confocal to the origin with a slit along the negative -axis (Fig.
5). Thus,
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FIG. 5. Thefunction w z212 maps rectangles in the z-plane to confocalparabolas in the w-plane.

dw 12 X2 "5(10.11) /

which, inserted in (9.5) with U X(x) Y(y), leads to the pair of equations

(10.12) -X" (a .. x’2)X

(10.13) Y" (a )ky2) Y,

with a as the separation constant. These can be solved in terms of parabolic cylinder
functions [2], sometimes also called Weber functions. The effect of the slit is
eliminated by symmetry considerations again. Eigenvalues of the symmetric parabolic
region are given in [45] and [142]. The problem for any region bounded by four
orthogonal parabolic arcs may be reduced in this way.

11. Inverse problem and asymptotics. In a now classical paper [68], Kac asked
the question, "Can one hear the shape of a drum?" This is a colorful way of posing
the inverse problem: given all the eigenvalues X,, can the region R be determined? A
number of geometrical and topological constants associated with R can certainly be de-
termined. Kac conjectured the asymptotic relation for the spectralfunction

(11.1) e ’,,
A L

+ / (1 r) ast---O
n=l art 8V"

where A is the area of R, L is the length of C, r is the number of holes in R, and the
factor 1/6 on the last term is for regions without corners. The first term on the right is
essentially Weyl’s law (6.1), the second term comes from results of [113 ], and the last
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term follows from work in [95]. The paper [127] indicates that the nature of the
corners ofR may also be determinable.

A more interesting function is N(t), the number of eigenvalues less than t.
Courant [31 has shown

(11.2) N( t) - <_ Kt /’- log

for K a constant. For at least some domains (in particular, polygons), the log factor
can be dropped. A conjecture due to Weyl is

At Lt
(11.3) N(t) + o(t ’/’-)

47r 47r

Attempts have been made to obtain results like (11.3) from the more easily obtained
results like (11.1) via Tauberian theorems. Surveys on these questions are [26] with
120 references and 12 with 39 references.

Ideally, what one would like to have is an effective asymptotic expression for the
nth eigenvalue ,,, itself of the form

(11.4) ,,, + f(n) + o(1)
A

This is apparently a very difficult problem. If (11.3) were true, its inversion would give

(1.5) ,,
A

L I47rn+ 4 + n’/

Even for a region where the eigenvalues are known, such as the square of side 7r, it
appears difficult to obtain an effective asymptotic formula for Xn directly. For the
square, we calculated

X,,
4n 4 J4n

in the vicinity of n 1000, obtaining a high of + 7.25 for n 980 and a low of -4.67
for n 1000.

12. Rayleigh-Ritz and finite element methods. If there were an effective
asymptotic formula of the form (11.4), only a finite number of the lowest eigenvalues
would need to be calculated for any given region. Most numerical techniques, in any
event, are concerned mainly with the estimation of the lowest several eigenvalues.

The Rayleigh-Ritz method mentioned in 2 is one of the oldest effective approxi-
mation methods, giving upper bounds for the eigenvalues. If u is a linear combination
of n trial functions 4,; as in (2.4), the stationary values of the Rayleigh quotient (2.3)
with respect to the coefficients a; give upper bounds for )t, )2, )n. Thus,

(12.1) X; _</z; i= 1,2,... ,n

where tz, /’2, /’n are the eigenvalues of the n n relative matrix problem

Ma pgVa
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with

04 04 t- ) dxdy(12.2) M (0x Ox Oy Oy

(12.3)

(12.4)

I didjdxdy"

a (a,a2, a.)’.

Remarkably, the.basic Rayleigh-Ritz method has apparently been seldom used to
estimate the eigenvalues of the Laplacian. Most applications have been to rhombical
139 ], 14 ], or parallelogram [40 regions, particularly in the equivalent form (9.3)

resulting from an affine transformation.
The Rayleigh-Ritz method has sometimes been used with finite elements as trial

functions. These are functions that have localized support. Generally, the basis of trial
functions is a system of translations of elementary hill-functions such as piecewise
polynomials of low order, plus, perhaps, special elements designed to conform to
curved boundaries. There are many varieties of finite elements and a large literature on
them. In connection with eigenvalue problems in two dimensions, many of the results
are purely theoretical (see, e.g., [3], [18], and the references therein). Although the
literature does not contain many references to finite-element methods applied to the
two-dimensional Laplacian, they are the basis of large software packages for doing
structural analysis.

References in the literature that apply the finite-element method to two-dimen-
sional problems are often from engineering applications and are of limited accuracy.
The finite-element method has been used in [98] for L- and H-shapes, in [20] for
circular and square waveguides with quadruple ridges, in 126] for various crosses, in
[65] for "bent" waveguides (L-shapes at angles other then 90), in [82] for
rectangles with rounded corners, in [32 for shapes given by polar coordinates such as
portions of spirals, and in [89] for limaons and cardioids. It is also used in the inter-
esting paper [84] where mode shapes are followed as parameters are varied to change
rectangles into ellipses via hyperellipses and into parabolas via superellipses.

13. Intermediate problems. The Rayleigh-Ritz method gives effective upper
bounds on the eigenvalues. Complementary lower bounds are generally much more dif-
ficult to obtain. One method that gives lower bounds is the method of intermediate
problems. Good general introductions to intermediate methods are [52], [49], and
[140]. The idea of the intermediate method is to relate the given problem to a prob-
lem with known solution (the base problem) through an infinite system of constraints.
When only a finite number of the constraints are applied, lower bounds for the desired
solutions are obtained, and the resulting intermediate problem can be reduced to a
finite-dimensional matrix calculation through either of the procedures known as
special choice or truncation. The theory of intermediate problems is difficult, but its
application to specific problems can be made straightforward.

In 125 ], the rhombical membrane was considered in the equivalent form (9.3) re-
suiting from an affine transformation. This is written as

(13.1) (A + T* T) u ku

where

(13.2) A=
cos0 cos’ 0 (0 0)sin 0

A T
sin 0 Ox Oy
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and T* is the adjoint of T (here T* 7).
The known base problem is

(13.3) Au Xu

which is just the rectangular membrane problem. The operator T* T is replaced by the
smaller operator T*P T, where Pk is the orthogonalprojection (in the sense ofL (R))
on the set spanned by a finite number [p, P2, P of trial functions. The inter-
mediate problem is then

(13.4) (A + T*PT)u Xu

which has eigenvalues that are lower bounds to those of (13.1). As k increases, the
bounds increase.

Equation (13.4) can be reduced to a finite-dimensional problem by a special choice
of the pj. If Ul, u2, un are the first n eigenfunctions of the base problem (13.3)
and

(13.5) Tpj /3,.u,. j= 1,2," ,k,

then the eigenvalues of (13.4) are the eigenvalues Xn+, )kn+2, of the base
problem (called persistent eigenvalues), plus the n eigenvalues X of the matrix equation

(13.6) det IA + /3’B-/- MI 0

where

(13.7) A diag(X1, X2,... ,Xn)

the elements of the n x k matrix/3 are defined by (13.5), superscript t denotes trans-
pose, and B is the k x k Gram matrix of the p. given by

(13.8) B I Pipdxdy, i,j= 1,2,... ,k.
R

Thee paper 125 has been a benchmark for the eigenvalues of the rhombus. Upper
bounds were also obtained there by intermediate methods, but these have subsequently
been improved by Rayleigh-Ritz methods as cited in 12.

Intermediate methods were also used in [22 for the L-shape by embedding it in a
square and using the constraints

13.9) f u4)i dxdy O i= 1,2,.(

where the integration is over the complementary region. This method was also used in
[33 for the regular octagon and a cross. We shall return to intermediate methods in
18.

14. Finite differences. An old and highly popular method is finite differences
[48 ]. A brief historical survey is found in [74 with 41 references.

In general, a grid or mesh is laid down on the plane, dividing it into small
rectangles, squares, or triangles. At grid intersections or nodes, the Laplace operator A
is approximated by a difference operator. For a square mesh of width h,

Ahu(x,y h -2 [u(x + h,y) + u(x,y + h) + u(x- h,y)

(14.1) + u(x,y h) 4u(x,y)
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is the five-point approximation to A. If u is a smooth function, the truncation error
is

(14.2) AhU- AU-- 1- Uxxxx (x,y) + Uyyyy (x,y) 3v O(h4)

as may be seen from a Taylor series expansion. Thus, the five-point operator is locally
second order in h. Higher order difference operators and difference operators for tri-
angular meshes can be found in [74 ], [76 ], and [69 ].

If the boundary C does not intersect the mesh exactly at nodes, the boundary
values u 0 must be transferred to nearby mesh nodes or in some way interpolated. If
the mesh can be arranged so that C always intersects the mesh at nodes, we say no
boundary interpolation is required.

The difference scheme is a system of equations of the form

(14.3) AhUh + XhU =0 inR U =0 outsideR
where R is the set of mesh nodes in the interior of R. This is a matrix eigenvalue prob-
lem with the order of the matrix being the number of interior nodes.

If the region R has C boundary and the difference operator A is an O(hp)
approximation to A over R except near the boundary where it need only be O(hp-2),
then for each n and for h sufficiently small, there is a constant C. such that

(14.4) Ikn )kh, Cnhp.

See [74] for the exact details of the required form of A and related estimates for the
eigenfunctions.

If the region does not have C boundary, the situation is less favorable, even when
no interpolation is required at the boundary. We have seen in 5 how the presence of
corners influences the smoothness of the eigenfunctions. In the vicinity of a corner with
interior angle 7r/(, the eigenfunction behaves like r’, which affects the truncation error
in the vicinity of the corner, and limits the rate of convergence of the discrete eigen-
values. If 7r/c is the largest interior angle, then 17

(14.5) IX, kh,, <_ C, max(hP, h2,)

Thus, for regions with reentrant corners, the rate of convergence will be less than
O(h2), e.g., for a reentrant right angle, as in an L-shaped membrane, convergence will
be O(h4/3); and if the membrane has a slit, convergence will only be O(h), even though
no interpolation is required at the boundary.

Such considerations are very important when using the method of Richardson ex-
trapolation. Let the continuous eigenvalue k, be related to the difference eigenvalue
kh,. by an asymptotic formula like

(14.6) X, )kh, + a hp + o (hp h 0

where a, is some constant independent of h. Then if Xh,, is calculated for two distinct
values of h, say h and h, the extrapolated value

(14.7) h

hz] h

approximates )% to an order higher than p. Note that the value of the constant an need
not be known. If more terms of the asymptotic expansion, e.g.,
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(14.8) Xn Xh.n + a,. hp + b.h + o(ho)

are valid, then the extrapolation

(14.9)
q P (hh hha)X2 + (hh hhz)X(hh- hzh)X, + ’ p P ’ , ,o

q P q P P qhh h2h + hha hh + h,h hh
approximates n to an order higher than q. Again, an and bn do not have to be known
explicitly, but the correct values ofp and q must be used. In 9 ], the regular hexagon is
treated by a finite-difference scheme using equilateral triangular meshes. Because no
extrapolation is required at the boundary, the authors assumed (14.8) holds and ap-
plied (14.9) with p 2, q 4. However, from 5 and the considerations of [17],
eigenvalues that are not also eigenvalues of the equilateral triangle will have no better
thanp 2, q 3 in (14.8) and (14.9), and may have an h Ilog hi term also. Thus, the
results of [9] for nontriangle eigenvalues should be recomputed. The paper [8] treats
the 60 rhombus in the same way and may contain the same error. The paper [57 pre-
viously treated the regular hexagon with a triangular mesh.

The exact form of the first several terms in an asymptotic formula like (14.8) for
specific regions where no boundary interpolation is required is a nice problem at about
the level of a doctoral thesis.

It is possible to obtain both lower and upper bounds for the eigenvalues from
finite-difference methods. By inserting piecewise linear functions on the mesh squares
constructed from the difference eigenfunctions into the minimax principle, upper
bounds for the continuous eigenvalues are obtained in terms of the difference eigen-
values. Conversely, inserting averages over mesh squares of the continuous eigen-
functions into the minimax principle for the finite-difference equations gives upper
bounds for the difference eigenvalues in terms of the continuous eigenvalues. These
ideas are developed in the chronological sequence of papers 117 ], [46 ], [47 ], 137 ],
[138], [63], and [75].

The finite-difference method has been applied in [51 to L-, T-, and cross-shaped
regions and concentric squares, in 119 and [99 to L-shapes, in 129 to half-Ls,
and in 35 ], 10 ], and 11 to ridge and lunar waveguides (see Fig. 6). In [77 ], X for
the slit square is approximated by finite differences, while 19 considers this region as
well as the H-shape.

(b)

FIG. 6. (a) Single ridge rectangular waveguide, (b) Lunar waveguide.
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15. Point matching. Undoubtedly, the most popular method of obtaining esti-
mates for engineering applications is point matching or collocation. A series such as

N-1

(15.1) u, anJ (x/-Xr)cos nO,
n=0

which satisfies (1.1), is made to satisfy u, 0 at N points on the boundary C, giving a
system ofN homogeneous equations whose determinant must vanish for nontrivial so-
lutions to exist. The roots , of this determinant are approximations for the eigenvalues,
and the corresponding u, are approximations for the eigenfunctions. The method will
work well or poorly according to the choice of the functions in the series. For C
boundaries, most reasonable choices will work; but when corners are present, func-
tions must be included that have the behavior indicated in 5 or the method will con-
verge badly even for large values of N. For a systematic method of selecting functions
for point matching with convergence estimates, see [42 and 121 ].

We remark that requiring u, to be small in a least-squares sense on more than N
boundary points may give a smoother approximation. See also 100 ].

The method has been used in [29] for the regular hexagon, in [30] for triangles
and parallelograms, in 36 and 39 for Ls and half-Ls, in 124 for ridge guides, in
[7], [104], and [141] for circular guides with off-center circular holes, in [7] for a
"Pacman" shape and a rectangular guide with semicircular ridges ("Meinke"
guide, Fig. 7), in 131 for limacons, and in 136] for epicycloids.

(b)

FIG. 7. (a) Pacman, (b) Meinke waveguide.

Point matching has also been used on the equivalent problem (9.5) after a
conformal mapping. This has been applied in [21 to the cardioid and epitrochoid, in
[54 to polygons, and in [88 to polygons with holes.

It is possible to obtain a posteriori error bounds on the approximations obtained
by point matching. Let X, and u, be the approximations obtained by point-matching
and satisfying (1.1). Let

(15.2) e max lu,
c
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Then in [50 ], it was shown that there exists an eigenvalue k such that

simultaneously giving a lower and upper boand on this Xi. (Which eigenvalue has been
bounded requires some additional information.) An improved version of this bound is
given in [102]. This method was used in [50] to obtain estimates on the first ten
eigenvalues of the L that are so precise (6 to 8 decimal places) as to have essentially
disposed of this problem.

This method has also been used in 100 for rhombi and in 39 for the H-shape.

16. The method of a posteriori-a priori inequalities. The inequality (15.3) was
generalized in 106] to h, and u, no longer satisfying (1.1). Let

(16.1) 6 max IAu, + h,u, I,
R

and
(16.2) max Is

R

where s is the torsionfunction for R satisfying

(16.3) As= -1 inR s=0 onC.

Then, there is an eigenvalue h; such that

(16.4)
Ih h,

--<
’-/9 q- /9

h, p2

where

(16.5) /9 e + a6

where e is as defined in (15.2).
In 102 an inequality like (15.3) was given in terms of the L norm. If h, and u,

satisfy (1.1), and w is defined by

(16.6) Aw=0 in R w=u, onC,

then there is an eigenvalue h; such that

(16.7)
I C W2 ds

An estimate was also givenfor I (lg U,) dxdy. In [42 ], it was observed that
w can be estimated in terms of t, by an a priori inequality.

In [79], the ideas of the preceding generalizations were combined to obtain the
following result. Let h, and u, be approximations for an eigenvalue and eigenfunction.
If w is defined by

(16.8) Aw= Au, + h,u, in R, w=u, onC,
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then there is an eigenvalue X such that

(16.9)
)ki --)ki

)k, --
The proof uses Parseval’s identity and integration by parts. This is an a posteriori

inequality. It is not desirable to acutally compute the function w, so the following a
priori inequality is used:

(16.10) f w2dxdy-< all (Aw)2dxdy+ aEI w2ds’
R R C

where c,c are explicit constants [122]. Putting (16.10) into (16.9) and using (16.8)
gives the combined a posteriori-a priori inequality,

o1 ,J/ (Au, --[- )k,U,) dxdy + Ol 3 U2, ds
ki k, 12 R C

(16.11) _<

I e u, dxdy

Now, the right-hand side of (1-6.11) is a ratio of quadratic forms in the function u,.
Take u, to be a linear combination of trial functions,

(16.12) u, ak0k,
k=l

and minimize the right side of (16.11) with respect to the coefficients ak as in the
Rayleigh-Ritz method. This leads to the relative matrix eigenvalue problem

(16.13) Ma--- eZNa
where the n n matricesMandN are given by

Mi, a, I (,Acbi + X, cbi) (Acb, + X, cb,) dxdy + Ol I cbicb’ds
R C

(16.14)

30ichjdxdy
and a is the vector (a, a2, an of coefficients. If e2 is the smallest eigenvalue of
(16.13), then

(16.15)

and if e < 1,

k,
<-Xi <(16.16)

+ e e

giving a lower and upper bound on Xi.

The initial guess . for an eigenvalue can be improved as follows. Once the vector
of coefficients (al, a2, an)’ satisfying (16.13) is found, hold u. fixed in (16.11)
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as given by (16.12) and minimize the right side of (16.11) with respect to X.. This
gives

I u,zXu,dxdy
R

(16.17) X.

I R u2*dxdy

With this new value for X,, the entire process can be iterated.
A bound on the approximation of the associated eigenfunction ui by u, can also

be given [80 ]"

(16.18)

where

f (ui u,) dxdy <_ 2(1 x/l- c 2)
R

(16.19)
Xi_ Xi+ )c-max

X, Xi_l ’X;+ X,

Advantages of the method of a posteriori-a priori inequalities are: (a) the trial
functions used do not need to satisfy any boundary condition or, indeed, any auxiliary
conditions at all other than be twice differentiable, (b) application of the method is like
the Rayleigh-Ritz method, and (c) two-sided bounds are given. A disadvantage is that
only one eigenvalue at a time is estimated.

The method was used in [79] for rhombi. We will return to the method of a
posteriori-a priori inequalities in 18.

17. Galerkin and other numerical methods. In the Galerkin method, a series

(17.1) u, aiO
i=1

is assumed for the solution, where the functions . are usually required to satisfy the
boundary condition 0 on C. The coefficients a. are determined by requiring

(17.2) I (Au. + Xu.)bidxdy=O i= 1,2," ,n
R

for some functions b (which usually coincide with the ). As in the method of point
matching, this is a system of n homogeneous equations whose determinant must vanish
for nontrivial solutions to exist. The roots of this determinant are approximations for
the eigenvalues, and the corresponding u. approximate the eigenfunctions. Also, as
with point matching, the success of the method is largely dependent on a good choice
of the 0.

Galerkin methods have been used in 86 ], [24 ], [25 for trapezoids and in 135
for circles with off-center holes. Galerkin methods applied to the equivalent problem
(9.5), resulting from a conformal mapping, have been used in [61 for the circle with
off-center holes, in [96] for Meinke, hexagonal, and lunar guides, in [97] for ridge
and lunar guides, in [87] for the four-leaf lemniscate, the octagon, and a flattened
circle, and in [88 and [90 for polygons with holes.

The method offield-matching is applied to regions that are the unions of simpler
regions for which solutions are known, such as rectangles. A series solution is assumed
for each subregion in functions appropriate to that subregion. The series are then re-
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quired to match at the interfaces, giving an infinite set of equations for the coefficients.
This set of equations is then truncated and solved. The method seems very cumber-
some. It has been used in [53 for a rectangle with a centered, rectangular hole and in
130 and [92 for various crosses.

Perturbation methods can be used for regions that differ only slightly from a re-
gion with known solutions. The desired solution is expanded as a power series in a
small parameter governing the perturbation. This method is used in [120] for epicy-
cloids and in [41 for circles and squares with holes.

In [62 ], the Barta inequality (4.2) is used to estimate Xl for rhombi.
We mention the very useful review paper 105 on numerical results with 77 refer-

ences, and other reviews [94 with 150 references, [34] with 35 references, and 123
with 79 references. (Some of the references of the last three are on other topics, how-
ever.)

18. Conformal mapping combined with other methods. We have seen examples
of the point-matching and Galerkin methods applied to the equivalent problem (9.5)
connected to the original problem by the conformal map (9.4). The problem (9.5) on a
rectangle is in a particularly convenient form for using the method of intermediate
problems, and is also convenient for Rayleigh-Ritz, for finite differences using square
meshes to fit the boundary exactly, and also for the method of a posteriori-a priori in-
equalities. For some reason, no one has previously used any of these methods on the
equivalent problem (9.5) obtained from a conformal map.

Let us do a simple but nontrivial problem by all of these methods. Consider the
conformal map

(18.1) tan

which maps the square S: r/2, ’/2 x r/2, r/2 in the z-plane onto the region R
in the w-plane bounded by arcs of the unit circle and a pair of orthogonal circles (see
Fig. 8). If z x + iy, w u + iv, then

FIG. 8. Thefunction w tan(z maps a square in the z-plane to a circular waveguide with circular

ridges.
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sin x sinh y(18.2) u v
cos x + cosh y cos x + cosh y

and the boundary ofR is given by

(18.3) U _1.. /.)2 sech- _< lu _<
2

and

U 71")2 71"
(18.4) u + +/- coth

2
csch2

2

This represents a circular waveguide with circular ridges.
Since

dw z
dz = see2 ()

lul sech-
2

we have

dw[(18.5) z =cosx+coshy
and (1.1) on R is equivalent to

(18.6) --AU=,aU inS

where

(18.7) o (cos x + cosh y)-2.

NOW,

so we can write (18.6) in the form

maxo=
s

AU ,(I- Tz)u

whereA is A and Tis multiplication by

x/(cos x + cosh y)2__
cos x + cosh y

If we drop the positive operator T2, we have the base problem

(18.9) AU h,U,

which is just the problem (1.1) on the square, with known eigenvalues giving lower
bounds for the desired eigenvalues. To improve these bounds, we consider the inter-
mediate problem

(18.10) AU ,(I TPk T) U

where Pk is the operator of orthogonal projection on a set spanned by the linearly inde-
pendent trial functions {Pl ,P2, P I. Then (18.10) also gives lower bounds that
tend to the exact eigenvalues as k is increased.



EIGENVALUES OF THE LAPLACIAN 185

To reduce the solution of (18.10) to a finite-dimensional matrix problem, we intro-
duce the truncation of the operator A. The truncationA cn) of order n agrees with A on
the span of the first n eigenvalues ofA, U, U2, Un, and is simply multiplication
by X+ on the orthogonal complement of U, U2, U,. Thus,

(18.11) A (") AQ,, + kn+, (I- Q.)

where Q, is the orthogonal projection onto the span of U, U2, U,. Since

(A’ U, U) < (AU, U),

the problem

(18.12) A’ U X(I TPk T) U

also has eigenvalues that are lower bounds for the eigenvalues of (18.8). These bounds
will increase to the true eigenvalues as both n and k are increased.

Now, problem (18.12) can always be solved as a relative matrix eigenvalue
problem with no restriction on the choice of the p;. To see this, put

V= ai Ui + _a bg Tpg
i=i j=l

into (18.12). Then n + k eigenvalues of (18.12) are found from the partitioned relative
matrix problem

A (A- Xn+I)E a I 0 a

(18.13) h

0 X,+B b -E B b

where A is the diagonal matrix of the first n eigenvalues ofA as in (13.7), B is the k x k
Gram matrix of thepj as in (13.8), the k x k matrix C is given by

(18.14) C;j S Tp,Tp dxdy
R

and the k n matrixE is given by

(18.15) Es I U Tps dxdy
R

Equation (18.12) also has X,+ as an eigenvalue of infinite multiplicity.
For the present problem, the choice

(18.16) p x/(cos x + cosh y) (cos x + cosh y) Uj

was made, whereby all of the required integrals in B, C, and E are elementary. The
matrix problem (18.13) was symmetrized and solved using the standard matrix pack-
ages LINPACK [38] and EISPACK [15], [16] on an IBM sytem 3033. The results
for the projection and truncation sizes (k,n) (10,20), (20,60), (40,80) are shown in
Table for even-even eigenvalues, i.e., those associated with eigenfunctions symmetric
about both axes.
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TABLE
Even-even eigenvalues h,. ofthe region in Fig. 8. Lower bounds by n, k) -order truncation

and upper bounds by n-order Ritz.

2
3
4
5
6
7
8
9
10
11
12

Truncation of order (n,k)

(lO,2O)

7.555
27.79
42.77
49.8

(20,60)

7.5685
29.0615
44.7421
66.43
73.18

(40,80)

7.56942
29.10971
44.8341
67.802
74.417

144

7.57012
29.11951
44.8425
67.863
74.511

Ritz of order n

64

7.5716
29.1332
44.8493
67.91
74.57

91.7
97.2

104.34
122.75
135.68
145.97
167.21
184.67
200.45

104.65
123.29
137.13
147.12
177.21
192.98
212.81

104.70
123.43
137.53
147.18
177.50
193.43
213.6

16

7.588
29.41
44.98
69.21
76.97
107.3
128.9
151.
162.

To obtain complementary upper bounds, Rayleigh-Ritz was used. Equation (18.6)
is in a very convenient form to apply Rayleigh-Ritz. The minimax principle for (18.6)
is

(18.17) Xn min max

S s aU2 dxdy

For trial functions, we used

(18.18) 4j (cos x + cosh y) Uj

making the Rayleigh-Ritz equation a standard eigenvalue problem

(18.19) Ma a

withM given by (12.2). Results of Rayleigh-Ritz problems of order n 16, 64, 144 are
shown also in Table for the even-even symmetry class. We see that the average
between the lower and upper bounds has less than 0.005% relative error for ,1. This
method has also been used in [78 for lunar and eccentric annular waveguides.

Equation (18.6) is also in a convenient form to use the finite-difference method
[64]. Let h 7r/n be the width of a square mesh laid down on S so the boundary of S
falls on mesh lines. Then we approximate (18.6) by

(18.20) -AU ,aU onS U =0 onC

where A is the five-point operator (14.1), oh is the restriction of o to mesh nodes, Sh
and Ch are the sets of mesh nodes in S and its boundary C. No interpolation is required
at the boundary. For even-even symmetry, we can work with just the points in the first
quadrant, reducing the order of the matrix by a factor of nearly four. Again,
EISPACK was used. Results for n 21, 27, 33 are given in Table 2.
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TABLE 2
Even-even eigenvalues h,, ofthe region in Fig. 8 byfinite differences with mesh sizes

h 7r/n and Richardson extrapolation.

2
3
4
5
6
7
8
9
10
11
12

21

7.552838
28.61367
44.0487
65.655

27

7.559379
28.80899
44.3597
66.540

33

7.562726
28.90936
44.5180
66.980

Extrapolated

7.569578
29.11569
44.8402
67.855

71.509
99.59
116.18
124.94
139.10
162.46
175.12
185.31

72.641
101.56
119.04
129.47
142.27
168.19
182.18
196.67

73.239
102.56
120.46
131.92
143.87
171.13
185.75
202.56

74.504
104.63
123.25
137.18
147.10
177.20
192.97
214.80

The corners of the original region R are formed by orthogonal circular arcs. Re-
flecting the eigenfunctions in the circular arcs shows that the eigenfunctions u are C
at the corners. Thus, the eigenfunctions Un are also Coo functions at the corners of S.
Since there is no interpolationat the boundary, (14.8) will hold with/ 2, q 4.
Thus, we may use the Richardson extrapolation formula (14.9). The extrapolated
values for the eigenvalues are also given in Table 2. We see good agreement with the
bounds of Table 1, particularly for the lower eigenvalues, although some of the higher
extrapolated difference eigenvalues exceed the upper bounds.

Moler 101 has applied his method of point matching [50], 100] to this prob-
lem. Since the eigenfunctions here are Coo, this method works quite well also. He ob-
tained

7.5695769

Finally, we used the method of a posteriori-a priori inequalities on the problem
(18.6). The appropriate a posteriori inequality is

(18.21) min ki k, 12 .
k

where w satisfies

(18.22) Aw Au, + X, au,

The appropriate a priori inequality is

au2* dxdy

inS, w=u, onC.

(18.23) I rw2 dxdy <_ o I (Aw)2 dxdy W ot2 I w2 ds
s s c

for c, O/2 explicit constants. This leads to

(18.24)
+ e e
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where E2 is the smallest eigenvalue of

(18.25)

and

(18.26)

Ma e2Na

s c

Ni Is aOgO dxdy

The trial functions used for the even-even symmetry class were simply

(18.27) coskxcosly, k,l=0,1,2,... ,10

Some of the integrals in the matrices M and N were computed by using 32-point
Gaussian quadrature. The smallest eigenvalue E2 of (18o25) is easily found by inverse
iteration. The resulting lower and upper bounds are given in Table 3. This method has
also been used in [81 for the limaon and cardioid.

TABLE 3
Boundsfor even-even eigenvalues ,,, of the region in Fig. 8 by the method of

aposteriori-a priori inequalities 121 polynomial trialfunctions).

Lower

7.5694
29.092
44.825
67.682
74.381
101.82

Upper

7.5704
29.128
44.854
68.019
74.620
107.59

Thus, we have seen that all of the methods, finite differences, a posteriori-a priori
inequalities, intermediate problems using truncation, and Rayleigh-Ritz, give very sat-
isfactory results on the equivalent problem resulting from the conformal mapping. The
last three methods give bounds, and the last two methods used together give very good
estimates. None of the methods is difficult to use in practice. Many conformal trans-
formations are available (see, e.g., [70]) that lead to regions of interest. The con-
formal mapping approach coupled with the above methods is a very useful technique,
which should have many further applications.
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