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EIGENVALUES OF THE LAPLACIAN ON FORMS

JOZEF DODZIUK1

ABSTRACT. Some bounds for eigenvalues of the Laplace operator acting on

forms on a compact Riemannian manifold are derived. In case of manifolds

without boundary we give upper bounds in terms of the curvature, its covariant

derivative and the injectivity radius. For a small geodesic ball upper and lower

bounds of eigenvalues in terms of bounds of sectional curvature are given.

In [2] Cheng proves a beautiful comparison theorem for the first eigenvalue of

the Laplacian Ao on functions for a geodesic ball in a Riemannian manifold, and

derives as a consequence, upper bounds for higher eigenvalues of the Laplacian on

functions for a compact manifold. These upper bounds are derived by taking the

first eigenfunctions with Dirichlet boundary conditions for small balls, extending

them by zero to the whole manifold, and estimating the Rayleigh-Ritz quotient

of an appropriate linear combination. The same procedure cannot be applied to

forms of positive degree since an eigenfunction for a ball satisfying either absolute or

relative boundary conditions will not be in the Sobolev space 771 when extended by

zero to the whole manifold. In this note a modification of the method of Eichhorn

[4] is used to prove that, for certain forms on a ball which vanish on the boundary, it

is possible to estimate the Rayleigh-Ritz quotient in terms of geometric quantities.

These forms are in H1 when extended by zero and Cheng's argument applied to

them gives upper bounds for eigenvalues on a closed manifold. Our result is much

less elegant than Cheng's theorem. In the first place we have to require that the

geodesic ball is contained within the cut locus. Hence, all estimates of higher

eigenvalues depend on the injectivity radius. Secondly, Cheng obtained explicit

estimates of eigenvalues of the Laplacian Ao in terms of geometric quantities (cf. [2,

Corollaries 2.2, 2.3, Theorem 2.4]), whereas we only say which geometric quantities

determine the bounds of eigenvalues but give no estimates of the actual bounds.

Explicit estimates could be derived from our method, but the constants are so

complicated that we were unable to obtain any useful information from them. It

is an interesting question, whether all of the geometric quantities which appear

in our estimates (sectional curvature, injectivity radius, the bounds for the Kern

tensor R^) are really necessary. We do not know the answer for closed manifolds.

However, in §3 we show, following a suggestion of J. Cheeger, that for a geodesic

ball of radius smaller than the radius of injectivity, eigenvalues of the Laplacian Ap

can be estimated from above and below in terms of bounds of sectional curvature.

It is a pleasure to thank J. Cheeger for suggestions which led to improvement of

this paper.
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1. Differential geometric preliminaries. Let M be a C°° oriented, Riemannian

manifold of n dimensions. We will denote by ( , ) the inner products induced by the

Riemannian metric in fibres of various tensor bundles, and by | | the corresponding

norm. Let R^ be the tensor introduced by Kern [8]:

(1.1) RW(U, V, X, Y) = (VuR)(V, X, Y) - (VXR)(Y, U, V),

where 7? denotes the Riemann curvature tensor and V is the covariant derivative

of the Levi-Civita connection.

DEFINITION 1.2 (CF. [7]). The curvature of M is said to be (a, ß, ^-bounded

on a subset N C M if the sectional curvature K satisfies a < K < ß for every

plane section at every point p £ N, and if ^^(u, u, v, v)\ < 7|u| \v\ for every

pair of orthogonal vectors u, v £ TVM and every p £ N. The following lemma is

contained in [5, Lemma 1 and 7, Corollary 1].

To state it we need some notation. For u £ R, define

es) = -^ß,     t > o.
tsJV

It is understood that Co(t) = 1; for v < 0 we use the complex extension of

sin, CW(Q) = 1; and for u > 0, Cv is defined only on [0, n/^/ü).

LEMMA 1.3. Suppose B(q,p) C M is the geodesic ball of radius p > 0 centered

atq £ M, and B(q, p) is a diffeomorphic image of a closed ball of radius p centered

atO £ TqM. Suppose further that the sectional curvature K satisfies a < K < ß

on B(q,p) (in particular p < n/ß) for some a < 0 < ß. Let r = r(x) denote the

geodesic distance from x £ M to q. Then the components of the metric tensor with

respect to a normal geodesic coordinate system centered at g satisfy

(1.4) <»£f*a < X>y(*)iV < C2a(r)J2?\
1=1 i,j 1 = 1

forall(ç\...,cn)£Zn,x£BÏq~J). _

In addition, if the curvature is (a, ß, *j)-bounded on B(q, p) for a constant -y > 0,

there exists a continuous function g: [0, p] —* R determined only by a, ß and 7 such

that

(1.5) \Tij(x)\ < g(r),    for alii, j,k = 1,2,.. .,nandr < p.

2. Rayleigh-Ritz quotient for certain forms on a ball. In this section we exhibit

certain differential forms and estimate their Rayleigh-Ritz quotients. Let / =

fa,p be the first eigenfunction of the Laplacian Ao satisfying Dirichlet boundary

conditions for the ball of radius p in the space of constant curvature a. We assume

that / is normalized so that its L2 norm is equal to one. Let B = B(q, p) C M

be a ball satisfying the assumptions of Lemma 1.3. As observed in [2], / is a

function of the geodesic distance from the center and it can be transplanted to B

via the exponential map. Let x1, x2,..., xn be a normal geodesic coordinate system

centered at q. Define a p-form, 0 < p < n, w on B by

(2.1) u) = f(r)w0,        w0 = dx1 A • • • A dxp.
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The Rayleigh-Ritz quotient of w, R(u>) is

(du, dw)s + (Su, 6oj)b
(2.2) R(w)

(w,w)i

where S is the formal adjoint of the exterior derivative d and, for every form n,

(V,v)b = Jb \v\2dV = fBr¡ A *n. Here * is the Hodge operator and dV denotes

the volume element.

PROPOSITION 2.3. Suppose B(q,p) = B C M satisfies the assumptions of

Lemma 1.3 (i.e. p is smaller than the injectivity radius and the curvature is (a, ß, 7)

bounded on B) and w is defined by (2.1). Then R(uj) < C, where C =

C(n, p, a, ß, 7, p) is a constant depending only on n, p, a, ß, 7 and p.

PROOF. To estimate R(uj) from above we will estimate (w, w)s from below and

(du>, cL})b + (6w, 6uj)b from above. Now

(u,w)b = I f2\uo\2 \/g dx1 ■ ■-dxn,

where g = det(o¿j). Recall also that for an arbitrary form

(2.4) \v\2 = 9tl3l---9lpJpVi1-iP,j1-jP,

where (g1^) = (gki)-1- Thus it follows from (1.4) that there exists a constant

C\ > 0 depending only on a,ß,p,n,p such that Iwol2-^ ^ Ci for all x G B(q,p).
From this

(w,u>)B >Ci I f2dx1---dxn.
Jzixiy-çp*

Now note that (1.4) implies that the volume element ^/g^dx1- ■ ■dxn for the metric

of constant sectional curvature a satisfies (^/g^)~1 > C2 on a ball of radius p.

The constant C2 depends only on p and a.

Therefore

(2.5) (w, w)B >CiC2 fy/g^dx1- ■ -dxn = dC2,
7s(sc<)a<pa

since / was a normalized eigenfunction.

To estimate the numerator of R(u>) note that up to a sign 6uj = *d*u>. Therefore

we have

\Su\ = \d *u\ = \f'dr A*w0 + fd *w0\ < \f'\ ■ \u0\ + \f\ \6u>0\

['' <(l/'l8 + /2)1/2(|o;o|2 + No|a)1/2.

Moreover,

(2.7) |dw| = |/'drAwo| < |/'| |w0|.

To estabhsh the inequalities above we used the fact that * is an isometry and

that dr is a unit covector. Using (2.4) and (1.4) we can bound |wo| from above by

a constant depending only on ß,p,n,p. Moreover, the general formula (cf. [10])

(6,iHi—ip—l —       9   I ~Q~jViif-ip—i        1 jiVkii—ip—1 /.I 4i,Viivii—ifcii4-i---t„ J
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enables one to estimate \6u>o\ if one can estimate a1-7 and r^. Such estimates

follow from Lemma 1.3. Thus it follows from (2.6) and (2.7) that \dui\2 + \Su>\2 <

C3((/')2 + f2), where C3 depends only on a, ß, 7, p, n, p.

It is well known (cf. [1, p. 254]) that y/gZ > \/g, where y/g^dx1- ■ -dxn is

the volume element on the space of constant sectional curvature a, since we are

assuming that all sectional curvatures on B(q,p) are greater than or equal to a.

Therefore, using the fact that / is the normalized first eigenfunction we obtain

(du, duj)B + (Sw, 6uj)b < C3 Í ((f)2 + f2)Jg-adxx • • -dxn
(2.8) 7e(x»)2<p2

= C3(X + 1),

where X = \(a,p) is the first eigenvalue of Ao on a ball of radius p in the n-

dimensional space of constant sectional curvature a. (2.8) and (2.5) prove the

proposition.

A similar argument was used by Eichhorn [4] to prove that the spectrum of Ap

is nondiscrete for complete manifolds with (a, ß, 7)-bounded curvature for some

a < ß, 7 > 0 and injectivity radius bounded from below.

REMARK 2.9. The proof above shows that for sufficiently small p

R(cj)<C4(l + \(a,p)),

where C4 is a constant depending on n, p, a, ß, 7 but not on p. Clearly \(a, p) ~

const /p2 when p approaches 0.

3. Eigenvalues for a ball. Proposition 2.3 gives an upper bound for XliP, the first

eigenvalue of the Laplacian Ap on forms satisfying relative boundary conditions for

a ball. The test form u) used there is very special and it should be possible to give

a much better estimate. This is the case as was pointed out to the author by J.

Cheeger. The same method will yield estimates of higher eigenvalues.

Consider first an oriented Riemannian manifold N with boundary dN and

the space of C°° forms on TV satisfying absolute boundary conditions wnorm =

dwnorm = 0 on dN (cf. [9]). The knowledge of the spectra of Ap, 0 < p < n =

dim TV, is equivalent to knowing the spectra of Ap, 0 < p < n, on the space of

exact forms with absolute boundary conditions. Actually, this yields information

about spectra for forms with relative boundary conditions as well, since * operator

commutes with the Laplacian and interchanges absolute and relative boundary

conditions.

PROPOSITION 3.1. The spectrum 0 < piiP < p2yP < • - - of the Laplacian Ap,

0 < p < n, on exact forms of degree p with absolute boundary conditions can be

computed as follows:

Í(v v) 1
phP = inf    sup    \ -j— dß = w\,

v nev\{oy I (t>,o) )v vev\{o}

where V ranges over all subspaces of i dimensions of the space of all C°° exact forms

of degree p on TV.

The proof is rather standard and will be omitted. The main point is to observe

that the critical points for the functional

(dy, dr¡)

(i?,»?)
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automatically satisfy the boundary condition dwnoTm = 0. If t?o is such a critical

point, then dr¡o is an exact eigenform.

Suppose g and g' are two metrics on TV such that

(3.2) erg < g' < rg

for some constants a, r > 0.   The proposition above allows us to estimate the

eigenvalues of the Laplacian for the metric g' in terms of those for g.

PROPOSITION 3.3. Suppose the metrics g and g' onN satisfy (3.2). Let{piiP}°^=l

(respectively {mÍ,p}¿S=i) &e the sequence of eigenvalues for exact p-form with absolute

boundary conditions for the metric g (respectively g'). Then

l/jW2+P 1/7-W2+P
(3.4) -^-J pi,p < piip < -[-) piiP.

PROOF. The space of the test forms in Proposition 3.1 is independent of the

metric. Let (77,77)' be the square of the L2 norm of the form 77 for the metric g'.

An easy calculation shows that, if r¡ has degree q,

T-V"/2(7?,r?) < (77,77)' < o-iTn'2(r,,r,).

As a consequence, if Q(y) = sup{(7y, y)/(6,9)\d6 = 77} and degT? = p,

\£)""+rQM < «v> < Ksf**«*
with the obvious definition of Q'. (3.4) follows from this and Proposition 3.1.

Now consider a geodesic ball B = B(q,p) with p smaller than the injectivity

radius at q. Assume that the sectional curvature K satisfies a < K < ß on B

for some a < 0 < ß (in particular p < n/y/ß). Then, by (1.4), the metric on B

is uniformly bounded from above and below by multiples of the Euclidean metric

and, applying Proposition 3.3 we obtain

PROPOSITION 3.5. Let {^i,p(p)}£Li be the sequence of eigenvalues for exact

forms of degree p with absolute boundary conditions for a ball of radius p in the

Euclidean space. If B is as above and {Pi,P}i2=i are corresponding eigenvalues for

B, then

r-2( x  (Ca(p)\n+2p     ... , r_2, JCß(P)\n+2p

Ca iP) ■ ycßjp))    iÁP) - Hp -Cß {p\cup)J   u%áp)-

4. Closed manifolds. In this section M is C°° oriented, Riemannian and

compact. We observe that the method of Cheng [2] can be used to estimate higher

eigenvalues of Ap on a closed manifold M in terms of bounds for R(u>) for forms

constructed in §2. We recall the minimun characterization of eigenvalues of Ap

which follows from Courant's min-max principle [3]. Suppose \iiP < X2,p < • • • is

the sequence of eigenvalues of Ap, each repeated according to its multiplicity. Let

{'Pi}i2=i he the corresponding complete orthonormal sequence of eigenforms. Then

(d<p, d<p) + (6<p, 6<p)
Am+l,p — mi-,

•p (<p, <P)
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where ip ranges over the set of all L2 forms of degree p such that dip and Sip are

in L2 and <p is orthogonal to <pi,ip2,...,ipm- Here the inner product for forms is

given by (u, 77) = fM w A *y and dip and 6>p are taken in the sense of distributions.

Let D be a subdomain of M with a smooth boundary, and let 77 be a C1 form

on D which vanishes on dD. Extend 77 to be zero outside D. It is easy to see

that for the resulting continuous form 77 on M drj and 6y are in L2 and are in

fact represented by the trivial extension by zero of dr¡ and 6r¡ computed on D.

Therefore the forms w constructed in §2 can be used for eigenvalue estimates on

M.

Having made this observation we can apply the method of proof of Theorem 2.1

of [2] to obtain an upper bound of higher eigenvalues. We need an easy lemma

whose proof can be found in §5 of [6].

LEMMA 4.1. Suppose M is compact, dimM = n and the Ricci curvature of M

satisfies Rícm > (« —1)0 • Let N(e) denote the maximal number of disjoint balls of

radius e in M. Then

N{e) > JÍML"{e) - V(2e,«)'

where V(M) is the volume of M and V(2e, a) denotes the volume of ball of radius 2e

in the space of constant sectional curvature a. If a < 0, and e is sufficiently small,

e.g. e < 1,

where d = d(a,n).

Our bound of higher eigenvalues is given in the following theorem.

THEOREM 4.2. Let M be a C°° oriented, compact, Riemannian manifold.

Suppose the curvature of M is (a, ß, 7) bounded, a < 0 < ß. Let Ím denote the

injectivity radius of M. The mth eigenvalue \m¡p(M) of the Laplacian Ap on forms

of degree p, 0 < p < n, can be bounded above by a constant depending onp, n =

dim M, a, ß, 7, V(M) and iu- More precisely, if C is the constant in Proposition

2.3, then

Xm,p(M) < CT n,p, a,/3,7, min I p, -( -±—^J      J J,

where p is any number in (0, ¿m) and d = d(a, n) is the constant appearing in Lemma

4.1.

PROOF. We are assuming that a < 0 < ß. By Lemma 4.1, we can find m

disjoint balls in M of radius %(V(M)/dm)1/n. The theorem follows by applying

the method of proof of Cheng's theorem (Theorem 2.1 of [2]) verbatim.

It follows from Remark 2.8 and the theorem above that

m2/n
lim sup " ™f < C5

where C5 depends on n, p, a, ß, 7, and V(M). This is of correct order in view of H.

Weyl's asymptotic formula.
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