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ABSTRACT

The eigenvalues of the normalized Laplacian of a graph provide information on its structural properties
and also on some relevant dynamical aspects, in particular those related to weight-dependent walk. In this
paper, we first present a study on the transition weight matrix of a weighted network. In order to get the
eigentime identity for weight-dependent walk and weighted counting of spanning trees, we need to obtain
all the eigenvalues and their multiplicities of the transition weight matrix. Then we obtain the recursive
relationship of its eigenvalues at two successive generations of transition weight matrix. By substituting,
we can obtain the relationship of normalized Laplacian matrix’s eigenvalues at two successive generations.
Using the relationship and Vietas formulas, we obtain the scalings of the eigentime identity. Afterwards,
we classify normalized Laplacian matrix’s eigenvalues and compute the product of all nonzero normalized
Laplacian eigenvalues by the product recursive relationship. The product is used to obtain weighted counting
of spanning trees. Finally, by weighted counting of spanning trees, we validate the obtained eigenvalues and
their multiplicities. The obtained results show that the weight factor has a strong effect on the behavior of
weight-dependent walks.

Keywords: weighted network, eigentime identity, weighted counting of spanning trees, eigenvalue,
multiplicity
PACS Nos: 89.75.-k; 89.75.Hc; 89.75.Fb

1 Introduction

In the recent years, the study of networks associated with complex systems has received much attention of
researchers from different scientific fields, especially the weighted network [1, 2, 3]. The eigentime identity
of weighted network has gained much interest [4, 5, 6].

In the past few years, there has been an increasing interest in the study of the normalized Laplacian as
many measures for random walks on un-weighted networks. The eigenvalues and eigenvectors of normal-
ized Laplacian of the associated graph are related to the hitting time, mixing time and Kemeny’s constant
which can be used as a measure of efficiency of navigation on the network [7, 8, 9]. Julaiti et al. mentioned
that the sum of reciprocals of each nonzero eigenvalues of normalized Laplacian matrix for a network de-
termines the eigentime identity for random walks on the network, which is a global characteristic of the
network, and reflects the architecture of the whole network [5]. Zhang et al. presented a first study on the
transition weight matrix of a family of weight driven networks. They applied the obtained eigenvalues to
derive a closed-form expression for the random target access time for biased random walks occurring on the
studied weighted networks [10]. Previous works about spectra of the transition matrix were limited to binary
networks, and the influence of inhomogeneous weight distribution on the spectral properties of transition
matrix still remains unknown. Now we study the weighted network with weight distribution decided by the
weighter factor.

There are many differences between this model (i.e., weighted network with two hub nodes) and other
weighted networks. Firstly, the weighted networks are divided into two cases by the total number of nodes.
One case is that the total number of nodes is exponential [6]. The Laplacian matrix is used to study the

1 Corresponding author. Tel.: +86 13815158555.
E-mail address: daimf@mail.ujs.edu.cn , daimf0225@163.com (M. Dai).
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network with two hub nodes 2structure and dynamics of the network. The other case is that the number of nodes is not exponential [10, 11].
The normalized Laplacian matrix is used to study the architectures and dynamics of the network. Since the
total number of nodes of this model is not exponential, we use the normalized Laplacian matrix to study the
architectures and dynamics of the network. Comparing with the model in Ref. [10], the weight of each edge
at two successive generations of this model constructed by the weight factor is invariable, while the weight
of each edge at two successive generations is variable in Ref. [10]. Comparing with the two models in Ref.
[11], the number of hub nodes is different from the polymer networks, and the solution method is different
from treelike networks in Ref. [11]. We use the definition of eigenvalues and eigenvectors to compute the
relationship of normalized Laplacian matrix’s eigenvalues at two successive generations while Dai et al. (in
Ref. [11]) use the characteristic equation of normalized Laplacian matrix to compute the relationship at two
successive generations of treelike networks.

In this paper, intuited by the weight driven networks [10] and the weighted networks with weight factor
[12, 13, 14], the weighted network with two hub nodes is built. We study analytically the eigentime identity
for normalized Laplacian matrix of weighted network with two hub nodes carrying a weight factor. Based
on the particular construction of this network, we get all the eigenvalues and their corresponding multiplic-
ities for transition weight matrix of weighted network with two hub nodes. Using the obtained eigenvalues
for transition weight matrix, we can obtain the eigenvalues for normalized Laplacian matrix of weighted
network with two hub nodes. Then, we could deduce an explicit expression for the eigentime identity and
its leading scalings, which is different from those previously obtained for binary heterogeneous networks,
implying that the weight factor has an important impact for weight-dependent walk behavior. Furthermore,
we use two methods to compute the weighted counting of spanning trees in the studied network. By com-
paring the solutions got from different methods, we could verify the validity of our computation for the
eigenvalues.

2 The weighted network with two hub nodes and related quantities

The weighted network with two hub nodes, parameterized by a positive number r, is constructed in an
iterative manner [15]. We denote the network after g (g ≥ 0) steps by Fg, which is built as follows. For
g = 0, F0 is an edge with unit weight connecting two nodes. For g ≥ 1, Fg is obtained from Fg−1 by
performing the following operations. For each edge with weight w in Fg−1, we add two new nodes and link
them to either end of the edge, respectively, and each new edge carries weight rw. Here we call r the weight
factor. And for the old edges existed in Fg−1, the weight remains the same. Figure 1 illustrates the network
generation process from g = 0 to 2.

Let Ng, Eg, Qg denote the total number of nodes, the total number of edges, and the total weight of all
edges in Fg, respectively. By construction, for g ≥ 0, we have

Qg = (1 + 4r)Qg−1,

which under the initial condition Q0 = 1 yields

Qg = (1 + 4r)g. (1)

Furthermore, by construction, for g ≥ 0, we have

Eg = 5Eg−1 = 5gE0 = 5g,

and

Ng = Eg + 1 = 5g + 1. (2)

For an edge connecting two nodes i and j in Fg, we use wij(g) to denote its weight. Let di(g), si(g)
denote the degree and strength of node i in Fg, respectively, which is added to the network at generation gi.
It is easy to obtain

di(g) = 3di(g − 1) = 3g−gi ,
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Figure 1: Illustration of the growth for a network F0, F1 and F2 for example. The weight of edge (green
on-line) is 1. The weight of edge (red on-line) is r. The weight of edge (black on-line) is r2.

and

si(g) =
∑
j∈v(i)

wij(g) = (1 + 2r)si(g − 1)

= (1 + 2r)g−gisi(gi), (3)

where v(i) is the set of neighbors of i in Fg.

3 Eigentime identity and weighted counting of spanning trees

Let Wg be the generalized adjacency matrix (weight matrix) of Fg. The entries Wg(i, j) of Wg are defined
as follows: Wg(i, j) = wij(g) if nodes i and j are adjacent in Fg, or Wg(i, j) = 0 otherwise. Afterwards,
the transition weight matrix for weight-dependent walk ( i.e., the walker moves to any of its neighbors with
probability proportional to the weight of edge linking them [16, 17] ) in Fg, denoted by Tg, is defined as
Tg = S−1

g Wg, where Sg is the diagonal strength matrix of Fg with its ith diagonal entry being the strength
si(g) of node i. Thus, The (i, j)th element of Tg is Tg(i, j) = wij(g)/si(g), which represents the local
transition probability for a walker going from node i to node j.

3.1 Eigentime identity

The eigentime identity and the relationship of the eigentime identity and the normalized Laplacian eigen-
values of weighted networks are introduced in [10].

Transition weight matrix Tg describes the weight-dependent walk in Fg, and thus various interesting
quantities for weight-dependent walk are reflected in eigenvalues of the transition matrix. For example, the
sum of reciprocals of 1 minus each eigenvalue (excluding eigenvalue 1 itself) of transition weight matrix Tg

determines the random target access time, also called eigentime identity, in Fg [18, 19, 20].
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Let Hij(g) denote the mean first-passage time for weight-dependent walk from node i to node j in
Fg, defined as the expected time for a walker starting from node i to visit node j for the first time. Let
π = (π1, π2, . . ., πNg)

T represent the steady state distribution on Fg [8, 21], where πi = si(g)/(2Qg)

satisfying
∑N

i=1 πi = 1 and πTTg = πT . The eigentime identity, denoted by Hg, for weight-dependent
walk on Fg, is defined as the expected time needed by a walker from a node i to another target node j,
chosen randomly from all nodes according to the steady state distribution, that is,

Hg =

Ng∑
j=1

πjHij(g),

which does not depend on the starting node and can be recast as

Hg =

Ng∑
i=1

πi

Ng∑
j=1

πjHij(g) =

Ng∑
j=1

πj

Ng∑
i=1

πiHij(g).

Since Hg can be looked upon as the average trapping time of a special trapping problem [22], it encodes
much useful information about trapping in Fg.

Since Tg is asymmetric, we can normalize it to obtain the following real and symmetric matrix Pg, which
is defined as

Pg = S
− 1

2
g WgS

− 1
2

g = S
1
2
g TgS

− 1
2

g .

We introduce a matrix Lg = Ig − Pg, where Ig denotes the Ng × Ng identity matrix. Actually, Lg is
the normalized Laplacian matrix [23, 24, 25] of Fg. Let λi(g)(1 ≤ i ≤ Ng) be the Ng eigenvalues of Pg.
By definition, for any i, σi(g) = 1 − λi(g) is an eigenvalue of Lg. And σ1(g) = 1 − λ1(g) = 0. It can be
proved [26] that Hg can be represented in terms of the nonzero eigenvalues of Lg, given by

Hg =

Ng∑
i=2

1

σi(g)
. (4)

3.2 Weighted counting of spanning trees

For a weighted network G, the set of its spanning trees is denoted by Υ(G). For a tree T ∈ Υ(G), its weight
w(T ) is defined to be the product of weights of all edges e in T , that is, w(T ) = Πe∈Twe, where we is
the weight of edge e. Let τ(G) denote the weighted counting of spanning trees of G, which is defined by
τ(G) =

∑
T∈Υ(G)w(T ).

Since Fg is a tree, which has only one spanning tree, in fact Fg itself. Then, the weighted counting of
spanning trees in Fg is τ(Fg) = Πe∈Fgwe(g), where the product is running over the weight we(g) of all
edges e ∈ Fg. According to previous results [26, 27], we have

τ(Fg) =

∏Ng

i=1 si(g)
∏Ng

i=2 σi(g)∑Ng

i=1 si(g)
. (5)

From Eqs. (4) and (5), we know that both eigentime identity and weighted counting of spanning trees are
computed by the eigenvalues of normalized Laplacian matrix. Eigentime identity is quantified as the sum
of reciprocals of all nonzero normalized Laplacian eigenvalues while weighted counting of spanning trees
is quantified as the product of of all nonzero normalized Laplacian eigenvalues. So, we need to compute
the eigenvalues of normalized Laplacian matrix. The eigenvalue σi of normalized Laplacian matrix and the
eigenvalue λi of the transition weight matrix satisfies σi = 1− λi. So, in the next section, we will study the
eigenvalues and their multiplicities of the transition weight matrix for the network.

4 Eigenvalues and multiplicities of transition weight matrix

To obtain eigentime identity and weighted counting of spanning trees, we will study the eigenvalues and
their multiplicities of the transition weight matrix for the network.
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4.1 Recursive relationship of eigenvalues at two successive generations

In this subsection, the recursive relationship of eigenvalues at two successive generations is studied.
We now consider the eigenvalues and their corresponding eigenvectors of Tg. Since Tg is asymmetric,

we can normalize it to obtain the following real and symmetric matrix Pg, which is defined as

Pg = S
− 1

2
g WgS

− 1
2

g = S
1
2
g TgS

− 1
2

g . (6)

By definition of Pg, the (i, j)th element of Pg is Pg(i, j) =
wij(g)√

si(g)
√

sj(g)
. As Pg and Tg are similar

matrixes, they have the connection as follows. First and foremost, they have the same set of eigenvalues.
Furthermore, if ϕ is an eigenvector of matrix Pg associated with eigenvalue λ, then S− 1

2ϕ is an eigenvec-
tor of Tg corresponding to eigenvalue λ. Therefore, we reduce the problem of finding eigenvalues for an
asymmetric matrix Tg to the issue of determining eigenvalues for a symmetric matrix Pg.

Suppose that λ is an eigenvalue of Pg, and ϕ = (ϕ1, ϕ2, . . ., ϕNg)
T is its corresponding eigenvector,

where ϕj is the component corresponding to node j in Fg. Let ϕ̃ be a vector of dimension Ng−1 that
is obtained from ϕ by restricting its components to the old nodes, namely, nodes generated before or at
iteration g − 1. As will be shown below, ϕ̃ is an eigenvector of Pg−1, associated with eigenvalue λ̃, from
which λ is generated. By definition, we have

λϕ = Pgϕ. (7)

Let o be an old node in Fg. According to Eq. (7),

λϕo =
∑
iϵv(o)

Pg(o, i)ϕi, (8)

where v(o) denotes the set of the do(g) neighbors of node o. It is obvious that v(o) consists of two parts. One
part is the set of the do(g − 1) old neighbors of node o. The other part is do(g)− do(g − 1) new neighbors.
Let ṽ(o), v̄(o) denote, respectively, the old neighbors and the new ones. For each new neighboring node
i ∈ v̄(o), the component ϕi satisfies

λϕi =
∑
jϵv(o)

Pg(i, j)ϕj = Pg(o, i)ϕo,

implying

ϕi =
Pg(o, i)

λ
ϕo. (9)

In the case λ ̸= 0, inserting Eq. (9) into Eq. (8), we obtain

λϕo =
∑
iϵv̄(o)

Pg(o, i)ϕi +
∑
iϵṽ(o)

Pg(o, i)ϕi

=
∑
iϵṽ(o)

Pg(o, i)ϕi +
∑
iϵv̄(o)

P 2
g (o, i)

λ
ϕo. (10)

For each new neighboring node i ∈ v̄(o), one has

Pg(o, i) =
√

si(g)/so(g). (11)

Considering the three relations [Pg(o, i)]
2 = si(g)/so(g),

∑
iϵv̄(o) si(g) = 2rso(g − 1) and so(g) = (1 +

2r)so(g − 1), Eq. (10) can be solved as
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λϕo =
∑
iϵṽ(o)

Pg(o, i)ϕi +
∑
iϵv̄(o)

si(g)

λso(g)
ϕo

=
∑
iϵṽ(o)

Pg(o, i)ϕi +
2rso(g − 1)

λso(g)
ϕo

=
∑
iϵṽ(o)

Pg(o, i)ϕi +
2rso(g − 1)

λ(1 + 2r)so(g − 1)
ϕo

=
∑
iϵṽ(o)

Pg(o, i)ϕi +
2r

(1 + 2r)λ
ϕo.

Thus, we can obtain [
λ− 2r

(1 + 2r)λ

]
ϕo =

∑
iϵṽ(o)

Pg(o, i)ϕi. (12)

Eq. (12) only involves old nodes, which were already existing at iteration g − 1. For λ ̸= 0, Eq. (12) is
true for an arbitrary node present at generation g − 1. It is not difficult to see that for each old neighboring
node i ∈ ṽ(o),

Pg(o, i) =
1

1 + 2r
Pg−1(o, i).

We also have the following corresponding equation for the old node o at iteration g − 1:

λ̃ϕo =
∑
iϵṽ(o)

Pg−1(o, i)ϕi

= (1 + 2r)
∑
iϵṽ(o)

Pg(o, i)ϕi. (13)

Comparing Eq. (12) with Eq. (13), we obtain that

λ̃ = (1 + 2r)λ− 2r

λ
. (14)

Solving the quadratic equation in the variable λ given by Eq. (14) yields

λ± =
λ̃±

√
λ̃2 + 8(1 + 2r)r

2(1 + 2r)
, (15)

which shows that each eigenvalue λ̃ of Pg−1 gives rise to two eigenvalues of Pg, λ+ and λ−.

4.2 Multiplicities of eigenvalues

In this subsection, we will determine the multiplicity of each eigenvalue for matrix Pg. Let Dmul
g (λ) repre-

sent the multiplicity of eigenvalue λ for matrix Pg.
For F0 and F1, the eigenvalues and their multiplicities can be calculated directly. The eigenvalues of P0

are 1 and −1. For P1, its eigenvalues are 1,−1, 0, 2r
1+2r and − 2r

1+2r , where two pairs of eigenvalues 1,− 2r
1+2r

and −1, 2r
1+2r are generated, respectively, by eigenvalues 1 and −1 of P0. For g ≥ 2, the eigenvalues of

matrix Pg display the following remarkable nature. To begin with, every eigenvalue appearing at current
generation gi always exists at the next generation gi + 1, and all new eigenvalues of Pgi+1 are produced by
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the eigenvalues that were newly borne at generation gi. Moreover, since both λ+ and λ− are monotonously
increasing functions, every new eigenvalue inherits the multiplicity of its parent. Hence, for g ≥ 2, all eigen-
values (excluding zero eigenvalue) of Pg are generated from 1,−1 and 0, with all the offspring eigenvalues
of 1 and −1 being nondegenerate. Therefore, all that is left is to determine the multiplicity of 0, as well as
the multiplicities of its descendants.

Let r(M) denote the rank of matrix M . Then, the multiplicity of the zero eigenvalues for Pg is

Dmul
g (0) = Ng − r(Pg).

We now evaluate r(Pg). For the set of all nodes in Fg, let α denote the subset of nodes in Fg−1, and β the
subset of nodes newly produced at generation g. Then, Pg can be written in a block form

Pg =

(
Pα,α Pα,β

Pβ,α Pβ,β

)
.

As Pβ,β is the (Ng −Ng−1)× (Ng −Ng−1) zero matrix, so Pg is simplified as

Pg =

(
Pα,α Pα,β

Pβ,α 0

)
.

Notice that r(Pα,β) = r(Pβ,α). According to Eq. (11), we can know that any new node i connecting to
old node o has the same value Pg(o, i). So, Pβ,α is a full column rank matrix. Then, r(Pβ,α) = Ng−1 and
r(Pg) = 2Ng−1. So, we can obtain that Dmul

g (0) = Ng − 2Ng−1 and the degeneracy of eigenvalue 0 of Pg

is

Dmul
g (0) =

{
0, if g = 0,

3 · 5g−1 − 1, if g ≥ 1.

We denote by N seed
g (0) the total number of eigenvalue 0 and all of its descendants in Pg (g ≥ 1),

N seed
g (0) =

g∑
i=1

(3 · 5i−1)2g−i

= 5g − 2g+1 + 1.

Similarly, for either −1 or 1, the total number of eigenvalues and their descendants in Pg (g ≥ 1) is

N seed
g (−1) = N seed

g (1) = 2g.

Summing up the number of eigenvalues obtained above gives

N seed
g (0) +N seed

g (−1) +N seed
g (1) = 5g + 1 = Ng,

which implies that we have found all the eigenvalues of matrix Pg and thus the transition weight matrix Tg.

5 The analytic expression of eigentime identity and weighted counting of
spanning trees

In this section, we apply the obtained eigenvalues and their multiplicities to determine eigentime identity
for weight-dependent walk and the weighted counting of spanning trees in the weighted network Fg. Notice
that Fg has a treelike structure, the weighted counting of spanning trees is just be the product of weights
of all edges in Fg. Thus, our aim for evaluating weighted counting of spanning trees is to verify that our
computation for eigenvalues and their multiplicities is correct.
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5.1 Eigentime identity

Suppose that Ωg is the set of all the Ng eigenvalues of matrix Lg at generation g. Ω0 = {0, 2}, 0 ∈
Ω0 generates two eigenvalues 0, 1+4r

1+2r ∈ Ω1. 2 ∈ Ω0 generates two eigenvalues 2, 1
1+2r ∈ Ω1. We

have Ω1 = {0,Ω(1)
1 , Ω

(2)
1 ,Ω

(3)
1 } = {0, {1, 1}︸ ︷︷ ︸

2

, 1+4r
1+2r , {2,

1
1+2r}}. Similarly, Ω2 = {0,Ω(1)

2 ,Ω
(2)
2 ,Ω

(3)
2 } =

{0, {1, 1, · · · , 1}︸ ︷︷ ︸
14

, 1+4r
1+2r ,Ω

(3)
2 }, where Ω

(3)
2 is generated by 1, 1+4r

1+2r , 2, and 1
1+2r , i.e., Ω(3)

2 is initially gener-

ated by 1, 1+4r
1+2r and 2.

Generally, Ωg can be classified into four subsets represented by 0, Ω(1)
g , Ω(2)

g , and Ω
(3)
g , respectively.

That is, Ωg = 0∪Ω
(1)
g ∪Ω

(2)
g ∪Ω

(3)
g , where Ω(1)

g consists of eigenvalue 1 with multiplicity 3 · 5g−1− 1, and
Ω
(2)
g contains only eigenvalue 1+4r

1+2r with a single degeneracy, and Ω
(3)
g includes those eigenvalues generated

by 1, 2 and 1+4r
1+2r . For Ω(1)

g , we have
∑

i∈Ω(1)
g

1
σi(g)

= 3 · 5g−1− 1. For Ω(2)
g , we have

∑
i∈Ω(2)

g

1
σi(g)

= 1+2r
1+4r .

Hence, in order to determine Hg, we only need to evaluate
∑

i∈Ω(3)
g

1
σi(g)

.

From Eq. (14), we can easily obtain the following relation governing the eigenvalues of Lg and Lg−1:

(1 + 2r)σ2
i (g)− [1 + 4r + σi(g − 1)]σi(g) + σi(g − 1) = 0,

which means that each eigenvalue σi(g−1) in Ωg−1 generates two eigenvalues, σi,1(g) and σi,2(g), belong-
ing to Ω

(3)
g . According to Vietas formulas, we have

σi,1(g) + σi,2(g) =
1 + 4r + σi(g − 1)

1 + 2r
,

and

σi,1(g)σi,2(g) =
σi(g − 1)

1 + 2r
. (16)

Then

1

σi,1(g)
+

1

σi,2(g)
=

1 + 4r

σi(g − 1)
+ 1,

indicating that ∑
σi(g)∈Ω

(3)
g

1

σi(g)
= (1 + 4r)

∑
σi(g−1)∈Ωg−1

1

σi(g − 1)
+ 5g−1.

Combining the above-obtained results, the recursive relation between Hg and Hg−1 can be given

Hg =
∑

σi(g)∈Ω
(3)
g

1

σi(g)
+

∑
σi(g)∈Ω

(2)
g

1

σi(g)
+

∑
σi(g)∈Ω

(1)
g

1

σi(g)

= (1 + 4r)Hg−1 + 5g−1 + 3 · 5g−1 − 1 +
1 + 2r

1 + 4r

= (1 + 4r)Hg−1 + 4 · 5g−1 − 2r

1 + 4r
.

Using the initial condition H0 =
1
2 , we obtain

Hg =


2(2g + 1) · 5g−1 + 1

10 , if r = 1,
5g

1−r +
1

2(1+4r) +
2r2+2r+1

r−1 (1 + 4r)g−1,

if r > 0 and r ̸= 1.

(17)

For very large networks ( i.e., Ng → ∞), using Eqs. (2) and (17), the leading term of Hg obey
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Figure 2: Eigentime identity Hg versus g is on a semilogarithmic scale.
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{
Ng, if 0 < r ≤ 1,

N
log5(1+4r)
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We note that for eigentime identity studied in this paper, when 0 < r ≤ 1, Hg grows linearly with
the network size. When r > 1, Hg grows superlinearly with the network size. For the range of g ≤ 50,
eigentime identity Hg versus g on a semilogarithmic scale is shown in Fig. 2.
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Figure 3: Eigentime identity Hg versus r.

We note that for eigentime identity studied in this paper, when g = 1, 2, 3, eigentime identity Hg versus
r is shown in Fig. 3.
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5.2 Weighted counting of spanning trees

On the one hand, τ(Fg) equals the product of weight of all edges in Fg. Thus, τ(Fg) can be directly obtained
by evaluating this product. Notice that Qg is the total weight of all edges in Fg, we have

Qg = (1 + 4r)g =

g∑
i=0

Ci
g4

iri.

Thus, we can obtain

τ(Fg) = r
∑g

i=0 iC
i
g4

i
.

Let Zg =
∑g

i=0 iC
i
g4

i, Zg can be simplified as follows

Zg =

g∑
i=0

4i(iCi
g)

=

g∑
i=1

4i(gCi−1
g−1)

= 4g

g−1∑
i=0

4iCi
g−1.

Let Sg =
∑g−1

i=0 4iCi
g−1, so τ(Fg) can be represented as

τ(Fg) = r4gSg . (18)

As

Sg =

g−1∑
i=0

4iCi
g−1

= 40C0
g−1 + 41C1

g−1 + 42C2
g−1

+ · · ·+ 4g−1Cg−1
g−1 , (19)

and

4Sg = 41C0
g−1 + 42C1

g−1 + · · ·

+4g−1Cg−2
g−1 + 4gCg−1

g−1 . (20)

From Eqs. (19) and (20), we have

5Sg = 40C0
g−1 + 41(C1

g−1 + C0
g−1) + 42(C2

g−1 + C1
g−1)

+ · · ·+ 4g−1(Cg−1
g−1 + Cg−2

g−1 ) + 4gCg−1
g−1

= 40C0
g +

g−1∑
i=1

4i(Ci
g−1 + Ci−1

g−1) + 4gCg
g . (21)

Notice that

Ci
g = Ci−1

g−1 + Ci
g−1.

Thus, Eq. (21) can be simplified as

5Sg = 40C0
g +

g−1∑
i=1

4iCi
g + 4gCg

g

=

g∑
i=0

4iCi
g

= Sg+1. (22)
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By Eqs. (18) and (22), we can obtain the following recursive relation

ln τ(Fg+1) = 5(1 +
1

g
) ln τ(Fg).

Considering ln τ(F1) = 4 ln r, we have

τ(Fg) = r4g·5
g−1

. (23)

Let Rg denote the product of the weight of new edges that generated at step g. As the weight of old
edges existed in Fg−1 remains the same in Fg, we can obtain

Rg =
τ(Fg)

τ(Fg−1)

= r4(4g+1)·5g−2
. (24)

On the other hand, in order to solve Eq. (5), we first compute the denominator of Eq. (5)

Ng∑
i=1

si(g) = 2Qg = 2(1 + 4r)g. (25)

For the two product terms
∏Ng

i=1 si(g) and
∏Ng

i=2 σi(g) in the numerator of Eq. (5), we use ∆g and Λg to
represent them, respectively. According to the above-obtained results, the two quantities ∆g and Λg obey
the following two recursive relations.

According to Eq. (24), we obtain

∆g =

Ng−1∏
i=1

si(g) ·
Ng∏

i=Ng−1+1

si(g)

=

Ng−1∏
i=1

(1 + 2r)si(g − 1) ·Rg

= (1 + 2r)Ng−1 · r4(4g+1)·5g−2
∆g−1,

and from Eq. (16), we can obtain

Λg =
∏

i∈Ω(1)
g

σi(g) ·
∏

i∈Ω(2)
g

σi(g) ·
∏

i∈Ω(3)
g

σi(g)

=
1 + 4r

1 + 2r
·
∏

i∈Ω(3)
g

σi(g)

=
1 + 4r

1 + 2r
· Λg−1

(1 + 2r)Ng−1−1

=
1 + 4r

(1 + 2r)Ng−1
Λg−1.

Thus,

∆gΛg = (1 + 4r)r4(4g+1)·5g−2
∆g−1Λg−1. (26)

Applying ∆0 = 1 and Λ0 = 2, Eq. (26) is solved to give

∆gΛg = 2(1 + 4r)g · r4g·5g−1
. (27)

Inserting the results in Eqs. (25) and (27) into Eq. (5) yields

τ(Fg) = r4g·5
g−1

,

which is consistent with Eq. (23), indicating the validity of our computation on the eigenvalues and their
multiplicities for the transition weight matrix Tg of Fg.
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6 Conclusions

In conclusion, we have considered the eigentime identity for normalized Laplacian matrix of weighted net-
work with two hub nodes. We have determined all the eigenvalues and their corresponding multiplicities
for transition weight matrix of weighted network with two hub nodes. We can obtain the eigenvalues for
normalized Laplacian matrix of weighted network with two hub nodes by using the obtained eigenvalues
for transition weight matrix. Furthermore, we have used the obtained eigenvalues of normalized Laplacian
matrix to derive an explicit expression about the eigentime identity for weight-dependent walk taking place
on the network. Finally, we confirmed our results for the eigenvalues and their multiplicities for transition
weight matrix via enumerating the weighted spanning trees, based on the connection between the eigenval-
ues and the weighted spanning trees.
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