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We extend the concept of eigenvector centrality to multiplex networks, and introduce several alternative

parameters that quantify the importance of nodes in a multi-layered networked system, including the

definition of vectorial-type centralities. In addition, we rigorously show that, under reasonable

conditions, such centrality measures exist and are unique. Computer experiments and simulations

demonstrate that the proposed measures provide substantially different results when applied to the same

multiplex structure, and highlight the non-trivial relationships between the different measures of

centrality introduced.VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818544]

Many biological, social, and technological systems find a
suitable representation as complex networks, where nodes
represent the system’s constituents and edges account for
the interactions between them.1–5 In the general case, the
nodes’ interactions need a more accurate mapping than
simple links, as the constituents of a system are usually
simultaneously connected in multiple ways. For instance, in
social networks, one can consider several types of different
actors’ relationships: friendship, vicinity, kinship, member-
ship of the same cultural society, partnership, or coworker-
ship, etc. In such a case, it is useful to endow our network
with a multiplex network structure. This representation
reflects the interaction of nodes through multiple layers of
links, which cannot be captured by the classical single-
layer network representation. This multiplex representa-
tion has long been considered by sociologists (multiplex
tie6–8), and although some results concerning multiplex
networks’ modeling and structure have been recently
proposed,9–17 the study of centrality parameters in such
networks has not yet been addressed satisfactorily. The aim
of this paper is to propose a definition of centrality in multi-
plex networks, and illustrate potential applications.

I. NOTATIONS

Along this paper, we consider a multiplex network G,
made of m 2 N layers G1; � � � ;Gm, such that each layer is a

(directed or undirected) un-weighted network Gk ¼ ðX;EkÞ,
with X ¼ fe1; � � � ; eng (i.e., all layers have the same n 2 N

nodes). The transpose of the adjacency matrix of each layer

Gk is denoted by Ak ¼ ðakijÞ 2 R
n�n, where

akij ¼
1 if ðej; eiÞ 2 Ek;

0 otherwise;

�

for 1 � i; j � n and 1 � k � m. The projection network asso-

ciated with G is the graph �G ¼ ðX;EÞ, where

E ¼
[

m

k¼1

Ek:

The transpose of the adjacency matrix of �G will be denoted

by �A ¼ ð�aijÞ 2 R
n�n. Note that for every 1 � i; j � n

�akij ¼
1 if akij 6¼ 0 for some 1 � k � m;

0 otherwise:

(

The paper is structured as follows. In Sec. II, we will

introduce different heuristic arguments suggesting proper

ways of measuring centrality in multiplex networks. Section

III is devoted to establishing, under reasonable conditions,

the existence and consistency of the proposed measures of

centrality. In Sec. IV, we report some computer experiments

and simulations showing how the introduced measures pro-

vide substantially different results when applied to the same

multiplex networks. These results are discussed in the con-

cluding section.

II. MATHEMATICAL MODELS FOR EIGENVECTOR
CENTRALITY IN CONNECTED MULTIPLEX
NETWORKS

In the case of a multiplex network, the central question to

be addressed is the following: How can one take into account

all the interactions between the different subnetworks (chan-

nels, communities, layers) bearing in mind that not all of them

have the same importance? It is essential, indeed, to remark

that in order to get the centrality of a node, it is necessary to

take into account how the centrality (importance, influence) of

a node is propagated within the whole network through differ-

ent channels (layers) that are not necessarily additives. For

instance, worldwide social networks (such as Facebook or

Twitter) are characterized by very heterogeneous interactions,

which are also typical of interactions among units in fields as

diverse as climate systems,11 game theory,12,13 interacting

infrastructures,14,15 and many others.9,16
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With reference to the network G, for each layer, one can

consider the classical eigenvector centrality Gk as the princi-

pal eigenvector of Ak (if it exists). Specifically, the eigenvec-

tor centrality of a node ei within the layer Gk would be

the ith entry of the positive definite and normalized vector

ck 2 R
n corresponding to the largest eigenvalue of the ma-

trix Ak. In a similar way, the eigenvector centrality of the

projection network �G will be the principal eigenvector of �A.

The existence and uniqueness of these vectors are guaranteed

by the Perron-Frobenius theorem for any symmetric matrix

with positive entries.

Interestingly, the Perron-Frobenius theorem can conven-

iently be extended to multiplex networks, leading to even

deeper concepts of nodes’ centrality. We remark that other

extensions of the Perron-Frobenius theorem have been pro-

posed for hypergraphs and nonnegative tensors.18,19

Once all the eigenvector centralities are computed, one

can consider the independent layer eigenvector-like central-

ity of G (abbreviated as the independent layer centrality of G)
as the matrix

C ¼ ð c1 j c2 j… j cm Þ 2 R
n�m:

Notice that C is column stochastic, since ck > 0 and

kckk1 ¼ 1 for every 1 � k � m.

Bearing in mind that the centrality (importance) of a

node must be proportional to the centrality of its neighbors

(lying on all layers), and considering that all layers have the

same importance, one has that

8i; j 2 X; cðiÞ / cðjÞ if ðj ! iÞ 2 G‘; ‘ 2 f1;…;mg:

This allows defining the uniform eigenvector-like centrality

(abbreviated as the uniform centrality) as the positive and

normalized eigenvector ~c 2 R
n (if it exists) of the matrix ~A

given by

~A ¼
X

m

k¼1

Ak:

This situation occurs, for instance, in social networks,

where different individuals may have different relationships

with other people, while one is generically interested in

measuring the centrality of the network of acquaintances.

Going a step further, one may consider that layers are

associated with different levels of importance (or influence)

in different layers of the network, and to include this sort of

information in the matrix accounting for the mutual influence

between layers. Thus, in order to calculate the importance

(or influence) of a node within a specific layer, one must also

take into account also all other layers, as some of them may

be relevant for that calculation. Consider, for instance, the

case of a boss going to the same gym as one of his employ-

ees: the relationship between the two fellows within the gym

layer has a totally different nature from that occurring inside

the office layer, but the role of the boss (i.e., his centrality) in

this case can be even bigger than if he was the only one per-

son of the office frequenting that gym. In other words, one

needs to consider the situation where the influence amongst

layers is heterogeneous.

To this purpose, one can introduce an influence matrix

W ¼ ðwijÞ 2 R
m�m as a non-negative matrix W � 0 such

that wij measures the influence of the layer Gj on the layer

Gi. Once G and W ¼ ðwijÞ have been fixed, one then defines

the local heterogeneous eigenvector-like centrality of G
(abbreviated as the local heterogeneous centrality of G) on
each layer Gk (1 � k � m) as a positive and normalized

eigenvector c?k 2 R
n (if it exists) of the matrix

A?
k ¼

X

m

j¼1

wkjAj:

Once again, the local heterogeneous eigenvector-like cen-

trality (abbreviated as local heterogeneous centrality) matrix

of the multiplex network G is defined as

C? ¼ ð c?1 j c
?
2 j… j c?m Þ 2 R

n�m:

Another important aspect to be elucidated is that, in gen-

eral, the centrality of a node ei within a specific layer k may

depend not only on the neighbors that are linked to ei within

the layer k but also to all other neighbors of ei that belong to

the other layers. That is the case of scientific citations in dif-

ferent areas of knowledge; indeed, imagine two scientists (a

chemist and a physicist) and one of them has been awarded

the Nobel Prize: the importance of the other scientist will sig-

nificantly increase, even though the Nobel prize laureate had

few citations within the other researcher’s area. This heuristic

argument leads to the introduction of another concept of cen-

trality: Given a multiplex network G and an influence matrix

W ¼ ðwijÞ, the global heterogeneous eigenvector-like cen-

trality of G (abbreviated as global centrality of G) is defined
as a positive and normalized eigenvector c� 2 R

nm (if it

exists) of the matrix

Note that A� is the Khatri-Rao product of the matrices

In analogy with what has been one before, if one introduces

the notation

033131-2 Sol�a et al. Chaos 23, 033131 (2013)
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with c�1 ; � � � ; c
�
m 2 R

n, then one can define the global hetero-

geneous eigenvector-like centrality matrix of G as the matrix

given by

C� ¼ ð c�1 j c�2 j… j c�m Þ 2 R
n�m:

Note that, in general C� is neither column stochastic nor row

stochastic, but the sum of all the entries of C� is 1.

Note also that the matrix A� may be interpreted as a lin-

ear operator from the tensor product Rn �R
m to itself, form

which c� is its normalized principal eigenvector. Using a

tensor algebra approach to represent networks with different

types of interactions is not new. For example, a multilinear

version of Perron-Frobenius theorem may be used to define

the centrality of uniform hypergraphs (see, for instance, Ref.

20); furthermore, a Perron-Frobenius-type theorem for gen-

eral (not necessarily uniform), irreducible hypergraphs has

been proved by Michoel and Nachtergaele.18

III. EXISTENCE AND CONSISTENCY

Let us now move to discussing the conditions that guar-

antee the existence and uniqueness of the centrality measures

introduced in Sec. II.

The natural question here is whether the strong connect-

edness of the projected graph �G or, equivalently, the irredu-

cibility of the nonnegative matrix �A, is a sufficient condition

for the existence and uniqueness of our centralities measures.

One can make use of the Perron-Frobenius theorem, as well

as on irreducible matrices and strongly connected graphs, for

which we refer the interested reader to Ref. 21. In fact,

recalling that the graph determined by ~A ¼
P

k Ak coincides

with the projected graph of the network, in the case of the

uniform centrality, we immediately get the following

Theorem 1. If the projected graph �G of a multiplex net-

work G is strongly connected, then the uniform centrality ~C

of G exists and is unique.

The case of the local heterogeneous centrality is similar,

as every row, C?
‘ , of the matrix, C?, is the principal normal-

ized eigenvector of a linear combination A?
‘ ¼

P

k wk‘Ak. In

particular, if W is positive, the graph associated with every

A?
‘ is the projected graph of the multiplex network, hence

one get also.

Theorem 2. If the projected graph �G of a multiplex net-

work G is strongly connected, and W > 0 then the local het-

erogeneous centrality C? of G exists and is unique.

A more delicate case is that of the global heterogeneous

centrality, that is constructed upon the principal normalized

eigenvector of the matrix

Such a matrix is the transpose of the adjacency matrix

of a graph with nm nodes that we denote by G� ¼ ðX�;E�Þ,
where X ¼ feik; i ¼ 1;…; n; k ¼ 1;…;mg and ðej‘; eikÞ 2

E� iff wk‘a
‘
ij 6¼ 0. Unfortunately, even if the projected graph

of a multiplex network G is strongly connected and W is pos-

itive, the graph G� is not, in general, strongly connected. In

fact, one can easily check that this is already the case for the

example in which G consists of two nodes and two layers,

with matrices

A1 ¼
0 0

0 1

� �

; A2 ¼
0 1

0 0

� �

:

Nevertheless, it is still possible to infer the existence

and unicity of C� from the strong-connectedness of �G and

the positivity ofW. Indeed, one has first to notice that, if �G is

strongly connected and W is positive, then G� satisfies

ðej‘; eikÞ 2 E� () a‘ij 6¼ 0 () ðej; eiÞ 2 E‘:

Now, we denote a node ej‘ of G
� as a �-sink when a‘ij ¼ 0

for all i, so that the corresponding column of A� is identically

zero. If a node ej‘ is not a �-sink, we claim that, given any

other node eik there exists a path in G
� going from ej‘ to eik.

Assuming �G to be strongly connected, then there

exist indices i1 ¼ j; i2;…; ir ¼ i such that, for every

s 2 f1;…; r � 1g, there exists an index ‘s 2 f1;…;mg for

which a‘sisþ1is
6¼ 0. Thus, by construction, ðeis‘s ; eisþ1‘sþ1

Þ 2 E�

for all s, and this finishes the proof of the latter claim.

From these arguments, one may easily deduce that the nor-

mal form of the matrix A� (cf. Ref. 22, p. 46]) is written as

where P is a permutation matrix and B is an irreducible non-

negative matrix, to which the Perron-Frobenius theorem can

be applied. It follows that the spectrum of A� is the union of

the spectrum of B and f0g, and that A� has a unique normal-

ized eigenvector associated with qðA�Þ ¼ qðBÞ. Summing

up, we get the following

Theorem 3. If the projected graph �G of a multiplex net-

work G is strongly connected, and W > 0 then the global het-

erogeneous centrality C� of G exists and is unique.

We now discuss the consistency of our definitions in a

variety of special cases.

Monoplex networks. It is straightforward to demon-

strate that on a monoplex network (i.e., a multiplex network

consisting of only one layer), our three concepts of multiplex

centrality coincide with the usual eigenvector centrality of

the layer.

Identical layers. Let G be a multiplex network for

which Ak ¼ A‘ for every 1 � k; ‘ � m, and note that Ak ¼ �A,

for every k, so that the uniform centrality of G coincides with

the Eigenvector centrality of every layer Gk. Assuming that

every row of W is nonnegative (in particular, if W > 0), it is

also clear that every column of the local heterogeneous cen-

trality C? coincides with the uniform centrality �C of G.
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The case of the global heterogeneous centrality is

slightly different. If all the layers are identical, the matrix A�

coincides with the so called Kronecker product of the matri-

ces W and �A. It is well known (see for instance, See Ref. 23,

Chap. 2) that the spectral radius of A� is then equal to

qðWÞqð �AÞ and that its normalized principal eigenvector is

the Kronecker product of the normalized principal eigenvec-

tors CW of W and �C of �A. In terms of matrices, this is equiva-

lent to say that C� ¼ Ct
W � �C. In particular, the normalization

of all the columns of C� equals �C.

Starred layers. We finally consider the case in which

the multiplex network G contains exactly m¼ n layers, satis-

fying that the layer Gk consists of a set of edges coming out

of the node ek. In other words, akij ¼ 0 if j 6¼ k. In this case,

there exists a permutation matrix P such that

where W � �A is the Hadamard product (see, for example,

Ref. 24) of W and �A (i.e., ðW � �AÞij ¼ wij�aij). In particular,

the global heterogeneous centrality of G is the diagonal

n� n matrix whose diagonal is the eigenvector centrality of

W � �A. Note that W � �A can be interpreted as the transpose of

the matrix of the graph �G, in which the edge going from ej to

ei has been assigned a weight equal to wij. In this sense the

eigenvector centrality of a weighted graph can be seen as a

particular case of the global heterogeneous centrality.

IV. COMPARING CENTRALITIES OFA MULTIPLEX
NETWORK

In the following two sections, we will compute and

compare the different types of centrality measures that we

have defined for some examples, constructed upon both real

and synthetic data. We will start by describing two ways of

comparing centrality measures, and then we will apply them

to a real example of social multiplex network.

If we take a network of n nodes fe1; � � � ; eng and con-

sider two centrality measures c; c0 2 R
n such that the i-th

coordinate of c and c0 measure the centrality of node vi for

every 1 � i � n, one way of measuring the correlation

between c and c0 is by computing kc� c0k for some norm

k � k. While kc� c0k measures the discrepancy between

c and c0, its value is not representative of the real informa-

tion about the correlation between c and c0. Note, indeed,

that one of the main features of the centrality measures is the

fact that they produce rankings, i.e., in many cases, the cru-

cial information obtained from a centrality measure is the

fact that a node vi is more relevant than another node vj, and

this ordering is more important than the actual difference

between the corresponding centrality of nodes vi and vj.

Hence, if we want to analyze the correlations among a set of

centrality measures, we should study in detail the correla-

tions between the associated rankings.

The literature suggests various alternative ways to study

the correlations between two rankings r and r0, two standard

ones being the Spearman’s rank correlation coefficient

qðr; r0Þ and the Kendall’s rank correlation coefficient sðr; r0Þ.
If we consider two centrality measures c; c0 2 R

n of a net-

work with nodes fe1; � � � ; eng, then each centrality measure c

and c0 produces a ranking of the nodes that will be denoted

by r and r0, respectively. The Spearman’s rank correlation

coefficient25 between two centrality measures c and c0 is

defined as

qðc; c0Þ ¼ qðr; r0Þ ¼

Xn

i¼1
ðrðviÞ � �rÞðr0ðviÞ � r0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1
ðrðviÞ � �rÞ2ðr0ðviÞ � r0Þ2

q ;

where rðviÞ and r0ðviÞ are the ranking of node vi with respect

to the centrality measures c and c0, respectively, �r ¼
1
n

P

i rðviÞ and r0 ¼ 1
n

P

i r
0ðviÞ. Similarly, the Kendall’s rank

correlation coefficient26 between two centrality measures c

and c0 is defined as

sðc; c0Þ ¼ sðr; r0Þ ¼
~Kðr; r0Þ � Kðr; r0Þ

n

2

� � ;

where ~Kðr; r0Þ is the number of pairs of nodes fvi; vjg such

that they appear in the same ordering in r and r0 and Kðr; r0Þ
is the number of pairs of nodes fvi; vjg such that they appear

in different orders in rankings r and r0. Note that both

qðc; c0Þ and sðc; c0Þ give values in ½�1; 1	. The closer qðc; c0Þ
is to 1 the more correlated c and c0 are, while the closer

qðc; c0Þ is to 0 the more independent c and c0 are (and simi-

larly for sðc; c0Þ). In addition, if qðc; c0Þ (or sðc; c0Þ) is close
to �1 then c and c0 are anti-correlated.

A further remark comes from the fact that the centrality

measures introduced so far are very different from one

another, and therefore one has to carefully describe how to

compare them. Indeed, on one hand, some scalar measures

introduced in Sec. II (the centrality of the node in the net-

work) associate a single number to each node of the network,

while on the other hand, other vectorial measures assign a

vector to each node vi (with each coordinate of the vector

measuring the centrality of the node vi as an actor of a differ-

ent layer of the multiplex network). Actually, for a multiplex

network G of n nodes, two scalar centralities (the eigenvector

centrality �c 2 R
n of the projection graph, and the uniform

eigenvector-like centrality ~c 2 R
n) and three vectorial cen-

tralities (the independent layer centrality C 2 R
n�m, the

local heterogeneous centrality C? 2 R
n�m, and the global

heterogeneous centrality C� 2 R
n�m) have been proposed.

To compare these different measures, the information con-

tained in each vectorial-type centrality must be aggregated to

associate a number to each node.

There are several alternative methods for aggregating in-

formation, but we use the convex combination technique as
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main criterion. For a multiplex network G of n nodes and m

layers, we can fix some k1; � � � ; km 2 ½0; 1	 such that k1 þ
� � � þ km ¼ 1 and compute the aggregated scalar centralities

c ¼ cðk1; � � � ; kmÞ ¼
X

m

j¼1

kjcj;

c? ¼ c?ðk1; � � � ; kmÞ ¼
X

m

j¼1

kjc
?
j ;

where cj is the jth-column of the independent layer centrality

C and c?j is the jth-column of the local heterogeneous central-

ity C?. Note that the value of each kj can be understood as

the relative influence of the layer Gj in the aggregated scalar

centrality of the multiplex network. In our numerics, the spe-

cific value k1 ¼ � � � ¼ km ¼ 1
m
has been chosen, as we sup-

pose that no extra information about the relative relevance of

each layer is available, and therefore the influence of each of

them is considered equivalent. Note that c and c? are normal-

ized, since C and C? are column-stochastic.

The case of the global heterogeneous centrality is differ-

ent, since C� is not column-stochastic. In this case, since the

sum of all entries of C? is 1, it is enough to take

c� ¼
X

m

j¼1

c�j ;

where c�j is the jth-column of the global heterogeneous cen-

trality C�. Consequently, the relative influence of each layer

Gj can be defined as kc�j jj1 (i.e., the sum of all the coordi-

nates of c�j ).

Once all the vectorial measures have been aggregated

(and the setting unified), we discuss the ranking compari-

sons. In addition to the actual correlation among the central-

ity measures, we analyze the influence of the matrix W

(called influence matrix in Sec. II) used in the definition

of the local heterogeneous centrality C? and in the global

heterogeneous centrality C�. Since this matrix W 2 R
m�m is

non-negative, we consider two families of matrices fW1ðqÞg
and fW2ðqÞg given for every 0 � q � 1 by

W1ðqÞ ¼

1 q � � � q

q 1 � � � q

� �
.
.

.
�

q q � � � 1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

;

W2ðqÞ ¼

1 q � � � q

q2 1 � � � q

� �
.
.

.
�

q2 q2 � � � 1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

:

Note that while each W1ðqÞ corresponds to a symmetric

influence among the layers, each W2ðqÞ models an asymmet-

ric influence among the layers of the multiplex network.

We apply now our methods of comparison of the differ-

ent centralities to a classic example: the social network of

the Renaissance Florentine families in 1282� 1500. The

dataset of the network (that are available in Ref. 27) collects

information about marriage and business ties among sixteen

Renaissance Florentine families. This social system can be

modelled as a multiplex network with two layers: one related

with the business ties (specifically, recorded financial ties,

such as loans, credits and joint partnerships) and other that

shows the marriage ties in the total dataset of sixteen fami-

lies (see Refs. 28 and 29). These two layers are represented

in Figure 1.

The comparisons among the different centrality meas-

ures for the social multiplex network of the Renaissance

Florentine families are presented in Figure 2. More precisely,

we represent the q-dependent Spearman (in red) and Kendall

(in black) correlation coefficients among the eigenvector

centrality of the projection graph, the uniform centrality, the

local heterogeneous centrality and the global heterogeneous

centrality, in this particular example.

FIG. 1. The business layer (on the left) and the marriage layer (on the right) of the social multiplex network of the Renaissance Florentine families.
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V. NUMERICALTESTINGS

In this section, we illustrate the different behaviours of

the introduced centrality measures by testing them against a

class of randomly generated multiplex networks. To do so,

instead of considering particular Taylor-made examples, we

consider random networks from a class of scale-free assorta-

tive-inspired synthetic graphs (cf. Ref. 9), that we will

describe later on.

First of all, we briefly describe the method used to con-

struct the synthetic multiplex networks used in the numerical

testing, which corresponds to the model II of Ref. 9. The model

is inspired by the Barab�asi-Albert preferential attachment

model30 as well as by several bipartite networks models, such

as the collaboration network model proposed by Ramasco

et al.,31 or the sublinear preferential attachment bipartite model

introduced by Peltom€aki and Alava.32 It consists of a growing

random model determined by the following rules:

(i) Model parameters. The model has three main parame-

ters: n, m, and pnew. We set n 2 N as the minimal

number of nodes in the multiplex network and 2 �
m � n as the number of active nodes in each layer

(i.e., nodes that will produce links in each layers).

Note that if we take m¼ 2, we recover the Barab�asi-

Albert model.30 In this model m will be fixed, but the

results are similar for other non-negative integer ran-

dom variable. Finally, we set pnew 2 ð0; 1	 as the

probability of joining a new node to the growing mul-

tiplex network during its construction.

(ii) Initial conditions. We start with a seed multiplex net-

work made of a single layer G0 of m nodes that are

linked all to all (i.e., G0 is the complete graph Km). We

can replace the all-to-all structure by any other structure

(such as a scale free or a Erd}os-R�enyi network), but the

results obtained are similar. This initial layer G0 will be

removed from the final multiplex network G, since

the all-to-all structure would make the eigenvector-

centrality of the projection graph a bisector.

(iii) Layer composition. At each time step t, a new layer

Gt of m nodes is added to the multiplex network. We

start by randomly choosing an existing node of the

multiplex network with a probability proportional to

its degree (preferential election) that we call the coor-

dinator node. Therefore if at step t – 1, the set of

nodes of the multiplex network is fv1;…; vng, and ki
denotes the degree of node vi at time t – 1 in the pro-

jection network, then we choose the node vi randomly

and independently with probability

pi ¼
ki

Xn

j¼1
kj
:

Once the coordinator node has been chosen, each of

the remaining m – 1 active nodes of Gt will be a new

node with probability pnew and an existing node with

probability ð1� pnewÞ. Already existing nodes are

added by choosing them uniformly and independently.

FIG. 2. Ranking comparisons for the eigenvector centrality measures for the social multiplex network of the Renaissance Florentine families with the family

of symmetric influence matrices of type W1ðqÞ (panels from (a)–(e)) and with the family of non-symmetric influence matrices of type W2ðqÞ (panels from
(f)–(j)). Panels in the first and second column show the (q-dependent) correlations between the eigenvector centrality of the projection and the uniform central-

ity vs. the local heterogeneous centrality, respectively. Panels in the third and fourth column show the (q-dependent) correlations between the eigenvector cen-

trality of the projection and the uniform centrality vs. the global heterogeneous centrality, respectively. Finally, the fifth column shows the correlation between

the local and the global heterogeneous centrality. In all panels, Spearman and Kendall coefficient are, respectively, depicted in red and black.
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Note that we can replace the uniform random selection

by other random procedures (such as preferential

selection), but the random tests done suggest that the

multiplex network obtained have statistically the

same structural properties when n is large enough (see

Ref. 9). At this step, we have chosen m nodes

~v1;…;~vm that will be the active nodes of the new layer

Gt (i.e., nodes that will produce links in these layers).

(iv) Layer inner-structure. After fixing the active nodes

~v1;…;~vm of the new layer Gt, we have to give its links.

First, we link all the active nodes to the coordinator in

order to ensure that all the eigenvector-like centrality

are well defined. We set new links between each pair

of active nodes vi and vj (with 1 < i 6¼ j � m) by using

a random assortative linking strategy (this corresponds

to the Model II in Ref. 9). For every 2 � i 6¼ j � m, we

add randomly the link f~vi;~vjg in proportion to the

number of common layers that hold simultaneously ~vi

and ~vj. Hence, if we denote by Qij the number of layers

that hold simultaneously ~vi and ~vj at time step t

(including Gt) and by qi the number of layers that hold

~vi at time step t (also including Gt), thus the probability

of linking node ~vi with node ~vi is given by

pij ¼
2Qij

qi þ qj
;

for every 2 � i 6¼ j � m. The heuristic behind this

model comes from social networks, since the relation-

ships in a new social group are correlated with the

previous relationships between the actors in other

social groups.5 Hence, if two actors that belong to the

new social group coincide in many (previous) groups,

then the probability of being connected in this new

group is large. The model also reflects the fact that if

two new actors join their first group, the probability of

establishing a relationship between them is high. At

the end of this step, the new layer Gt is completely

defined.

(v) Finally, we repeat steps (iii) and (iv) until the number

of nodes of the multiplex network is at least n.

After fixing all the settings of the numerical testings, we

perform the comparison for three multiplex networks G1; G2,

and G3 (constructed as above), where

(i) G1 is a network of 102 nodes (computed with n¼ 100

as initial parameter) and 13 layers of 10 nodes each

(k¼ 10 as initial parameter). The probability pnew
¼ 0:8 of adding new active nodes to each layer. This

is an example of a network with a relative small

number of active nodes in each layer and such as

each node is active in a few number of layers (since

pnew ¼ 0:8).

(ii) G2 is a network of 108 nodes (computed with n¼ 100

as initial parameter) and 4 layers of 40 nodes each

(k¼ 40 as initial parameter). The probability pnew ¼
0:5 of adding new active nodes to each layer. In this

case, this is a network with a relative big number of

active nodes in each layer and a balanced number of

newcomers and experienced nodes as actives nodes in

each layer (pnew ¼ 0:5).

(iii) G3 is a network of 102 nodes (computed with n¼ 100

as initial parameter) and 6 layers of 60 nodes

each (k¼ 60 as initial parameter). The probability

FIG. 3. Ranking comparison for the eigenvector centrality measures for two multiplex networks with the family of symmetric influence matrices of type

W1ðqÞ. Panels (a–d), (e–h), and (i–l), respectively, correspond to network G1; G2, and G3 (see text for details on the network construction). Panels (a) and (b)

((c) and (d)) show the (q-dependent) correlations between the eigenvector centrality of the projection graph and the uniform centrality vs. the local (global) het-

erogeneous centrality of G1, respectively. Similarly, panels (e)–(h) give the same information for G2 and panels (i)–(l) correspond to G3, respectively.
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pnew ¼ 0:1 of adding new active nodes to each layer.

In this case, this is a network with a big number of

active nodes in each layer and a very low number of

newcomers in each layer (pnew ¼ 0:1).

For each of these networks, we compute the correlation

between the eigenvector centrality of the projection graph,

and the uniform centrality vs. the local and global heteroge-

neous centralities. Figures 3 and 4 plot the dependency of

FIG. 4. Ranking comparison for the eigenvector centrality measures for two multiplex networks with the family of non-symmetric influence matrices of type

W2ðqÞ. Panels (a–d), (e–h), and (i–l), respectively, correspond to network G1; G2, and G3. Panels (a) and (b) ((c) and (d)) show the (q-dependent) correlations

between the eigenvector centrality of the projection graph and the uniform centrality vs. the local (global) panels (e)–(h) give the same information for G2 and

panels (i)–(l) correspond to G3, respectively. Same stipulations as in the caption of Figure 1.

FIG. 5. Ranking comparison for the independent layer centrality vs. local and global heterogeneous centralities. Panels (a–d), (e–h), and (i–l), respectively, corre-

spond to network G1; G2, and G3. The first two columns of panels on the left correspond to the symmetric family of influence matricesW1ðqÞ, while the two on the
right are for the asymmetric family of influence matrices W2ðqÞ (0 � q � 1). The first and the third columns of panels on the left show the correlations between

the independent layer centrality and the local heterogeneous centrality, while the second and the forth columns of panels on the left show the correlations between

the independent layer centrality and the global heterogeneous centrality. The Spearman coefficient is in red, and the Kendall coefficient is in black.
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these correlations with respect to the influence strength

q 2 ½0; 1	 in a family of symmetric influence matrices W1ðqÞ
(Figure 3) and with respect to the influence strength

q 2 ½0; 1	 in a family of non-symmetric influence matrices

W2ðqÞ (Figure 4), exhibiting a similar pattern. Note that this

phenomena does not occur in the case of the example consid-

ered in Sec. IV, since in this case there were deep differences

between the symmetric case and the non symmetric one (see

Figure 2). Similar results for the correlations between the

heterogeneous centralities and the independent layer central-

ity are displayed in Figure 5. Finally, we also report the local

heterogeneous centrality vs. the global heterogeneous cen-

trality, under the action of the two families of influence mat-

rices W1ðqÞ andW2ðqÞ (see Figure 6).
In all panels, Spearman and Kendall coefficient are,

respectively, depicted in red and black.

VI. DISCUSSION AND CONCLUSIONS

Introducing a layer structure on a complex network or,

equivalently, distinguishing different types of interactions

between its nodes, may significantly vary the behaviour of

the network (cf. Refs. 14–16). The main goal of this paper is

analysing the influence of the layer structure in some

eigenvector-like centralities of multiplex networks. In order

to that, we have introduced several eigenvector centralities

that take into account the layer structure by means of a

directed graph of influences among layers. The examples

presented in the paper show that the centrality measures

introduced are qualitatively different and, in particular, dif-

ferent from the eigenvector centrality of the projected net-

work. In order to measure conveniently these differences, we

have introduced an algorithm that produces randomly

generated multiplex networks and measured the pairwise

correlations of the different centralities studied, under differ-

ent types of influence between layers, according to a parame-

ter q 2 ½0; 1	 and two distinct types of influence matrix. We

have selected three representative examples from the family

of synthetic networks analysed, and presented them here

since all the numerical simulations we have performed show

similar behaviour. For the multiplex examples considered,

this behaviour may be described as follows:

• The rankings given by the different eigenvector centrality

measures introduced in the paper are qualitatively differ-

ent and hence the corresponding centrality measures are

also different.
• The correlations between these new eigenvector centrality

measures strongly depend on the structure of the multiplex

networks, including the number of layers and the number

of nodes per layer.
• The results obtained with Spearman’s and Kendall’s coef-

ficients are qualitatively equivalent in all the examples

considered, although Spearman’s rank is always slightly

higher.
• The differences between the heterogeneous (global, local)

and the flat centralities (centrality of the projected network,

uniform centrality) are significantly broader for lower val-

ues of q. In fact, there is a non-linear relationship between

the centrality measures and the strength q of the influence

between layers. On the other hand, for high values of q, the

behaviour of these particular multiplex networks is similar

to the corresponding, monoplex, projected networks. In

other words q, thought of as a measure of the multiplexity

of the network, is detected by heterogeneous centrality

measures.

FIG. 6. Ranking comparison between the local heterogeneous centrality and the global heterogeneous centrality for G1 (panels (a) and (d)), for G2 (panels (b) and

(e)), and for G3 (panels (c) and (f)). The computation has been done with the family of symmetric influence matrices of typeW1ðqÞ (top panels) and with the family

of non-symmetric influence matrices of typeW2ðqÞ (bottom panels). Once again, the Spearman coefficient is in red, and the Kendall coefficient is in black.
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• In the synthetic examples considered, the total variation

with respect to q of the correlation between a heterogene-

ous and a flat measure grows with the ratio between num-

ber of layers and number of nodes of each layer.
• The symmetry of the influence between layers does not

play a critical role in the correlations among centrality

measures in the randomly generated networks considered.

However, in the example of the Florentine families (in

which the number of nodes and layers is small) the differ-

ences between the symmetric and non symmetric case is

significant.

In summary, we introduced several definitions of cen-

trality measures for multiplex networks, and proved that,

under reasonable conditions, these centrality measures exist

and are unique (theorems 1, 2, and 3). Computer experiments

and simulations performed by using the model introduced in

Ref. 9 show that our measures provide substantially different

results when applied to the same multiplex networks. This is

in agreement with the fact that each of these measures arises

from a different heuristic. In this sense, the concept of multi-

plex network may be used to model complex networks of

different kinds, so that the most appropriate kind of central-

ity measure shall be carefully determined in each case.
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