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Abstract. Spectral clustering is one of the most popular methods for
data clustering, and its performance is determined by the quality of the
eigenvectors of the related graph Laplacian. Generally, graph Laplacian
is constructed using the full features, which will degrade the quality of
the related eigenvectors when there are a large number of noisy or ir-
relevant features in datasets. To solve this problem, we propose a novel
unsupervised feature selection method inspired by perturbation analysis
theory, which discusses the relationship between the perturbation of the
eigenvectors of a matrix and its elements’ perturbation. We evaluate the
importance of each feature based on the average L1 norm of the perturba-
tion of the first k eigenvectors of graph Laplacian corresponding to the k
smallest positive eigenvalues, with respect to the feature’s perturbation.
Extensive experiments on several high-dimensional multi-class datasets
demonstrate the good performance of our method compared with some
state-of-the-art unsupervised feature selection methods.

Keywords: Feature Selection, Graph Laplacian, Perturbation Analysis.

1 Introduction

Spectral clustering has wide applications ranging from text, image, web, bioinfor-
matics to social science, for exploratory data analysis. Roughly speaking, spectral
clustering is the technique to partition the rows of a matrix into multiple clusters
based on the few top eigenvectors of graph Laplacian[9]. Compared with classi-
cal methods like k-means and mixture models, it has three advantages. Firstly,
it doesn’t need any explicit or implicit assumptions about the sample distri-
bution. Secondly, it is easy to implement and has polynomial time solutions.
Lastly, it is equivalent to graph cut problems, which are well developed. Due to
these virtues, there are enormous literatures in the past on spectral clustering[6]-
[21], but the nature of spectral clustering remains unchanged: The performance
of spectral clustering is determined by the quality of the chosen eigenvectors of
graph Laplacian.

However, recently, Tao Xiang, etc[10] pointed out that the first k eigenvec-
tors of graph Laplacian may be uninformative and inappropriate for spectral
clustering given noisy, irrelevant and high-dimensional data. Note that ’the first
k eigenvectors ’ denotes the eigenvectors corresponding to the k smallest posi-
tive eigenvalues, and ’the first k eigenvector ’ denotes the eigenvector with the
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Fig. 1. The distribution of the soft and ideal cluster indicators for CLL-SUB-111

k smallest positive eigenvalue[9]. For the demonstration of the impact of irrele-
vant features on graph Laplacian’s eigenvectors, we provide an intuitive example
with a dataset CLL-SUB-111 1 which has 3 classes and 11340 features. In Fig.1,
each curve in (a) represents the distribution of the components of one of the first
three eigenvectors of its graph Laplacian computed with its full 11340 features,
and the curve of the same color in (b) is the ’ideal’ distribution. It is clear that
each distribution in (a) has only one peak region between 0 and 20, suggesting
that spectral clustering will group these samples into two clusters based on the
inappropriate graph Laplacian, which differs from the ’true’ cluster structure.
This example demonstrates that the graph Laplacian constructed from the full
features may degrade the performance of spectral clustering when there are a
large number of irrelevant and noisy features in the high-dimensional dataset,
hence we need to perform feature selection before constructing the graph Lapla-
cian for spectral clustering.

The core problem of feature selection is how to evaluate the importance of fea-
tures, which has numerous criterions such as Laplacian Score(LS)[36], Spec[37],
MCFS[39], FSFS[34], FCBF[35], FSSEM[30] and EVSC[41], etc. In the recent de-
velopment of spectral clustering, Ling Huang, etc[11]-[13] present some proofs of
the close relationship between the perturbation of clustering result and laplacian
graph’s eigenvectors due to the perturbation of data. These researches inspire
us that the perturbation of the feature values of data will have impact on the
perturbation of the eigenvectors of graph Laplacian and the result of spectral
clustering, hence we can evaluate the importance of features by using the per-
turbation of the eigenvectors of graph Laplacian in respect of the perturbation
of each feature.

In this paper, we propose a new feature evaluation criterion based on the
recent developments of perturbation analysis[2][11]-[15]. Specifically, to evaluate
a feature’s importance, we perturb the value of this feature by introducing a
perturbation factor to it for all the samples in the data set. This will induce a
perturbation of the similarity matrix, and in turn a perturbation of the graph
Laplacian. Finally, this leads to the perturbation of the eigenvectors of graph
Laplacian. It is natural to believe that if a small perturbation of one feature
1 http://featureselection.asu.edu/datasets.php

http://featureselection.asu.edu/datasets.php
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induces a great perturbation of the eigenvectors of graph laplacian, this fea-
ture is important for spectral clustering. Then, we use the average L1-norm of
the perturbation of the first k eigenvectors of graph Laplacian in terms of the
small perturbation of one feature to estimate the significance of this feature.
The criterion is referred to as EigenVector Sensitive Feature Selection Criterion
(EVSFSC). Based on this criterion, we can perform feature selection for spectral
clustering. Extensive experiment results over six real-world datasets demonstrate
the superiority of our method compared with four traditional unsupervised fea-
ture selection methods.

2 Feature Selection Based on Perturbation Analysis

In this section, we study the perturbation of graph Laplacian’s eigenvectors
in terms of the perturbation of each feature, with three different definitions of
graph Laplacian L, Lrw and Lsym[9]. Based on these analysis, we formulate three
feature evaluation criterions, then a feature selection algorithm is proposed for
the most common spectral clustering algorithms.

2.1 Problem Definition

For a dataset X = {xi}n
i=1, xi∈RK×1 represents the i-th data sample, where

K is the dimension of X , and xi
t denotes the t-th feature value of xi. Suppose

S, D and L are similarity matrix, diagonal degree matrix and graph Laplacian
respectively, Si,j represents the similarity between xi and xj , D = diag(S1)
( 1 = (1, ..., 1)T ) and L = D − S.

Let ξ be a perturbation factor, if we perturb X on the t-th feature with ξ,
which means x̂i

t = xi
t + ξxi

t, i = 1, ..., n, and keep other features unchanged,
then we get a perturbed dataset X̂t = {x̂i}n

i=1. Let L̂t be the perturbed graph
Laplacian based on X̂t. Suppose q̂t,r and qr are the r-th eigenvector of L̂t and L
respectively, then the perturbation of the r-th eigenvector of graph Laplacian L
caused by the perturbation of the t-th feature can be defined as �qt,r = q̂t,r−qr.
The greater the L1 norm of �qt,r is, the more important the t-th feature is.
Thus, our main problem is how to evaluate �qt,r with respect to ξ. Let’s begin
by proving the relationship between D̂t, L̂t and D, L, where D̂t is the perturbed
similarity matrix based on X̂t.

In this paper, we adopt RBF function as the similarity measure between
data samples, and our framework can also be easily extended to other popular
similarity measures such as dot product, square Euclidean, etc. Then Si,j can
be formulated as

Si,j = e−
∑K

h=1 (Xi
h−X

j
h
)2

2δ2

where δ2 is the kernel bandwidth. When we perturb the t-th feature with factor
ξ, which means x̂i

t = (1 + ξ)xi
t, i = 1, ..., n, the perturbed similarity Ŝt,i,j is

Ŝt,i,j = e−
∑K

h=1,h�=t (Xi
h−X

j
h
)2+(1+ξ)2(Xi

t−X
j
t )2

2δ2 (1)

Now we can derive the relationship between D̂t, L̂t and D, L as follows.
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Theorem 1. If ξ → 0, D̂t and L̂t can be approximated by

D̂t≈D − ξD1
t , L̂t≈L − ξL1

t

Then,
D̂t − D≈− ξD1

t , L̂t − L≈− ξL1
t (2)

where S1
t,i,j = Si,j

(xi
t−xj

t)
2

δ2 , D1
t,i,i =

∑n
h=1 S1

t,i,h, L1
t = D1

t −S1
t , D1

t is a diagonal
matrix.

Proof. based on formula (1), we can get

∂Ŝt,i,j

∂ξ
= −(ξ + 1)Ŝt,i,j

(xi
t − xj

t )2

δ2

Then, when ξ → 0, we can derive the first-order Taylor expansion for Ŝt,i,j

Ŝt,i,j = Si,j − Si,j
(xi

t − xj
t )

2

δ2
·ξ + O(ξ)

and we can get

Ŝt,i,j − Si,j≈− Si,j
(xi

t − xj
t )

2

δ2
·ξ≈− ξ · S1

t,i,j

D̂t,i,i =
n∑

h=1

Ŝt,i,h≈
n∑

h=1

Si,h − ξ ·
n∑

h=1

S1
t,i,h≈Di,i − ξ · D1

t,i,i

Thus,
D̂t − D≈− ξD1

t

L̂t − L = (D̂t − D) − (Ŝt − S) = −ξ·(D̂1
t − Ŝ1

t )≈− ξL1
t

�
In general, L = D − S is the unnormalized graph Laplacian[9]. Moreover,
there are two other normalized graph Laplacians[9] Lrw = D−1L and Lsym =
D−1/2LD−1/2. We will derive �qt,r, �qrw,t,r and �qsym,t,r with respect to L,
Lrw and Lsym respectively in the following sections.

2.2 �qt,r with Respect to L

Perturbation analysis theory [2] discusses the relationship between the pertur-
bation of the eigenvectors of a matrix and its elements’ perturbation, which will
be summarized in Theorem 2.

Theorem 2. (First-Order Eigenvector Perturbation)
Let A and B be matrices with elements which satisfy the relations: |Aij | < 1 and
|Bij | < 1, and A has the normalized eigenvector set {qr}n

r=1 and eigenvalue set
{λr}n

r=1, where the multiplicity of any eigenvalue is 1, if ξ → 0, then the r-th
eigenvector q̂r of A + ξB is approximately expressed as:

q̂r≈qr + ξ·{
n∑

h=1,h �=r

qT
h Bqr

λr − λh
qh}. (3)
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Based on Theorem 1 and Theorem 2, we can easily derive �qt,r = q̂t,r − qr,
which is summarized in Theorem 3. It is worth pointing out that the conditions
|Aij | < 1 and |Bij | < 1 can be satisfied for RBF kernel.

Theorem 3. Let {λr}n
r=1 and {qr}n

r=1 be the eigenvalue and normalized eigen-
vector sets of Lqr = λrqr, and λ1 < λ2 < . . . < λn, if ξ → 0, then the r-th
eigenvector of L̂t based on X̂t can be approximated by

q̂t,r≈qr + ξ·pt,r

Then,
�qt,r = q̂t,r − qr≈ξ·pt,r (4)

where

pt,r = −
n∑

h=1,h �=r

( qT
h L1

t qr

λr − λh

)
qh

Proof. this can be proved with Theorem 1 and Theorem 2. �

2.3 �qrw,t,r with Respect to Lrw

For computing the r-th eigenvector’s perturbation �qrw,t,r = q̂rw,t,r − qrw,r of
Lrw, where qrw,r is the r-th eigenvector of Lrw based on X , and q̂rw,t,r is the
r-th eigenvector of L̂rw,t based on X̂t, we first borrow the following definition
from [4], which provides some solutions for the algebraic eigenvalue problems.

Definition 1 Hermitian Definite Pencil[4]
A Hermitian definite pencil{A,B} (A ∈ Rn×n and A ∈ Rn×n) is a generalized
Hermitian eigenvalue problem: Aq = λBq, where A and B are Hermitian, that
is, if the conjugate transpose of matrix A or B is denoted by A∗ or
B∗, then A∗ = A and B∗ = B, and A or B or αA + βB for some scalars α and
β is positive definite, q and λ are the corresponding eigenvector and eigenvalue
respectively.

Since L = L∗ and ∀ x, xT Dx>0, then {L, D} is a Hermitian definite pencil. For
the proof of Theorem 4, we describe one property for Lrw and two properties
for {L, D} in Property 1, which can be found in [9] and [3] respectively.

Property 1
(a) The eigen-system of Lrw is equal to that of the Hermitian definite pencil
{L, D}. That is, ∀ r∈{1, ..., n}, Lrwqrw,r = λrw,rqrw,r ⇔ Lqrw,r = λrw,rDqrw,r

(b) For {L, D}, if λrw,r �= λrw,r1, qT
rw,rDqrw,r1 = 0, and if qrw,r is a normalized

eigenvector, then qT
rw,rDqrw,r = 1.

(c) If {L, D} has the eigenvalue and eigenvector sets {λrw,r}n
r=1 and {qrw,r}n

r=1,
and the multiplicity of any eigenvalue is 1, then {qrw,r}n

r=1 constitute a basis for
Rn.

Then we can propose Theorem 4 for �qrw,t,r in the following.

Theorem 4. For {L,D}, let {λrw,r}n
r=1 and {qrw,r}n

r=1 be the corresponding
eigenvalue and normalized eigenvector sets, and λrw,1 < λrw,2 < . . . < λrw,n, if
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ξ → 0, the r-th perturbed eigenvector q̂rw,t,r of the perturbed normalized graph
Laplacian L̂rw,t based on X̂t can be approximated as

q̂rw,t,r = qrw,r + ξ·prw,t,r + O(ξ·1)

Then,
�qrw,t,r = q̂rw,t,r − qrw,r = ξ·prw,t,r + O(ξ·1) (5)

where prw,t,r=
{∑n

h=1,h �=r

(
qT

rw,h{λrw,rD1
t−L1

t}qrw,r

λrw,r−λrw,h

)
qrw,h +

(
qT

rw,rD1
t qrw,r

2

)
qrw,r

}
.

Proof. Based on Theorem 1, if ξ→0, then

D̂t − D = −ξ·D1
t + O(ξ·I) and L̂t − L = −ξ·L1

t + O{ξ·(1T ·1)}.

where I is the identity matrix and 1 = (1, ..., 1)T .
It is natural that[2]

λ̂rw,t,r − λrw,r = ξ · ηrw,t,r + O(ξ·1) (6)
q̂rw,t,r − qrw,r = ξ · prw,t,r + O(ξ·1) (7)

Now our goal is to estimate the column vector prw,t,r.
Because of Property 1 (a), we get

L̂tq̂rw,t = λ̂rw,tD̂tq̂rw,t (8)

Based on formula (2) and (6)-(8), we get

{L− ξ·L1
t}{qrw,r + ξ·prw,t,r} = {λrw,r + ξ·ηrw,t,r}{D− ξ·D1

t }{qrw,r + ξ·prw,t,r}
(9)

When ξ → 0, (9) can be rewritten as

Lprw,t,r − L1
tqrw,r = −λrw,rD

1
t qrw,r + λrw,rDprw,t,r + ηrw,t,rDqrw,r (10)

With Property 1(c), prw,t,r can be expressed as a linear combination of
{qrw,r}n

r=1, that is,

prw,t,r =
n∑

h=1

εr,hqrw,h (11)

Substitute (11) into (10), and left multiply (10) by qT
rw,r1(r1 �= r), we get

n∑

h=1

λrw,hεr,hqT
rw,r1Dqrw,h − qT

rw,r1L
1
t qrw,r = −λrw,rq

T
rw,r1D

1
t qrw,r+

λrw,r

n∑

h=1

εr,hqT
rw,r1Dqrw,h + ηrw,t,rq

T
rw,r1Dqrw,r

(12)
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With Property 1 (b), we get

εr,r1 =
qT
rw,r1{λrw,rD

1
t − L1

t}qrw,r

λrw,r − λrw,r1
(13)

For {L̂t, D̂t}, which is also a Hermitian definite pencil,

{qT
rw,r + ξpT

rw,t,r}{D − ξD1
t }{qrw,r + ξprw,t,r} = 1 (14)

With ξ → 0 and (11), (14) can be rewritten as

εrr =
qT
rw,rD

1
t qrw,r

2
(15)

Finally, based on (13) and (15), prw,t,r can be computed by

prw,t,r =
{ n∑

h=1,h �=r

(qT
rw,h{λrw,rD

1
t − L1

t}qrw,r

λrw,r − λrw,h

)
qrw,h +

(qT
rw,rD

1
t qrw,r

2

)
qrw,r

}

�

2.4 �qsym,t,r with Respect to Lsym

The spectral clustering theories [9] reveal that if qrw,r is the eigenvector of
Lrw with λrw,r, then qsym,r = D1/2qrw,r is the eigenvector of Lsym with the
same eigenvalue. Based on this connection between the eigen-system of Lrw

and Lsym, and Theorem 4, the calculation of �qsym,t,r for Lsym is shown in
Theorem 5.

Theorem 5. With the conditions of Theorem 4, let qsym,r be the normalized
eigenvector of Lsym, and q̂sym,t,r be the corresponding r-th eigenvector of L̂sym,t

based on X̂t, if ξ → 0, then q̂sym,t,r can be approximated as

q̂sym,t,r = qsym,r + ξ·psym,t,r + O(ξ·1)

Then,
�qsym,t,r = q̂sym,t,r − qsym,r = ξ·psym,t,r + O(ξ·1) (16)

where psym,t,r =
{
− 1

2D−1/2D1
t qrw,r + D1/2prw,t,r

}

Proof. If ξ → 0, then

D̂
1/2
t = {D − ξ·D1

t + O(ξ·I)}1/2≈D1/2(I − ξ·D−1D1
t )1/2 (17)

where I is the identity matrix.
Then, the first order Taylor expansion of D̂

1/2
t can be rewritten as

(I− ξ·D−1D1
t )

1/2≈I − ξ

2
·D−1D1

t + O(ξ·I) (18)
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Based on formula (17) and (18), we get

D̂
1/2
t = D1/2 − ξ

2
·D−1/2D1

t + O(ξ·I)

Thus

q̂sym,t,r = D̂
1/2
t q̂rw,t,r = qsym,r + ξ·

{
− 1

2
D−1/2D1

t qrw,r + D1/2prw,t,r

}
+ O(ξ·1)

�

2.5 Eigenvector Sensitive Feature Selection

Based on the discussion of section 2.2, 2.3 and 2.4, when the value of ξ is suffi-
ciently small, the j-th component of the eigenvector perturbation �qt,r(�qrw,t,r

or �qsym,t,r) of graph Laplacian L(Lrw or Lsym) is approximately linear with
ξ, and the corresponding gradient is just the j-th component of pt,r( prw,t,r or
psym,t,r), which reflects the rate of the change of the j-th component of the r-th
eigenvector of L(Lrw or Lsym) in response to the perturbation of the t-th feature.
Hence, it is natural to use the L1 norm of pt,r, prw,t,r and psym,t,r to evaluate
the importance of the t-th feature to the r-th eigenvector of L, Lrw and Lsym

respectively.
However, since the result of spectral clustering is determined by the first k

eigenvectors of graph Laplacian, we should evaluate the importance of the r-th
feature to the spectral clustering based on its impact on the first k eigenvectors
of the corresponding graph Laplacian. Thus, we propose to employ the aver-
age L1 norm of pt,r(prw,t,r or psym,t,r) over the first k eigenvectors of L(Lrw or
Lsym) to estimate the importance of the t-th feature in the corresponding spec-
tral clustering. This criterion is called EigenVector Sensitive Feature Selection
Criterion(EVSFSC), whose formal definitions are expressed as follows.

When the graph Laplacian is L, for the t-th feature, then

EV SFSC(t) =
1
k

k+1∑

r=2

‖pt,r‖1 (19)

Similarly, when the graph Laplacian is Lrw, for the t-th feature, then

EV SFSC(t) =
1
k

k+1∑

r=2

‖prw,t,r‖1 (20)

Finally, when the graph Laplacian is Lsym, for the t-th feature, then

EV SFSC(t) =
1
k

k+1∑

r=2

∥
∥
∥psym,t,r‖1 (21)
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Algorithm 1. Eigenvector Sensitive Feature Selection for Spectral Clustering
Input: Data set X, Feature number m, Spectral clustering type SCT
Output: Feature subset Fm

1. Construct the similarity matrix S with RBF function
2. Build L and D based on S
3. If SCT ==′ USC′

4. Calculate the eigen-system (λr, qr) of L, 1≤r≤n.
5. Else if SCT==’NSCLrm’
6. Calculate the eigen-system (λr, qr) of Lrw = D−1L, 1≤r≤n,
7. Else
8. Calculate the eigen-system (λr, qr) of Lsym = D− 1

2 LD− 1
2 , 1≤r≤n.

9. End if
10. Normalize the eigenvectors of {qr}n

r=1.
for t = 1 to K do

11. Calculate the EVSFSC of the t-th feature based on (19), (20) or (21).
end for
12. Rank the features decreasingly according to the value of EVSFSC and select the
leading m features, that is Fm = {FK1 , ..., FKm}
13. return Fm

2.6 Eigenvector Sensitive Feature Selection for Spectral Clustering

Based on the criterions of (19)-(21), we summarize the eigenvector sensitive
feature selection for spectral clustering algorithm in Algorithm 1. In this al-
gorithm, SCT represents the type of spectral clustering, USP represents the
unnormalized spectral clustering, NSCLrm and NSCLsym represent the nor-
malized spectral clustering with Lrm and Lsym respectively. The computation
complexity for main steps is listed below.

• In step 1 and 2, we need O(n2K) operations to build S, D and L;
• In step 4, 6 or 8, we need O(n3) operations to get the eigenvalues and eigen-
vectors of graph Laplacian by Lanczos algorithm[5];
• In step 10, we need O(n3K) operations to calculate the EVSFSC score for all
features;
• In step 11, the top m features can be found within O(KlogK).
Thus, the computation complexity of Algorithm 1 is MAX(n3K, KlogK).

3 Related Work

Spectral Clustering. The spectral clustering based on the graph cut theory
is to find the best cuts of a graph according to certain predefined criterion func-
tions such as RatioCut[6] and normalized cut(Ncut)[7]. The relaxing RatioCut
leads to the unnormalized spectral clustering[9] based on the eigenvectors of un-
normalized graph Laplacian L = D − S, while the relaxing Ncut leads to the
normalized spectral clustering[7][8] based on the eigenvectors of Lrw = D−1L or
Lsym = D−1/2LD−1/2. Recently, there are several works focusing on the impact
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of small errors in data or similarity matrix on spectral clustering, based on the
perturbation analysis[2]. [11]-[13] derive some approximate upper bounds on
the errors of k-way spectral clustering with respect to the small change of data
or similarity matrix(k = 2, 3, ...). Another line of this works is to update the
information of the eigen-system of graph Laplacian in the incremental spectral
clustering[14][15], given a small change of similarity matrix. Besides, there are
enormous literatures discussing other subjects like the incorporation of user su-
pervision into spectral clustering[16]-[18], and the strategy of constructing graph
Laplacian for spectral clustering[19]-[21], etc.

Unsupervised Feature Selection. Most of existing methods can be clas-
sified into the three categories. Methods in the first category are wrapper ap-
proaches. These include unsupervised feature selections for K-means[22]-[25],
Mixture Models[26]-[32] and PCA(Principal Components Analysis)[33]. The sec-
ond category measures feature similarity based some criterions, whereby redun-
dant features are removed. [34] and [35] are the two representatives of this kind.
The third category is the spectral methods. [36]-[38] perform feature selection
based on certain evaluation criterions, which are the function of the eigen-system
of graph Laplacian. More recently, in [39] and [40], the feature selection problems
are transformed into the regression problems, which aim to find those feature
vectors aligning closely to the few top eigenvectors of graph Laplacian. In our
previous work [41], a eigenvalue sensitive feature selection method is proposed.
But it is different from the method of this paper. The core idea of [41] is that
the feature importance should be evaluated by the gradient of the eigenvalue
of graph Laplacian with respect to the weight of feature. But in this paper, we
introduce the perturbation analysis theory.

4 Empirical Analysis

In this section, we perform extensive experiments to demonstrate the perfor-
mance of our proposed feature selection method comparing to several popular
unsupervised feature selection methods. They are FSFS[34], Laplacian Score(LS)
[36], Spec[37] and MCFS[39].

4.1 Dataset Decription

Six high-dimensional and multi-class datasets are selected for the experiments,
which are briefly described in Table 1. All of the datasets can be found from the
Feature Selection Repository2. For simpleness, we use CLL, ORL, PIX, TOX,
AR and PIE to represent the data sets CLL-SUB-111, orlraws10P, pixraw10P,
TOX-171, warpAR10P and warpPIE10P respectively.

4.2 Evaluation Criterion

In the experiments, Clustering Accuracy(CA)[36] is used to evaluate the per-
formance of spectral clustering. Based on the comparison between the predefined
2 http://featureselection.asu.edu/datasets.php

http://featureselection.asu.edu/datasets.php
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Table 1. Summary of six datasets

Data Set Instances Features Classes

CLL-SUB-111 111 11340 3
orlraws10P 100 10304 10
pixraw10P 100 10000 10
TOX-171 171 5748 4

warpAR10P 130 2400 10
warpPIE10P 210 2420 10

labels c(i) of all samples and the obtained labels sc(i) by spectral clustering,
Clustering Accuracy(CA) is formally defined as

CA =
∑n

i=1δ(c(i), map(sc(i)))
n

where n is the total number of data points and δ(x, y) is the delta function that
equals one if x = y and equals zero otherwise, and map(sc(i)) is the permutation
mapping function that maps each cluster label sc(i) to the equivalent label
from data corpus. Here, we use the Kuhn-Munkres algorithm[1] as the mapping
function.

4.3 Experiment Setup

Four popular unsupervised feature selection methods are chosen as baseline
methods, which are FSFS[34], Laplacian Score(LS)[36], Spec[37] and MCFS[39],
and their matlab codes can be found at their homepages3. As discussed above,
we choose RBF function as similarity measure, whose parameter is determined
by cross-validation. Then for each dataset, the four baseline criterions and EVS-
FSC are used to select the best 100, 200,...,2100 features. Based on the selected
feature subsets, the Clustering Accuracy of unnormalized spectral clustering
with L and normalized spectral clustering with Lrw and Lsym are demonstrated
in Fig.2, Fig.3 and Fig.4 respectively. And as a baseline, the Clustering Ac-
curacy with the full features (without feature selection) is also depicted in all
the figures, and it is referred to as ’Baseline’ in the figures.

4.4 Experiment Results

Unnormalized spectral clustering with L Fig. 2(a-f) show the curves of
the Clustering Accuracy of unnormalized spectral clustering with L versus
the number of selected features on six datasets respectively, based on FSFS,
Laplacian Score(LS), Spec, MCFS and EVSFSC. As we can see, our proposed
algorithm achieves consistently better performance than the other methods and
3 http://www.facweb.iitkgp.ernet.in/~pabitra/paper.html,

http://www.zjucadcg.cn/dengcai/MCFS/index.html,

http://featureselection.asu.edu/software.php

http://www.facweb.iitkgp.ernet.in/~pabitra/paper.html,
http://www.zjucadcg.cn/dengcai/MCFS/index.html,
http://featureselection.asu.edu/software.php
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Fig. 2. Unnormalized Spectral Clustering with L

the baseline method without feature selection. Although the unnormalized spec-
tral clustering with all features produces a poor result, most of the existing
feature selection methods don’t produce much better results, and sometimes
produce even worse results, for example in Figure 2(b), (c) and (e). However,
our method can use less than 1000 features to produce reasonably good results,
whose Clustering Accuracy is generally higher than 0.6 on CLL, ORL and
TOX datasets. Especially for PIX, AR and PIE datasets, only several hundred
of selected features by our method can achieve the best results, compared with
other methods.



126 Y. Jiang and J. Ren

0 500 1000 1500 2000 2500
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62
EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(a) CLL-SUB-111

0 500 1000 1500 2000 2500

0.4

0.5

0.6

0.7

0.8

0.9

1

EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(b) Orlraw10P

0 500 1000 1500 2000 2500
0.4

0.5

0.6

0.7

0.8

0.9

1

EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(c) Pixraw10P

0 500 1000 1500 2000 2500
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(d) TOX-171

0 500 1000 1500 2000 2500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(e) WarpAR10P

0 500 1000 1500 2000 2500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(f) WarpPIE10P

Fig. 3. Normalized Spectral Clustering with Lrm

Normalized spectral clustering with Lrw Fig. 3(a-f) reveal the curves
of the Clustering Accuracy of normalized spectral clustering with Lrw versus
the number of selected features on six data sets respectively, based on EVSFSC
and other four methods. For all of the six data sets, our method also can achieve
best performance than the others. Specifically, the difference between ’Baseline’
and FSFS, Laplacian Score(LS), Spec, MCFS is not obvious on CLL, TOX,
AR and PIE datasets, but EVSFSC can still achieve great improvements.



Eigenvector Sensitive Feature Selection for Spectral Clustering 127

0 500 1000 1500 2000 2500
0.48

0.5

0.52

0.54

0.56

0.58

0.6
EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(a) CLL-SUB-111

0 500 1000 1500 2000 2500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(b) Orlraws10P

0 500 1000 1500 2000 2500
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(c) Pixraw10P

0 500 1000 1500 2000 2500
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(d) TOX-171

0 500 1000 1500 2000 2500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(e) WarpAR10P

0 500 1000 1500 2000 2500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
EVSFSC
LS
Spec
MCFS
FSFS
Baseline

(f) WarpPIE10P

Fig. 4. Normalized Spectral Clustering with Lsym

Normalized spectral clustering with Lsym Fig. 4(a-f) demonstrate the
curves of the Clustering Accuracy of Normalized spectral clustering algo-
rithm with Lsym versus the number of selected features on six data sets respec-
tively, based on EVSFSC and other four methods mentioned before. Except for
datasets ORL and PIX, our method significantly outperforms the other four
methods. On data sets ORL and PIX, there exist some methods such as FSFS
and MCFS performing comparably to our method with the increase of feature
number, but EVSFSC can achieve the same good results with fewer features
than them.
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5 Conclusion

In this paper, we propose a new feature selection criterion, called EVSFSC,
for spectral clustering. EVSFSC evaluates the importance of each feature by
its impact on the eigenvectors of graph Laplacian with perturbation analysis
theory. The extensive experiments demonstrate the excellent performance of our
method, compared with four state-of-the-art methods.
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