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Eigenvoice Modeling With Sparse Training Data

Patrick Kenny, Member, IEEE, Gilles Boulianne, Member, IEEE, and Pierre Dumouchel, Member, IEEE

Abstract—We derive an exact solution to the problem of max-
imum likelihood estimation of the supervector covariance matrix
used in extended MAP (or EMAP) speaker adaptation and show
how it can be regarded as a new method of eigenvoice estimation.
Unlike other approaches to the problem of estimating eigenvoices
in situations where speaker-dependent training is not feasible,
our method enables us to estimate as many eigenvoices from a
given training set as there are training speakers. In the limit as
the amount of training data for each speaker tends to infinity, it is
equivalent to cluster adaptive training.

Index Terms—Cluster adaptive training, eigenvoices, extended
MAP (EMAP), speech recognition, speaker adaptation.

I. INTRODUCTION

IGENVOICE modeling has proved to be effective in small

vocabulary speech recognition tasks where enough data
can be collected to carry out speaker-dependent training for
large numbers of speakers [1]-[4]. Our objective in this article is
to show how this type of modeling can be extended to situations
where the training data is sparse in the sense that speaker-de-
pendent training is not feasible.

Suppose, to begin with, we ask an oracle to supply speaker-
dependent models for any speaker. If C' denotes the total number
of mixture components in a speaker model and F' the dimension
of the acoustic feature vectors then, for each speaker, we can
concatenate the mean vectors associated with the mixture com-
ponents to form a supervector of dimension C'F'. The idea be-
hind eigenvoice modeling is that principal components analysis
can be used to constrain these supervectors to lie in a low dimen-
sional space with little loss of accuracy. This ensures that only a
small number of parameters need to be estimated in order to en-
roll a new speaker. Thus, speaker adaptation saturates quickly
in the sense that the recognition accuracy for a test speaker
reaches a plateau after a small amount of adaptation data has
been collected.

To flesh this out a bit, let My and B denote the mean and co-
variance matrix of the supervectors for the speaker population.
The basic assumption in eigenvoice modeling is that most of the
eigenvalues of B are zero. This guarantees that the speaker su-
pervectors are all contained in a linear manifold of low dimen-
sion, namely, the set of supervectors of the form My 4+ O where
O lies in the range of B. This set of supervectors is known as
the eigenspace; The eigenvoices of the population are the eigen-
vectors of B corresponding to nonzero eigenvalues. (It will be
helpful to bear in mind that the dimension of the eigenspace is
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equal to the number of eigenvoices and this is equal to the rank
of B.)

In order to construct a speaker-adapted HMM for a given
speaker (absent the oracle) we need a mechanism to impose the
constraint that the speaker’s supervector lies in the eigenspace.
In this article, we will use maximum a posteriori (MAP) estima-
tion for this purpose rather than use eigenvoices explicitly. The
idea behind MAP estimation is that we have a prior probability
distribution for the speaker’s supervector, namely, the Gaussian
distribution with mean My and covariance matrix B. Since this
prior distribution is concentrated on the eigenspace, the same
is true of the posterior distribution derived from it using the
speaker’s adaptation data. In particular, the mode of the pos-
terior distribution lies in the eigenspace. Thus, MAP estimation
of the speaker’s supervector ensures that the constraint is satis-
fied. The term EMAP adaptation—E for extended [5]—is gener-
ally used to refer to MAP adaptation using a supervector covari-
ance matrix B but, since the traditional usage assumes that B
is invertible whereas, our concern in this article is with the case
where B is of less than full rank, we will use the term eigenvoice
MAP instead. The idea of integrating eigenvoice modeling with
MAP speaker adaptation has been suggested by other authors
[6]-[8].

Of course other mechanisms can be used to constrain the su-
pervectors to lie in the eigenspace [2], [9], [10] but a good case
can be made that MAP estimation is the most natural way. First,
MAP adaptation implicitly takes account of the eigenvalues
of B, as well as the eigenvectors. In fact, if we use the MAP
approach, there is no reason in principle why we should make
a hard decision to suppress the eigenvectors of B which corre-
spond to minor eigenvalues (as required by other approaches).
Secondly, MAP adaptation is asymptotically equivalent to
speaker-dependent training as the amount of adaptation data
increases. Thirdly, it is natural from a mathematical point of
view since, as we will show in this article, it plays a central role
in estimating eigenvoices by probabilistic principal components
analysis. (In particular, no extra software needs to be developed
for speaker adaptation if the eigenvoices are estimated in this
way.) Finally, the computational burden of MAP adaptation is
quite modest provided that the rank of B is reasonably small
since it essentially boils down to inverting an R X R matrix
where R is the rank of B [6]-[8]. The only difficulty with MAP
adaptation arises in the case where R is large (more than a few
thousand) in which case it is computationally intractable unless
B is constrained in some way. (For example, if B is assumed
to be of full rank and sparsity constraints are imposed on B -1
MAP speaker adaptation can be implemented by viewing the
posterior distribution as a Gaussian Markov random field [11].)

The main issue that needs to be addressed in order to im-
plement an eigenvoice model is to estimate the population co-
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variance matrix B. If large numbers of training speakers can
be enlisted then we can take the sample covariance matrix of
the training set supervectors as an estimate of B. But note that
the rank of the sample covariance matrix is just the number of
speakers in the training set. In most situations of interest this
is far less than the dimension of the supervector space so the
sample covariance matrix may not provide a reasonable esti-
mate of the population covariance matrix. In such cases it may
be necessary to impose some constraints on the population co-
variance matrix in order to produce an eigenspace of sufficiently
high dimension that MAP adaptation has some hope of being
asymptotically equivalent to speaker-dependent training. For in-
stance, we could impose a block diagonal structure on B by ig-
noring the correlations between mixture components associated
with different phonemes as in the seminal paper [5]. (Block di-
agonal constraints have the effect of boosting the rank of B by
a factor of N where N is the number of blocks.) Alternatively,
as we will explain, we can boost the rank of B by streaming
the acoustic features. Or we could guarantee correct asymptotic
behavior, at least in theory, simply by forcing the supervector
covariance matrix to be of full rank. (Note that a singular co-
variance matrix can be made nonsingular by an arbitrarily small
perturbation. For example, we could set the zero eigenvalues
to a small positive value as in [6]. We say “in theory” because
very large amounts of data—hundreds of sentences—may be
needed for speaker adaptation to saturate with a covariance ma-
trix of full rank [11].) Generally speaking, increasing the dimen-
sion of the eigenspace can be expected to slow down the rate at
which speaker adaptation saturates so, in practice, it may not be
possible to ensure that speaker adaptation saturates quickly and
that it behaves like speaker-dependent training as the amount of
adaptation data increases.

Assuming that a satisfactory tradeoff between these two con-
siderations can be found, there remains the question of how to
estimate the population covariance matrix if speaker-dependent
training is not feasible. (Recall that we began our discussion by
appealing to an oracle to supply the training speakers’ supervec-
tors.) In this article we will show how to estimate the principal
eigenvectors of the population covariance matrix directly from
the training data without having recourse to speaker-dependent
models.

Our solution to this problem is a variant of the proba-
bilistic principal components approach introduced in [12].
This methodology was developed in order to extend principal
components analysis to handle priors specified by a mixture of
Gaussians (rather than by a single Gaussian as in traditional
principal components analysis). Priors of this type give rise to
an interesting class of MAP estimators which, loosely speaking,
are locally linear but globally non linear. These MAP estimators
can be applied to a variety of data compression and pattern
recognition tasks but in the context of eigenvoice modeling
large numbers of training speakers seem to be needed to take
advantage of them.

So we have to limit ourselves to the case of a single Gaussian
as in conventional principal components analysis. (This is un-
fortunate since clear evidence of at least two modes—one male,
one female—is presented in [9], [13]). The probabilistic ap-
proach still has an advantage over other approaches even in the

unimodal case because it enables us to estimate as many eigen-
voices as there are speakers in the training set. Even if it turns
out that most of the variability in the training data can be cap-
tured by a smaller number of eigenvoices, MAP speaker adapta-
tion can use the remaining eigenvoices to good advantage since
it implicitly takes account of the corresponding eigenvalues. A
clear example of this is given in [14, Table I] which reports the
results of some closed-set speaker-identification experiments on
a population of 319 speakers. Decreasing the number of eigen-
voices from 300 to 100 was found to increase the error rate from
14.8% to 16.5% in the case of mean adaptation and from 14.7%
to 17.7% when the variances were adapted as well. The need to
use as many eigenvoices as possible is particularly evident in the
case of large vocabulary speech recognition given the very high
dimensionality of the supervector space. The experiments we
report in this article were conducted on a large vocabulary task
using as many eigenvoices in each stream as there are speakers
in the training set.

We begin by explaining why cluster adaptive training [9] and
the maximum likelihood eigenspace method [13] would break
down if we attempted to use them to estimate a full complement
of eigenvoices in situations where speaker-dependent training is
not feasible and how this problem can be avoided by adopting
the probabilistic approach.

II. MAXIMUM LIKELIHOOD FORMULATIONS
OF THE ESTIMATION PROBLEM

Let M(s) denote the supervector for a speaker s. Our as-
sumption is that for a randomly chosen speaker s, M(s) is
Gaussian distributed with mean M and covariance matrix B.
The speaker-independent supervector M can be estimated by
Baum-Welch training in the usual way so the problem con-
fronting us is how to estimate B if speaker-dependent training
is not feasible (so that the supervectors for the training speakers
are unobservable). This problem is complicated by the fact that
the dimensions of B are enormous but it is amenable to max-
imum likelihood estimation because the maximum likelihood
estimate of B is of low rank in practice (the rank is bounded
by the number of training speakers). This fact will allow us to
work out an exact solution to the estimation problem (without
having to make any approximations as in [11], [15]).

Previous approaches to the problem of estimating eigenvoices
have adopted a different perspective: instead of estimating B,
they estimate a basis for the eigenspace. This point of view is
equivalent to ours in the sense that given an estimate of B we can
write down a basis for the eigenspace (namely, the eigenvectors
of B corresponding to nonzero eigenvalues) and, conversely,
given a basis for the eigenspace we can estimate B (by fitting a
multivariate Gaussian distribution to the coordinate representa-
tions of the supervectors). However the two points of view give
rise to different maximum likelihood formulations of the esti-
mation problem and hence to different estimation procedures.

To describe the likelihood function used to estimate the
eigenspace basis in [9], [13] we need to introduce some nota-
tion. For each mixture component ¢, let M..(s) be the subvector
of M(s) which corresponds to it. It is assumed that there is
a covariance matrix Y. such that, for any speaker s, acoustic
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observation vectors (frames) associated with the mixture
component are normally distributed with mean M.(s) and
covariance matrix Y... Note that, although 3. is independent of
s, it is not a speaker-independent covariance matrix in the usual
sense since it measures deviations from the speaker-dependent
mean vectors M.(s) rather than deviations from a speaker-in-
dependent mean vector. Let ¥ denote the C'F x CF block
diagonal matrix whose diagonal blocks are >q,...,Xc. For
each speaker s, let X'(s) denote the speaker’s training data and
for each supervector M, let Payiv(X(s)|M,X) denote the
likelihood of X'(s) calculated with the HMM specified by the
supervector M and the supercovariance matrix . (We assume
throughout that the HMM transition probabilities and mixture
weights are fixed so there is no need to include these in the
notation.)

Although the “bias term” M can be eliminated by aug-
menting the dimension of the eigenspace [9], it will be
convenient for us to retain it. Given a basis for the eigenspace,
let V' be the matrix whose columns are the basis supervectors
so that every speaker supervector can be written in the from
M + Vy. (The vector y is of dimension R X 1 where R is the
dimension of the eigenspace.) The likelihood function which
serves as the estimation criterion in [9], [13] is

1T max P (X (s)| Mo + Vy, ) (1)
where s ranges over the speakers in the training set. (Strictly
speaking this is not a likelihood function since it does not in-
tegrate to 1. In order to obtain a proper likelihood function the
max operation would have to be replaced by a suitable integral
with respect to y.) The optimization proceeds by iterating the
following two steps:

1) For each training speaker s, use the current estimates of V'
and ¥ to find the supervector which maximizes the HMM
likelihood of the speaker’s training data X(s). Set

y(s) = arg max Paviv (X (s)|Mo + Vy, X).
2) Update V and ¥ by maximizing
H Payvnv (X (s)|Mo + Vy(s),E)

where the product extends over all speakers in the training
set.
These two steps are referred to as “maximum likelihood eigen-
decomposition” and the “maximum likelihood eigenspace”
method in [13] and as “estimating the cluster weights” and
“estimating the cluster means” in [9].

The methods in [9], [13] differ as to how the maximization
in the second step is performed. In particular, it is assumed
in [13] that, for each mixture component ¢, 3. is equal to the
speaker-independent covariance matrix for the mixture compo-
nent and no attempt is made to re-estimate it. It will be helpful
to briefly review Gales’s method [9] for estimating V' since our
approach will require a similar calculation. For each speaker
s, let M(s) = My + Vy(s) where y(s) is given by the first
step and suppose that each frame in the training data X'(s) has
been aligned with a mixture component (as in a Viterbi align-
ment although a forward-backward alignment can also be used).
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For each mixture component ¢, let N.(s) denote the number of
frames aligned with c. Then the quantity to be maximized in the
second step is

1
ZZ( 105 2m)E/2|5,|1/2
-3 Z(X

where s ranges over all speakers in the training set, c ranges over
all mixture components and for each pair (s, ¢) the sum over ¢
extends over all frames X, aligned with c. If we ignore the issue
of how to estimate X, the problem is just to minimize

regarded as a function of V. It is characteristic of this type of
optimization problem that the covariance matrices drop out so
the problem reduces to an exercise in least squares, namely, to
minimize

222 (X-

For our purposes, the important thing to note is that linear
regression (with the y(s)’s as the explanatory variables and
the columns of V as the regression coefficients) provides the
solution.

Our objection to using the likelihood function (1) as the esti-
mation criterion is that, in order to obtain a reasonable estimate
of the eigenspace basis in situations where speaker-dependent
training is not feasible, the dimension of the eigenspace has to
be strictly less than the number of training speakers. (If not, the
maximum value of (1) is obviously attained by the basis which
consists of the estimates of the training speakers’ supervectors
given by speaker-dependent training.) So in order to avoid this
type of degeneracy, only a relatively small number of eigen-
voices can be estimated or the basis vectors have to be con-
strained in some other way. (For example, the basis vectors can
be constrained to lie in the low dimensional space consisting of
all MLLR transforms of M [9].) These constraints are unrea-
sonable because they are artifacts of the estimation procedure.

In order to outline the alternative estimation procedure that
we will develop, note first that, if R is the rank of B, we can
write

9B (X Mc<s>>)

$))" S (Xt = Me(s))

()" (X — Mc(s)).

B=VvVVv*®

where V is a CF x R matrix of rank R. This implies that for
each speaker s, there is a unique R x 1 vector y(s) such that

M(s) = Mo+ Vy(s).

To say that M(s) is normally distributed with mean M and
covariance matrix B, is equivalent to saying y(s) has a stan-
dard normal distribution. So the problem of estimating the su-
pervector covariance matrix can be formulated in terms of es-
timating V using a different generative model for the training
data.

Fix a speaker s and suppose that each frame in the training
data X'(s) has been aligned with a mixture component. If the
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vector y(s) were observable then, using the notation introduced
above, the log likelihood of X'(s) would given by

1
3 (0o

c

_% D (X — Me(s)* 871 (X, — Mc(s))> :

Since we are treating y(s) as a random vector with a standard
normal distribution, we define the likelihood of X(s) by inte-
grating this conditional likelihood function with respect to the
standard Gaussian kernel N (y|0, I'). We denote the value of this
integral by Py (X (s)) (a closed form expression is given in
Proposition 2 below). Thus our approach will be to estimate V'
and ¥ by maximizing the log likelihood function

H PV,E(X(S))

where the product extends over all speakers in the training set.

We will develop an EM algorithm for this purpose in which
the role of the hidden variables is played by the vectors y(s).
We will show that successive estimates of V' and X are conver-
gent, at least to the extent that the likelihood of the training data
increases on successive iterations. However, as in [12], the EM
algorithm generally has more than one fixed point so there is no
guarantee that if (V, X) is an EM fixed point then the eigenvec-
tors of VV™* are the R principal eigenvectors of the supervector
covariance matrix.

Our procedure consists in iterating the following three steps.

We will spell out the details in Section III.

1) For each training speaker s, use the current alignment of
the speaker’s training data and the current estimates of
V and X to carry out MAP speaker adaptation. Use the
speaker-adapted model to realign the speaker’s training
data.

2) The E-step: For each speaker s, calculate the posterior
distribution of y(s) using the current alignment of the
speaker’s training data, the current estimates of V' and ¥
and the prior N(y|0,I).

3) The M-step: Update V and ¥ by a linear regression in
which the y(s)’s play the role of the explanatory variables.

Calculating the posterior distribution of y(s) in the E-step rather
than the maximum likelihood estimate is the key to avoiding the
degeneracy problem that arises when (1) is used as the criterion
for estimating the eigenvoices in situations where speaker-de-
pendent training is not feasible and the number of eigenvoices is
large compared with the number of training speakers. This cal-
culation is also essentially all that is required for the first step.
The principal mathematical difficulty that we will encounter is
in carrying out the regression in the M-step, given that for each
speaker s, y(s) is only observable up to the posterior distribu-
tion calculated in the E-step.

III. ADAPTATION AND ESTIMATION PROCEDURES

The main computation that needs to be done both for esti-
mating V and ¥ and for MAP speaker adaptation for a speaker

s is to calculate the posterior distribution of y(s) given the
speaker’s training data. To explain how this is done we need
to introduce some notation. Assuming that the data for the
speaker has been aligned with either the speaker-independent
or a speaker-adapted HMM, so that each frame is labeled by a
mixture component, we denote by X'(s) the entire collection of
labeled frames for the speaker. We extract the following statis-
tics from X'(s). For each mixture component ¢ = 1, ..., C, let
N_.(s) be the number of frames in the training data for speaker
s which are accounted for by the given mixture component and
set

SX,C(S) = Z(Xt - Uc)

SXX*,C(S) = Z(Xt - lffc)(Xt - lffc)*

t

where the sums extend over all frames X; for speaker s that are
aligned with the mixture component ¢ and p. is the speaker-
independent mean vector.

Let N(s) be the CF x CF block diagonal matrix whose
diagonal blocks are N1 (s)I,..., Nc(s)I where I denotes the
F x F identity matrix. Let S x (s) be the C'F x 1 vector obtained
by concatenating Sx 1(s),...,Sx,c(s). Letl(s) be the R x R
matrix defined by

I(s) =T+ V*E'N(s)V.

Proposition 1: For each training or test speaker s, the poste-
rior distribution of y(s) given X(s) and a parameter set (V, X)
is Gaussian with mean

I (s)V*E'Sx(s)

and covariance matrix I *(s).

The proof of this proposition can be found in the Appendix.
Note that I(s) is strictly positive definite (and hence, invertible).
Furthermore, if R is reasonably small (at most a few thousand)
there is no difficulty in calculating the inverse of I(s). Hence
calculating the posterior distribution is straightforward even in
the large vocabulary case.

Corollary 1: Tf, for each training or test speaker s, we denote
the posterior mean and covariance of M (s) by M(s) and B(s),
then

M(s) =My + VI (s)V*E'Sx(s)
B(s) = Vlfl(s)V*.

This corollary is the key to MAP speaker adaptation. In-
voking the Bayesian predictive classification principle [16],
we can adapt both the mean vectors and the variances in the
speaker independent HMM to a given speaker s as follows.
With each mixture component ¢, we associate the mean vector
M_(s) and a covariance matrix given by

Ye + Beo(s) )

where B..(s) is the ccth entry of B(s) when B(s) is consid-
ered as a C' x C block matrix (each block being of dimension
F x F). This type of covariance estimation seems to have been
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first suggested in [11]. The rationale behind it is that if X is an
observation for speaker s and mixture component c, we have

X =M.(s)+E

where the residual E is distributed with mean 0 and covariance
matrix 3, and M,(s) is distributed with mean M, (s) and co-
variance matrix B..(s). Since F and M,(s) are assumed to be
statistically independent

Cov(X, X) =Cov(M.(s), M.(s)) + Cov(E, E)

=3.+ ﬁcc(s)

which gives (2). We will refer to this as covariance adaptation
although this is not strictly correct since it is really a mecha-
nism for incorporating the uncertainty about the MAP estimate
of M(s) into the HMM. (Note that as the amount of adaptation
data increases, the uncertainty tends to zero and the covariance
estimate reduces to .. for all speakers.)

Corollary 2: If, for each training speaker s, E [y(s)] denotes
the posterior expectation of y(s) given X'(s) and a parameter
set (V, X) and likewise for E [y(s)y*(s)] then

Ely(s)] =1 (s)V"E" Sx(s)
Ely(s)y* ()] = E[y(s) Ey* ()] +17"(s).

This also follows immediately from Proposition 1 and it is the
key to implementing the E-step of the EM algorithm described
in Proposition 3 below.

Next we explain how to calculate the likelihood function
Py s that we used in our formulation of the estimation
problem. (This calculation is not strictly necessary; its only role
is to provide a diagnostic for verifying the implementation of
the EM algorithm.)

Proposition 2: For each speaker s, let Gx(s) denote the
Gaussian log likelihood function given by the expression

C

; (Nc(s) log W - %tr (zclsXXx7c(s))> .
- 3)
Then
log Py (X(s)) = Gn(s) — 5 log i(s)
—I—%(M(s) — M= S (s).

Finally, the EM algorithm:

Proposition 3: Suppose we are given initial parameter esti-
mates (Vo,Xg). For each training speaker s, let F [y(s)] and
E [y(s)y*(s)] be the first and second moments of y(s) calcu-
lated with these estimates according to Corollary 2 to Propo-
sition 1. Let (V,X) be new estimates of the model parameters
defined as follows: V is the solution of

ZN WE [y(s) ZS\ y'(s)] @

and foreachc=1,...,C

1
Be=— <Z Sxx+ () — Mc> (5)
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where n. = ). Nc(s) and M, denotes the cth diagonal block
of the C'F' x C'F matrix

,Z (Sx(s

"IV +VEY(s)] Sk (s)) -

Then

Zlongx(X(s)) > ZlogPVmEO(X(s))

where the sums extend over all speakers in the training set.
Equation (4) is the system of normal equations for our linear
regression problem. To solve it, note that since the matrices
N(s) are diagonal, equating the ith row of the left hand side
with the 7th row of the right hand side for7 = 1,..., C'F gives

VIS N'()Ey(s)y™(s)] = Y Sx(s)Ely"(s)]

where V" is the ith row of V and similarly for N* (s) and S’ (s).
Note also that if we write 4 in the form (¢ — 1)F + f where
1<c¢<Candl< f < Fthen N'(s) = N.(s) so we obtain

VY N(s)E[y(s)y"(s)] = Y Sx(s)E [y"(s)].

This is just an R x R system of equations so there is no difficulty
in solving for V' and in the limit as the amount of training data
tends to infinity (so that, for each speaker s, the posterior distri-
bution of y(s) becomes concentrated at a single point, namely
the maximum likelihood estimate of y(s))) it is equivalent to [9,
eq. (49)]. Equation (5) stands in the same relation to [9, eq. (51)]
so Gales’s method and ours are asymptotically equivalent.
Note that the EM algorithm does not impose any restrictions
on R which seems to suggest that it is possible to estimate
a larger number of eigenvoices than there are speakers in the
training set. This paradox can be resolved by proving that if
(V,X) is a fixed point of the EM algorithm then R (that is, the
rank of V') is necessarily less than or equal S, the number of
speakers in the training set. It follows that there is nothing to be
gained by taking R > S so we took R = S in our experiments.

IV. IMPLEMENTATION ISSUES

In order to apply the EM estimation procedure given in Propo-
sition 3 we need the first and second order statistics for each
training speaker and mixture component. These statistics can be
extracted by aligning the training data with the speaker-indepen-
dent HMM using either a Viterbi alignment or the Baum—Welch
algorithm. (We used the Baum—Welch procedure in our experi-
ments.) But note that after estimates of V' and X have been ob-
tained we can use MAP adaptation (i.e., Corollary 1 to Propo-
sition 1) to construct speaker-adapted models for each of the
training speakers and use these to align the training data instead
of the speaker-independent model. Accordingly, in the training
phase of our experiments, we alternate between alignment and
EM iterations until the estimates of (V', X) converge. (A similar
issue arises when applying MAP adaptation to a test speaker.
We deal with it in the same way by performing several align-
ment iterations on the speaker’s adaptation data.)
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As we mentioned in the introduction, some constraints have
to be imposed on the supervector covariance matrix in order
to produce an eigenspace of sufficiently high dimension that
MAP adaptation has some hope of being asymptotically equiv-
alent to speaker-dependent training. Our experience has been
that the type of block diagonal constraint used in [5] which we
referred to in the introduction is not very effective so we exper-
imented with another type of constraint which we implemented
by splitting the acoustic features into streams and applying the
EM algorithm in each stream separately. This has the effect
of boosting the dimension of the eigenspace by a factor of V
where N is the number of streams (so that the greatest effect is
achieved by treating each acoustic feature as a separate stream).

As we mentioned in Section II, Nguyen and colleagues [13]
construct speaker HMMs by applying eigenvoice adaptation to
the HMM mean vectors and copying the HMM covariance ma-
trices from a speaker-independent HMM trained in the usual
way. Since this is easier to implement than our Bayesian ver-
sion of Gales’s treatment of the HMM covariances, we com-
pared both approaches in all of our experiments. Contrary to our
expectations we found that Nguyen’s approach (which is really
a type of variance inflation) almost always gives better results.

V. EXPERIMENTS

We carried out some experiments on the French language
AUPELF task [17] using the BREF-80 training set which
consists of 10.6 h of data collected from 80 speakers. The
speaker-independent HMM was a tied-state triphone model
with 782 output distributions each having four mixture compo-
nents with diagonal covariance matrices. For signal processing
we used a 10 ms frame rate and a 26-dimensional acoustic
feature vector (13 liftered mel-frequency cepstral coefficients
together with their first derivatives). For recognition we used a
dictionary containing 20 000 words and a language model con-
sisting of 311 000 bigrams and 80000 trigrams. (Admittedly a
much larger language model would be needed to deal with the
problem of homophone confusions in French.) We modeled
liaisons in both training and recognition [18].

For the test set we chose 20 speakers (not represented in the
training set) and five sentences per speaker for a total of 1435
words of which 3.0% were out of vocabulary.

A. Speaker Adaptation

We experimented with 26 streams (each of dimension 1) and
two streams (each of dimension 13, one for cepstra, and the
other for their first derivatives). We used the training set to es-
timate 80 eigenvoices in each stream and performed supervised
adaptation with various adaptation sets comprising 1, 2, 5, 10,
15, 20, and 100 sentences per speaker; the average length of a
sentence was 6 s.

1) 26 Streams: Recognition results averaged over the 20
test speakers are reported in Table 1. The second column of
Table I gives the results of adapting the HMM mean vectors and
copying the HMM covariance matrices from the speaker-in-
dependent HMM. Adapting only the mean vectors with small
amounts of adaptation data gave small improvements in accu-
racy and performance saturated slowly, only reaching a plateau

TABLE 1
RECOGNITION ACCURACIES (%) AVERAGED OVER 20 SPEAKERS, 26 STREAMS.
S 1S THE NUMBER OF ADAPTATION SENTENCES, M INDICATES MEAN
ADAPTATION, M V' INDICATES MEAN AND VARIANCE ADAPTATIONS

ERREY

0 70.9 | 70.9
1 71.4 | 68.6
2 72.3 | 71.5
5 744 | 73.0
10 75.1 | 73.9
15 75.2 | 74.0
20 76.6 | 74.5
100 | 76.6 | 75.5
TABLE II

RECOGNITION ACCURACIES (%) AVERAGED OVER 20 SPEAKERS. TWO
STREAMS. S 1S THE NUMBER OF ADAPTATION SENTENCES, M INDICATES
MEAN ADAPTATION, M V' INDICATES MEAN AND VARIANCE ADAPTATION

S -M MV
0 70.9 | 70.9
1 74.0 | 72.8
2 749 | 72.9
5 75.5 | 72.7
10 | 75.6 | 72.3
15 75.8 | 73.2
20 | 75.9 | 73.5
100 | 75.5 | 73.5

after 20 sentences (2 min of speech). The third column shows
that adapting the variances as well as the mean vectors was
unhelpful across the entire range of adaptation sets.

The only way we were able to achieve any improvement with
variance adaptation was by imposing block diagonal constraints
on B (compare [5]). However these constraints diminished the
effectiveness of mean adaptation so that no net gain in per-
formance was obtained. Thus, partitioning the mixture com-
ponents into four blocks gave 73.4% accuracy for mean adap-
tation versus 74.0% for mean and variance adaptation (using
100 adaptation sentences for each speaker). Similarly, parti-
tioning the mixture components into ten blocks gave 74.7% ac-
curacy for mean adaptation versus 74.8% for mean and variance
adaptation.

2) 2 Streams: Table II reports recognition results obtained
under the same conditions as in Table I using two streams rather
than 26.

Aside from the fact that variance adaptation is still ineffective,
the main thing to note here is that the performance for mean
adaptation saturates much more quickly but reaches a lower
plateau than in Table I. This type of behavior is to be expected
since the eigenspace is of much lower dimension (160 versus
2080). The substantial improvement obtained with a single sen-
tence of adaptation data and a relatively small number of eigen-
voices confirms Botterweck’s result [16].

B. Multispeaker Modeling

Since variance adaptation with low dimensional eigenspaces
was consistently unhelpful, we tried another way of producing
speaker-adapted models for the test speakers, namely adding the
adaptation data to the training data and estimating the model
parameters (V,X) using the extended training set. With suf-
ficient adaptation data for the test speakers, this increases the
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number of eigenvoices that can be estimated (from 80 to 100 per
stream in the case at hand) and so ensures that the eigenspace
is big enough to contain the test speakers as well as the training
speakers. We refer to this type of training as multispeaker mod-
eling since it only produces speaker-adapted models for the
speakers in the extended training set.

We performed a multispeaker recognition experiment using
100 adaptation sentences for each of the test speakers. Per-
forming Baum—Welch estimation of the speaker independent
HMM with the extended training set and running recognition on
the test speakers gave a new benchmark recognition accuracy
of 72.1%. Performing mean adaptation on all of the speakers
in the extended training set in the course of estimating (V, %)
and running recognition on the test speakers gave a recognition
accuracy of 76.4%. Adapting both the means and the variances
also led to a recognition accuracy of 76.4% so there is no
degradation in performance in this case but no improvement
either.

VI. DISCUSSION

Eigenvoice methods of acoustic phonetic modeling were
developed initially to tackle small vocabulary tasks where
speaker-dependent training can be carried out for large num-
bers of speakers. In this article we have shown how to estimate
the principal eigenvoices of a speaker population in situations
where the training data is too sparse to permit speaker-depen-
dent training by formulating the problem in terms of maximum
likelihood estimation of the supervector covariance matrix
used in EMAP speaker adaptation. Unlike other methods of
eigenvoice estimation, this approach enables us to estimate as
many eigenvoices from a given training set as there are training
speakers.

Our results, like Botterweck’s, show that eigenvoice MAP
can yield substantial improvements in accuracy on a large vo-
cabulary task with very small amounts of adaptation data (one
or two sentences). However, it is doubtful that eigenvoice mod-
eling can provide a complete solution to the problem of acoustic
phonetic adaptation in the large vocabulary case because, al-
though it seems reasonable to assume that the “true” supervector
covariance matrix is of relatively low rank and our approach en-
ables us to extract the largest possible number of eigenvoices
from a given training set, it seems unlikely that sufficiently many
training speakers could ever be enlisted to estimate the super-
vector covariance matrix reliably. (An exception is the case of
multispeaker modeling where the training and test speaker pop-
ulations coincide. This type of modeling is more likely to be of
use in speaker recognition than in speech recognition [14]. It
is also interesting to note that the eigenchannel MAP estimator
introduced in [14] which uses the methods developed here to
tackle the problem of blind channel compensation for speaker
identification does not seem to suffer from this rank deficiency
problem.)

If the supervector covariance matrix is not reliably esti-
mated then speaker adaptation may saturate quickly but there
is no guarantee that it will be asymptotically equivalent to
speaker-dependent training. Ad hoc constraints designed to
increase the dimension of the eigenspace (such as block di-

agonal constraints or statistical independence conditions on
the acoustic features) result in better asymptotic behavior but
the improvement is slight and the principal effect of such
constraints seems to be to slow down the rate at which speaker
adaptation saturates.

If the goal of speaker adaptation is to attain speaker-depen-
dent performance with the smallest possible amount of adap-
tation data (rather than to attain the best possible performance
with one or two sentences of adaptation data), then it may be
necessary to adopt a different approach to estimating the su-
pervector covariance matrix in the large vocabulary case. In-
stead of using a principal components analysis to estimate the
principal eigenvectors of the supervector covariance matrix, we
could carry out a factor analysis. That is, we could assume a de-
composition of the form

B=D+VV*

where D is a nonsingular diagonal covariance matrix (this guar-
antees that B is of full rank). Ideally this type of model will ex-
hibit both the correct asymptotic behavior of classical MAP (the
case V' = 0) and the rapid saturation of eigenvoice MAP (the
case D = 0).

A factor analysis of this type has been implemented in a con-
nected digit recognition task (where speaker-dependent training
is feasible) [8]. However, a factor analysis of the training data
in the absence of speaker-dependent models will require a good
deal of algorithmic development. (Note that even if speaker-de-
pendent models are given, the natural procedure for estimating
a factor loading matrix is an EM algorithm [19].) We will take
up this question elsewhere.

Our results to the effect that variance adaptation is generally
less effective than simply copying the speaker-independent
HMM variances were contrary to our expectations. They seem
to indicate that the best way to model variances is to inflate
them and raise the question of whether heavy-tailed distribu-
tions ought to be used instead of Gaussians in HMM mixture
modeling. Since replacing individual Gaussians by discrete
scale Richter mixtures has been found to be a moderately effec-
tive strategy [20], continuous scale Richter mixtures might be
worth exploring. (These have proved to be effective in dealing
with the nonGaussian behavior of images containing edges as
well as textures [21].) More ambitiously, one could replace
each Gaussian in a HMM output distribution by an independent
components analyzer, tying the mixing matrices in the spirit of
[22]. (See [23] for an outstanding tutorial on ICA. Integrating
ICA with HMMs is straightforward in principle [24].) This
suggests that non-Gaussian modeling of speaker supervectors
could also be considered but we do not have any evidence to
indicate whether this is worth pursuing.

APPENDIX
PROOFS OF THE PROPOSITIONS

For each speaker s, let Py, 5(X(s)|y(s)) denote the con-
ditional likelihood of X(s) given y(s) and the parameter set
(V,X).

Lemma 1: For each speaker s

log Py 5(X(s)[y(s)) = Gx(s) + Hy 5(s,3(s))
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where Gx(s) is defined by (3) and
2 Va0 i | -
HV;:(S»Z‘/) =y'V'E 1SX(S) —5Y V*N(s)X lyy.

Proof: To simplify the notation, let us drop the reference
to s. Let O = Vy. For each mixture component ¢, let O, denote
the cth block of O (where each block is an F' x 1 vector) and let

Sxx+,c(0c) = Z(Xt — pte — Oc) (Xt — pre — O)*

t

where the sum extends over all the frames X; for the given
speaker which are aligned with the mixture component c. The
log likelihood of X conditioned on y is

1 1 1
(o s =51 (57 509
(6)
where the sum extends over all mixture components. This can
be simplified by writing
SXA\'*,C(OC) = SXX*,C - SXCO: - OCS;(7C + NCOCO:

so that

tr (ZC_ISXX*’C(OC)) =1tr (Ec_lSXX*,C)
—28% X710 + OFS7INO,

for ¢ = 1,...,C. This implies that
> tr (B0 Sxx c(O))

= tr (37 Sxx-c) — 20" 'Sx + O'NE 'O
and the result follows by substituting this expression in (6). H
a) Proof of Proposition 1: In order to show that the pos-

terior distribution of y(s) is of the stated form it is enough to
show that

Py s@l2(6) 5 ex9 (= (0~ a() 1) - alo) )
where

a(s) =1 Hs)V*E7 Sy (s).
Dropping the reference to s, we have

Py s(ylX)
x Py »(X|y)N(y|0,I)

1 1
X exp <y*V*2_1SX - §y*V*N2_1Vy - 5y*y>
1
= exp <y*V*ElSX - §y*ly>
1 *
xo (~5 -0t -a))

as required. ]

b) Proof of Proposition 2: If N(:|0,I) denotes the
Gaussian kernel with mean 0 and covariance matrix I, then

Py 5(X() = [ Py (X)) w0, Dy,

By Lemma 1, we can write this as
log Py (X (s)) = Gx(s) + log/exp (HV’E(s,y))
x N(y|0,I)dy

where

ol V400 Y 1 P v ad —
Hy 5(s,y) =y"V'E 'Sx(s) - 2y V*N(s)2™'Vy.

If N(y|0,1 *(s)) denotes the Gaussian kernel with mean 0 and
covariance matrix I~ (s) then the integral can be written in the
form

/exp (y*V*ifls‘\'(s)) N(y|0,1 *(s))dy.

By the formula for the Fourier-Laplace transform of the
Gaussian kernel [25] this simplifies to

1 1
exp <—§|l(s)| + 55}(3)2—1Vl1(5)V*2—ISX(3)>
which, by corollary 1 to proposition 1, can be written as
1 1 = sy —1
exp (—2|l(s)| + i(M(S) —My)'xE 54\'(3)) .
)

log Py 5(X(5)) = Gin(s) — 5 ()

+—(M(s) — Mo)*zilsx(s)

N —

as required. ]

It will be helpful to make a few remarks on differentiating
functions of a matrix variable before turning to the proof of
proposition 3. If f(X) is a function of a matrix variable X, then
for any matrix E of the same dimensions as X we set

. f(X+hE) - f(X)
Def(X) = }ILIL% h

and we refer to D f(X) as the derivative of f(X) in the direc-
tion of £. These directional derivatives are easily calculated for
linear and quadratic functions of X . For the determinant func-
tion they are given by

Dp|X| = |X|tr(X E).

(This can be derived from the identity X XT = | X |I where X'
is the adjoint of X.) If Dg f(X) = 0 for all matrices £ then X
is a critical point of f(X).

Define an inner product (-, -) by setting

(X,Y) = tr (X*Y).
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Since, for each X, the functional F — D f(X) is linear, there
is a unique matrix V f(X) (the gradient of f(X)) such that

Dpf(X) =(Vf(X), E)

for all E. So to find the critical points of f(X) we first find the
matrix-valued function V f(X') which enables us to express the
directional derivatives of f(X) in the form

Dpf(X) = tr(Vf(X)"E)

and then set Vf(X) = 0.

If the domain of f(X) is restricted to symmetric matrices X
(e.g., covariance matrices), the critical points of f(X) are de-
fined by the condition that Dg f(X) = 0 for all symmetric ma-
trices . In this case, the critical points can be found by setting

S(VIX) + VA(X)") = 0.

c) Proof of Proposition 3: We begin by constructing an

EM auxiliary function with the y’s as hidden variables. By
Jensen’s inequality,

>/ (x

Py 5(y, X(5))
m) Py, 5, (41X (s))dy

Py s(y, X(s))
<ty [ B Py, WX ()
28 | By, ) Ve
Since the right hand side of this inequality simplifies to
ZlogPV’E(X - ZlOgPVO,EO (X(s)),

the total log likelihood of the training data can be increased by
choosing the new estimates of (V', X)) so as to maximize the left
hand side. Since for each speaker s

Py 5y, X(s)) = Py 5(X(s)[Y)N (9]0, 1)

and similarly for Py & (y, X'(s)), this is equivalent to opti-
mizing the quantity

S [ 18 Py Xy, 3, (1)

which we refer to as the auxiliary function and denote by A.
Observe that

A=Y B log Py 5(X(5)ly(s))]

where E [-] is the conditional expectation operator introduced in
the statement of the proposition. Furthermore, by Lemma 1

A=Y Ga(s) + 30 F [y g(s,9(9))]
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and the second term on the right hand side can be simplified as
follows:

> [y 5(s.9(s >>}
- Z E{
_%y*(s)V*N (s)E_IVy(S)]
-y <E[y*(8)]V*2_1SX(5)

S

' Sx(s)

1
— —tr
2

(V'NIE VE e (4)) )
=S (= (sx(EW )V
—%N(s)VE (s)y* ()] V*) > .

We derive the re-estimation formula (4) by differentiating this
expression with respect to V' and setting the gradient to 0. If W
is a matrix of the same dimensions as V' then the derivative with
respect to V in the direction of W is given by

Ztr (
In order for this to be equal to 0 for all W we must have
Z = $)E [y (s)] = N(s)VE [y(s)y"(s)]) = 0

from which (4) follows.

It remains to derive the re-estimation formula (5) for X. Let
F be any block diagonal matrix having the same dimensions as
¥, so that it has the form

Fy

(Sx(5) B[ (5)] - Ns)VE[y(s)y" () W* ).

Fe

Note that, for each c, the derivative of log |E 1| with respect to
Y1 in the direction of F is tr (E F.). Hence the directional
derlvatlve of A with respect to £ ! in the direction of F' is

5 Z 2 W
+) tr <F <SX $
SNV E [y(s)y"(5)] V>>

ST (B.F,) — tr (F.Sxx+.(5)))

Ely"(s)]V*

which, by (4), simplifies to

% Z Z (No(s)tr (S.F.) — t
£ (PSx(s)Ely

r (FCSXX*,C(S)))

(V).
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This can be written as
1
5 ot Fo ) (Ne(s)Ze — Sxxees) + Be(s))

where, for each mixture component ¢ and speaker s, 3.(s) is the
cth diagonal block of the CF x C'F matrix Sx (s)FE [y*(s)] V™.
The latter expression evaluates to O for all symmetric matrices
F iff

Z (Ne(8)Xe — Sxx+,c(s) + Be(s))

S

+ Z (Nc(s)zc - SXX*,C(S) + ﬂc(s))* =0

forc=1,...,C.Since X, and Sx x+ .(s) are symmetric for all
c and s, (5) follows immediately. (The estimates for the covari-
ance matrices can be shown to be positive definite with a little
bit of extra work.) [ |
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