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Abstract

Rationale: Although obstructive sleep apnea (OSA) is associated
with impaired glucose tolerance and diabetes, it remains unclear
whether OSA treatment with continuous positive airway pressure
(CPAP) has metabolic benefits.

Objectives: To determine the effect of 8-hour nightly CPAP treatment
on glucose metabolism in individuals with prediabetes and OSA.

Methods: In a randomized controlled parallel group study,
39 participants were randomly assigned to receive either 8-hour
nightly CPAP (n = 26) or oral placebo (n = 13). Sleep was
polysomnographically recorded in the laboratory on each night.
CPAP adherence was ensured by continuous supervision.
Participants continued their daily routine activities outside the
laboratory. Glucose metabolism was assessed at baseline and after
2 weeks of assigned treatment using both the oral and intravenous
glucose tolerance tests. The primary outcome was the overall glucose
response as quantified by the area under the curve for glucose during
2-hour oral glucose tolerance testing. Secondary outcomes included

fasting and 2-hour glucose and insulin, the area under the curves for
insulin and insulin secretion, norepinephrine, insulin sensitivity,
acute insulin response to glucose, and 24-hour blood pressure.

Measurements and Main Results: The overall glucose response
was reduced (treatment difference:21,276.9 [mg/dl] $min [95%
confidence interval,22,392.4 to2161.5]; P = 0.03) and insulin
sensitivitywas improved (treatmentdifference: 0.77[mU/L]21 $min21

[95% confidence interval, 0.03–1.52]; P = 0.04) with CPAP as
compared with placebo. Additionally, norepinephrine levels and
24-hour blood pressure were reduced with CPAP as compared
with placebo.

Conclusions: In patients with prediabetes, 8-hour nightly CPAP
treatment for 2 weeks improves glucose metabolism compared
with placebo. Thus, CPAP treatment may be beneficial for metabolic
risk reduction.

Clinical trial registered with www.clinicaltrials.gov (NCT 01156116)

Keywords: obstructive sleep apnea; CPAP; metabolic; glucose;
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Prediabetes is an intermediate state
between normal glucose tolerance and
type 2 diabetes. It is a highly common
condition characterized by insulin

resistance and glucose intolerance (1).
Individuals with prediabetes are at high-
risk for cardiovascular disease and up to
70% eventually develop diabetes (2, 3).

Because the onset of diabetes can be
prevented or delayed, identifying
reversible risk factors and additional
preventive strategies is of utmost
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importance in trying to control the
current diabetes epidemic.

Obstructive sleep apnea (OSA) is
a treatable disorder linked to increased
cardiovascular disease and mortality
(4–9). Observational studies have also
demonstrated that OSA is an independent
risk factor for prediabetes and incident
diabetes (10–13). Both animal and human
models of intermittent hypoxia and sleep
fragmentation acutely mimicking OSA
show evidence of insulin resistance and
glucose intolerance (14–17). Despite this
strong association between OSA and
alterations in glucose metabolism, there is
still controversy as to whether treatment of
OSA with continuous positive airway

pressure (CPAP) has metabolic benefits
(18, 19). Prior randomized controlled trials
investigating the effects of CPAP on
measures of glucose metabolism yielded
mostly negative results (20–30). The
average duration of CPAP use in these trials
ranged from 3.3 to 6.2 hours per night. A
common drawback in most of these trials
was limited CPAP use. Interestingly, some
studies (29, 31) have reported positive
correlations between the hours of CPAP
usage and metabolic benefit following
CPAP treatment of OSA.

We performed a randomized
controlled clinical trial to rigorously test the
hypothesis that CPAP treatment, when
applied for 8 hours on a nightly basis, can
improve glucose metabolism in individuals
with prediabetes and OSA. Participants
were randomized to receive either 8-hour
CPAP treatment or oral placebo on each
night. In this proof-of-concept study,
all-night CPAP adherence was ensured
by direct observation and laboratory
polysomography with 8-hour bedtimes
during the 2-week treatment period.
Glucose metabolism was assessed at baseline
and after 2 weeks of assigned treatment
using both the oral glucose tolerance test
(OGTT) and the intravenous glucose
tolerance test (ivGTT). Additionally,
norepinephrine levels during OGTT and
24-hour ambulatory systolic and diastolic
blood pressures were measured. Preliminary
results of this study have been previously
reported in the form of abstracts at the
American Thoracic Society meeting
(32, 33).

Methods

Participants

Overweight or obese (body mass index
[BMI]> 25 kg/m2) adults aged greater
than or equal to 45 years, who had
OSA (apnea–hypopnea index> 5) and
prediabetes were recruited between
November 2009 and October 2012
through flyers and advertisements
seeking volunteers for a “research study
about sleep and prediabetes.” The
advertisements were posted at the
University of Chicago campus, local
neighborhoods, and newspapers in the
Chicago area. Participants who met the
American Diabetes Association criteria
for impaired fasting glucose (fasting
plasma glucose of 100–125 mg/dl) and/or

impaired glucose tolerance (2-hour
plasma glucose of 140–199 mg/dl) were
diagnosed as having prediabetes (34).
They were excluded if they smoked
cigarettes, had diabetes, had a history
of significant cardiac or other chronic
illness, or were taking prescription
medications other than antihypertensives
or lipid-lowering agents. Detailed
inclusion and exclusion criteria are
provided in the online supplement. A
complete medical history and physical
examination was conducted in all
participants. Overnight laboratory
polysomnography was performed to
establish the presence and the severity
of OSA. A fasting blood sample was
drawn for routine laboratory tests and
a standard 75-g OGTT was performed
to assess glucose tolerance. The study
was approved by the University of
Chicago Institutional Review Board. All
participants provided written informed
consent.

Study Protocol

This was a randomized (2:1), placebo-
controlled, parallel-group study.
Participants were randomly assigned to
receive either 2 weeks of 8-hour CPAP
treatment or 2 weeks of oral placebo
every night. Block randomization was
performed using computer-generated
random numbers. Randomization
assignments were prepared by
a statistician using opaque, sealed
envelopes. During the entire protocol,
both groups spent each night in the
laboratory with enforced 8-hour bedtimes
(from 11:00 P.M. to 7:00 A.M.), while
sleep was recorded by attended
polysomnography. During the daytime,
participants continued their daily routine
activities outside the laboratory. At
baseline and after the 2-week treatment
period, metabolic testing including
a standard morning OGTT, a morning
frequently sampled ivGTT, and
ambulatory 24-hour blood pressure
monitoring were performed in both
groups on consecutive days (Figure 1).
Participants continued their assigned
treatment during the post-treatment
testing period. During the 2-hour
OGTT, glucose and insulin responses
were assessed. Additionally, plasma
norepinephrine levels were measured at
each time point during the OGTT. The
ivGTT was performed to estimate the

At a Glance Summary

Scientific Knowledge on the

Subject: Observational studies have
suggested that obstructive sleep apnea
(OSA) is associated with impaired
glucose tolerance and diabetes.
Experimental animal and human
models mimicking OSA have
demonstrated insulin resistance and
glucose intolerance. To date, it remains
unclear whether OSA treatment with
continuous positive airway pressure
(CPAP) is beneficial for glucose
metabolism. A common drawback of
prior studies is limited CPAP use.

What This Study Adds to the

Field: This is the first study to
investigate the effects of 8 hours of
nightly CPAP treatment. In this proof-
of-concept study, we demonstrate that
all-night CPAP adherence for 2 weeks
in the laboratory reduces overall
glucose response during oral glucose
tolerance testing and improves insulin
sensitivity in individuals with
prediabetes. Additionally, 8-hour
nightly CPAP use decreases
norepinephrine levels and 24-hour
blood pressure as compared with
placebo. Our findings suggest that
CPAP treatment, if used 8 hours per
night, may provide cardiometabolic
benefit to patients with prediabetes,
a potentially reversible state in which
the development of overt diabetes and
its cardiovascular complications may
be prevented or delayed.
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insulin sensitivity and the acute insulin
response to glucose using the minimal
model approach (35).

Participants in the CPAP group
initially underwent an overnight
laboratory CPAP titration according to
clinical guidelines to identify the optimal
pressure needed (36). CPAP treatment
was applied at the optimal therapeutic

settings and all-night adherence was
ensured by continuous supervision
by a registered polysomnography
technician. Participants were only
allowed to take the CPAP off during
bathroom use, if needed. Participants
assigned to the oral placebo group were
administered a placebo capsule 30
minutes before bedtime and were told,

with the permission of the local ethics
committee, that it was intended to
improve upper airway function and OSA.
All participants were fully debriefed
regarding their treatment allocation
following study completion, and were
counseled on the diagnosis of OSA and
given a referral for effective treatment
of OSA. Further details of the study
protocol are provided in the online
supplement.

Statistical Analysis

The primary outcome was the overall
glucose response as quantified by area
under the curve for glucose (AUCglu)
during the 2-hour OGTT. Secondary
outcomes included the fasting and
2-hour glucose and insulin levels; the
AUCs for insulin (AUCins) and insulin
secretion rate (AUCinsulin secretion); mean
norepinephrine levels during the OGTT;
insulin sensitivity and acute insulin
response to glucose estimated from the
ivGTT; and the 24-hour, daytime, and
nighttime ambulatory blood pressure
measurements.

The primary analysis was based on
linear mixed-effect models to determine the
treatment differences between the CPAP
and placebo groups for all outcomes. These
models included treatment group (CPAP vs.
oral placebo); time (baseline vs. post-
treatment); the treatment group–by-time
interaction; a random effect for participant;
and age, BMI, and ethnicity-based diabetes
risk (high/low) as covariates. These
covariates were preselected because they are
well-established risk factors for diabetes
that predict the primary outcome. These
covariates were not included in the models
predicting polysomnographic variables. The
interaction was of particular interest to
determine whether the change over time
varied by treatment. Regression coefficients
and 95% confidence intervals are reported.
The mixed model was used because it
permits inclusion of all available data and
is a valid and advantageous approach for
analysis of randomized controlled trials
with missing data (37, 38). Further details
on missing data are provided in the
online supplement. Additionally, we
performed sensitivity analyses using
a fixed imputation approach (i.e., using
the post-treatment value for those
missing baseline and vice versa) or using
only participants who had available data
at both baseline and post-treatment.
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Figure 1. Study protocol. Boxes represent consecutive nights spent in the laboratory (i.e., nights

N01–N20) for participants in the oral placebo group (red) and in the continuous positive airway

pressure (CPAP) group (blue). At baseline and post-treatment, both groups underwent the same

assessments: morning oral glucose tolerance test (OGTT), morning frequently sampled intravenous

glucose tolerance test (ivGTT), and 24-hour ambulatory blood pressure (BP) monitoring.

274 Were enrolled

66 Declined further involvement

208 Underwent laboratory

screening testing 169 Were not eligible

       12 Declined further involvement

       22 Were diabetic

       60 Were normal glucose tolerant

       16 Did not have sleep apnea

       59 Were ineligible for other reasons

13 Were randomized to oral placebo 

3 Withdrew (personal reasons)

2 Had CPAP intolerance
1 Withdrew (acute illness) prior to any testing

12 Were included in the analysis

26 Were randomized to CPAP

26 Were included in the analysis

39 Were randomized

Figure 2. Participant flow diagram showing the number of participants who were enrolled,

underwent laboratory screening testing to assess for eligibility, randomized to each treatment arm,

and included in the analysis. CPAP = continuous positive airway pressure.
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Associations between the changes in
metabolic parameters were examined
using Pearson correlation coefficients.
A P value less than 0.05 was considered
statistically significant. No adjustment
for multiple comparisons was made.
With a sample size of 39 subjects (26 in

the CPAP group and 13 in the control
group), the study had more than 80%
power (two-sided a = 0.05) to detect
effect sizes of 1.0 for differences between
treatment groups. Statistical analyses
were performed using Stata Version 13
(Stata Corp., College Station, TX).

Results

Study Participants

A total of 208 individuals had laboratory
screening testing to assess for eligibility and
39 participants underwent randomization
(Figure 2). Of the entire randomized
cohort, approximately two-thirds were
men, 72% were obese, and 54% had high
diabetes risk based on ethnicity. The degree
of severity of OSA was moderate-to-severe
(apnea–hypopnea index> 15 events/h)
in 82% of the entire sample and 46% of
all participants had excessive daytime
sleepiness (Epworth sleepiness score .10).
Baseline characteristics of the participants
were similar between the groups with only
trends toward higher BMI, percent body
fat, and presence of hypertension in the
CPAP group (Table 1). One participant
who was assigned to the oral placebo group
withdrew before any testing because of an
acute illness, and thus was excluded from
further analyses. In the CPAP group, three
participants withdrew because of personal
reasons and two had CPAP intolerance
during the treatment period (Figure 2).

Sleep Characteristics

At baseline, total sleep time was similar
between the CPAP and oral placebo groups
and averaged approximately 6.7 hours in the
CPAP group and approximately 6.9 hours in
the placebo group. No significant differences
in the changes in total sleep time or sleep
efficiency were found between the CPAP
and oral placebo groups after 2 weeks of
treatment (Table 2). In the CPAP group,

Table 1. Baseline Characteristics of the Study Population

CPAP Group
(n = 26)

Oral Placebo
Group (n = 13)

Age, yr 53.86 6.2 55.26 8.4
Men, n (%) 16 (62) 10 (77)
Ethnicity, n (%)
African American 13 (50) 6 (46)
Asian 0 (0) 1 (8)
White 13 (50) 5 (38)
Hispanic 0 (0) 1 (8)

Body mass index, kg/m2 36.86 7.8 32.76 4.3
Body fat, % 38.26 9.3 33.16 5.7
Waist circumference, cm 118.96 24.7 112.16 12.6
Ethnicity-based diabetes risk, high/low 13/13 8/5
Family history of diabetes, n (%) 10 (40) 4 (30)
Hypertension, n (%) 5 (19) 0 (0)
Dyslipidemia, n (%) 12 (46) 9 (69)
Hemoglobin A1c, % 5.86 0.4 5.86 0.3
Habitual sleep duration, h* 6.16 0.9 5.86 1.2
Epworth sleepiness score 10.06 5.9 10.96 5.0
Apnea–hypopnea index, events/h 34.26 24.5 39.06 22.9

Definition of abbreviation: CPAP = continuous positive airway pressure.
Data are mean6 SD unless otherwise specified. Ethnicity-based diabetes risk was categorized as
“high” for African Americans, Hispanics, and Asians and “low” for white individuals. Family history of
diabetes was considered positive if at least one first-degree relative had type 2 diabetes. Body fat
percentage was estimated by bioimpedance. Dyslipidemia was defined by any of the following: prior
medical history, any abnormal lipid value, antilipid therapy. Hypertension was considered to be
present if any of the following were satisfied: prior history of hypertension, antihypertensive use,
systolic or diastolic blood pressure greater than 140 or greater than 90 mm Hg, respectively.
*Habitual sleep duration data are reported in n = 34 from 1-week wrist actigraphy recordings prior to
baseline assessments.

Table 2. Effect of Treatment on Sleep Characteristics for CPAP versus Oral Placebo Groups*

CPAP Group (n = 26) Oral Placebo Group (n = 12)

Treatment Difference P ValueVariable Baseline
Change after

2 Weeks Baseline
Change after

2 Weeks

Total sleep time, h 6.7 (6.5 to 7.0) 20.16 (20.33 to 0.01) 6.9 (6.7 to 7.2) 20.17 (20.40 to 0.05) 0.01 (20.27 to 0.29) 0.95
Sleep efficiency, % 84.1 (80.7 to 87.4) 21.7 (23.5 to 0.2) 86.7 (83.6 to 89.9) 22.2 (24.7 to 0.3) 0.5 (22.6 to 3.6) 0.74
AHI, events/h 34.2 (24.3 to 44.1) 231.6 (240.0 to223.2) 39.0 (24.4 to 53.5) 2.3 (29.0 to 13.7) 233.9 (248.1 to219.8) ,0.001
ODI (3%), events/h 22.5 (14.7 to 30.3) 221.3 (228.1 to214.5) 29.9 (16.0 to 43.9) 1.6 (27.5 to 10.8) 222.9 (234.4 to211.5) ,0.001
Oxygen saturation
, 90%, min

55.0 (25.8 to 84.2) 249.7 (272.9 to226.5) 62.3 (19.9 to 104.7) 9.9 (221.4 to 41.2) 259.6 (28.5 to 220.7) 0.003

Microarousal index,
events/h

32.0 (24.0 to 39.9) 219.7 (226.9 to212.6) 36.6 (22.6 to 50.6) 1.3 (28.4 to 11.0) 221.0 (233.1 to 29.0) 0.001

Definition of abbreviations: AHI = apnea–hypopnea index; CPAP = continuous positive airway pressure; ODI = oxygen desaturation index.
Data are mean (95% confidence interval). Sleep variables were derived from the average of the three consecutive nights of polysomnographic recordings
during baseline testing (i.e., baseline) and the three consecutive nights of polysomnographic recordings after 2 weeks of treatment during post-treatment
testing (i.e., post-treatment). Change after 2 weeks (i.e., treatment effect) was calculated from the regression models as the post-treatment – baseline
effect for each treatment group. Treatment difference between the two groups was also calculated from the regression models as the CPAP 2 oral
placebo 2-week changes (i.e., the interaction effect from the model). P values for the treatment difference are from the test of the treatment group–by-time
interaction using linear mixed model approach.
*All available data were used in the analyses (see online supplement for further details).
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the mean duration of CPAP use
approximated 8 hours per night, because
participants wore the CPAP mask for the
entire duration of 8-hour time-in-bed,
except for rare bathroom breaks. As
expected, the group receiving CPAP had
significant reductions in all measures
of OSA severity as compared with
placebo (Table 2). The nightly total sleep
time, apnea–hypopnea index, oxygen
desaturation index, and microarousal index
at baseline during the 2-week treatment
period and post-treatment in the CPAP and
oral placebo groups are shown in Figure 3.

Outcomes

The mean profiles of glucose, insulin, and
insulin secretion rate during the OGTT at
baseline and post-treatment are illustrated
in Figure 4. The overall glucose response
(AUCglu) during OGTT (i.e., primary
outcome) was significantly reduced with
CPAP treatment as compared with oral
placebo, whereas the effect of treatment on
insulin response during OGTT was similar
between the groups, suggesting improved
insulin sensitivity (Table 3). No significant
difference in treatment effect was found for
fasting glucose between the groups, but the

2-hour glucose during the OGTT tended
to decrease after CPAP treatment as
compared with the treatment effect with
placebo. After 2 weeks of treatment, fasting
insulin levels were significantly reduced
in the group receiving CPAP compared
with the change in the placebo group, but
the change in 2-hour insulin levels did
not differ between the groups. Insulin
sensitivity estimated by the ivGTT
was significantly improved after CPAP
treatment as compared with the treatment
effect with placebo. The treatment effect
for the acute insulin response to glucose
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Figure 3. Night-by-night polysomnographic data. Average nightly total sleep time (TST; A), apnea–hypopnea index (AHI; B), 3% oxygen desaturation

index (ODI; C), and microarousal index (MAI; D) for participants in the oral placebo group (red lines) and in the continuous positive airway pressure group

(blue lines) are shown. PRE denotes the three nights recorded during baseline testing period (N01, N02, and N03), and POST denotes the three

consecutive nights recorded after treatment during post-treatment testing period (N18, N19, and N20). Participants continued their assigned treatment

during the post-treatment testing period. Data are shown in a total of n = 33 participants (excluding three in the continuous positive airway pressure group

who withdrew for personal reasons and two who had continuous positive airway pressure intolerance during treatment period). Error bars represent SEM.

Dashed lines indicate AHI = 5, ODI = 5, and MAI = 15 events per hour.
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did not differ significantly between the
groups.

Norepinephrine levels were markedly
lower after CPAP treatment as compared
with the change with placebo (treatment
difference, 2111.4; 95% confidence
interval, 2175.5 to 247.4; P = 0.001)
(Figure 5). There were no significant
correlations between the magnitude of
change in catecholamine levels and the
magnitude of change in insulin sensitivity
(P = 0.76) or the magnitude of change
in AUCglu (P = 0.34). After 2 weeks of
treatment, the mean 24-hour, daytime and
nighttime systolic and diastolic blood
pressure were significantly reduced in the
group receiving CPAP compared with the
change in the placebo group (Table 4).
Changes in daytime activity levels
measured by continuous wrist actigraphy
monitoring (P = 0.68) and self-reported
food intake assessed by daily meal logs
(P = 0.66) were not different between the
groups. Additionally, in a mixed-effects
(random slope and intercept) regression
model with treatment group, day, and the
group-by-day interaction, the interaction
was not statistically significant for
activity levels (P = 0.55) and food intake
(P = 0.51), further indicating that the
change over time in activity or food

intake did not vary significantly between
treatment groups.

Overall, the effect of treatment on
outcomes for CPAP versus oral placebo
groups using unadjusted models yielded
similar findings (see Table E1 in the online
supplement). In cases of nonnormality,
the use of square root or log transformation
did not change the findings. Sensitivity
analyses using fixed imputation for missing
values (data not shown) and using only
participants who had data at both baseline
and post-treatment also resulted in similar
findings (see Table E2).

Discussion

We demonstrated that 8 hours of nightly
CPAP treatment of OSA for 2 weeks reduces
the overall glucose response during the
OGTT and improves insulin sensitivity in
individuals with prediabetes. Additionally,
CPAP treatment reduced norepinephrine
levels and 24-hour systolic and diastolic
blood pressure as compared with placebo.
To our knowledge, this is the first trial to
investigate the effects of 8 hours of nightly
CPAP treatment. In this proof-of-concept
study, all-night CPAP use was ensured by
continuous supervision in the laboratory

with simultaneous 8-hour sleep recordings.
Our findings suggest that CPAP treatment,
if used for 8 hours per night, may provide
cardiometabolic benefits patients with
prediabetes, a potentially reversible state in
which the development of overt diabetes and
its cardiovascular complications could be
prevented or delayed.

In our study, CPAP treatment resulted
in reduced glucose levels without changes
in insulin levels or insulin secretion during
the OGTT, suggesting improved insulin
sensitivity. Consistent with the OGTT
findings, we also demonstrated a significant
improvement in insulin sensitivity assessed
by the ivGTT. In a prior randomized
controlled trial in patients with prediabetes,
no significant improvement overall was
observed in glucose tolerance or insulin
sensitivity indices derived from the OGTT
after 2 months of CPAP treatment averaging
approximately 4.6 hours per night (29).
However, each hour of CPAP use led to
a significant improvement in insulin
sensitivity from baseline, suggesting
a dose–response relationship. In our
participants with prediabetes, we observed
a significant metabolic benefit when CPAP
was applied for 8 hours per night for
2 weeks.

Another randomized controlled CPAP
trial in men with no diabetes showed no
improvement in glucose and insulin indices
derived from OGTT after 12 weeks of
CPAP, but CPAP adherence was again low
averaging approximately 3.6 hours per night
(21). In a recent randomized controlled
trial, 24 weeks of CPAP treatment alone (on
average z4 h per night) did not improve
insulin sensitivity as assessed by ivGTT
(27). Previous randomized controlled trials
have found no benefit of CPAP treatment
on measures of glucose metabolism when
the duration of average CPAP use ranged
from 3.3 to 6.2 hours per night (20–28). In
one controlled study involving individuals
with prediabetes, 2 months of CPAP use
(on average z4.8 h per night) led to an
improvement in insulin sensitivity only
in those who had severe OSA (29).
Additionally, sleepy patients had larger
improvements in insulin sensitivity as
compared with nonsleepy patients (29).

These findings suggest that subgroups
of OSA patients may derive some metabolic
benefits even though the CPAP use is
limited. In another controlled study, 1 week
of higher CPAP adherence (z6.2 h per
night) improved insulin sensitivity
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estimated by the short insulin tolerance test
in Asian men with no diabetes (30). In
our study, the participants used CPAP
continuously (except for rare bathroom
breaks) in the laboratory during the entire
duration of the time in bed (i.e., from
11:00 P.M. to 7:00 A.M.), which is comparable
with approximately 8 hours of nightly
objective CPAP adherence downloaded
from devices in a clinical setting.

Our finding that CPAP treatment
reduces systolic and diastolic blood pressure
as compared with placebo is consistent with
prior randomized trials showing beneficial
effects of CPAP on blood pressure in OSA
patients (25, 28, 39–42). Most of our
participants (z80%) were not hypertensive
at baseline. Although the average decrease
in blood pressure seems to be larger in
our study as compared with the treatment
effect in prior trials (28, 39–42), it has been
reported that the effectiveness of CPAP in
reducing blood pressure increases with
higher adherence to treatment (28, 41–43).
Within the CPAP group, we observed
significant decreases in 24-hour and
daytime diastolic blood pressure, whereas
the nighttime systolic and diastolic blood
pressure seemed to be higher after
treatment, although these nighttime
changes did not reach statistical

significance. One potential explanation
could be that the use of the blood pressure
cuff itself may result in appreciable arousal
from sleep and therefore alter the blood
pressure readings at night. It is also possible
that our intermittent blood pressure
measurements at night (every 20 min)
were not sufficient to capture the more
rapid blood pressure changes that
occur transiently after each obstructive
respiratory event. Finally, unmeasured
factors (e.g., diet with salt intake, stressful
events) over the 2-week period may also
have influenced the blood pressure findings.

We have found that CPAP treatment
decreased norepinephrine levels, which
is in agreement with prior reports (25,
44–47). The magnitude of decrease in
norepinephrine levels after CPAP
treatment was approximately 27% in our
study, which is similar to the 26%
reduction observed in earlier studies (47,
48). We did not find significant
correlations between the magnitude of
change in norepinephrine levels and the
magnitude of changes in glucose
metabolism. However, our finding of
concomitantly lower overall
norepinephrine levels and improved
glucose levels suggests that a reduction in
sympathetic activity could be a potential
mediator of metabolic benefit from CPAP.

Although oral placebo has been used as
a control group in several randomized
controlled CPAP trials (49–55), an
alternative, commonly used approach
is sham-CPAP, a specially designed
CPAP device with minimal and clinically
ineffective airway pressure. We chose to use
oral placebo rather than sham-CPAP in the
control group for several reasons. First,
because air pressure is the mechanism of
action of CPAP, sham devices may feel
different due to a markedly lower mask air
pressure compared with the therapeutic
device, which may adversely affect its
tolerability and acceptance by patients.
Indeed, several studies investigating the
effects of CPAP on glucose metabolism
have reported lower average duration of
sham-CPAP adherence as compared with
therapeutic CPAP (20, 21, 29, 30). A large
randomized controlled multicenter trial
(56), comparing the effects of therapeutic
versus sham-CPAP, reported significantly
lower adherence to sham-CPAP and
a lower retention rate in the sham-CPAP
group. Another large randomized
controlled multicenter trial (57) also

reported lower duration of sham-CPAP use
as compared with active CPAP.

Second, in the study by Kushida
and colleagues (56), about two-thirds of
sham participants correctly guessed their
treatment assignment, which raises the
possibility of unblinding when sham-CPAP
is used. In a recent randomized crossover
trial of active versus sham-CPAP (58),
when the patients were asked about their
treatment experience before unblinding,
most were able to identify the active
CPAP as the more effective treatment.
The authors (58) also concluded that
investigator blinding is unlikely to be
achieved in such trials with sham-CPAP.
Finally, there is some evidence to suggest
that sleep quality may worsen to a small
degree by sham-CPAP (59). For all these
reasons, we believed that oral placebo was
an acceptable choice as a control group in
our trial.

A major strength of our study is the
unique and rigorous design to achieve
8-hour nightly CPAP compliance during the
2-week intervention period. Other strengths
include the focus on a high-risk population
with prediabetes and a comprehensive
assessment of glucose metabolism using
both OGTT and ivGTT, which provide
dynamic and complementary information
on metabolic pathways.

Our study also has several limitations.
This was a study in a small number of
individuals with prediabetes with selective
eligibility criteria, which may limit the
generalizability to more diverse populations.
The investigators were unblinded to
treatment allocation because of the use of
oral placebo in the control group. The
secondary outcomes should be considered
exploratory and the borderline significant
effects of CPAP observed with these
outcomes not definitive. In this proof of
concept study, the CPAP treatment was
limited to 2 weeks, and thus the study does
not provide information on the potential
effects of CPAP on glucose metabolism over
a longer period of time. Importantly, in our
study, CPAP was applied in the laboratory
under continuous supervision, but 8-hour
nightly CPAP use may be difficult to achieve
in real-life conditions. Thus, our findings
should be interpreted with caution,
particularly in regards to CPAP
recommendations to patients in clinical
settings. Our participants were treated with
CPAP for 8 hours on a nightly basis, and
thus the study cannot determine a specific
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adherence threshold for beneficial effects on
glucose metabolism. Similarly, the required
dose of CPAP to observe a specific effect
may be difficult to determine and may vary
according to the outcome of interest.

One can argue that the apparent
worsening in cardiometabolic parameters
in the placebo group may have inflated the
treatment effect in our study. However,
in randomized trials, it is strongly
recommended to perform a direct
comparison between the groups rather
than separate tests against baseline within
the groups because such separate tests
could be highly misleading (60).
Nevertheless, because our participants
continued their daily life under
free-living conditions, additional

environmental factors (unmeasured
in our study) may have affected our
findings. Although we did not find
significant differences between the CPAP
and oral placebo groups for daytime
activity levels and self-reported food
intake, we cannot exclude the possibility
that changes in energy metabolism
contributed to our findings.

In conclusion, we have demonstrated
that all-night CPAP adherence (z8 h
per night) for 2 weeks in the laboratory
is beneficial for glucose metabolism in
individuals with prediabetes and OSA.
Future large-scale clinical trials in real-life
settings, perhaps combining CPAP with
lifestyle changes, are needed to determine
the exact role of CPAP treatment of OSA in

the management of prediabetes. Our data
also provide some incentive to improve
CPAP adherence in individuals with
prediabetes for cardiometabolic risk
reduction. n
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