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Abstract
This document presents comprehensive historical accounts on the developments of finite element methods (FEM) since 1941, 
with a specific emphasis on developments related to solid mechanics. We present a historical overview beginning with the 
theoretical formulations and origins of the FEM, while discussing important developments that have enabled the FEM to 
become the numerical method of choice for so many problems rooted in solid mechanics.

The year 2021 marks the eightieth anniversary of the inven-
tion of the finite element method (FEM), which has become 
the computational workhorse for engineering design analysis 
and scientific modeling of a wide range of physical processes, 
including material and structural mechanics, fluid flow and 
heat conduction, various biological processes for medical 
diagnosis and surgery planning, electromagnetics and semi-
conductor circuit and chip design and analysis, additive 
manufacturing, and in general every conceivable problem 

that can be described by partial differential equations (PDEs). 
The FEM has fundamentally revolutionized the way we do 
scientific modeling and engineering design, ranging from 
automobiles, aircraft, marine structures, bridges, highways, 
and high-rise buildings. Associated with the development of 
FEMs has been the concurrent development of an engineer-
ing science discipline called computational mechanics, or 
computational science and engineering.

In this paper, we present a historical perspective on the 
developments of finite element methods mainly focusing on its 
applications and related developments in solid and structural 
mechanics, with limited discussions to other fields in which 
it has made significant impact, such as fluid mechanics, heat 
transfer, and fluid–structure interaction. To have a complete 
storyline, we divide the development of the finite element 
method into four time periods: I. (1941–1965) Early years of 
FEM; II. (1966–1991) Golden age of FEM; III. (1992–2017) 
Large scale, industrial applications of FEM and development 
of material modeling, and IV (2018–) the state-of-the-art FEM 
technology for the current and future eras of FEM research. 
Note that this paper may not strictly follow the chronological 
order of FEM developments, because often time these develop-
ments were interwoven across different time periods.

1 � (1941–1965) The Birth of the Finite 
Element Method

The origin of the FEM as a numerical modeling paradigm 
may be traced back to the early 1940s. In 1941, A. Hrennikof, 
a Russian-Canadian structural engineer at the University of 
British Columbia, published a paper in the ASME Journal 
of Applied Mechanics on his membrane and plate model as a 
lattice framework [1]. This paper is now generally regarded 
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as a turning point that led to the birth of the FEM. In the 
paper, he discretized the solution domain into a mesh of lattice 
structure, which was the earliest form of a mesh discretization.

On May 3rd, 1941, the same year that Hrennikoff published 
his paper, R. Courant of New York University delivered an 
invited lecture at a meeting of the American Mathematical 
Society held in Washington D.C. on his numerical treatment 
using a variational method to solve a second order PDE, which 
arises from Saint–Venant’s torsion problem of a cylinder. In 
this work, Courant systematically used the Rayleigh–Ritz 
method with a trial function defined on finite triangle sub-
domains, which is a primitive form of of the finite element  

method [2]. Courant’s presentation was later published as a 
paper in 1943 [3]. Similar works of discretization and varia-
tional formulations were also reported in the literature, includ-
ing McHenry [4], Prager and Synge [5], and Synge and Rhein-
boldt [6]. As Ray Clough commented in his 1980 paper, “One 
aspect of the FEM, mathematical modeling of continua by 
discrete elements, can be related to work done independently 

in the 1940s by McHenry and Hrennikoff-formulating bar ele-
ment assemblages to simulate plane stress systems. Indeed, I 
spent the summer of 1952 at the Boeing Airplane Company 
trying to adapt this procedure to the analysis of a delta air-
plane wing, the problem which eventually led to the FEM”.

By the early 1950s, several engineers and academics had 
further developed and extended these early approaches to 
solve real engineering problems in aeronautical and civil engi-
neering. In parallel but with different emphases, Argyris at 
the Imperial College London, and M. J. Turner (1950–1956) 
at Boeing Company, who was later joined by R.W. Clough 
of UC Berkeley and H.C. Martin of Washington University, 
developed what we know today as the earliest form of the 
finite element method (1954), which was called the Matrix 
Stiffness Method at the time. In a paper published in 1960 
[14], R.W. Clough coined the phrase Finite Element Method, 
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and this unassuming and right-to-the-point phrase was an 
instant hit, bringing out the essence of the method.

With his deep insights and profound vision into Cou-
rant’s variational approach, J.H. Argyris developed the 
energy method for engineering structures [6–9], a founda-
tional development enabling FEM for solids. While impor-
tantly, Turner, Clough, Martin, and Topp successfully 
developed FEM interpolants for triangular elements [10], 
which is suitable for structural parts with arbitrary shape. 
In some senses, the invention of the triangle element was 
a “quantum leap”, and hence for a large spectrum of the 
engineering community, the inception of the FEM is the 
publication of the landmark paper by Turner et al. [10]. 
The following is an excerpt from a 2014 document that 
celebrates the 50th anniversary of the formation of National 
Academy of Engineering, which is an official account of 
that part of FEM history: To ensure safety and avoid costly 
modifications after planes entered production, engineers 
needed a reliable method for determine in advance whether

their designs could withstand the stresses of fight. M. 
Jon Turner, head of Boeing’s Structural Dynamics Unit, 
addressed that problem in the early 1950s by bringing 
civil engineering professor Ray Clough of the University 
of California, Berkeley, and Harold Martin of the Univer-
sity of Washington to Boeing for summer ``faculty intern-
ships,’’ Collectively, they created a method of structural 
analysis that Turner applied at Boeing using computers to 
perform the myriad calculations need to predict real-world 
performance. That fruitful collaboration led to Clough’s 
development a few years later of what he named the finite 
element method (FEM). Clough formed a research group 
at UC Berkeley that used FEM in a host of analytical and 

experimental activities, from designing buildings and 
structures to withstand nuclear blasts or earthquakes to 
analyzing structural requirements for spacecraft and deep-
water offshore drilling. By revolutionizing the application 
of computer technologies in engineering, FEM continues to 
help engineers design to this day all sorts of durable, cost-
effective structures. Meanwhile, Turner’s efforts at Boeing 
contributed to the success of its renowned line of commer-
cial jets, beginning in 1958 with the 707 and continuing in 
1964 with the 727, which could land on shorter runways 
and serve more airports. Equipped with three fuel-efficient 
turbofan engines, the 727 became the workhorse of com-
mercial aviation and helped achieve a threefold increase 
in U.S. passenger air traffic in the’60s.

Independently and separately, in the early 1960s, Kang 
Feng of the Chinese Academy of Science also proposed a 
discretization-based numerical method for variational prin-
ciples for solving elliptic partial differential equations [11]. 
As Peter Lax [11, 12] commented, “Independently of paral-
lel developments in the West, he (Feng) created a theory of 
the finite element method. He was instrumental in both the 
implementation of the method and the creation of its theo-
retical foundation using estimates in Sobolev spaces….”, 
which was one of the first convergence studies of FEMs.

During this period, several great engineering minds were 
focusing on developing FEMs. J.H. Argyris with his co-work-
ers at the University of Stuttgart; R. Clough and colleagues 
such as E. L. Wilson and R.L. Taylor at the University of 
California, Berkeley; O.C. Zienkiewicz with his colleagues 
such as E. Hinton and B. Irons at Swansea University; P. 
G. Ciarlet at the University of Paris XI; R. Gallager and his 
group at Cornell University, R. Melosh at Philco Corpora-
tion, B. Fraeijs de Veubeke at the Université de Liège, and J. 
S. Przemieniecki at the Air Force Institute of Technology had 
made some important and significant contributions to early 
developments of finite element methods.

To understand what happened sixty years ago, we quote 
an excerpt from a FEM history paper by Clough and Wil-
son [13], in which they recalled:

When Clough presented the first paper using the finite 
element terminology in 1960 it attracted the attention of his 
friend, Professor O. C. Zienkiewicz, who was then on the 
faculty at Northwestern University. A few weeks after the 
presentation of the paper Zienkiewicz invited Clough to pre-
sent a seminar on the finite element method to his students. 
Zienkiewicz was considered one of the world’s experts on 
the application of the finite difference method to the solu-
tion of continuum mechanics problems in Civil Engineering; 
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therefore, Clough was prepared to debate the relative mer-
its of the two methods. However, after a few penetrating 
questions about the finite element method, Zienkiewicz was 
almost an instant convert to the method.

Z. Bazant, then a visiting associate research engineer at UC 
Berkeley, recalled: …… The founding of FEM was   paper 
in the ASCE Conf. on Electronic Computation Clough [14], 
which was the first to derive, by virtual work, the finite element 
stiffness matrix of an element of a continuum (a triangular 
constant strain element). ……. I recall Ray Clough showing 
to me his 1962 report to the U.S. Engineer District, Little 
Rock, Corps of Engineers on his analysis of a crack observed 
in Norfolk Dam [15], during my stay in Berkeley in 1969. I 
was mesmerized by seeing that 1962 report. It presented a 2D 
stress analysis of large crack observed in Norfork dam. The 
dam was subdivided into about 200 triangular elements and 
provided stress contours for a number of loading cases. …… 
Clough was at that time way ahead of anybody else.

To collaborate Z. Bazant’s recollection, we cite E.L. Wil-
son’s recounting of that part of FEM history:

In 1956, Ray, Shirley, and three small children spent 
a year in Norway at the Ship Research Institute in Trond-
heim. The engineers at the institute were calculating 
stresses due to ship vibrations to predict fatigue failures 
at the stress concentrations. This is when Ray realized 
his element research should be called the Finite Element 
Method which could solve many different types of prob-
lems in continuum mechanics. Ray realized the FEM was 
a direct competitor to the Finite Difference Method. At 
that time FDM was being used to solve many problems 
in continuum mechanics. His previous work at Boeing, 
the Direct Stiffness Method, was only used to calculate 
displacements not stresses.

In the fall semester of 1957, Ray returned from his sab-
batical leave in Norway and immediately posted a page on 

the student bulletin board asking students to contact him if 
they were interested in conducting finite element research 
for the analysis of membrane, plate, shell, and solid struc-
tures. Although Ray did not have funding for finite element 
research, a few graduate students who had other sources of 
funds responded. At that time, the only digital computer in 
the College of Engineering was an IBM 701 that was pro-
duced in 1951 and was based on vacuum tube technology. The 
maximum number of linear equations that it could solve was 
40. Consequently, when Ray presented his first FEM paper 
in September 1960, “The Finite Element Method in Plane 
Stress Analysis,” at the ASCE 2nd Conference on Electronic 
Computation in Pittsburgh, Pennsylvania, the coarse-mesh 
stress-distribution obtained was not very accurate. Therefore, 
most of the attendees at the conference were not impressed. 
After the improvement of the speed and capacity of the com-
puters on the Berkeley campus, Professor Clough’s paper was 
a very fine mesh analysis of an existing concrete dam. The 
paper was first presented in September 1962 at a NATO con-
ference in Lisbon, Portugal. Within a few months, the paper 
was republished in an international Bulletin, which had a very 
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large circulation, as “Stress Analysis of a Gravity Dam by 
the Finite Element Method”, (with E. Wilson), International 
Bulletin RILEM, No. 10, June 1963.

The Lisbon paper reported on the finite element analysis 
of the 250-foot-high Norfork Dam in Arkansas, which had 
developed a vertical crack during construction in 1942. The 
FEM analysis correctly predicted the location and size of the 
crack due to the temperature changes and produced realistic 
displacements and stresses within the dam and foundation 
for both gravity and several hydrostatic load conditions. 
Because of this publication, many international students and 
visiting scholars came to Berkeley to work with Professor 
Clough. Also, he freely gave the FORTRAN listing of their 
finite element analysis computer program to be used to eval-
uated displacement and stresses in other two-dimensional 
plane structures with different geometry, materials, and 
loading. Therefore, professional engineers could easily use 
the powerful new FEM to solve for the stress distributions in 
their structural engineering problems in continuum mechan-
ics. However, he did not capitalize on his success in the 
development of the FEM. He returned to the task of building 
the earthquake engineering program at Berkeley – the task 
he given when he was first hired in 1949.

For their decisive contributions to the creation and devel-
opments of FEM, R. W. Clough was awarded the National 
Medal of Science in 1994 by the then vice-president of the 
United States Al Gore, while O. C. Zienkiewicz was honored 
as a Commander of the Order of the British Empire (CBE). 
Today, the consensus is that J.H. Argyris, R.W. Clough and 
O. C. Zienkiewicz made the most pivotal, critical, and sig-
nificant contributions to the birth and early developments of 
finite element method following an early contribution to its 
mathematical foundation from R. Courant.

It is worth noting that E.L. Wilson of UC Berkeley was 
the first person to develop finite element open-source soft-
ware. An excerpt from Clough and Wilson’s paper in 1999 
stated 13: In 1958 Wilson, under the direction of Clough, 
initiated the development of an automated finite element 
program based on the rectangular plane stress finite ele-
ment developed at Boeing. After several months of learn-
ing to program the IBM 701, Wilson produced a limited 
capacity, semiautomated program which was based on the 
force method. An MS research report was produced, which 
has long since been misplaced, with the approximate title 
of Computer Analysis of Plane Stress Structures. …… In 
1959 the IBM 704 computer was installed on the Berkeley 
Campus. It had 32K of 32-bit memory and a floating-point 
arithmetic unit which was approximately 100 times faster 
than the IBM 701. This made it possible to solve practical 
structures using fine meshes.

It is also worth mentioning that, Oden [16], a senior struc-
tural engineer in the research and development division of 
General Dynamics Corporation at Fort Worth at the time, 

wrote a 163-page comprehensive technical report with G.C. 
Best, in which they developed a long list of solid and struc-
tural finite elements, including tetrahedral, hexahedral, thin 
plate, thick plate, plate element with stringers or stiffeners, 
composite sandwich plate elements, and shallow shell ele-
ments [17]. In fact, Oden and Best wrote one of the first 
general purpose FEM computer codes at the time. The For-
tran FEM code developed by Oden and Best had an element 
library that includes elements for 3D elasticity, 2D plane 
elasticity, 3D beam and rod elements, composite layered 
plate and shell elements, and elements for general compos-
ite materials. Their work also included hybrid methods and 
stress based FEMs, which may be even earlier than those of 
Pian [18]. Moreover, Oden and Best’s FEM code was also 
able to handle FEM eigenvalue modal analysis, and numeri-
cal integration over triangle and tetrahedra elements, and it 
had linear system solvers for general FEM static analysis 
that were among the most effective at that time (see [19]). 
This FEM computer code was used for many years in aircraft 
analysis and design in the aerospace and defense industry.

It appears that, I.C. Taig [20] of English Electric Aviation 
first introduced the concept of the isoparametric element 
when he used the matrix-displacement method to conduct 
stress analysis of aerospace structures, which was later for-
mally dubbed ``isoparametric element’’ by Ergatoudis et al. 
[21].

It should be mentioned that there are some other pioneers 
who made some significant contributions in the early devel-
opments of FEM, such as Levy [22], Comer [23], Langefors 
[24], Denke [25], Wehle and Lansing [26], Hoff et al. [27], and 
Archer [28], among others. These individuals came together 
made remarkable and historic contributions to the creation 
of finite element method. Among them, some notable contri-
butions were made by J. S. Przemieniecki (Janusz Stanisław 
Przemieniecki), who was a Polish engineer and a professor 
and then dean at the Air Force Institute of Technology in 
Ohio in the United States from 1961 to 1995. Przemieniecki 



4436	 W. K. Liu et al.

1 3

conducted a series pioneering research works on using FEMs 
to perform stress and buckling analyses of aerospace struc-
tures such as plates, shells, and columns (see Przemieniecki 
[29], Przemieniecki and Denke [30], Przemieniecki [28–33]).

In terms of worldwide research interest, by 1965, FEM 
research had become a highly active field, with the total num-
ber of papers published in the literature exceeding 1000. Dur-
ing this period, there were two seemingly unrelated events for 
FEM development, which significantly affected future FEM 
developments. These events were the discovery of mixed vari-
ational principles in elasticity. In 1950, E. Reissner [34] redis-
covered E. Hellinger’s mixed variational principle from 1914 
[35], in which both the displacement field and the stress field 
are the primary unknowns. This variational principle is called 
the Hellinger–Reissner variational principle. Shortly after, Hu 
[36] and Washizu [37] proposed a three-field mixed varia-
tional principle in elasticity, which was called the Hu-Washizu 
variational principle. As early as 1964, Pian [18] recognized 
the potential of using these variational principles to formulate 
Galerkin weak form-based FE formulations and proposed the 
assumed stress FEM. This began the use of mixed variational 
principles to formulate Galerkin FEMs, which was followed 
by the assumed strain FEM developed by J. Simo and his co-
workers in the later period of FEM developments.

2 � (1966–1991) The Golden Age of the Finite 
Element Method

The mid 1960s saw rapid developments in finite element 
method research and applications. As T.J.R. Hughes recalled, 
“I first heard the words ‘the Finite Element Method” in 
1967—which changed my life. I started to read everything 
that was available and convinced my boss to start the Finite 
Element Method Development Group, which he did. Dr. 
Henno Allik was Group Leader, and I was the Group, then 
we added programmers. In one year, we had a 57,000-line 
code, GENSAM (General Structural Analysis and Matrix 
Program, or something like that). That was 1969, and the 
code was continually developed thereafter and may still be 
in development and use at GD/Electric Boat and General 
Atomics, originally a division of General Dynamics.”

Starting from the end of 1960s, the rigorous approxima-
tion theory that underpins the FEM started to be developed 
(e.g.  Aubin [38], Zlamal [39], Birkhoff [40], Nitsche [41], 
Aziz [42], Bubuska [43], Bubuska and Aziz [44], Dupont 
[45], Douglas and Dupont [46]. Nitsche and Schatz [47], 
and Bubuska [48]). This movement was first highlighted by 
the proof of optimal and superconvergence of FEMs. This 
attracted the interest of some distinguished mathematicians 
all over the world, including G. Birkhoff, M.H. Schultz, 
R.S. Varaga, J. Bramble, M. Zlamal, J. Cea, J.P. Aubin, J. 

Douglas, T. Dupont, L.C. Goldstein, LR. Scott, J. Nitsche, 
A.H. Schatz, P.G. Cialet, G. Strang, G. Fix, JL. Lions, M. 
Crouzeix, P.A. Raviart, and I. Babuska, A.K. Aziz, and J.T. 
Oden (see Bramble, Notsche and Schatz [49], Bubuska, 
Oden, and Lee [50]) . Some notable results developed for 
the proof of FEM convergence are the Cea lemma and the 
Bramble-Hubert lemma. The fundamental work of Nitsche 
[41] on L∞ estimates for general classes of linear elliptic 
problems also stands out as one of the most important con-
tributions for mathematical foundation of FEM in 1970s. It 
may be noted that unlike other mathematics movements, the 
convergence study of FEMs was an engineering-oriented 
movement. The mathematicians soon found that, in prac-
tice, engineers were using either non-conforming FEM 
interpolants or numerical quadrature that violates variational 
principles or the standard bilinear form in Hilbert space. G. 
Strang referred to these numerical techniques as “variational 
crimes”. To circumvent complicated convergence proofs, 
the early FEM patch tests were invented by B. Iron and R. 
Melosh, which were proven to be instrumental for ensuring 
convergence to the correct solution.

Following T.H.H. Pian’s invention of the assumed stress 
element, attention shifted to the mixed variational principle 
based FEM [51, 52]). In 1965, L.R. Hermann [53] proposed 
a mixed variational principle for incompressible solids. 
However, most mixed variational principles are not extreme 
variational principles, and thus suffer from numerical insta-
bility. In early 1970s, I. Babuska and F. Brezzi discovered 
their groundbreaking results, known today as the Babuska-
Brezzi condition, or the LBB condition, giving tribute to O. 
Ladyzhenskya—a Russian mathematician, who provided the 
early insight of this problem. The so-called LBB condition, 
or the inf–sup condition, provides a sufficient condition for a 
saddle point problem to have a unique solution that depends 
continuously on the input data; thus, it provides a guide-
line to construct shape functions for the mixed variational 
principle-based FEM (see: [54]).

Entering the 1970s, FEM development began to focus on 
using FEM to simulate the dynamic behavior of structures, 
including crashworthiness in the automotive industry. Vari-
ous time integration methods had been developed, includ-
ing the Newmark-beta method, Wilson-theta method [55], 
the Hilbert-Hughes-Taylor alpha method [56], the Houbolt 
integration algorithm, and the explicit time integration algo-
rithm [57].

Since the early 1970s, FEM explicit time integration 
methods had been used to solve various engineering prob-
lems, e.g., dynamic contact problems [58], dynamics prob-
lems of solid structure [59], fluid dynamics problems [60], 
and it was extensively used in large scale FEM Lagrangian 
hydrocodes developed in Lawrence Livermore National 
Laboratory [61]. However, an important development came 
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in the late 1970s when T. Belytschko, K. C. Park, and later 
TJR Hughes proposed using explicit or implicit-explicit, 
or implicit time integration with damping control to solve 
nonlinear structural dynamics problems. Other notable con-
tributors to this key development are A. Combescure, A. 
Gravouil among others (see e.g., [62]). It turned out that the 
explicit time integration was a game changer for the automo-
tive industry, establishing FEM technology as the main tool 
of passenger vehicle design and crashworthiness analysis. 
By the end of 1980s, there were thousands of workstations 
running explicit time integration-based FEM codes in the 
three major automakers in the United States.

One of the main FEM research topics in the 1980s was 
using FEM techniques to solve the Navier–Stokes equation 
as an alternative to finite difference and finite volume meth-
ods. Starting the early 1970s, J.T. Oden and his co-workers 
had begun working on FEM solutions for fluid dynamics 
[63]. The main challenge in using FEM solving fluid dynam-
ics problems is that the Navier–Stokes equation is not an 
elliptical partial different equation, and the minimization or 
variational principle-based Petrov–Galerkin procedure may 
suffer both stability as well as convergence issues. To resolve 
these issues, T.J.R. Hughes, and his co-workers such as A.N. 
Brooks and T.E. Tezduyar developed the streamline upwind/
Petrov Galerkin method and later Stabilized Galerkin FEM 
to solve Navier–Stokes equations under various initial and 
boundary conditions [64]. Furthermore, Hughes and co-
workers later developed space–time FEMs and variational 
multiscale FEMs (see Hughes and Tezdyuar [65] Brooks 
and Hughes [66], Mizukami and Hughes [67], and Hughes 
[68]). For this work, from 1986 to 1991, Hughes and his 
co-workers such as L.P. Franca and others wrote a ten-part 
series on FEM formulations for computational fluid dynam-
ics Hughes et al. [69–71] and Shakib et al. [72]. Several 

years later, Hughes developed a Green function-based sub-
grid model acting as a stabilized finite element method [68].

Towards the mid-1980s, advanced FEM mesh generation 
techniques have been developed, which incorporate various 

solid modeling techniques by using interactive computer 
graphics and adaptive mesh generator [73], Bennett and 
Botkin [74] as well as improved quadtree approach to gen-
erate FEM meshes for complex geometric shapes and objects 
[75]. Today, FEM mesh generation has become an integrated 
part of solid modeling and engineering design, which has 
the capabilities of automatic node insertion and refinement 
Wordenweber [76] and Ho-Le [77].

Among the many advances in FEM technologies in 
1980s, the most notable may belong to J. Simo at the 
University of California, Berkeley and later at Stanford 
University. Simo and Taylor [78] developed the consistent 
tangent operator for computational plasticity, which was a 
milestone after the original concept of consistent lineariza-
tion proposed by Hughes and Pister [79]. Moreover, after 
the Hughes-Liu 3D degenerated continuum shell and beam 
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elements and the Belytchko-Tsay single-point element, 
Simo and his co-workers, such as L. Vu-Quoc and D.D. 
Fox, developed geometrically exact beam and shell theories 
and their FEM formulations (see Simo and Vu-Quoc [80], 
Simo and Fox [81], and Simo et al. [82]. Moreover, Simo 
and his co-workers such as MS Rifai and F. Armero also 
developed various assumed strain or enhanced strain meth-
ods for mixed variational formulations (see Simo and Rifai 
[83] and Simo and Armero [84]). It should be noted that 
E. Ramm and his colleagues at the University of Stuttgart 
have also made significant contributions on geometrically 
nonlinear shell element formulations over a span of more 
than thirty years e.g., Andelfinger and Ramm [85] and Bis-
choff and Ramm [86].

Another highlight of FEM technology is the development 
of FEM solvers for fluid–structure interaction. From the mid-
1970s to early 1990s, there was an urgent need to develop 
techniques to solve large-scale fluid–structure interaction 
problems in the aerospace and civil engineering industries. A 
class of FEM fluid–structure interaction solvers were devel-
oped, and some early contributors include J. Donea, A. Huerta 
(see [87–89]), and the Hughes-Liu-Zimmermann Arbitrary 
Lagrangian–Eulerian (ALE) fluid–structure FEM formulation 
(see [90, 91]), which describes the moving boundary problem. 
ALE-based FEM simulations were used due to their ability 
to alleviate many of the drawbacks of traditional Lagrangian-
based and Eulerian-based FEM formulations.

When using the ALE technique in engineering mod-
eling and simulations, the computational mesh inside the 
domains can move arbitrarily to optimize the shapes of 
elements, while the mesh on the boundaries and interfaces 
of the domains can move along with materials to precisely 
track the boundaries and interfaces of a multi-material sys-
tem. The invention of the ALE FEM may be credited to 
Hirt, Amsden, and Cook [92]. C. Farhat was the first person 

to use a large-scale parallel ALE-FEM solver to compute 
fluid–structure interaction problems [93]. He and his group 
systematically applied FEM-based computational fluid 
dynamics (CFD) solvers for aircraft structure design and 
analysis. They developed the finite element tearing and 
interconnecting (FETI) method for the scalable solution 
of large-scale systems of equations on massively parallel 
processors. Today, some fundamental ALE concepts have 
also been applied to numerical modeling engineering fields 
other than FEM, such as meshfree modeling. For example, 
to alleviate tensile instability and distorted particle distribu-
tions in smoothed particle hydrodynamic (SPH) simulations, 
a so-called shifting technique has been adopted in many of 
today’s SPH simulations (e.g., Oger et al. [94]).

The FEM fluid–structure interaction research had a major 
impact on many practical applications, such as providing the 
foundation for the patient specific modeling of vascular dis-
ease and the FEM-based predictive medicine later developed 
by C.A. Taylor and T.J.R. Hughes and their co-workers in 
the mid-1990s (see Taylor et al. [95]). Holzapfel, Eberlein, 
Wriggers, and Weizsäcker also developed large strain FEM 
formulations for soft biological membranes (see Holzapfel 
et al. [96]).

Another major milestone in the development of FEMs 
was the invention and the development of nonlinear proba-
bilistic or random field FEMs, which was first developed 
by W. K. Liu and T. Belytschko in the late 1980s. (e.g., 
Liu et al. [97]). By considering uncertainty in loading con-
ditions, material behavior, geometric configuration, and 
support or boundary conditions, the probabilistic FEM 
provided a stochastic approach in computational mechan-
ics to account for all these uncertain aspects, which could 
then be applied in structure reliability analysis. The 
random field FEM research has become crucial in civil 
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and aerospace engineering and the field of uncertainty 
quantification.

In the early 1980s, M.E. Botkin at General Motors 
research Lab [98], and N. Kikuchi and his group at the Uni-
versity of Michigan developed structural shape optimization 
FEM for the automotive industry (see [99], [100], [101]). 
Other contributors include M. H. Imam from Uman Al-Qura 
University [102]). This preceded the seminal 1988 paper 
of Bendsoe and Kikuchi, who developed a homogenization 
approach to finding the optimal shape of a structure under 
prescribed loading. Later developments in topology optimi-
zation were driven by Gengdong Cheng, Martin Bendsoe, 
and his student, Ole Sigmund.

One of the driving forces in the FEM development during 
in the early decades was the safety analysis of big dams, at 
first, then of concrete nuclear reactor vessels for gas-cooled 
reactors, [103], nuclear containments, hypothetical nuclear 
reactor accidents [104, 105] and of tunnels and of founda-
tions for reinforced concrete structures. To simulate concrete 
failure, the vertical stress drops in FEMs, and progressive 
softening technique were introduced already in 1968. How-
ever, the spurious mesh sensitivity and its impact on strain 
localization was generally overlooked until demonstrated 
mathematically by Bazant [105], because strain softening 
states of small enough test specimens in stiff enough testing 
frames are stable. Numerically this was demonstrated by 
crack band FEM calculations in Bazant and Cedolin [106], 
where it was also shown that spurious mesh sensitivity caus-
ing the sudden stress drop can be avoided by adjusting the 
material strength to ensure the correct energy release rate. 
Hillerborg et al. [107] avoided mesh sensitivity by using an 
interelement cohesive softening called the fictitious crack 
model. Despite the success of the early FEM calculations, 
the concept of progressive strain-softening damage was not 
generally accepted by mechanicians until its validity and 
limitations were demonstrated by Bazant and Belytschko 
[108] and Bazant and Chang [109]. They showed that the 
existence of elastic unloading stiffness (previously ignored) 
makes waves propagation in a strain-softening state possible. 

In 1989, Lubliner, Oliver, Oller, and Onate ([110] developed 
a plastic-damage theory-based FEM formulation to model 
concrete materials by introducing internal variables, which 
has the capacity of modeling concrete material degradation 
and cracking. Today, the multiscale based homogenization 
and damage analysis method is the state-of-the-art FEM 
modeling for concrete materials [111].

In the mid-1980s, the mesh sensitivity issue in calculating 
strain softening or strain localization problems in computa-
tional plasticity became a challenging topic. It was eventu-
ally accepted that the partial differential equations that are 
associated with the classical plasticity become ill-posed after 
the material passes the yield point and enters the softening 
stage. This especially became a dire situation when civil 
engineers applied FEM to solve complex structural and geo-
technical engineering problems, which involved complex 
plastic deformations of concrete, rock, soil, clay, and granu-
lar material in general. Bazant and others realized that this 
is because the classical continuum plasticity theory lacks an 
internal length scale. To remedy this problem, starting from 
the middle 1980s, many efforts were devoted to establishing 
FEM formulations of nonlocal (Bazant et al. [112]), strain-
gradient, strain-Laplacian media, micropolar or Cosserat 
continua, because they provided an internal length scale, 
allowing FEM simulations to capture, in a mesh-independ-
ent manner, the strain softening, strain localization or shear 
band formation. Pijaudier-Cabot and Bazant [113] developed 
an effective nonlocal FEM in which nonlocality is applied 
only to the damage strain. Other influential and representa-
tive works in this topic are from De Borst [114], Peerlings, 
De Borest and others [115]. Steinmann and Willam [116], 
Dietsche et al. [117], Steinmann [118], and Iordache and 
Willam [119].

In 1976, TJR Hughes, R.L. Taylor, J.L. Sackman, A. 
Curnier, and W. Kanoknukulchai published a paper enti-
tled “A finite element method for a class of contact-impact 
problems.” [120]. This is one of the earliest FEM analyses 
in computational contact mechanics. It is the very first work 
on FEM modeling of dynamic contact and impact problems, 
and it plays an important role in the simulation accuracy for 
engineering problems involving interaction between different 
continuous objects. Examples include sheet metal forming, 
target impact and penetration, and interaction between pave-
ment and tires. Developing accurate FEM contact algorithms 
has been a focal point since the 1980s. Various FEM contact 
algorithms have been developed, and some main contributors 
are N. Kikuchi, J.T. Oden, J. Simo, P, Wriggers, R.L. Taylor, 
P. Papadopoulos, and T.A. Laursen. FEM contact algorithm 
research remained an active research topic until late 1990s 
(see Simo et al. [121], Simo and Lausen [122], Kikuchi and 
Oden [123], and Papadopoulos and Taylor [124]).
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In this period, one interesting emerging area was the 
development of FEM exterior calculus by Arnold et al. 
[125]. The FEM exterior calculus uses tools from differen-
tial geometry, algebraic topology, and homological algebra 
to develop FEM discretizations that are compatible with the 
underlying geometric, topological, and algebraic structures 
of the problems that are under consideration.

3 � (1992–2017) Broad Industrial Applications 
and Materials Modeling

The first major event in FEM development this period was 
the formulation of the Zienkiewicz-Zhu error estimator 
[126], which was a major contribution to the mathematical 
approximation theory of FEMs in the 1990s. The Zienk-
iewicz-Zhu posteriori error estimators provide the quality 
control of a FEM solution with an optimal use of compu-
tational resources by refining the mesh adaptively. The 
idea and spirit of Zienkiewicz-Zhu was further carried out 
by Ainsworth and Oden (see [127, 128, 129]), and today 
using posteriori error estimation to improve the quality 
has been elevated to the height of Bayesian inference and 
Bayesian update. This research topic is now intimately 
related with what is now called validation and verifica-
tion (V&V).

Since the late 1970s, Szabo [130] and Babuska [131, 132] 
started to develop hp versions of FEMs based on piecewise-
polynomial approximations that employ elements of vari-
able size (h) and polynomial degree (p). They discovered that 
the FEM converges exponentially when the mesh is refined 
using a suitable combination of h-refinements (dividing ele-
ments into smaller ones) and p-refinements (increasing their 
polynomial degree). The exponential convergence makes 
the method a very attractive choice compared to most other 

FEMs, which only converge with an algebraic rate. This work 
continued until the late 1990s, spearheaded by M. Ainsworth, 
L. Demkowicz, J.T. Oden, C.A. Duarte, O.C. Zienkiewicz, 
and C.E. Baumann (see Demkowicz et al. [133], Demkow-
icz et al. [134], Demkowicz et al. [135], Oden et al. [136], 
Oden et al. [137], Baumann and Oden [138]. J. Fish. [139] 
also proposed a s-version FEM by superposing additional 
mesh(es) of higher-order hierarchical elements on top of the 
original mesh of C0 FEM discretization, so that it increases 
the resolution of the FEM solution.

To solve material and structural failure problems, research 
work in the 1990s focused on variational principle based 
discretized methods to solve fracture mechanics problems 
or strain localization problems. In 1994, Xu and Needle-
man [140] developed a FEM cohesive zone model (CZM) 
that can simulate crack growth without remeshing, which 
was later further improved by M. Ortiz and his co-work-
ers, e.g. Camacho and Ortiz [141] and Ortiz and Pandolfi 
[142], who later used CZM FEM to solve fragmentation 
and material fatigue problems [143]. It should be noted that 
long before the invention of cohesive zone model, Pietruszc-
zak and Mroz [144] developed the first cohesive FEM for 
shear fracture in soil. Later, Bazant’s group at Northwestern 
University developed various interface FEMs, such as the 
microplane model, to study size effects of concrete and other 
brittle composite materials (Brocca and Bazant [145], Caner 
and Bazant [146]). These models became a standard tool for 
simulating missile impact and explosions at, e.g., ERDA 
Vicksburg. A microplane FEM model for fiber composites 
has been developed for Chrysler and Ford Co. to compare 
various designs of automobile crush-cans (Smilauer et al. 
[147]). An anisotropic poromechanical microplane model 
has been formulated and used for FEM analysis of hydraulic 
fracturing (Rahimi et al. [148]).
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To alleviate mesh bias issues in modeling material frac-
ture and damage problems, T. Belytschko and WK. Liu 
developed meshfree particle methods, namely the element-
free Galerkin (EFG) method [149] and the reproducing ker-
nel particle method (RKPM) [150, 151], which are based on 
the moving least square method and the wavelet multiresolu-
tion analysis, respectively. RKPM provides consistency and 
thus convergence enhancements as compared to the popular 
smoothed particle hydrodynamics (SPH) method. Li et al. 
[152, 153] successfully employed meshfree Galerkin meth-
ods to accurately simulate adiabatic shear band formation 
and propagation with minimum mesh adaptation. At the 
same time, Duarte and Oden developed the so-called hp-
Cloud method, Onate et al. developed a finite point method 
[154], and Atluri and Zhu [155] proposed a meshless local 
Petrov–Galerkin (MLPG method, among many other mesh-
free methods. Fleming and Belytschko also showed that sin-
gularity functions could be included in the approximation 
functions to greatly improve simulations involving fracture 
mechanics (see Fleming et al. [156]).

One of the most challenging problems in the develop-
ment of meshfree Galerkin methods is how to integrate the 
weak form, because the meshfree interpolants are highly 
irregular and it is difficult to make them variationally con-
sistent. In 2001, J. S. Chen and his co-workers proposed a 
stabilized conforming nodal integration method for meshfree 
RKPM method, which is not only simple and stable, but also 
variationally consistent with the Galerkin weak formulation 
(see Chen et al. [157]).

Shortly after the meshfree method developments, I. 
Babuska and his co-workers developed the partition of unity 
finite element method (PUFEM), which was later coined 
generalized finite element method (GFEM) (see Melenk and 
Babuska [158] and Babuska and Melenk [159]). PUFEM 
is a powerful method because it can be used to construct 
FE spaces of any given regularity, which is a generalization 
of the h, p, and hp versions of the FEM, as well as provid-
ing the ability to embed an analytic solution into the FEM 
discretization instead of relying upon a generic polynomial 
interpolant.

A significant breakthrough in computational fracture 
mechanics and FEM refinement technology came in the 
late 1990s, when Belytschko and his co-workers, includ-
ing Black, Moes, and Dolbow, developed the eXtended 
finite element (X-FEM) (see [160, 161], which uses various 
enriched discontinuous shape functions to accurately cap-
ture the morphology of a cracked body without remeshing. 
Because the adaptive enrichment process is governed by the 
crack tip energy release rate, X-FEM provides an accurate 
solution for linear elastic fracture mechanics (LEFM). In 
developing X-FEM, T. Belytschko brilliantly utilized the 
PUFEM concept to solve fracture mechanics problems 
without remeshing. Entering the new millennium, Bourdin, 

Francfort, Marigo developed a phase-field approach for 
modeling material fracture [162]. Almost simultaneously, 
Karma and his co-workers [163], [164]) also proposed and 
developed the phase-field method to solve crack growth 
and crack propagation problems, as the phase field method 
can accurately predict material damage for brittle fracture 
without remeshing. The main advantage of the phase field 
approach is that by using the Galerkin FEM to solve the con-
tinuum equations of motion as well as a phase equation, one 
can find the crack solution in continuum modeling without 
encountering stress singularity as well as remeshing, and 
the crack may be viewed as the sharp interface limit of the 
phase field solution. Some of the leading contributors for 
this research are Bourdin, Borden, Hughes, Kuhn, Muller, 
Miehe, Landis, among others (see Bourdin and Chambolle 
[165], Kuhn and Müller [166]. Miehe et al. [167], and Bor-
den et al. [168], Wilson et al. [169], and Pham et al. [170]).

As mentioned before, the main reason for the huge suc-
cess of FEMs is their broad applicability to engineering 
analysis and design across scientific disciplines. On the other 
hand, most mechanical engineering designs are performed 
by using various computer-aided design (CAD) tools, such 
as solid modeling. To directly blend the FEM into CAD 
design tools, T.J.R. Hughes, and his co-workers such as J.A. 
Cottrell and Y. Bazilevs [171], [172] developed the isogeo-
metric analysis (IGA) FEM, which established the Galerkin 
variational weak formulation in the control mesh and uses 
the non-uniform rational basis spline (NURBS) functions 
as the FEM shape function to solve the problem at design 
stage. IGA-FEM method successfully integrates FEM into 
conventional NURBS-based CAD tools, without convert-
ing data between CAD and FEA packages in analyzing new 
designs during development stage.

Due to the emergence of nanotechnology, various mul-
tiscale methods have been developed to couple atomistic 
methods such as molecular dynamics and density functional 
theory (DFT) and other ab initio methods with continuum 
scale FEMs. The most notable contributions in this area are 
hand-shake method [173] quasi-continuum FEM [174], and 
the bridging scale method developed by Wagner and Liu 
[175]. In 2007, Gavini, Bhattacharya, and Ortiz developed 
quasi-continuum orbital-free density-functional theory 
(DFT) FEM for multi-million atom DFT calculations (see 
Gavini et al. [176]).

Broadly speaking, there has been a rapid development 
in computational homogenization methods since the late 
1990s, which is an alternate approach to obtaining contin-
uum-scale properties based on smaller scale microstructures. 
The computational homogenization method or the FEM 
homogenization methods for composite materials may be 
divided into two main categories: (1) Computational asymp-
totic homogenization method or multiscale computational 
homogenization, which is aimed for modeling composite 
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materials with periodic microstructure. The pioneer of mul-
tiscale homogenization FEM may be credited to T.Y. Hou 
and his co-workers [177], and other earlier contributors are 
N. Kikuchi [101], Ghosh et al. [178], Fish et al. [179, 180]) 
and M. S. Shephard, (2) Computational micromechanics 
method, which is mainly aimed for composite materials with 
random microstructure, even though it may also be applied 
to materials with periodic microstructure, where the main 
contributors are: P. Suquet et al. at the French National Cen-
tre for Scientific Research (CNRS), Dvorak et al.[181] and 
J. Fish at Rensselaer Polytechnic Institute and C. Miehe and 
his co-workers (e.g. [182]) at the University of Stuttgart. 
During the same period, many novel FEM fluid–structure 
interaction solvers have been developed, for instance, the 
immersed FEM developed by Zhang et al. [183], which was 
motivated by the immersed boundary method pioneered by 
C. Peskin of Courant Institute of Mathematical Sciences, 
New York University.

An important FEM application area emerged with the 
developments of computational plasticity. The early finite 
element computational plasticity formulation is based on 
hypoelastic–plastic rate formulation. To satisfy the objec-
tivity requirement, T.J, R. Hughes and J. Winget first pro-
posed the so-called incremental objectivity (see Hughes and 
Winget [184]), which was probably in the first time the eso-
teric continuum mechanics theory was applied to practical 
FEM computational formulations and computations, and it 
in turn promoted the development of nonlinear continuum 
mechanics in 1980s and 1990s. Soon afterwards. Simo and 
Hughes then extended Hughes-Winget incremental objec-
tivity algorithm to the finite deformation case in computa-
tional plasticity (see Simo and Hughes [185]). The notion 
of consistency between the tangent stiffness matrix and the 
integration algorithm employed in the solution of the incre-
mental problem was introduced by Nagtegaal [186] and 
Simo and Taylor [78]. Consistent formulations have been 
subsequently developed for finite deformation plasticity by 
Simo and Oritz [187] (1988) within the framework of mul-
tiplicative decomposition of the deformation gradient and 
hyperelasticity. Also in 1980s, based on the Gurson model, 
Tvergaard and Needleman [188] developed the FEM based 
Gurson-Tvergaard-Needleman model, which is probably the 
most widely used FEM computational plasticity constitutive 
model used in material modeling, though recently attention 
has turned to developing machine-learning based or data-
driven computational plasticity models e.g., F. Chinesta, 
et al. [189], and the unsupervised machine learning data-
driven finite element methods, called as the Self-consistent 
Clustering Analysis (SCA) (see Z. Liu et al. [190, 191]).

An important advance of the FEM is the development 
of the crystal plasticity finite element method (CPFEM), 
which was first introduced in a landmark paper by Pierce 

et al. [192]. In the past almost four decades, there are numer-
ous researchers who have made significant contributions to 
the subject, for example, A. Arsenlis and DM. Parks from 
MIT and Lawrence Livermore National Laboratory [193], 
[194], [195], Dawson et al. at Cornell University (Quey 
et al. [196]; Mathur and Dawson [197]; Raabe et al. at Max-
Planck-Institute fur Eisenforschung [196–201], among oth-
ers. Based on crystal slip, CPFEM can calculate disloca-
tion, crystal orientation and other texture information to 
consider crystal anisotropy during computations, and it has 
been applied to simulate crystal plasticity deformation, sur-
face roughness, fractures and so on. Recently, S. Li and his 
co-workers developed a FEM-based multiscale dislocation 
pattern dynamics to model crystal plasticity in single crystal 
[202, 203]. Yu et al., [204] reformulated the self-consistent 
clustering analysis (SCA) for general elasto-viscoplastic 
materials under finite deformation. The accuracy and effi-
ciency for predicting overall mechanical response of poly-
crystalline materials are demonstrated with a comparison to 
traditional full-field FEMs.

In 2013, a group of Italian scientists and engineers led by 
L. Beirão da Veiga and F. Brezzi proposed a so-called virtual 
element method (VEM) (see Beirao et al. [205, 206]). The 
virtual element method is an extension of the conventional 
FEM for arbitrary element geometries. It allows the polyto-
pal discretizations (polygons in 2-D or polyhedra in 3-D), 
which may be even highly irregular and non-convex element 
domains. The name virtual derives from the fact that knowl-
edge of the local shape function basis is not required, and it 
is in fact never explicitly calculated. VEM possesses features 
that make it superior to the conventional FEM for some spe-
cial problems such as the problems with complex geometries 
for which a good quality mesh is difficult to obtain, solutions 
that require very local refinements, and among others. In 
these special cases, VEM demonstrates robustness and accu-
racy in numerical calculations, when the mesh is distorted.

As early as 1957, R. Clough introduced the first graduate 
FEM course at UC-Berkeley, and since then FEM courses 
at both graduate and undergraduate levels have been added 
into engineering higher education curriculums in all the 
major engineering schools and Universities all over the 
world. As J.T. Oden recalled in his 1963 paper, “I went on 
to return to academia in 1964 and among my first chores 
was to develop a graduate course on finite element meth-
ods. At the same time, I taught mathematics and continuum 
mechanics, and it became clear to me that finite elements 
and digital computing offered hope of transforming nonlin-
ear continuum mechanics from a qualitative and academic 
subject into something useful in modern scientific computing 
and engineering.”.

By the end of 2015, there have been more than several 
hundred monographs and textbooks on the FEM published in 
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dozens of languages worldwide. An exposition of FEM math-
ematical theory by Strang and Fix [207] was among the earliest 
of those FEM books. J.T. Oden and his collaborators such as 
GF Carey and JN Reddy and others wrote a five-volume FEM 
monograph in 1980s (see [167–213, 214]). Other influential 
finite element books or monographs are those by Zienkiewicz 
and Cheung [215], and Zienkiewicz and Taylor [216], ora later 
Zienkiewicz, Taylor and Zhu [217], TJR. Hughes [218], Cook 
et al. [219] or later Cook [220]), Bathe [221], and the Nonlin-
ear FEM monographs by Belytschko et al. [222] and by De 
Borst et al. [223], among others, all have made major impacts 
on FEM educations and applications. Among all these FEM 
monographs and textbooks, the book by Zienkiewicz and Tay-
lor [216] or Zienkiewicz et al. [217] probably have had most 
impacts on FEM technology popularization, which may be 
because Taylor wrote a FEM research computer program code 
named FEAP, which was placed in the appendix of that book, 
providing an immediate guidance and instruction on how to 
implement FEM in computers.

The ready availability of FEM textbooks and tutorials, 
along with the large FEM software market, have made the 
FEM accessible to users across academia and industry. 
The development of FEM software technology started in 
the early1960s. In 1963, E.L. Wilson and R. Clough devel-
oped a structural mechanics computing code called Sym-
bolic Matrix Interpretive System, SMIS, which was initially 
intended to fill the gap between the matrix method and hand 
calculating in structure mechanics. It turns out the develop-
ment of SMIS led to the birth of FEM software. Then, based 
on SMIS, Wilson initiated and developed a general-purpose 
static and dynamic Structural Analysis Program, SAP. In late 
1960s and the early 1970s, K, J. Bathe developed the non-
linear FEM code ADINA based on SAP IV and NONSAP. 
Today, the brand name SAP2000 has become synonymous 
with the state-of-the-art FEM structural analysis and design 
methods since its introduction over 55 years ago.

At the same period, to compete with the Soviet Union’s 
space program, NASA developed its own FEM code called 
NASTRAN (NASA STRuctural ANalysis Program). The 
first version of NASTRAN was called COSMIC Nastran, 
which debuted in 1969, with a key figure in its development 
being R. H. MacNeal. As early as 1963, R. H. MacNeal 
founded the MacNeal-Schwendler Software Corporation 
(MSC) along with R. Schwendler. Under his leadership, 
MSC developed its first structural analysis software called 
SADSAM (Structural Analysis by Digital Simulation of 
Analog Methods), which showed the early form of FEM 
analysis software technology. In response to NASA’s request 
for proposals in 1965 for a general purpose structural anal-
ysis program, Dr. MacNeal contributed significantly to 
the early efforts of the aerospace industry by successfully 

simulating on-the-ground physical testing through comput-
ing to deliver the right answers and physics needed to take 
humans to the moon. In 1971, MSC Software released a 
commercial version of Nastran, named MSC Nastran.

About the same time in 1960s, J. A. Swanson worked 
at Westinghouse Astronuclear Laboratory in Pittsburgh, and 
he was responsible for stress analysis of the components 
in NERVA nuclear reactor rockets. While there he then 
developed 3D FEM model and computer codes to analyze 
and predict transient stresses and displacements of the 
reactor system. To integrate different computer codes and 
streamline the processing, Swanson asked his employer 
Westinghouse to develop a general-purpose FEM computer 
code, but his suggestion was rejected, and then he left the 
company and developed the initial ANSYS FEM code. 
Today, ANSYS has become one of the major FEM com-
mercial software worldwide.

Several years later, J.O. Hallquist at Lawrence Livermore 
National Laboratory also developed a 3D nonlinear FEM 
code called DYNA3D, which was extensively used impact, 
dynamic contact, and failure analysis of structures, which 
later evolved to LS-DYNA. LS-DYNA is the major FEM 
software used in automobile design and crashworthiness 
analyses. In 2018, Livermore Software Technology was pur-
chased by ANSYS, and LS-DYNA became a part of ANSYS 
as ANSYS LS-DYNA.

In the early development of nonlinear FEM software, 
there were two early pioneers: P. V. Marcal and D. Hibbitt, 
who was Marcal’s student at Brown University. In the early 
1970s, Marcal founded the MARC corporation to develop 
the first general purpose nonlinear FEM program, which is 
still widely used today in industry and academia for analysis 
of complex structures, such as nuclear reactors, car crash-
worthiness and manufacturing processes. While Hibbitt 
together with B. Karlsson and P. Sorenson formed a FEM 
company called HKS in 1978, and they released a large-
scale commercial FEM software called ABAQUS. One of 
the major features of ABAQUS is that it allows the user 
defined subroutines, which greatly facilitates the researchers 
to conduct their researches by using the standard FEM solv-
ers with reliability and efficiency. Together with ANSYS, 
ABAQUS is one of the two commercial FEM software that 
dominate the market.

By the late 1990s to early 2000s, the FEM software indus-
try had become a multi-billion-dollar business. There were 
several household FEM software company names such as 
ANSYS, ABAQUS, ADINA, LS-DYNA, NASTRAN, 
COMSOL Multiphysics, CSI, among others. Today, there 
are also a plethora of open-source FEM software available 
online, such as FreeFEM, OpenSees, Elmer, FEBio, FEniCS 
Project, DUNE, among some others.
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4 � Present and Future

The modern form of the FEM can routinely solve many large 
and complex industrial problems. It enables developing a 
fundamental understanding and allows for the predictive 
analysis for product design. For new scientific discoveries 
and engineering innovations, the development of new scien-
tific principles often trails the pace of new inventions with 
the sheer volume of data that are generated across multiple 
spatial, temporal, and design parameter (spatial–temporal-
parameter) spaces. For this reason, FE researchers are study-
ing various forms of machine and deep learning methods, of 
which this class of methods covers the largest class of inter-
polations. According to the universal approximation theo-
rem, a neural network (NN) can be designed and trained to 
approximate any given continuous function with any desired 
accuracy [224, 225, 226, 227] which is believed to drive 
new discoveries and enable future computational discretiza-
tion technologies. In this context, Mechanistic Data Science 
(MDS) FEMs, which combine known scientific principles 
with newly collected data, will provide the critically needed 
research that can be a boon for new inventions.

Scientific and engineering problems typically fall under 
three categories: (1) problems with abundant data but unde-
veloped or unavailable scientific principles, (2) problems 
that have limited data and limited scientific knowledge, 
and (3) problems that have known scientific principles with 
uncertain parameters, with possible high computational load 
[228]. In essence, mechanistic data science (MDS) mimics 
the way human civilization has discovered solutions to dif-
ficult and unsolvable problems from the beginning of time. 
Instead of heuristics, MDS uses machine learning methods 
like active deep learning and hierarchical neural network(s) 
to process input data, extract mechanistic features, reduce 
dimensions, learn hidden relationships through regression 
and classification, and provide a knowledge database. The 
resulting reduced order form can be utilized for design and 
optimization of new scientific and engineering systems 
(see Liu et. al. [229]). Thus, the new focus of the FEM 
research has shifted towards the development of machine 
learning based FEMs and reduced order models.

With the recent development of machine learning and 
deep learning methods, solving FEM by constructing a deep 
neural network has become a state-of-the-art technology. 
Earlier research focused on building up a shallow neural 
network following the FEM structure to solve boundary 
value problems. Takeuchi and Kosugi [230] proposed a 
neural network representation of the FEM to solve Poisson 
equation problems. Yagawa and Aoki [231] replaced the 
FEM functional with the network energy of interconnected 
neural networks (NNs) to solve a heat conduction problem. 
Due to the limitation of computationliual power and slow 

convergency rate in shallow neural networks, earlier appli-
cations could only solve simple PDE problems. After the 
2010s, neural networks for solving computational mechanics 
problems have become increasingly popular with the rapid 
growth of deep learning techniques and the development of 
more sophisticated neural network structures, such as con-
volutional neural networks (CNN), Generative Adversarial 
Networks (GAN) and residual neural networks (ResNet). For 
its high dimensional regression ability, some researchers, for 
example, Ghavamiana and Simone [232] used deep neural 
networks as a regression model to learn the material behav-
ior or microstructure response. Other works focus on solving 
PDEs using deep learning neural networks. G. Karniadakis 
and his coworkers (see Raissi et al. [233, 234], Karniadakis 
et al. [235]) proposed a Physics-Informed Neural Networks 
(PINNs) to solve high dimensional PDEs in the strong form 
with constraints to accommodate both natural and essential 
boundary conditions. The idea of constructing deep neural 
networks following the FEM structure is investigated again 
with advanced neural network methodologies. Weinan 
E and his co-workers [236] and B. Yu [237] proposed a 
Deep Ritz Method for solving variational problems. Sirig-
nano and Spiliopoulos [238] proposed the so-called Deep 
Galerkin Method (DGM) to solve high-dimensional PDEs. 
Zabaras and his co-worders proposed a CNN-based physics-
constrained deep learning framework for high-dimensional 
surrogate modeling and uncertainty quantification (see Zhu 
et  al. [239]). Rabczuk [240] systematically explore the 
potential to use NNs for computational mechanics by solving 
energetic format of the PDE (see Samaniego et al. [241]). 
Lee [242] proposed a partition of unity network for deep 
hp approximation of PDEs and extensively the training and 
initialization strategy to accelerate the convergence of the 
solution process (see Lee et al. [242]). The constructing of 
element shape function by activation functions has been 
studied by J. Opschoor and his coworkers (See [243, 244]).

Inspired by the universal approximation of deep neu-
ral networks (DNN), Zhang et al. [245] published the first 
paper on the construction of the FEM shape functions-based 
on the hierarchical nature of the DNN, called Hierarchical 
Deep-learning Neural Networks (HiDeNN). Specifically, the 
authors demonstrated the construction of a few classes of 
deep learning interpolation functions, such as the reproduc-
ing kernel particle method (RKPM), non-uniform rational 
B-spline (NURBS), and isogeometric analysis (IGA), among 
other approximation techniques. Saha et al. [228] general-
ized HiDeNN to a unified Artificial intelligence (AI)-frame-
work, called HiDeNN-AI. HiDeNN-AI can assimilate many 
data-driven tools in an appropriate way, which provides a 
general approach to solve challenging science and engineer-
ing problems with little or no available physics as well as 
with extreme computational demand.
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To reduce the FE computational cost, the so-called two-
stage data-driven methods have been proposed of which 
during the offline stage, where a database generated by the 
FEM is first developed, and the final solutions are computed 
during the online stage. C. Farhat and his group at Stanford 
University have developed several dimensional reductions of 
nonlinear FEM dynamic models, including mesh sampling 
and weighting for the hyper reduction of nonlinear Petrov‐
Galerkin reduced‐order models (see Farhat et al. [246], and 
Grimberg et al. [247]). To further reduce the FEM computa-
tional burden in multiscale analysis, Liu et al. [190] applied 
the unsupervised machine learning techniques, such as the 
k-mean clustering method to group the material points dur-
ing the offline stage and obtain the final solutions by solving 
the reduced-order Lippmann–Schwinger micromechanics 
equations. This class of data-driven approaches circum-
vents the computational burden of the well-established FE 
square method, the offline-online database approach to solve 
the concurrent FEM problems. They named the method the 
Finite Element-self-consistent clustering analysis (FE-SCA) 
of which the computational cost of the microscale analysis 
is reduced tremendously in multiple orders of magnitude 
speed up (see Li et al. [248]). Gao et al. proposed an alterna-
tive (FE-SCAxSCA…xSCA) clustering analysis, of which 
the continuum FEM scale is concurrently solved with the 
(n-1) coupled-scale Lippmann–Schwinger micromechanics 
equations [249, 250]. It has been recently extended to (FE-
SCA**2) by He et al. [251, 252].

Ortiz and his co-workers at Caltech developed data driven 
FEMs for dynamics and noisy data (see [253, 254]). Chen 
and his co-workers  have developed a physics-constrained 
data-driven RKPM method based on locally convex recon-
struction for noisy databases (see He and Chen [255]). S. Li 
and his group at UC-Berkeley utilized FEM solution gener-
ated data to develop a machine learning based inverse solu-
tion to predict pre-crash data of car collision (see Chen et al. 
[256]). Bessa et al. [257] proposed a data-driven framework 
to address the longstanding challenge of a two-scale analy-
sis and design of materials under uncertainty applicable to 
problems that involve unacceptable computational expense 
when solved by standard FEM analysis of representative vol-
ume elements. The paper defined a framework that incorpo-
rates the SCA method to build large databases suitable for 
machine learning. The authors believe that this will open 
new avenues to finding innovative materials with new capa-
bilities in an era of high-throughput computing (“big-data”).

Reduced order modeling has been an active research 
field over the last decades. Early research works focused on 
the proper orthogonal decomposition (POD) method (also 
known as Karhunen-Loève transform, or principal compo-
nent analysis) with the purpose of reducing the degrees of 
freedom of the discretized equations. The POD based model 
reduction has shown great success in computational fluid 

dynamics, see e.g., the works of Berkooz et al. [258]. For 
further accelerating the simulations, K. Willcox and her cow-
orkers (see [259, 260]) proposed a missing point estimation 
method, which is known later as a hyper reduction method. 
Other notable works related to POD and hyper reduction 
methods are the Gauss–Newton with approximated tensors 
(GNAT) method, Grassmann manifold based reduced basis 
adaptation, thanks to C. Farhat and his coworkers (see Carl-
berg and Farhat [261], Carlberg et al. [262], Grimberg et al. 
[247], Amsallem and Farhat [263], and Farhat et al. [246]). 
For solid mechanics, Ryckelynck et al. [264] proposed a 
hyper reduction method based on FEM for dealing with 
nonlinear problems. Lu et al. [265] proposed an adaptive 
hyper reduction for coupled thermal-fluid analysis. Another 
type of model reduction method, which is based on math-
ematics and has a rigorous error bound estimate, is called 
reduced basis method, as proposed by Maday and Rønquist 
[266]. The proper generalized decomposition (PGD) based 
model reduction, as an extension of POD, can be dated back 
to 1980s, and it was introduced by P. Ladevèze (See Lade-
veze [267], Ladeveze and Rougee [268]) under the name of 
radial time–space approximation. F. Chinesta et al. [269, 
270] developed a PGD method to account for the parameter 
space, aiming at building offline computational vademecum 
for fast online predictions. It is noted that PGD methods are 
based on the idea of separation of variables and in particular 
a canonical tensor decompostion (TD).
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Recent works have been conducted to combine deep 
machine learning methods with reduced order modeling 
methods. Zhang et al. [271] consolidated the various attrib-
utes of TD and PGD methods with HiDeNN and proposed 
the so-called HiDeNN-TD and HiDeNN-PGD methods. 
The comparison of FEM, TD/PGD, HiDeNN-TD/PGD, 
HiDeNN, and DNN has been conducted in terms of accu-
racy and speed. It is shown that the HiDeNN-TD/PGD out-
performs other methods with a good balance between accu-
racy and speed. The proposed HiDeNN-TD/PGD method 
is expected to provide novel powful tools for solving large 
scale high dimensional problems while maintaining a 
high accuracy. Various applications, including multiphys-
ics coupled additive manufacturing, multiscale composite 
modeling, and structural topology optimization, have been 
discussed in a generalized reduced order machine learning 
finite element framework [272]. In particular, this reduced 
order machine learning framework is expected to enable 
ultra large-scale high resolution topology design that is 
currently challenging for the FEM based topology optimi-
zation. In this regard, Lu et al. [273] recently developed a 
convolution HiDeNN-TD formulation with a built-in den-
sity filter for high resolution topology design. This convo-
lution formulation incorporates the concept of meshfree 
approximation into the finite element function approxima-
tion and allows smoother solutions and automatic length-
scale control in topology design. It is shown that the con-
volution HiDeNN-TD leads to better design with smoother 
and fine structures. This general convolution formulation 
opens new perspectives to resolve the length scale effect 
and can be applied to many orther problems, such as addi-
tive manufacturing and microstructure modeling.

The extra-ordinary interpolating capability of neural net-
work has resulted in numerous research in approximating 
and solving the ordinary and partial differential equations 
e.g. Chen et al. [274]. Currently, the researchers are look-
ing into approximating the mathematical operators directly 
from universal approximation of operator theory (see Chen 
and Chen [275]). The goal of this endeavor is to solve the 
integral equations such as the Lippmann–Schwinger micro-
mechanics equations (Z. Liu et. al. [190]). A major step for-
ward towards this target is made by Li et al. [276] in their 
proposed Graph Kernel Network, in which they developed 
neural operators for solving partial differential equations. 
In this work, a kernel-based graph neural network is shown 
to be able to mimic the Green’s function method for solving 
partial differential equation. One drawback of this method is 
the associated computational cost and storage requirement 
increases with the size of the problem. A more general ver-
sion of approximating the Green’s function operator is pro-
posed by Lu et al. in their DeepONet [277] and by Gin et al. 
in their DeepGreen methods (see [278]). These approxima-
tion works are vital in computational mechanics as these can 

directly solve the micromechanics equation for multiscale 
analysis like FE-SCA. Moreover, these networks have sug-
gested that the analytical calculus method such as differ-
entiation and integration, and solution of differential and 
integration equations can be directly expressed as an approx-
imation of neural network. In this regard, recurrent neural 
networks have shown promised to be identical in structure of 
wave equations [279]. These researches are directed towards 
a future when the research and education in the science, 
technology, engineering, and mathematics (STEM) sector 
with discrete calculus will be transformed with the aid of 
deep learning. We are envisioning this field as deep learning 
discrete calculus, a new perspective in teaching calculus by 
the integration of calculus definition, numerical analysis, 
and deep learning (see Liu et al. [280]).

The development of model reduction methods meets 
the urgent demand in the industry for fast and nearly real 
time simulations of engineering problems, such as online 
dynamic system control, structural health monitoring, vehi-
cle health monitoring, on-line advanced manufacturing feed-
back control, automated driving controls and decisions, etc. 
Such applications usually require an intensive interaction 
between sensors, control algorithms, and simulation tools. 
Practical optimal control may require a reliable prediction 
within the range of milli- or sub-milli-second. Reducing the 
computation cost of simulations has been one of the major 
motivations for developing model reduction methods. Other 
reduced order modeling related topics are the feature engi-
neering and data analytics, which constitute an extensive 
literature in field of machine learning. Thus, the reduced 
order modeling and the machine learning have intrinsic 
connections. Developing reduced order machine learning 
methods may enable physics-data combined models that can 
overcome the current bottleneck in model reduction methods 
and purely data-driven machine learning approaches.
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