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EINSTEIN AND CONFORMALLY FLAT CRITICAL METRICS

OF THE VOLUME FUNCTIONAL

PENGZI MIAO AND LUEN-FAI TAM

Abstract. Let R be a constant. Let MR
γ be the space of smooth metrics g

on a given compact manifold Ωn (n ≥ 3) with smooth boundary Σ such that g
has constant scalar curvature R and g|Σ is a fixed metric γ on Σ. Let V (g) be
the volume of g ∈ MR

γ . In this work, we classify all Einstein or conformally

flat metrics which are critical points of V (·) in MR
γ .

1. Introduction

In [11], the authors studied variational properties of the volume functional, con-
straint to the space of metrics of constant scalar curvature with a prescribed bound-
ary metric, on a given compact manifold with boundary. More precisely, let Ωn

(n ≥ 3) be a connected, compact n-dimensional manifold with smooth boundary
Σ with a fixed boundary metric γ. Let R be a constant. Let MR

γ be the space of
metrics on Ω which have constant scalar curvature R and have induced metric on
Σ given by γ. It was proved in [11] that if g ∈ MR

γ is an element such that the first

Dirichlet eigenvalue of (n − 1)Δg + R on Ω is positive, then MR
γ has a manifold

structure near g. Hence one can study variation of the volume functional near g
in MR

γ . The authors [11] proved that: g is a critical point of the usual volume

functional V (·) in MR
γ if and only if there is a function λ on Ω such that λ = 0 at

Σ and

(1.1) −(Δgλ)g +∇2
gλ− λRic(g) = g on Ω,

where Δg, ∇2
g are the Laplacian, Hessian operators with respect to the metric g and

Ric(g) is the Ricci curvature of g.
The above result suggests the following definition:

Definition 1.1. Given a compact manifold Ω with smooth boundary, we say a
metric g on Ω is a critical metric if g satisfies (1.1) for some function λ that
vanishes on the boundary of Ω.

It was shown in [11] that equation (1.1) alone indeed implies that g has constant
scalar curvature. Hence, a critical metric necessarily has constant scalar curvature.
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2908 PENGZI MIAO AND LUEN-FAI TAM

A natural question is to characterize critical metrics. We have the following
results from [11]:

(i) If Ω is a bounded domain with smooth boundary in a simply connected space
form R

n, Hn or S
n, then the corresponding space form metric is a critical

metric on Ω if and only if Ω is a geodesic ball (if Ω ⊂ S
n, one assumes

V (Ω) < 1
2V (Sn)).

(ii) If g is a critical metric with zero scalar curvature on a compact manifold
Ω such that the boundary of (Ω, g) is isometric to a geodesic sphere Σ0

in R
n, then V (g) ≥ V0, where V0 is the Euclidean volume enclosed by

Σ0. Moreover, V (g) = V0 if and only if (Ω, g) is isometric to a Euclidean
geodesic ball.

These results suggest that critical metrics with a prescribed boundary metric
seem to be rather rigid. For instance, we want to know if there exist non-constant
sectional curvature critical metrics on a compact manifold whose boundary is iso-
metric to a standard round sphere. If yes, what can we say about the structure of
such metrics?

In this paper, we study this rigidity question under certain additional assump-
tions: We assume the manifold is Einstein or is conformally flat. Since space forms
are both Einstein and conformally flat, these considerations are natural steps to
follow the results in [11]. Our study of conformally flat critical metrics are also
motivated by the work of Kobayashi and Obata [8, 9].

The first result we obtain in this work is the following:

Theorem 1.1. Let (Ω, g) be a connected, compact, Einstein manifold with a smooth
boundary Σ. Suppose the metric g is a critical metric. Then (Ωn, g) is isometric to
a geodesic ball in a simply connected space form R

n, Hn or S
n.

To understand conformally flat critical metrics, we first construct explicit exam-
ples of critical metrics which are in the form of warped products. It is interesting to
note that those examples include the usual spatial Schwarzschild metrics and Ads-
Schwarzschild metrics restricted to certain domains containing their horizon and
bounded by two spherically symmetric spheres (see Corollaries 3.1 and 3.2). Then
we show that any conformally flat, non-Einstein, critical metric is either one of the
warped products we construct or it is covered by such a metric. More precisely, we
have:

Theorem 1.2. Let (Ωn, g) be a connected, compact, conformally flat manifold with
a smooth boundary Σ. Suppose the metric g is a critical metric and the first Dirich-
let eigenvalue of (n− 1)Δg +R is non-negative, where R is the scalar curvature of
g.

(i) If Σ is disconnected, then Σ has exactly two connected components, and
(Ω, g) is isometric to (I × N, ds2 + r2h) where I is a finite interval in R

1

containing the origin 0, (N, h) is a closed manifold with constant sectional
curvature κ0, r is a positive function on I satisfying r′(0) = 0 and

r′′ +
R

n(n− 1)
r = ar1−n

for some constant a > 0, and the constant κ0 satisfies

(r′)2 +
R

n(n− 1)
r2 +

2a

n− 2
r2−n = κ0.
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(ii) If Σ is connected, then (Ω, g) is either isometric to a geodesic ball in a
simply connected space form R

n, Hn, or S
n, or (Ω, g) is covered by one of

the above mentioned warped products in (i) with a covering group Z2.

It follows from Theorem 1.2 that if g is a conformally flat critical metric on a
simply connected manifold Ω such that the boundary of (Ω, g) is isometric to a
standard round sphere, then (Ω, g) is isometric to a geodesic ball in R

n, Hn or Sn.
The organization of the paper is as follows. In Section 2, we consider critical

metrics which are Einstein. We prove that compact manifolds with critical Ein-
stein metrics are geodesic balls in simply connected space forms. In Section 3, we
construct critical metrics which can be written as a warped product or the quo-
tient of a warped product. In particular, we obtain non-Einstein critical metrics
whose boundary is a standard round sphere and examples of critical metrics whose
boundary is disconnected. In Section 4, we classify all conformally flat critical met-
rics. We prove that they are exactly the metrics constructed in Section 2. For
completeness and easy reference, we include an appendix on estimates of graphical
representation of hypersurfaces with bounded second fundamental form, which is
needed in Section 4. All manifolds considered in this paper are assumed to be
connected with dimension n ≥ 3.

2. Critical Einstein metrics

Let (M, g) be an Einstein manifold with or without boundary. We normalize g
so that Ric(g) = (n− 1)κg, where κ = 0, 1, or −1. Suppose there is a non-constant
function λ on M satisfying

(2.1) −(Δgλ)g +∇2
gλ− λRic(g) = g.

We will prove in Theorem 2.1 that, if M is connected, compact with non-empty
boundary on which λ is zero, then (M, g) is isometric to a geodesic ball in R

n, Hn

or Sn. In Theorem 2.2, we will also classify those (M, g) that are complete without
boundary.

We note that all geodesics in this section are assumed to be parametrized by
arc-length.

Lemma 2.1. Let (M, g) and λ be given as above. Suppose there exists p ∈ M such
that ∇λ(p) = 0. Then the following are true:

(i) Along a geodesic α(s) emanating from p, we have:
(a) if κ = 0, then

λ(α(s)) = − 1

2(n− 1)
s2 + λ(p);

(b) κ = 1, then

λ(α(s)) =

(
λ(p) +

1

n− 1

)
cos s− 1

(n− 1)
;

(c) κ = −1, then

λ(α(s)) =

(
λ(p)− 1

n− 1

)
cosh s+

1

(n− 1)
.

(ii) Suppose q ∈ M such that there exists a minimizing geodesic α(s) connecting
p to q. If β(s) is another geodesic connecting p to q and β(s) has length no
greater than π if κ = 1, then β(s) is also minimizing.
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Proof. As Ric(g) = (n− 1)κg, (2.1) is equivalent to

(2.2) ∇2
gλ =

(
−κλ− 1

n− 1

)
g.

Hence, λ satisfies

(2.3)
d2

ds2
λ(α(s)) = −κλ(α(s))− 1

n− 1

along α(s). From this and the fact ∇λ(p) = 0, (i) of the lemma follows.
To prove (ii), let r and l be the length of α(s) and β(s). By (i) and the fact

α(r) = q = β(l), we have:

− 1

2(n− 1)
r2 + λ(p) = − 1

2(n− 1)
l2 + l(p)

if κ = 0;(
λ(p) +

1

n− 1

)
cos r − 1

(n− 1)
=

(
λ(p) +

1

n− 1

)
cos l − 1

(n− 1)

if κ = 1; and(
λ(p)− 1

n− 1

)
cosh r +

1

(n− 1)
=

(
λ(p)− 1

n− 1

)
cosh l +

1

(n− 1)

if κ = −1. Since λ is not identically a constant, we have λ(p)+ 1
n−1 �= 0 if κ = 1 and

λ(p)− 1
n−1 �= 0 if κ = −1. In case κ = 0 or −1, it is then evident that r = l. In case

κ = 1, we have Ric(g) = (n−1)g, which implies r ≤ π, as α(s) is minimizing. Since
l ≤ π by assumption, we have r = l. This shows that β(s) is also minimizing. �

Lemma 2.2. Let (M, g) and λ be given as above. Suppose Σ ⊂ M is a connected,
embedded hypersurface on which λ equals a constant. Suppose ∇λ never vanishes on
Σ and let ν = ∇λ/|∇λ|. Then |∇λ| is constant on Σ and the second fundamental
form A(X,Y ) of Σ with respect to ν satisfies

(2.4) A(X,Y ) = |∇λ|−1

(
−κλ− 1

n− 1

)
g(X,Y ),

where X,Y are any tangent vectors to Σ.

Proof. Using the fact that λ equals a constant on Σ, we have

1

2
X(|∇λ|2) = 〈∇X(∇λ),∇λ〉

= |∇λ|〈∇X(∇λ), ν〉
= |∇λ|∇2

g(λ)(X, ν)

(2.5)

and

A(X,Y ) = 〈∇Xν, Y 〉
= |∇λ|−1〈∇X(∇λ), Y 〉
= |∇λ|−1∇2

g(λ)(X,Y ).

(2.6)

From (2.2), (2.5) and (2.6), we conclude that X(|∇λ|2) = 0 and (2.4) holds. �
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Theorem 2.1. Suppose (Ω, g) is a connected, compact, Einstein manifold with a
smooth boundary Σ. Suppose there is a function λ on Ω such that λ = 0 on Σ and

(2.7) −(Δgλ)g +∇2
gλ− λRic(g) = g

in Ω. Then (Ωn, g) is isometric to a geodesic ball in a simply connected space form
R

n, Hn or S
n.

Proof. We normalize g such that Ric(g) = (n− 1)κg, where κ = 0, 1, or −1. Since
λ = 0 on Σ and λ is not identically zero, there exists an interior point p ∈ Ω
such that ∇λ(p) = 0. Let r0 = dist(p,Σ), the distance from p to Σ. Consider the
geodesic ball Br0(p) ⊂ Ω centered at p with radius r0. Then ∂Br0(p) ∩ Σ �= ∅. By
Lemma 2.1, we have λ = 0 on ∂Br0(p).

Suppose κ = 0. Then (2.2) implies Δgλ < 0. By the maximum principle, we
must have ∂Br0(p) ⊂ Σ. As Ω is connected, we have Br0(p) = Ω. Furthermore,
the fact r0 = dist(p,Σ) implies every geodesic α(s) emanating from p is minimizing
on [0, r0] and every q ∈ Σ can be connected to p by a unique minimizing geodesic
with length r0. It follows that the exponential map at p is a diffeomorphism onto
Br0(p) = Ω. For each s ∈ (0, r0], let Σs be the embedded geodesic sphere centered
at p of radius s. By Lemma 2.1, λ = − 1

2(n−1)s
2 + λ(p) on Σs. In particular, ∇λ

does not vanish on Σs. Let Hs be the mean curvature of Σs w.r.t. the outward
unit normal. By Lemma 2.2, we have Hs = n−1

s . Let A(s) be the areas of Σs.

Then d
dsA(s) = n−1

s A(s). From this it follows that the volume of (Ω, g) agrees with
the volume of a geodesic ball of radius r0 in R

n. Since Ric(g) = 0, by the Bishop
volume comparison theorem [1], we conclude that (Ω, g) is isometric to a geodesic
ball in R

n.
Suppose κ = −1; then (2.2) implies Δgλ− nλ < 0. The maximum principle can

still be applied to show ∂Br0(p) ⊂ Σ. Hence we can prove similarly that (Ω, g) is
isometric to a geodesic ball in H

n.
Finally, suppose κ = 1. Since Ric(g) = (n− 1)g, we have r0 ≤ π. In particular,

the function f(s) = (λ(p)+ 1
n−1 ) cos s−

1
n−1 has a nowhere vanishing derivative on

(0, r0]. If λ never vanishes in the interior of Ω, we can proceed as before to show
that (Ω, g) is isometric to a geodesic ball in S

n. In general, let Λ0 be the set of
interior points where λ vanishes. Suppose ∇λ(q) = 0 for some q ∈ Λ0. Let d =
dist(q,Σ) and let β(s) be a geodesic such that β(0) = q and β(d) ∈ Σ. By Lemma
2.1 and the fact λ(q) = 0, we have λ(β(s)) = 1

n−1 cos s −
1

n−1 . At s = d, we have

λ(β(d)) = 0, hence cos d = 1. On the other hand, the fact Ric(g) = (n−1)g implies
d ≤ π, which is a contradiction. Therefore, ∇λ never vanishes at points in Λ0. In
particular, Λ0 is an embedded hypersurface in Ω.

Let Σ1 be a connected component of Σ. At Σ1, we have ∇2
gλ = − 1

n−1g by (2.2).

As mentioned in [11], this implies that the mean curvature H of Σ1 (w.r.t. the
outward unit normal ν) satisfies H ∂λ

∂ν = −1. In particular, ∂λ
∂ν never vanishes on

Σ1. Suppose ∂λ
∂ν < 0 on Σ1. Since λ = 0 on Σ1, there exists a connected open

set U1 in Ω containing Σ1 such that λ > 0 on U1 \ Σ1. Consider the open set
Ω+ = {q ∈ Ω | λ(q) > 0}. Let Ω+

1 be the connected component of Ω+ containing

U1 \ Σ1. Let Ω
+

1 be the closure of Ω+
1 in Ω. Then Ω

+

1 is a compact manifold

with smooth non-empty boundary ∂Ω
+

1 , moreover, λ > 0 in Ω+ and λ = 0 on

∂Ω
+

1 . Replacing Ω by Ω
+

1 , we can prove as before that (Ω
+

1 , g) is isometric to a

geodesic ball in S
n. In particular, ∂Ω

+

1 is connected. Since Σ1 ⊂ ∂Ω
+

1 , we must
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have Σ1 = ∂Ω
+

1 . Consequently, Ω
+

1 is an open set in Ω. Since Ω is connected, we

conclude that Ω = Ω
+

1 and (Ω, g) is isometric to a geodesic ball in S
n. The case

∂λ
∂ν > 0 on Σ1 can be proved similarly by considering Ω− = {q ∈ Ω | λ(q) < 0}. �

Next we consider complete Einstein manifolds (M, g) that admit a non-constant
solution λ to (2.1).

Theorem 2.2. Let (Mn, g) be a connected, complete manifold without boundary.
Suppose g is Einstein with Ric(g) = (n−1)κg, where κ = 0, 1 or −1. Suppose there
exists a non-constant solution λ to the equation

(2.8) −(Δgλ)g +∇2
gλ− λRic(g) = g.

(i) If κ = 1, then (Mn, g) is isometric to S
n.

(ii) If κ = 0, then (Mn, g) is isometric to R
n.

(iii) If κ = −1, then (Mn, g) is isometric to H
n provided ∇λ(p) = 0 for some p.

If ∇λ �= 0 everywhere, then (M, g) is isometric to (R1×Σ, ds2 +cosh2 sg0)
and λ is given by A sinh s+ 1

n−1 for some constant A > 0. Here (Σ, g0) is a

complete Einstein manifold satisfying Ric(g0) = −(n− 2)g0. In particular,
(Mn, g) has constant sectional curvature −1 if n ≤ 4.

Proof. (i) If κ = 1, then M is compact with diameter d ≤ π. Choose p ∈ M such
that ∇λ(p) = 0. Let α(s) be a geodesic defined on [0,∞) with α(0) = p. By (i)
in Lemma 2.1, λ(α(π)) �= λ(p); hence α(π) �= p. By (ii) in Lemma 2.1, α(s) is
minimizing on [0, π]. Hence, d ≥ π. Therefore (M, g) is isometric to S

n by the
maximal diameter theorem [3].

(ii) Suppose κ = 0; we show that λ must have an absolute maximum. Let q ∈ M
be any given point. The exponential map expq(·) : TqM → M is surjective, where

TqM is the tangent space of M at q. Define λ̃ = λ◦expq. Let Sq be the unit sphere
in TqM . For any v ∈ Sq and any s ≥ 0, (2.2) implies

(2.9)
d2

ds2
λ̃(sv) = − 1

n− 1
.

Since λ̃(0) = λ(q) and d
ds λ̃(sv)(0) = 〈∇λ(q), v〉, (2.9) implies

(2.10) λ̃(sv) = − 1

2(n− 1)
s2 + 〈∇λ(q), v〉s+ λ(q).

Since |〈∇λ(q), v〉| ≤ |∇λ(q)|, we have lims→∞ λ̃(sv) = −∞ uniformly with respect

to v ∈ Sq. In particular, λ̃ has an absolute maximum. Therefore, λ has an absolute
maximum. Consequently, there exists p ∈ M such that ∇λ(p) = 0. By (ii) in
Lemma 2.1, the injectivity radius of (M, g) at p is ∞. Hence, we can proceed as in
the proof of Theorem 2.1 to conclude that (Mn, g) is isometric to R

n.
(iii) Suppose κ = −1. If ∇λ = 0 somewhere, we can proceed as in the proof of

Theorem 2.1 to conclude that (Mn, g) is isometric to the hyperbolic space H
n. In

what follows, we assume that ∇λ is never zero. For a ∈ R, let λa be the level set
{λ = a}. Then λa is a smooth hypersurface whenever it is non-empty. By Lemma
2.2, |∇λ| is constant on each connected component of λa.

Choose a such that λa is non-empty. Let Σ be a connected component of λa and
let b > 0 be the constant that equals |∇λ| on Σ. Let p ∈ Σ be any chosen point. Let
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γ(s) be the geodesic defined on (−∞,∞) such that γ(0) = p and γ′(0) = b−1∇λ(p).
Then f(s) = λ(γ(s)) satisfies f(0) = a, f ′(0) = b and

(2.11)
d2f

ds2
− f = − 1

n− 1
.

Suppose f ′(s) = 0 for some s > 0. Let s1 > 0 be the smallest s > 0 such that
f ′(s) = 0. For any 0 < s < s1, consider the level set λf(s). Let s′ = dist(p, λf(s));
then s′ ≤ s. Let α(·) be a minimizing geodesic such that α(0) = p and α(s′) ∈ λf(s).
Let F (s) = λ(α(s)). Then F also satisfies (2.11) with F (0) = a and F ′(0) ≤ b. If
F ′(0) < b, by (2.11) we have f(s′) > F (s′) = f(s). On the other hand, the facts
s′ ≤ s and f is strictly increasing on [0, s] imply f(s′) ≤ f(s), hence a contradiction.
Therefore, F ′(0) = b. In this case, we have α′(0) = γ′(0); hence α(t) = γ(t) for
all t ∈ [0, s′]. Since λ(α(s′)) = λ(γ(s)), we conclude s′ = s. Consequently, s =
dist(p, λf(s)) and γ′(s) ⊥ λf(s) at γ(s). Since s ∈ (0, s1) is arbitrary, we have
γ′(s1) ⊥ λf(s1) at γ(s1). In particular, γ′(s1) and ∇λ(γ(s1)) are parallel; hence
f ′(s1) = 〈γ′(s1),∇λ(γ(s1))〉 �= 0. This contradicts the assumption f ′(s1) = 0.
Therefore, f ′(s) �= 0 for all s > 0. Similarly, we can prove that f ′(s) �= 0 for s < 0.

Now we have f ′(s) > 0 for all s. Moreover, by the above proof, we have γ′(s) ⊥
λf(s) at γ(s) for all s. Hence,

(2.12) ∇(λ(s)) = φ(s)γ′(s)

for some smooth positive function φ(s) defined on (−∞,∞). Therefore, after
reparametrization, γ is an integral curve of the vector field ∇λ. In particular,
two different γ will not intersect. Since any point in M lies on a geodesic that
is perpendicular to Σ, we conclude that (M, g) is isometric to (R1 × Σ, ds2 + gs),
where {s} ×Σ is the level set of dist(·,Σ) and gs is the induced metric on {s} ×Σ.
Moreover, by (2.11) and the fact λ and |∇λ| are constants on Σ, we know λ depends
only on s and λ = λ(s) is given by

(2.13) λ(s) = A sinh s+B cosh s+
1

n− 1

for some constants A and B. Since |∇λ| = |λ′|, which is never zero, by reversing
∂
∂s , we may assume that λ′(s) > 0 for all s. Let As be the second fundamental form

of {s} × Σ w.r.t. ∂
∂s . By Lemma 2.2 and (2.13), we have

(2.14)
∂

∂s
gs = 2As = 2|∇λ|−1

(
λ− 1

n− 1

)
gs = 2

λ′′

λ′ gs.

Therefore, we conclude gs = φ2(s)g0, where

φ(s) =
λ′(s)

λ′(0)
= A−1 (A cosh s+B sinh s) .

Since λ′ > 0, we have A > 0 and A ≥ |B|. If A = |B|, then φ(s) = es or e−s, and
the metric g is not complete. Hence, A > |B|. Therefore, λ = 1

n−1 somewhere. By

translating s, we may assume λ(0) = 1
n−1 . Then λ(s) = A sinh s + 1

n−1 , φ(s) =
cosh s, and

(2.15) g = ds2 + cosh2 sg0.

Using the fact Ric(g) = −(n − 1)g and (3.3) in Lemma 3.1 in the next section,
we have Ric(g0) = −(n− 2)g0. When n = 4, this implies g0 has constant sectional
curvature −1; hence g has constant sectional curvature −1 by (2.15). �
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Let (Σ, g0) be any complete Einstein manifold with negative scalar curvature
which is not a space form. Suppose Ric(g0) = −(n − 1)g0. Consider the warped

product (M, g) = (R1×Σ, ds2+cosh2 sg0). Define λ = A sinh s+ 1
n−1 on M , where

A > 0 is a constant. It is easy to verify that λ is a solution to (2.8). In this case,
(M, g) is complete, Einstein, but is not a space form.

3. Warped-product critical metrics

In this section, we first seek a general procedure to construct warped-product
metrics g which satisfy

(3.1) −(Δgλ)g +∇2
gλ− λRic(g) = g

for some function λ. Then we construct examples of critical metrics with discon-
nected boundary and non-Einstein critical metrics whose boundary is a standard
round sphere. The first part of our discussion is motivated by the work of Kobayashi
in [8].

Let (N, h) be a Riemannian manifold of dimension n−1. Let I ⊂ R
1 be an open

interval and ds2 be the standard metric on I. Let r be a smooth positive function
on I. Consider the warped-product metric

g = ds2 + r2h

on M = I ×N .

Lemma 3.1. (i) The Ricci curvature of g is given by

Ric(g)(∂s, ∂s) = −(n− 1)
r′′

r
,(3.2)

Ric(g)|TN = Ric(h)−
[
(n− 2)

(
r′

r

)2

+
r′′

r

]
g|TN ,(3.3)

Ric(∂s, X) = 0, ∀ X ∈ TN,(3.4)

where “ ′ ” denotes the derivative taken with respect to s ∈ I, Ric(h) is the
Ricci curvature of h and TN denotes the tangent space to N . Consequently,

(3.5) R(g) = −2(n− 1)

(
r′′

r

)
+

R(h)

r2
− (n− 1)(n− 2)

(
r′

r

)2

,

where R(g), R(h) are the scalar curvature of g, h, respectively.
(ii) Suppose λ is a smooth function on M depending only on s. Then

(3.6) ∇2
gλ(∂s, ∂s) = λ′′, ∇2

gλ|TN =

(
r′

r

)
λ′g|TN , ∇2

gλ(∂s, X) = 0,

where X ∈ TN .

Proof. (i) is standard; see [2]. Direct computations give (ii). �

To proceed, we note that (3.1) implies

(3.7) Δgλ = − 1

n− 1
(Rλ+ n) ;

hence, (3.1) is equivalent to

(3.8) ∇2
gλ = λRic− Rλ+ 1

n− 1
g.
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Proposition 3.1. For any constant R, the metric g has constant scalar curvature
R and satisfies (3.1) for a smooth function λ depending only on s ∈ I, if and only
if the following holds:

(i) (N, h) is an Einstein manifold with Ric(h) = (n − 2)κ0h, the function r
satisfies

(3.9) r′′ +
R

n(n− 1)
r = ar1−n

for some constant a, and the constant κ0 satisfies

(3.10) (r′)2 +
R

n(n− 1)
r2 +

2a

n− 2
r2−n = κ0.

(ii) The function λ satisfies

(3.11) r′λ′ − r′′λ = − 1

n− 1
r.

Proof. Suppose g has constant scalar curvature R and there is a smooth function
λ = λ(s) satisfying (3.1). Since λ cannot be identically zero, there exists s0 ∈ I
such that λ(s0) �= 0. At s0, by Lemma 3.1 and (3.8), we have

Ric(h) = Ric(g)|TN +

[
(n− 2)

(
r′

r

)2

+
r′′

r

]
g|TN

=
1

λ

(
∇2

gλ+
Rλ+ 1

n− 1
g

)
|TN +

[
(n− 2)

(
r′

r

)2

+
r′′

r

]
g|TN

=

[
1

λ

(
r′λ′

r
+

Rλ+ 1

n− 1

)
+ (n− 2)

(
r′

r

)2

+
r′′

r

]
g|TN .

(3.12)

Since R is a constant and r and λ depend only on s, (3.12) implies that (N, h) is
Einstein. Suppose Ric(h) = (n− 2)κ0h, where κ0 is a constant.

Evaluating both sides of (3.1) at ∂s, using Lemma 3.1 and the fact that

∇2λ(∂s, ∂s)−Δgλ = −(n− 1)
r′

r
λ′,

we have

−(n− 1)
r′

r
λ′ + (n− 1)

r′′

r
λ = 1,

which proves (ii).
Differentiating (3.11), using (3.7), (3.11) and the fact that

Δgλ = λ′′ + (n− 1)
r′λ′

r
,

we have

− r′

n− 1
= r′λ′′ − r′′′λ

=

(
Δgλ− (n− 1)

r′λ′

r

)
r′ − r′′′λ

=

(
−Rλ+ n

n− 1
− (n− 1)

r′′λ

r
+ 1

)
r′ − r′′′λ.
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Hence

(3.13)

[
r′′′ + (n− 1)

r′r′′

r
+

R

n− 1
r′
]
λ = 0.

By (3.11), if λ(s) = 0, then λ′(s) �= 0. Hence the set {s ∈ I| λ �= 0} is dense in I.
So (3.13) shows

(3.14) r′′′ + (n− 1)
r′r′′

r
+

R

n− 1
r′ ≡ 0

in I. Multiplying (3.14) by rn−1 and using the fact that R is a constant and r > 0,
we conclude from (3.14) that[

rn−1r′′ +
R

n(n− 1)
rn

]′
= 0,

which is equivalent to

r′′ +
R

n(n− 1)
r = ar1−n

for some constant a. Now (3.10) follows directly from (3.9), (3.5) and the fact
R(h) = (n− 1)(n− 2)κ0.

Conversely, suppose (N, h) is Einstein with Ric(h) = (n−2)κ0h and the functions
r, λ satisfy (3.9)-(3.11). Let g = ds2 + r2h. By Lemma 3.1, the scalar curvature
R(g) of g is given by

(3.15) R(g) = −2(n− 1)

(
r′′

r

)
+

(n− 1)(n− 2)κ0

r2
− (n− 1)(n− 2)

(
r′

r

)2

.

Hence, R(g) = R by (3.9) and (3.10). Next, suppose X,Y ∈ TN . By Lemma 3.1
and (3.9)-(3.11), we have

λRic(g)(X,Y )− Rλ+ 1

n− 1
g(X,Y )

=

[
(n− 2)λκ0

r2
− (n− 2)λ

(
r′

r

)2

− r′′λ

r
− Rλ+ 1

n− 1

]
g(X,Y )

=
r′λ′

r
g(X,Y ) = ∇2

gλ(X,Y )

(3.16)

and

(3.17) ∇2
gλ(∂s, X) = 0 = λRic(g)(∂s, X)− Rλ+ 1

n− 1
g(∂s, X).

On the other hand, differentiating (3.9), (3.11) and canceling r′′′, we have

(3.18) r′λ′′ +

[
(n− 1)ar−n +

R

n(n− 1)

]
r′λ = − r′

n− 1
.

By (3.11), if r′(s) = 0, then r′′(s) �= 0. Hence the set {r′(s) ∈ I| λ �= 0} is dense in
I. So (3.18) implies

(3.19) λ′′ +

[
(n− 1)ar−n +

R

n(n− 1)

]
λ = − 1

n− 1
.

By (3.9), (3.19) becomes

(3.20) λ′′ +

[
(n− 1)

r′′

r
+

R

n− 1

]
λ = − 1

n− 1
,
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from which we see that

(3.21) ∇2
gλ(∂s, ∂s) = λRic(g)(∂s, ∂s)−

Rλ+ 1

n− 1
g(∂s, ∂s),

by Lemma 3.1.
By (3.16), (3.17) and (3.21), we conclude that λ satisfies (3.1). This completes

the proof of the proposition. �

Remark 3.1. The constant a in (3.9) has a geometric interpretation. Assuming r
and (N, h) satisfy (i) and (ii) in Proposition 3.1, then it follows from Lemma 3.1
and (3.9) that

Ric(g)(∂s, ∂s) =− (n− 1)ar−n +
R

n
,

Ric(g)|TN =

(
ar−n +

R

n

)
g|TN .

(3.22)

Hence, a = 0 if and only if g is an Einstein metric.

Remark 3.2. The condition (3.9) on the function r in Proposition 3.1 turns out
to be the same condition that Kobayashi obtained in [8], where he constructed
warped-product solutions to an equation, similar to (3.1),

(3.23) −(Δgf)g +∇2
gf − fRic(g) = 0,

where the metric g and the function f are the unknowns. Kobayashi proved that,
if (N, h) has constant sectional curvature, then g = ds2 + r2h satisfies (3.23) with
some function f = f(s) if and only if (3.9) holds (see Lemma 1.1 in [8]). Equation
(3.23) is interesting to study because of its root in general relativity (see [5], [9],
[4], etc.).

Next, we consider the function λ in Proposition 3.1. Viewed as an ODE about λ,
equation (3.11) becomes singular at points where r′ is zero. Nonetheless, we show
that it always has a solution λ as long as r is a non-constant solution to (3.9).

Lemma 3.2. Suppose r is a smooth, positive, non-constant solution to

(3.24) r′′ +
R

n(n− 1)
r = ar1−n

on I, where R and a are some given constants. Then

(i) r′ and r′′ cannot vanish simultaneously at any point in I.
(ii) Suppose r′(s0) �= 0, s0 ∈ I. Given any initial condition λ(s0) = c, there is

a unique solution λ of (3.11) on I such that λ(s0) = c.
(iii) Suppose r′′(s0) �= 0, s0 ∈ I. Given any initial condition λ′(s0) = c, there is

a unique solution λ of (3.11) on I such that λ′(s0) = c.
(iv) Any two solutions to (3.11) differ by a constant multiple of r′.

Proof. (i) Taking the derivative of (3.24),

(3.25) r′′′ +

[
R

n(n− 1)
+ (n− 1)ar−n

]
r′ = 0.

Suppose r′(s0) = r′′(s0) = 0 for some s0 ∈ I; then r′ ≡ 0 by the uniqueness of
solutions to the ODE (3.25). Since r is non-constant, this is impossible.
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(ii) Suppose r′(s0) �= 0 and c is given. On I, we can solve for λ

(3.26) λ′′ +

[
R

n(n− 1)
+ (n− 1)ar−n

]
λ = − 1

n− 1

with initial data λ(s0) = c and λ′(s0) = 1
r′(s0)

[
cr′′(s0)− r(s0)

n−1

]
. Let λ be such a

solution to (3.26). By (3.25) and (3.26), we have

(
r′λ′ − r′′λ+

r

n− 1

)′
= 0

on I. Since r′λ′ − r′′λ+ r
n−1 = 0 at s0, λ satisfies (3.11) with λ(s0) = c.

Conversely, if λ is a solution of (3.11) with λ(s0) = c, we must have λ′(s0) =
1

r′(s0)

[
cr′′(s0)− r(s0)

n−1

]
since r′(s0) �= 0. On the other hand, λ satisfies (3.26) by

the proof of Proposition 3.1. Hence, λ is unique.
(iii) can be proved in the same way as (ii) is proved.
(iv) Let λ1, λ2 be any two solutions to (3.11) on I. Let φ = λ1 − λ2. Then φ

satisfies r′φ′ − r′′φ = 0, which implies φ is a constant multiple of r′ on any sub-
interval of I where r′ is never zero. By (i), the roots of r′ are isolated in I and
r′(s) = 0 implies r′′(s) �= 0. Therefore, φ = Cr′ on I for some constant C. �

In what follows, we always assume R and a are two given constants. By Propo-
sition 3.1 and Lemma 3.2, any non-constant, positive solution r to the ODE

(3.27) r′′ +
R

n(n− 1)
r = ar1−n,

on an interval I, will give rise to a metric g = ds2 + r2h, on M = I × N , which
satisfies (3.1) for some function λ (provided (N, h) is an Einstein manifold with
Ricci curvature properly chosen). It is natural to know if one can obtain a compact
(M, g) from this procedure such that λ = 0 on ∂M . For this purpose, we consider
solutions r to (3.27) existing on R

1 and ask how many roots the associated solutions
λ to (3.11) may have.

The following lemma was proved by Kobayashi in [8].

Lemma 3.3. Suppose a > 0. Then any local positive solution to (3.27) can be
extended as a positive solution on R

1. If in addition R > 0, then each non-constant
solution on R

1 is periodic.

For reasons which will be clear in Lemma 4.3, we impose the assumption a > 0
hereafter. For any positive solution r to (3.27) on R

1, there exists a constant κ0

such that

(3.28) (r′)2 +
R

n(n− 1)
r2 +

2a

n− 2
r2−n = κ0.

As a > 0, it follows directly from (3.28) that r is bounded from below by a positive
constant.

Lemma 3.4. Suppose a > 0. Let r be a non-constant, positive solution to (3.27)
on R

1. If R ≤ 0, then r′(s) has a unique root. If R > 0, then r′(s) = 0 if and only
if r(s) is the maximum or the minimum of r.
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Proof. Suppose R ≤ 0; then (3.27) implies r′′ ≥ ar1−n. Assume r′ > 0 everywhere;
then r(s) ≤ r(0) for all s ≤ 0. So r′′(s) ≥ C for some positive constant C for
s < 0. This implies r′(s) < 0 somewhere, which is a contradiction. Similarly, it is
impossible to have r′ < 0 everywhere. Hence r′(s) = 0 for some s. Since r′′ > 0,
the root of r′(s) is unique.

Suppose R > 0; then r is periodic by Lemma 3.3. Let rmax and rmin be the
maximum and minimum of r. If r′(s0) = 0, then (3.28) implies

(3.29)
R

n(n− 1)
r2(s0) +

2a

n− 2
r2−n(s0) = κ0

with κ0 > 0. In particular, (3.29) holds with r(s0) replaced by rmax or rmin.
Consider

(3.30) F (r) =
R

n(n− 1)
r2 +

2a

n− 2
r2−n

as a function of r. Then

(3.31)
dF

dr
= 2r

[
R

n(n− 1)
− ar−n

]
.

Let r0 =
(

n(n−1)a
R

) 1
n

. Then F (r) is strictly decreasing on (0, r0) and strictly

increasing on (r0,∞). So for κ0 > 0, F (r) = κ0 has at most 2 distinct solutions.
Hence, r(s0) is one of rmin and rmax. Moreover, as r is assumed not to be a constant,
we have

(3.32) rmin < r0 < rmax.

�

Let r be given as in Lemma 3.4. Without losing generality, we may assume
r′(0) = 0. By the uniqueness of solutions of ODEs, r is an even function. In case
R > 0 and r is non-constant, the roots of r′(s) form a discrete subset in R

1. If we
arrange it so that r(0) = rmin (or rmax) and if 0,±s1,±s2, . . . are zeros of r′ with
s1 < s2 < . . . , then r(±s1) = rmax (or rmin respectively) and r is periodic with
period s2. Now let λ0 be the solution of (3.11) on R

1 with λ′
0(0) = 0, which exists

and is unique by Lemma 3.2; then λ0 is also an even function.

Proposition 3.2. Let a > 0 and R be two constants. Let r be a positive, non-
constant solution to (3.27) on R

1 satisfying r′(0) = 0. For such a given r, let λ0

be the solution to (3.11) on R
1 satisfying λ′

0(0) = 0. Let λ be another solution to
(3.11) on R

1. By Lemma 3.2, λ = λ0 + Cr′ for some constant C.

(i) Suppose R = 0. Then λ(0) > 0,
∫ +∞
1

r
(r′)2 dτ = +∞, λ has a unique

positive root ζ1 and a unique negative root ζ2 and they are related by

(3.33)

∫ ζ1

θ

r

(r′)2
dτ =

∫ ζ2

−θ

r

(r′)2
dτ,

where θ and −θ are the unique positive and negative roots of λ0.

(ii) Suppose R < 0. Then λ(0) > 0,
∫ +∞
1

r
(r′)2 dτ < +∞, λ0 has a unique

positive root θ and a unique negative root −θ. Moreover, (a) if C ≤
− 1

n−1

∫ +∞
θ

r
(r′)2 dτ , then λ has a unique root and the root is positive; (b) if

C ≥ 1
n−1

∫ +∞
θ

r
(r′)2 dτ , then λ has a unique root and the root is negative; (c)
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if |C| < 1
n−1

∫ +∞
θ

r
(r′)2 dτ , then λ has a unique positive root ζ1 and a unique

negative root ζ2 and ζ1, ζ2 are related by (3.33). In particular, ζ1 > ζ and
ζ2 < −ζ, where ζ ∈ (0, θ) is the constant determined by

(3.34)

∫ θ

ζ

r

(r′)2
dτ =

∫ +∞

θ

r

(r′)2
dτ.

(iii) Suppose R > 0. Then λ has exactly one root between any two consecutive
roots of r′. If r(0) = rmin (respectively rmax), then λ(0) > 0 (respectively
< 0). Let θ > 0 be the first positive root of λ0. Then the smallest positive
root ζ1 and the largest negative root of ζ2 of λ are related by (3.33).

Proof. Since r′(0) = 0, by (3.11) we have r′′(0)λ(0) = r(0)
n−1 . In particular, λ(0) and

r′′(0) have the same sign.
(i) Suppose R = 0. We have r′′ = ar1−n > 0 for all s. Hence, λ(0) > 0. On

(0,+∞), the function

− r′

n− 1

∫ s

1

r

(r′)2
dτ

is a solution to (3.11). By Lemma 3.2, we have

(3.35) λ(s) = r′(s)

(
C1 −

1

n− 1

∫ s

1

r

(r′)2
dτ

)

for some constant C1 for any s > 0. Let κ0 > 0 be the constant in (3.28) with
R = 0. Then (r′)2 < κ0 and r(s) ≥ r(0) > 0. Hence,

(3.36) lim
s→+∞

∫ s

1

r

(r′)2
ds = +∞.

Since r′(0) = 0 and r(0) > 0, we also have

(3.37) lim
s→0

∫ s

1

r

(r′)2
ds = −∞.

By (3.35)-(3.37), we conclude that λ has a unique positive root ζ1. Similarly, we
can prove that λ has a unique negative root ζ2.

Let θ > 0 be the unique positive root of λ0. Then −θ is its negative root because
λ0 is an even function. Moreover, (3.11) implies

(3.38) λ0(s) =

{
− r′(s)

n−1

∫ s

θ
r

(r′)2 dτ, for s > 0,

− r′(s)
n−1

∫ s

−θ
r

(r′)2 dτ, for s < 0.

Therefore,

(3.39) λ(s) =

⎧⎨
⎩

r′(s)
(
C − 1

n−1

∫ s

θ
r

(r′)2 dτ
)
, for s > 0,

r′(s)
(
C − 1

n−1

∫ s

−θ
r

(r′)2 dτ
)
, for s < 0.

Since λ(ζ1) = λ(ζ2) = 0, (3.33) follows from (3.39).
(ii) Suppose R < 0. Using the fact r(s) ≥ r(0) > 0, we have r′′ = ar1−n −
R

n(n−1)r ≥ α > 0 for some constant α. In particular, this implies λ(0) > 0, and

r(s) ≥ βs2 for some β > 0 for all s > 0 sufficiently large. By (3.28), r2/(r′)2 is
bounded. Hence, ∫ +∞

1

r

(r′)2
dτ < +∞.
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Similar to the proof in (i), we know there exists a constant C0 such that

(3.40) λ0(s) = r′(s)

(
−C0 +

1

n− 1

∫ +∞

s

r

(r′)2
dτ

)

for s > 0. By the L’Hôpital rule, (3.27) and the facts lims→+∞ r′(s) = +∞ and
lims→+∞ r(s) = +∞, we have

(3.41) lim
s→+∞

r′(s)

n− 1

∫ +∞

s

r

(r′)2
ds =

1

n− 1
lim

s→+∞

r(s)

r′′(s)
=

n

−R
.

On the other hand,

(3.42) λ0(0) =
1

n− 1

r(0)

r′′(0)
=

1

(n− 1)ar−n − R
n

<
n

−R
.

Suppose C0 ≤ 0. Then it follows from (3.40)-(3.42) and the fact λ0 is even that
λ0 + n/R has an interior negative minimum. This is impossible because, by the
proof in Proposition 3.1, λ0 satisfies (3.19) or equivalently λ0 +

n
R satisfies

(
λ0 +

n

R

)′′
+

R

n(n− 1)

(
λ0 +

n

R

)
= −λ(n− 1)ar−n ≤ 0.

Therefore C0 > 0. In particular, lims→+∞ λ0(s) = −∞. Since λ0(0) > 0 and λ0 is
even, we conclude from (3.40) that λ0 has a unique positive root θ and a unique
negative root −θ. Moreover, θ and C0 are related by

C0 =
1

n− 1

∫ +∞

θ

r

(r′)2
dτ.

Now let λ = λ0 + Cr′ be another solution. Then

(3.43) λ(s) =

⎧⎨
⎩

r′(s)
(
C − C0 +

1
n−1

∫∞
s

r
(r′)2 dτ

)
, for s > 0,

r′(s)
(
C + C0 − 1

n−1

∫ s

−∞
r

(r′)2 dτ
)
, for s < 0.

It follows from (3.43) that (a) if C ≤ −C0, λ has a unique root and the root
is positive; (b) if C ≥ C0, λ has a unique root and the root is negative; (c) if
|C| < C0, λ has a unique positive root ζ1 and a unique negative root ζ2 and ζ1, ζ2
satisfy (3.33); moreover, (3.33) implies that

(3.44)

∫ ζ1

θ

r

(r′)2
dτ >

∫ −∞

−θ

r

(r′)2
dτ = −

∫ ∞

θ

r

(r′)2
dτ =

∫ ζ

θ

r

(r′)2
dτ.

Therefore, ζ1 > ζ. Similarly, we have ζ2 < −ζ.
(iii) Suppose R > 0. Let {sk} be the increasing positive sequence such that

{0,±s1,±s2, . . .} is the set of roots of r′(s). By (3.11), λ(sk) (or λ(−sk)) has the
same sign as r′′(sk) (or r′′(−sk)). Suppose r(0) = rmin. Then r(s1) = rmax and
r′ > 0 in (0, s1). Moreover, we have r′′(0) > 0 and r′′(s1) < 0, which imply λ(0) > 0
and λ(s1) < 0. Hence, λ(ζ1) = 0 for some ζ1 ∈ (0, s1). By (3.11), we have

(3.45) λ(s) = − r′(s)

n− 1

∫ s

ζ1

r

(r′)2
dτ

for any s ∈ (0, s1), which shows ζ1 is the unique root of λ in (0, s1). Similar
arguments prove that λ has a unique root between any two consecutive roots of r′.
Let ζ2 be the maximum negative root of λ. The claim that ζ1 and ζ2 satisfy (3.33)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2922 PENGZI MIAO AND LUEN-FAI TAM

follows from the same proof as in (i) and (ii). The case r(0) = rmax can be proved
similarly. �

Now we are in a position to construct compact manifolds with boundary with a
non-Einstein critical metric.

Examples. (1) Given a > 0 and R two constants, let r be a positive solution to
(3.9) on R

1 satisfying r′(0) = 0. Let κ0 be an integral constant of (3.9) so that
(3.10) holds for r. Let (N, h) be an (n− 1)-dimensional, connected, closed Einstein
manifold satisfying Ric(h) = (n−2)κ0h. We note that κ0 must be positive if R ≥ 0
and κ0 can be arbitrary if R < 0. Let λ0 be the solution to (3.11) on R

1 with
λ′
0(0) = 0. Let θ and −θ be the unique positive and negative roots of λ0. Let

ζ1 > 0 and ζ2 < 0 be chosen such that (3.33) holds. Define I = [ζ2, ζ1]. Then
(Ω, g) = (I ×N, ds2 + r2h) satisfies (3.1) for some λ vanishing on ∂Ω. In this case,
g has constant scalar curvature R and ∂Ω has two connected components.

(2) Let I and (Ω, g) be given as in (1) with ζ1 = θ and ζ2 = −θ. Suppose G is a
finite subgroup of isometries of (N, h) which acts freely on N . Consider the action
of G× Z2 on Ω defined by

(α, k)(s, x) = ((−1)ks, α(x)),

where α ∈ G and k ∈ Z2 = {0, 1}. This is an action of isometry on (Ω, g).
Suppose H is a subgroup of G×Z2 which does not contain (id, 1), where id denotes
the identity map on N . If (α, 1) ∈ H, then (α, 0) /∈ H, for otherwise (id, 1) =
(α, 1)(αm−1, 0) would be in H (here m is the order of α in G). From this it can
be easily checked that H acts freely on Ω. Since (Ω, g) is compact with boundary,
so is the quotient manifold (Ω, g)/H. The function λ0 descends to a function λ on
(Ω, g)/H which satisfies (3.1) and vanishes on the boundary ∂ (Ω/H).

If H �= H ∩ (G×{0}), we claim that ∂ (Ω/H) is connected. To see this, let π be
the natural projection map from Ω to Ω/H. Then

∂ (Ω/H) = π(∂Ω) = π({θ} ×N) ∪ π({−θ} ×N).

Suppose (s, x) ∈ ∂Ω, say s = θ. Then π(θ, x) = π(−θ, α(x)), where (α, 1) is an
element in H but not in H ∩ (G× {0}). Hence,

π({θ} ×N) ∩ π({−θ} ×N) �= ∅,
which implies ∂ (Ω/H) is connected. In the special case when (N, h) admits an
isometry α without fixed points so that α2 = id, we can take G = {id, α} and
H = {(id, 0), (α, 1)}. Then (Ω, g)/H has a connected boundary that is isometric
to a constant re-scaling of (N, h).

In the above construction, suppose R ≤ 0, r is chosen such that κ0 = 1 and (N, h)
is taken to be S

n−1. Then g = ds2 + r2h is simply the usual spatial Schwarzschild
metric or Ads-Schwarzschild metric whose mass is given by the constant a. To see
this, one can make a change of variable s = s(r) and use (3.28) to re-write g as

(3.46) g =
1

1− R
n(n−1)r

2 − 2a
n−2r

2−n
dr2 + r2dh.

Note that the antipodal map α on S
n−1 is an isometry without fixed points such that

α2 = id. Hence, the following results follow directly from the above construction
and Proposition 3.2 (i) and (ii).
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Corollary 3.1. Let (M, g) be a complete, spatial Schwarzschild manifold with pos-
itive mass. Let Σ0 be the horizon in (M, g) (i.e. the unique closed minimal surface
in (M, g)). The following are true:

(i) There exist functions λ on (M, g) satisfying (3.1).
(ii) Let M+, M− be the two components of M \ Σ0. Then for any rotationally

symmetric sphere Σζ1 in M+, there exists a rotationally symmetric sphere
Σζ2 in M− such that g is a critical metric on the (closed) domain Ω bounded
by Σζ1 and Σζ2 .

(iii) There exists a rotationally symmetric sphere Σθ in M+ (or equivalently
M−) such that if Ω is the (closed) domain bounded by Σθ and Σ0 and if

(Ω̃, g̃) is the quotient manifold obtained from (Ω, g) by identifying points on

Σ0 through the antipodal map on Σ0, then g̃ is a critical metric on Ω̃.

Corollary 3.2. Let (M, g) be a complete, spatial Ads-Schwarzschild manifold with
positive mass. Let Σ0 be the horizon in (M, g) (i.e. the unique closed minimal
surface in (M, g)). The following are true:

(i) There exist functions λ on (M, g) satisfying (3.1).
(ii) Let M+, M− be the two components of M \ Σ0. There exist a rotationally

symmetric sphere Σζ in M+ and a rotationally symmetric sphere Σ−ζ in
M−, which is the image of Σζ under the reflection with respect to Σ0, such
that if U is the (closed) domain bounded by Σζ and Σ−ζ , then for any
rotationally symmetric sphere Σζ1 in M+ \ U , there exists a rotationally
symmetric sphere Σζ2 in M− \ U such that g is a critical metric on the
(closed) domain Ω bounded by Σζ1 and Σζ2 .

(iii) Let U be as in (ii). There exists a rotationally symmetric sphere Σθ in
M+ \ U (or equivalently M− \ U) such that if Ω is the (closed) domain

bounded by Σθ and Σ0 and if (Ω̃, g̃) is the quotient manifold obtained from
(Ω, g) by identifying points on Σ0 through the antipodal map on Σ0, then g̃

is a critical metric on Ω̃.

We end this section with a discussion on the sign of the first Dirichlet eigenvalue
of (n− 1)Δg +R of those examples constructed in (1) and (2) with R > 0.

Proposition 3.3. Let R > 0, a > 0 and r be given as in Proposition 3.2(iii).
Suppose −s1, 0 and s1 are three consecutive roots of r′. Let I be a finite closed
interval in R

1. Consider the manifold Ω = I × N with the metric g = ds2 + r2h,
where h is an Einstein metric on a closed manifold N such that Ric(h) = (n−2)κ0h
with κ0 satisfying (3.10).

(i) If [0, s1] is a proper subset of I, then the first Dirichlet eigenvalue of (n−
1)Δg +R on (Ω, g) is negative.

(ii) Let λ be a solution to (3.11) on R
1. Let ζ2 ∈ (−s1, 0) and ζ1 ∈ (0, s1) be

the two consecutive roots of λ. Let I = [ζ2, ζ1]. Then the first Dirichlet
eigenvalue of (n− 1)Δg +R on Ω is positive if r(0) = rmin and is negative
if r(0) = rmax.

(iii) Suppose r(0) = rmin. Let λ0 be the even solution to (3.11) on R
1. Let

−θ ∈ (−s1, 0) and θ ∈ (0, s1) be the two consecutive roots of λ0. Let
I = [−θ, θ]. Let (Ω, g)/H be given as in (2). Then the first Dirichlet
eigenvalue of (n− 1)Δg +R on (Ω, g)/H is positive.
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Proof. (i) Note that (3.27) implies

r′′′ + (n− 1)
r′r′′

r
+

R

n− 1
r′ = 0,

which implies

Δgr
′ +

R

n− 1
r = 0

on Ω. Since r′(0) = r′(s1) = 0 and r′ does not change sign in (0, s1), the first
Dirichlet eigenvalue of (n− 1)Δg + R on (0, s1)×N must be zero. As (0, s1)×N
is a proper subset of Ω, we conclude that (i) is true (see Lemma 1 in [6]).

(ii) By (3.7), we have

(3.47) Δgλ+
R

n− 1
λ = − n

n− 1

on Ω. Let γ be the first eigenvalue of (n−1)Δg+
R

n−1 on Ω. Let φ be an eigenfunction
satisfying

(3.48)

{
(n− 1)Δgφ+ R

n−1φ+ γφ = 0 on Ω,

φ = 0 on ∂Ω.

It follows from (3.47)-(3.48) and the fact λ = 0 on ∂Ω that

(3.49) γ

∫
Ω

λφ =
n

n− 1

∫
Ω

φ.

Since both φ and λ do not change sign in the interior of Ω, (3.49) implies that γ
has the same sign as λ on (−ζ2, ζ1). If r(0) = rmin, we have λ(0) > 0 by (iii) in
Proposition 3.2, hence γ > 0. Similarly, if r(0) = rmax, we have λ(0) < 0 and γ < 0.
Therefore, (ii) is proved.

(iii) follows directly from (ii) and the fact that the natural projection map from
(Ω, g) to (Ω, g)/H is a local isometry. �

4. Conformally flat critical metrics

In this section, we consider conformally flat metrics g satisfying

(4.1) −(Δgλ)g +∇2
gλ− λRic(g) = g

for some function λ. Our main goal is to classify all compact manifolds with bound-
ary which admit a conformally flat critical metric.

We start with local properties of such a metric. Similar to the work of Kobayashi
and Obata in [9], we have the following:

Lemma 4.1. Let (Ωn, g) be a connected, conformally flat Riemannian manifold.
Suppose there exists a smooth function λ such that g and λ satisfy (4.1). For c ∈ R,
let N be a component of λ > c which is the level set {λ = c} ⊂ Ω such that ∇λ �= 0
on N . Then the following hold:

(i) |∇λ| is constant on N .
(ii) N is totally umbilical with constant mean curvature.
(iii) N has constant sectional curvature.

Proof. Let R be the scalar curvature of g. By [11], R equals a constant. The proof
in [9] can then be carried over to our case. For the sake of completeness, we include
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the relevant details. First note that it is sufficient to consider the case that c �= 0.
Since Ω is conformally flat, we have (see [10] for example)

(4.2) (∇XS)(Y, Z)− (∇Y S)(X,Z) = 0

for all vector fields X,Y, Z, where S is the Schouten tensor given by (at the points
where λ �= 0)

(n− 2)S =Ric(g)− R

2(n− 1)
g

=λ−1∇2
gλ+

1

(n− 1)λ
g +

R

2(n− 1)
g

(4.3)

where we have used (4.1). Moreover, the Weyl curvature tensor is zero and so the
Riemannian curvature tensor of g equals the Kulkarni-Nomizu product of S and g,
which together with (4.3) shows

R(X,Y, Z, U) =
R+ 2λ−1

(n− 1)(n− 2)
[g(X,Z)g(Y, U)− g(X,U)g(Y, Z)]

+
1

(n− 2)λ

[
∇2λ(X,Z)g(Y, U) +∇2λ(Y, U)g(X,Z)

−∇2λ(X,U)g(Y, Z)−∇2λ(Y, Z)g(X,U)

]
(4.4)

for all vector fields X,Y, Z, U . Here R(X,Y, Z, U) is defined as 〈R(X,Y )U,Z〉 with
R(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ].

By (4.2) and (4.3), we have

0 =DX

(
λ−1∇2

gλ
)
(Y, Z)−DY

(
λ−1∇2

gλ
)
(X,Z)− X(λ)g(Y, Z)− Y (λ)g(X,Z)

(n− 1)λ2

=λ−1
[
DX

(
∇2

gλ
)
(Y, Z)−DY

(
∇2

gλ
)
(X,Z)

]
− λ−2

(
X(λ)∇2λ(Y, Z)− Y (λ)∇2λ(X,Z)

)
− 1

(n− 1)λ2
(X(λ)g(Y, Z)− Y (λ)g(X,Z))

=λ−1R(X,Y, Z,∇λ)− λ−2
(
X(λ)∇2λ(Y, Z)− Y (λ)∇2λ(X,Z)

)
− 1

(n− 1)λ2
(X(λ)g(Y, Z)− Y (λ)g(X,Z)) .

(4.5)

Let X be tangential to N and Z = Y = ∇λ; then we have

0 = Y (λ)∇2λ(X,Z) =
1

2
|∇λ|2X(|∇λ|2)

on N . Hence |∇λ| is constant on N . This proves (i).
In (4.5), let X,Z be tangential to N , Y = ∇λ and let ξ = ∇λ/|∇λ|. Then we

have

(4.6) R(X, ξ, Z, ξ) = −λ−1

(
∇2λ(X,Z) +

1

n− 1
g(X,Z)

)
.
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On the other hand, let Y = U = ∇λ and X, Z be tangential to N in (4.4). Then
we have

R(X, ξ, Z, ξ) =
1

(n− 2)
λ−1

[
∇2λ(X,Z) +∇2λ(ξ, ξ)g(X,Z)

]

+
1

(n− 1)(n− 2)
(2λ−1 +R)g(X,Z).

(4.7)

Comparing (4.6) and (4.7), we have

(n− 1)∇2λ(X,Z) =

[
−∇2λ(ξ, ξ)− n+Rλ

n− 1

]
g(X,Z)

=
[
−∇2λ(ξ, ξ) + Δgλ

]
g(X,Z),

(4.8)

where the last step follows from

(4.9) Δgλ = − 1

n− 1
(Rλ+ n)

which is obtained by taking the trace of (4.1). Recall

Δgλ = ΔN
g λ+H

∂λ

∂ξ
+∇2λ(ξ, ξ),

where H is the mean curvature of N and ΔN
g is the Laplacian on N . Thus, (4.8)

becomes

|∇λ|−1∇2λ(X,Z) =
H

n− 1
g(X,Z).(4.10)

Now let A(X,Z) = g(∇Xξ, Z) be the second fundamental form of N . Then

(4.11) A(X,Z) =
∇2λ(X,Z)

|∇λ| =
H

n− 1
g(X,Z),

which shows N is totally umbilical.
To prove that H is constant on N , let α = H/(n−1). By (4.5) and the Codazzi-

Mainardi equation for X,Y, Z tangential to N , we have

0 = R(X,Y, Z, ξ)

=
(
∇N

XA
)
(Y, Z)−

(
∇N

Y A
)
(X,Z)

= X(α)g(Y, Z)− Y (α)g(X,Z),

(4.12)

where ∇N is the covariant derivative of N . For any given X, let Y = Z be a unit
vector perpendicular to X. Then X(α) = 0. Hence α is constant on N . This proves
(ii).

To prove (iii), let X = Z and Y = U in (4.4) and choose X and Y to be
orthonormal tangent vectors tangent to N . It follows from (4.4), (4.10) and the
fact |∇λ| and H are constant on N that R(X,Y,X, Y ) is constant on N . By the
Gauss equation and (ii), we conclude that N has constant sectional curvature. �

In the rest of this section, we assume that (Ω, g) is a connected, compact Rie-
mannian manifold with a smooth (possibly disconnected) boundary Σ. Moreover,
we make the following assumption on (Ω, g):

Assumption A. (Ωn, g) is conformally flat and there is a smooth function λ sat-
isfying (4.1) and vanishing on Σ. Furthermore, the first Dirichlet eigenvalue of
(n− 1)Δg +R is non-negative.
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Note that the condition on the first Dirichlet eigenvalues is automatically satisfied
if R ≤ 0.

Given such an (Ω, g), by [11] we have λ > 0 in the interior of Ω. In addition,
if ν denotes the outward unit normal to Σ, then ∂λ

∂ν < 0 and is constant on each
connected component of Σ. Similar to [9], we can now prove the following result.

Lemma 4.2. Let Σ0 be a connected component of Σ. Let Ω̃0 be the connected
component of the open set {|∇λ| > 0} in Ω such that its closure contains Σ0, and

let Ω0 = Ω̃0∪Σ0. Then there exists a constant δ0 > 0 such that (Ω0, g) is isometric
to a warped product ([0, δ0)× Σ0, ds

2 + r2h), where r > 0 is a smooth function on
[0, δ0) and h is the induced metric on Σ0 from g. Moreover, λ on Ω0 depends only
on s ∈ [0, δ0), and Σ0 has constant sectional curvature.

Proof. The claim that Σ0 has constant sectional curvature is a direct corollary of
Lemma 4.1 and the facts λ = 0 on Σ0 and ∂λ

∂ν �= 0 on Σ0. On Ω0, define the smooth

vector field v = ∇λ/|∇λ|2. This vector field is smooth up to Σ0. For any x ∈ Σ0,
let ζx(s) be the integral curve of v such that ζx(0) = x. Then ζx can be extended
until it meets the boundary of Ω0. Suppose ζx is defined on [0, δx); then

(4.13) λ(ζx(s)) =

∫ s

0

g(∇λ(ζz(τ )), ζ
′
x(τ )gdτ + λ(x) = s.

Hence if [0, δx) is the maximal domain of the definition of ζx and maxΩ λ is the
maximum value of λ on Ω, then δx ≤ maxΩ λ < ∞. Note that λ(ζx(s)) is increasing
in s and ∂λ

∂ν < 0 on Σ. It is easily seen that for any si → δx, ζx(si) cannot converge
to a point at Σ.

We claim that δx is constant on Σ0. It is sufficient to prove that δx = δ where
δ = infy∈Σ0

δy, which is positive as Σ0 is compact. Suppose δx > δ for some
x ∈ Σ0. Then |∇λ| ≥ c > 0 on ζx(δ − ε, δ + ε) for some constants c and ε > 0.
For any s ∈ (0, δ), let Ns = {ζy(s)| y ∈ Σ0}. Then |∇λ| > 0 on Ns, and λ = s on
Ns by (4.13). Moreover, Ns is connected as Σ0 is connected. Therefore, Lemma
4.1 implies that |∇λ| is constant on Ns. Consequently, |∇λ| ≥ c on Ns for all
s ∈ (δ − ε, δ). This implies that all ζy can be extended up to δ + ε′ for some ε′ > 0
independent of y, which contradicts the definition of δ. Hence δx = δ for all x ∈ Σ0.

Let I = [0, δ) and define the map Φ : I × Σ0 → Ω0 by Φ(s, x) = ζx(s). Then
Φ is an injective, local diffeomorphism. It is also true that Φ(I × Σ0) is closed
in Ω0 because if xk ∈ Φ(I × Σ0) with xk → x ∈ Ω0 and if x /∈ Φ(I × Σ0), then
∇λ(x) = 0, contradicting the definition of Ω0. Since Ω0 is connected, we conclude
Ω0 = Φ(I × Σ0).

Let (u1, . . . , un−1) be some local coordinates on Σ0. Then Φ∗(∂s) = �v is orthog-
onal to Φ∗(∂ui

). Writing Φ∗(∂ui
) as ∂ui

, we have

∂

∂s
g(∂ui

, ∂uj
) = g(∇∂ui

�v, ∂uj
) + g(∂ui

,∇∂uj
�v)

= 2|∇λ|−1II(∂ui
, ∂uj

),

where II is the second fundamental form of Ns with respect to �v. By Lemma 4.1,
II(∂ui

, ∂uj
) = αg(∂ui

, ∂uj
) for some function α depending only on s; moreover, |∇λ|

also depends only on s. Therefore, in terms of coordinates (s, u1, . . . , un−1) on Ω0,
the metric g can be written as

g = |∇λ|−2ds2 + βh,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2928 PENGZI MIAO AND LUEN-FAI TAM

where β is a function of s and h is the induced metric on Σ0. Rescaling s using
the fact that |∇λ| depends only on s, we may re-write g as g = ds2 + r2h, where
s ∈ [0, δ0) for some δ0 possibly different from δ, and r is some function depending
only on s. The fact δ0 < +∞ follows from the assumption that Ω is compact. �

Let Σ0, I = [0, δ0), Ω0, r and h be given as in Lemma 4.2. We identify I × Σ0

with Ω0 using the isometry. Since ∂λ
∂ν < 0 on Σ0 and |∇λ| > 0 on I × Σ0, we have

λ′(s) > 0 on I ×Σ0, where “
′ ” denotes the derivative w.r.t. s. For convenience, we

also normalize R so that R = n(n− 1)κ with κ = 0, 1 or −1. By Proposition 3.1 in
Section 3, we have

(4.14) r′′ + κr = ar1−n

for some constant a, and

(4.15)
r′

r
λ′ − r′′

r
λ = − 1

n− 1
.

Also from Section 2, we have

(4.16) Ric(g)(∂s, ∂s) = −(n− 1)
r′′

r
= (n− 1)κ− (n− 1)ar−n

and

(4.17) (r′)2 + κr2 +
2a

n− 2
r2−n = κ0,

where κ0 is the sectional curvature of (Σ0, h) which is a constant.
In what follows, we let I × Σ0 be the closure of I ×Σ0 in Ω∪Σ0. Since ∇λ = 0

somewhere in Ω, I × Σ0 \ I × Σ0 is not empty and consists of points at which
∇λ = 0.

Lemma 4.3. With the above notation, the following are true:

(i) a ≥ 0.
(ii) If a = 0, then (Ω, g) is a geodesic ball in space forms.
(iii) If a > 0, then S0 = I × Σ0 \ I × Σ0 is a connected, embedded, totally

umbilical hypersurface with constant mean curvature in Ω. Moreover, for
any p ∈ S0 there is an open neighborhood U of p such that U ∩S0 = U ∩S,
where S = {q ∈ Ω| ∇λ(q) = 0}.

Proof. (i) Suppose a < 0. By (4.16), we have lim infs↗δ0 r(s) > 0. Suppose there
exists sk ↗ δ0 such that r(sk) → ∞; then (4.17) implies

κ+

(
r′(sk)

r(sk)

)2

→ 0.

In particular,
(

r′(sk)
r(sk)

)2

are uniformly bounded. Since λ′(sk) → 0, by (4.14) and

(4.15) we have

−κ lim
k→∞

λ(sk) =
1

n− 1
,

which is impossible if κ = 0, 1 because λ > 0 in the interior of Ω. Suppose κ = −1.
By (4.14), r′′ < r. Let f be a function on I such that f ′′ = f , f(0) = r(0) and
f ′(0) > r′(0). Then f > r near 0. Since f is bounded on I and r(sk) → ∞,
there exists s0 > 0 such that f > r on (0, s0) and f(s0) = r(s0). So we have
(r − f)′′ < (r − f), r − f < 0 on (0, s0), but r − f = 0 at 0, s0. This is impossible.
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Hence, we have lim sups↗δ0 r(s) < +∞. It follows that C−1 ≤ r ≤ C on I for some
C > 0. In particular, r can be extended smoothly beyond δ0 satisfying (4.14), and
λ can be extended smoothly beyond δ0 satisfying (4.15). At δ0, we have λ

′(δ0) = 0,
hence (4.14) and (4.15) imply

(4.18) λ(δ0) =
1

n− 1
· 1

−κ+ ar−n(δ0)
.

Again this is impossible if κ = 0, 1. Suppose κ = −1; then λ(δ0) > 1
n−1 . Recall

that λ = 0 on Σ and by (4.9) we have

(4.19) Δg

(
λ− 1

n− 1

)
− n

(
λ− 1

n− 1

)
= 0 on Ω.

Hence, maxΩ λ ≤ 1
n−1 , contradicting λ(δ0) >

1
n−1 . This proves (i).

(ii) Suppose a = 0. Then (4.14) becomes r′′ + κr = 0. Hence r can be defined
for all s. In particular, lims→δ r(s) = r0 exists. Suppose r0 > 0; then λ can be
extended beyond δ satisfying (4.15). As in case (i), it follows from (4.14) and (4.15)
that

−κλ(δ0) =
1

n− 1
,

which is impossible if κ = 0 or 1. If κ = −1, then λ(δ0) = 1
n−1 . However, by

the proof of (i), we have maxΩ λ ≤ 1
n−1 . Thus, the function λ − 1

n−1 , which is

not a constant, achieves an interior maximum which is zero. By (4.19), we get a
contradiction to the strong maximum principle. Therefore, r0 = 0. Consequently,
I × Σ0 \ I × Σ0 consists of only one point, say p. Let Bp ⊂ Ω be a connected,

open neighborhood of p. Then (Bp \ {p}) ∩ (I × Σ0) and (Bp \ {p}) \ I × Σ0 are

both open sets in Bp \ {p}. Hence (Bp \ {p}) \ I × Σ0 = ∅. As Ω is connected,

we conclude that Ω = I × Σ0. As a = 0, by Remark 3.1 the metric g is Einstein.
Hence (Ω, g) is a geodesic ball in space forms by Theorem 2.1.

(iii) Suppose a > 0. By Lemma 3.3, r can be extended to be a solution on R

and is bounded below away from zero. Hence r satisfies C−1 ≤ r ≤ C in [0, δ0) for
some positive constant C.

For each y ∈ Σ0, let αy(s) denote the geodesic starting from y with α′
y(0) = ∂s.

As Σ0 is compact, there exists δ1 > δ0 such that αy(s) is defined on [0, δ1) for all
y ∈ Σ0. Clearly, the set {αy(δ0) | y ∈ Σ0} is contained in S0. On the other hand,
for any p ∈ S0 there exists (sk, xk) ∈ I × Σ0 such that αxk

(sk) → p with sk → δ0.
As Σ0 is compact and r ≤ C, there exists x ∈ Σ0 such that αx(sk) → p. Hence,
p = αx(δ0). This shows S0 = {αy(δ0) | y ∈ Σ0}; in particular, S0 is connected (as
Σ0 is connected).

To show S0 is an embedded hypersurface, we let Σs = {s} × Σ0 for each 0 <
s < δ0. Since the induced metric on Σs is r2h and r ≥ C−1, the curvature of Σs

is bounded by a constant independent of s. Since Σs is totally umbilical, it follows
from the Gauss equation that the norm of the second fundamental form of Σs is
also bounded by a constant independent of s. For any p = αx(δ0) ∈ S0, using
the estimates of Lemma A.2 in the Appendix and the fact that Σs is of constant
mean curvature with uniformly bounded second fundamental form, we conclude
that there exists ρ > 0 and a sequence sk ↗ δ0 such that Nk = {(sk, y)| y ∈
B0(x, ρ)} converges to an embedded hypersurface Np passing through p. Here
B0(x, ρ) denotes a geodesic ball in (Σ0, h) centered at x with radius ρ. Note that
Np ⊂ S0.
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At p = αx(δ0), we have ∇λ = 0. By (4.1) and (4.16), we have

(4.20) ∇2
gλ(α

′
x(δ0), α

′
x(δ0)) = −κλ− 1

n− 1
− (n− 1)ar−n.

As a > 0, (4.20) implies ∇2
gλ(α

′
x(δ0), α

′
x(δ0)) < 0. This is obvious if κ = 0 or 1. If

κ = −1, this follows from the fact maxΩ λ < 1
n−1 .

By shrinking B0(x, ρ) if necessary, we may assume that there exist small positive
constants b and c such that ∇2

gλ(α
′
y(s), α

′
y(s)) < −c for all y ∈ B0(x, ρ) and s ∈

(δ0 − b, δ0 + b). As ∇λ = 0 at αy(δ0) ∈ S0, we have g(∇λ, α′
y(s)) �= 0 for all

y ∈ B0(x, ρ) and s ∈ (δ0 − b, δ0 + b). In particular, ∇λ is not zero at the points
αy(s) for all such y and s.

We want to show that there is an open neighborhood U of p such that U ∩ S =
U ∩Np. If not, then there exists a sequence of points {pk} ⊂ Ω such that pk → p,
pk /∈ Np and pk ∈ S. For k sufficiently large, there exist minimal geodesics βpk

(t)
starting from pk and ending at Np so that β′

pk
(t) is perpendicular to Np at some

point qk = αyk
(δ0) for some yk ∈ B0(x, ρ). Since βpk

and αyk
are two geodesics

both perpendicular to Np at qk, we must have pk = αyk
(sk) for some sk. Moreover,

sk �= δ0 as pk /∈ Nk. When k is sufficiently large, we have sk ∈ (δ0 − b, δ0 + b).
Hence ∇λ is not zero at pk = αyk

(sk), contradicting the fact that pk ∈ S.
As S0 ⊂ S, we conclude that S0 is an embedded hypersurface in Ω such that for

each p ∈ S0 there is an open neighborhood U of p such that U ∩Np = U ∩ S. The
fact that S0 is totally umbilical and has constant mean curvature follows directly
from the fact that each Σs is totally umbilical and has constant mean curvature. �

Let (Ω, g) be given as before. Assume that (Ω, g) is not a geodesic ball in space
forms. Let Σ1, . . . ,Σk be the connected components of the boundary Σ. For each
i = 1, . . . , k, let Ωi be the connected component of the open set {|∇λ| > 0} in
Ω whose closure contains Σi. By Lemma 4.2, each Ωi can then be identified with
Ii × Σi where Ii = (0, δi) for some 0 < δi < ∞. On Ii × Σi, the metric g has the
form ds2 + r2i hi, where ri is some smooth positive function on Ii. By (4.14) and
Lemma 4.3, each ri satisfies r

′′
i +κr = air

1−n for some constant ai > 0. Let Ii × Σi

be the closure of Ii × Σi in Ω and let Si = Ii × Σi \ Ii × Σi. By Lemma 4.3, each
Si is a connected, embedded, totally umbilical hypersurface with constant mean
curvature in the interior of Ω.

Lemma 4.4. With the above assumptions and notation, Σ has at most two con-
nected components, i.e. k ≤ 2. If k = 2, then S1 = S2 and Ω = I1 × Σ1 ∪ l2 × Σ2.
If k = 1, then Ω = I1 × Σ1.

Proof. Suppose k ≥ 2 and suppose Si ∩ Sj �= ∅ for some i �= j, say i = 1, j = 2.
For any p ∈ S1 ∩ S2, Lemma 4.3 implies there exists an open neighborhood U of
p in Ω such that U ∩ S1 = U ∩ S, where S = {∇λ = 0}. As S2 ⊂ S, we have
U ∩ S2 ⊂ U ∩ S1. As S1 and S2 are embedded hypersurfaces, the above implies
S1 ∩ S2 is an open subset of both S1 and S2. As S1 and S2 are connected, we have
S1 = S1∩S2 = S2. Now, every geodesic in Ω emanating from and perpendicular to
S1 = S2 is either contained in I1×Σ1 or I2×Σ2. Hence, I1 × Σ1∪I2 × Σ2 is both an
open and a closed set in Ω. As Ω is connected, we must have Ω = I1 × Σ1∪ I2 × Σ2

and k = 2.
Suppose k ≥ 2 and suppose Si ∩ Sj = ∅ for any i �= j. We prove that this is

impossible by considering U = Ω \
⋃

i Ii × Σi. If U = ∅, then each Ii × Σi would
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be both open and closed in Ω, contradicting the fact that Ω is connected. Suppose
U �= ∅. If κ = 0 or 1, then (4.9) implies

Δgλ = −nκλ− n

n− 1
< 0,

where we also used λ > 0 in the interior of Ω. Hence, minŪ λ could only occur at
∂U =

⋃
i Si. Suppose p ∈ ∂U such that λ(p) = minŪ λ. Then the strong maximum

principle implies ∂λ
∂νU

�= 0, where νU is a unit normal vector to ∂U at p. This
contradicts the fact that ∇λ = 0 at points in Si. If κ = −1, then as in the proof of
Lemma 4.3, we have λ < 1

n−1 on Ω and

Δg

(
λ− 1

n− 1

)
= n

(
λ− 1

n− 1

)
.

Applying the strong maximum principle to λ − 1
n−1 on U , we get a contradiction

as before. Therefore, we conclude that if k ≥ 2, then k = 2, S1 = S2 and Ω =
I1 × Σ1 ∪ l2 × Σ2.

Next, suppose k = 1. Let U = Ω \ I1 × Σ1. The exact same argument in the
previous paragraph implies U = ∅. We conclude Ω = I1 × Σ1. �

Theorem 4.1. Let (Ω, g) be a connected, compact Riemannian manifold with a
disconnected boundary Σ. Suppose (Ω, g) satisfies Assumption A. Then (Ω, g) is
one of the manifolds constructed in Example (1) after Proposition 3.2.

Proof. By Lemma 4.4, Σ has exactly two connected components, say Σ1 and Σ2.
Moreover, if Ii = [0, δi), Ii×Σi, Ii × Σi and Si are given as in Lemma 4.4 for i = 1,
2, then S1 = S2 and Ω = I1 × Ω1 ∪ I2 × Ω2. On each Ii × Σi, by Lemmas 4.2 and
4.3 the metric g has the form

(4.21) g = ds2 + r2i hi,

where hi is a metric on Σi with constant sectional curvature and ri is a smooth
positive function on Ii satisfying

(4.22) r′′i + κri = air
1−n
i

for some constant ai > 0. Here we normalized g so that its scalar curvature, which is
a constant, is n(n−1)κ with κ = 0 or ±1. Note that (4.21) and (4.22) are invariant
if the triple (ri, hi, ai) is replaced by (cri, c

−2hi, c
na) for any c > 0. Hence, after

rescaling, we may assume that a1 = a2.
Let S denote S1 = S2. For any p ∈ S, there exists x ∈ Σ1, y ∈ Σ2 such

that αx(δ1) = p = βy(δ2). Here αx(s), βy(s) denote the geodesic staring from x,
y with α′

x(0) = ∂s, β
′
y(0) = ∂s, respectively. At p, α′

x(δ1) and β′
y(δ2) are both

perpendicular to S. Hence α′
x(δ1) = −β′

y(δ2), and γ = αx ∪ (−βy) is a geodesic
in Ω, where −βy(s) is defined as βy(−s). At p, recall that ∇λ = 0. By (4.15), we
then have

(4.23)
r′′1 (δ1)

r1(δ1)
=

r′′2 (δ2)

r2(δ2)
.

It follows from (4.22), (4.23) and the fact a1 = a2 that r1(δ1) = r2(δ2). On the other
hand, using the fact that the mean curvature of S w.r.t. α′

x(δ1) is negative of the
mean curvature of S w.r.t. β′

y(δ2), we conclude r′1(δ1) = −r′2(δ2). In particular, if
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we let I = [0, δ1+δ2] and define r(s) = r1(s), s ∈ [0, δ1] and r(s) = r2(δ1+δ2−s), s ∈
[δ1, δ1 + δ2], then r(s) is a smooth function on I satisfying

(4.24) r′′ + κr = ar1−n,

where a = a1 = a2 is some positive constant.
Now suppose there exists another x̃ ∈ Σ1 such that αx̃(δ1) = p. Then we would

have α′
x̃(δ1) = α′

x(δ1), hence x̃ = x. This implies the maps x �→ αx(δ1), y �→ βy(δ2)
are bijective from Σ1, Σ2 to S. Consequently, the map (x, s) �→ γx(s), where γx(s)
is the geodesic starting from x ∈ Σ1 and perpendicular to Σ, is a diffeomorphism
from I ×Σ1 to Ω. By (4.21), the induced metric from g on S = {δ1} ×Σ1 is given
by both r21(δ1)h1 and r22(δ2)h2. As r1(δ1) = r2(δ2), we have h1 = h2.

Note that r′(0) = r′1(0) < 0 and r′(δ1 + δ2) = −r′2(0) > 0; hence there exists an
s0 ∈ I such that r′(s0) = 0. Replacing s by s− s0, we conclude that Ω is isometric
to I × Σ1, where I is replaced by (−s0, δ1 + δ2 − s0) and the metric g is given by
g = ds2 + r2h with r satisfying (4.24) and r′(0) = 0. Moreover, λ only depends on
s ∈ I. As a > 0, by Section 2 we know that both r and λ can be extended to R

1

and 0. Therefore, (Ω, g) is one of the examples in Example (1) after Proposition
3.2. �
Theorem 4.2. Let (Ω, g) be a connected, compact Riemannian manifold with a
connected boundary Σ. Suppose (Ω, g) satisfies Assumption A. Then (Ω, g) is either
a geodesic ball in a simply connected space form or one of the manifolds constructed
in Example (2) after Proposition 3.2.

Proof. Suppose that (Ω, g) is not a geodesic ball in a simply connected space form.
Since the boundary Σ is connected, by Lemmas 4.2, 4.3 and 4.4 we have Ω = I × Σ
(closure is taken with respect to Ω) with the metric g on I×Σ given by ds2+r2(s)h,
where I = [0, δ) for some positive number δ. Now the functions r and λ satisfy (4.14)
(with a > 0) and (4.15). Moreover, S = I × Σ \ I × Σ is a connected, embedded
hypersurface in the interior of Ω. Let (U ;x1, . . . , xn) be a local coordinate in Ω such
that U ∩ S = {xn = 0}. Let U+ = {x ∈ U | xn > 0} and U− = {x ∈ U | xn < 0}.
Since Ω\S = I×Σ, both U+ and U− are contained in I×Σ. In particular, as s ↗ δ,
the surfaces ({s} × Σ) ∩ U+ and ({s} × Σ) ∩ U− converge to S ∩ U from two sides
of S ∩U in U . As the mean curvature Hs of {s}×Σ is constant for each s ∈ I, the
mean curvature H of S∩U is given by both lims→δ− Hs and − lims→δ− Hs. Hence,
H = 0. Since S is totally umbilical with constant mean curvature by Lemma 4.3,
we conclude that S is totally geodesic.

Now consider M̃ = [0, δ]×Σ with the metric g̃ = ds2+r2h (the fact a > 0 implies

that r is smooth up to δ with r(δ) > 0). Let DM̃ denote the doubling of (M̃, g̃)

with respect to Σδ = {δ} × Σ, which is totally geodesic in M̃ . Then DM̃ is one of
the manifolds constructed in Example (1) after Proposition 3.2 (with a reflection
symmetry across a totally geodesic hypersurface). Let Σδ, S be equipped with the
induced metric from g̃, g. Consider the map φ : Σδ → S given by φ(δ, x) = αx(δ),
where αx(s) is the geodesic in Ω starting from x and perpendicular to Σ. It follows
from the facts that S is an embedded hypersurface and each αx(s) is perpendicular
to S at αx(δ) that φ is a local isometry between Σδ and S. Since Σδ and S are
both compact, φ is a covering map. Let p ∈ S and suppose there are three points
x, y, z in Σ such that αx(δ) = αy(δ) = αz(δ) = p. Then two of α′

x(δ), α
′
y(δ), α

′
z(δ)

must be the same, as all of them are perpendicular to S at p. Hence, x, y and z
cannot be distinct. This implies φ is either injective or is a double cover. If φ is
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injective, then the map x �→ αx(δ) would be a diffeomorphism from Σ to S. Hence
Ω \ I × Σ �= ∅, which is a contradiction. We conclude that φ is a double cover.
Hence (Ω, g) is one of the manifolds constructed in Example (2) after Proposition
3.2. �

Theorem 1.2 in Section 1 now follows directly from Theorem 4.1, Theorem 4.2
and Proposition 3.1. Since the manifolds constructed in Example (2) after Propo-
sition 3.2 are not simply connected, we also have the following:

Corollary 4.1. Let (Ω, g) be as in Theorem 4.2 satisfying Assumption A. If Ω is
simply connected, then (Ω, g) is a geodesic ball in a simply connected space form.

Appendix A. Estimates of graphical representation

of hypersurfaces

In this appendix, we include some estimates concerning graphical representation
of hypersurfaces with bounded second fundamental form in a general Riemannian
manifold.

Let (Mn, g) be a complete Riemannian manifold and N be an immersed hyper-
surface in M . Assume M and N satisfy the following:

(a1) The curvature Rm and the covariant derivative DRm of the curvature of
M are bounded.

(a2) The injectivity radius of M is positive.
(a3) The norm of the second fundamental form of N is uniformly bounded.

Let a, b, c, . . . denote indices ranging from 1 to n and let i, j, k, . . . denote indices
ranging from 1 to n− 1. Let B(p, r) denote a geodesic ball centered at p ∈ M with
radius r. The next lemma on normal coordinates in (M, g) was proved in [7].

Lemma A.1. There exist constants r > 0 and C > 0 depending only on the bounds
in (a1)-(a2) such that for any p ∈ M , the exponential map at p is a diffeomorphism
in B(p, r), and if (x1, . . . , xn) are normal coordinates at p in B(p, r), then the
components of the metric tensor g in these coordinates satisfy

(A.1) |gab − δab|(x) + | ∂

∂xc
gab|(x) ≤ C|x|.

Let r > 0 be the constant in Lemma A.1. Let p ∈ N and {xa} be normal
coordinates in B(p, r) such that { ∂

∂xi } spans the tangent plane of N at p. Let

x′ = (x1, . . . , xn−1) and |x′|2 =
∑n−1

i=1 (x
i)2. We have

Lemma A.2. There exist r > ρ0 > 0 independent of p and a function w = w(x′)
defined on |x′| ≤ ρ0, such that w(0) = 0 and {(x′, w(x′))| |x′| ≤ ρ0} is part of N
passing through p. Moreover, there is a constant C1 independent of p such that

|w|+ |∂iw|+ |∂i∂jw| ≤ C1 in |x′| ≤ ρ0. Here ∂iw = ∂w
∂xi and ∂i∂jw = ∂2w

∂xi∂xj .

Proof. Let w be a function defined near x′ = 0 such that the graph {(x′, w)} is
part of N through p and is inside B(p, r). Suppose ρ > 0 is such that the function
w(x′) can be extended and defined in |x′| ≤ ρ < r with {(x′, w)} being part of N
and inside B(p, r). We want to estimate |∂iw|. Let W (x) = w(x′)− xn. The norm
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of the second fundamental form A of N is then given by

|A|2 =
∑

1≤a,b,c,d≤n

(
gac − W aW c

|DW |2

)(
gbd − W bW d

|DW |2

)(
Wab

|DW |

)(
Wcd

|DW |

)

=
∑

1≤a,b,c,d≤n

gacgbd
(

Wab

|DW |

)(
Wcd

|DW |

)

− 2
∑

1≤a,b,c,d≤n

gac
W bW d

|DW |2

(
Wab

|DW |

)(
Wcd

|DW |

)

+

⎛
⎝ ∑

1≤a,b≤n

W aW bWab

|DW |

⎞
⎠

2

,

(A.2)

where DW = W a ∂
∂xa is the gradient of W and Wabdx

a ⊗ dxb is the Hessian of W .
(See [12].) Let

I =
∑

1≤a,b,c,d≤n

gacgbd
(

Wab

|DW |

)(
Wcd

|DW |

)

and

II =
∑

1≤a,b,c,d≤n

gac
W bW d

|DW |2

(
Wab

|DW |

)(
Wcd

|DW |

)
.

Then |A|2 ≥ I − 2II. In the following, we always use C to denote a constant
depending only on the bounds in assumptions (a1)-(a3) and n, and use f(ρ) to
denote a function such that |f(ρ)| ≤ Cρ. Both C and f(ρ) may vary from line to
line.

Let G(ρ) = sup|x′|≤ρ |∂w|, where ∂w = (∂1w, . . . , ∂n−1w) and the norm is w.r.t.

the Euclidean metric. We have the following estimates for |x′| ≤ ρ:

|w(x′)| ≤ G(ρ)|x′|,(A.3)

W a = gabWb

= Wa + (gab − δab)Wb

= Wa + (1 +G(ρ)) f(ρ),

(A.4)

where Wa = ∂W
∂xa ,

Wij =
∂2W

∂xi∂xj
− Γa

ijWa

= wij + (1 +G(ρ)) f(ρ),
(A.5)

Wan =
∂2W

∂xa∂xn
− Γb

anWb

= (1 +G(ρ)) f(ρ).
(A.6)
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Hence

I =
∑

1≤a,b≤n

W 2
ab

|DW |2 + (1 +G(ρ))f(ρ)
∑

1≤a,b≤n

W 2
ab

|DW |2 ,(A.7)

II =
∑

1≤a,b,d≤n

W bW d

|DW |2

(
Wab

|DW |

)(
Wad

|DW |

)

+
∑

1≤a,b,c,d≤n

(gac − δac)
W bW d

|DW |2

(
Wab

|DW |

)(
Wcd

|DW |

)

=
1

|DW |4

⎛
⎝ ∑

1≤i,j,k≤n−1

W iW jWkiWkj

⎞
⎠+ (1 +G(ρ))f(ρ)

∑
1≤a,b≤n

W 2
ab + |Wab|
|DW |2

=
1

|DW |4
∑

1≤k≤n−1

⎛
⎝ ∑

1≤i≤n−1

W iWki

⎞
⎠

2

+ (1 +G(ρ))f(ρ)
∑

1≤a,b≤n

W 2
ab + |Wab|
|DW |2

(A.8)

and hence

II ≤ 1

|DW |4
∑

1≤i≤n−1

(W i)2
∑

1≤k,i≤n−1

(Wki)
2 + (1 +G(ρ))f(ρ)

∑
1≤a,b≤n

W 2
ab + |Wab|
|DW |2

≤ 2

|DW |4
∑

1≤i≤n−1

(W i)2
∑

1≤k,i≤n−1

[
w2

ki + (1 +G(ρ))2f2(ρ)
]

+ (1 +G(ρ))f(ρ)
∑

1≤a,b≤n

W 2
ab + |Wab|
|DW |2

≤ 4

|DW |4
∑

1≤i≤n−1

[
w2

i + (1 +G(ρ))2f2(ρ)
] ∑
1≤k,i≤n−1

w2
ki +

(1 +G(ρ))2f2(ρ)

|DW |2

+ (1 +G(ρ))f(ρ)
∑

1≤a,b≤n

W 2
ab

|DW |2

≤
8n

[
G2(ρ)(1 + f2(ρ)) + f2(ρ)

]
|DW |4

∑
1≤k,i≤n−1

w2
ki +

(1 +G(ρ))2f2(ρ)

|DW |2

+ (1 +G(ρ))f(ρ)
∑

1≤a,b≤n

W 2
ab

|DW |2 .

(A.9)

Therefore

|A|2 ≥ [1− (1 +G(ρ))f(ρ)]

∑
1≤a,b≤n W 2

ab

|DW |2

−
16n

[
G2(ρ)(1 + f2(ρ)) + f2(ρ)

]
|DW |4

∑
1≤k,i≤n−1

w2
ki −

(1 +G(ρ))2f2(ρ)

|DW |2 .

(A.10)
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Hence there exist α > 0 and r > ρ1 > 0 depending only on the bounds in
(a1)–(a3) and n such that if ρ ≤ ρ1 and G(ρ) ≤ α, then

|(1 +G(ρ))f(ρ)| ≤ 1

4
,

∣∣16n [
G2(ρ)(1 + f2(ρ)) + f2(ρ)

]∣∣ ≤ 1

4
|DW |2,

and so

(A.11) sup
|x′|≤ρ

∑
ij

w2
ij ≤ C(1 +G2(ρ)).

Since wi = 0 at x′ = 0, we have

(A.12) G(ρ) ≤ Cρ(1 +G(ρ)),

provided ρ ≤ ρ1 and G(ρ) ≤ α. Hence

(A.13) G(ρ) ≤ Cρ

1− Cρ
,

provided ρ ≤ ρ1, G(ρ) ≤ α and Cρ1 < 1. Now choose ρ0 such that 0 < ρ0 < ρ1,

Cρ0 < 1 and Cρ0

1−Cρ0
≤ α

2 .

Let ρ∗ ≤ ρ0 be the supremum of ρ such that w can be extended on |x′| ≤ ρ
so that (x′, w(x′)) is part of N and such that G(ρ) ≤ α

2 . We claim that ρ∗ = ρ0.
Suppose ρ∗ < ρ0. Since |∂w| ≤ α

2 in |x′| < ρ∗, w can be extended to |x′| = ρ∗

and beyond. That is, we can find ρ∗ < ρ2 ≤ ρ0 such that w can be extended to
|x′| ≤ ρ2 < ρ0 such that G(ρ2) ≤ α. We then have

G(ρ2) ≤
Cρ2

1− Cρ2
≤ α

2
,

which contradicts the definition of ρ∗. �
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MR642858 (84c:53061)

10. Lafontaine, J., Conformal geometry from the Riemannian viewpoint, in Conformal geometry
(Bonn, 1985/1986), 65–92, Aspects Math., E12, Vieweg, Braunschweig, 1988. MR979789
(90a:53022)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0169148
http://www.ams.org/mathscinet-getitem?mr=0169148
http://www.ams.org/mathscinet-getitem?mr=0251664
http://www.ams.org/mathscinet-getitem?mr=0251664
http://www.ams.org/mathscinet-getitem?mr=0378001
http://www.ams.org/mathscinet-getitem?mr=0378001
http://www.ams.org/mathscinet-getitem?mr=2329363
http://www.ams.org/mathscinet-getitem?mr=2329363
http://www.ams.org/mathscinet-getitem?mr=0380907
http://www.ams.org/mathscinet-getitem?mr=0380907
http://www.ams.org/mathscinet-getitem?mr=562550
http://www.ams.org/mathscinet-getitem?mr=562550
http://www.ams.org/mathscinet-getitem?mr=1333936
http://www.ams.org/mathscinet-getitem?mr=1333936
http://www.ams.org/mathscinet-getitem?mr=669275
http://www.ams.org/mathscinet-getitem?mr=669275
http://www.ams.org/mathscinet-getitem?mr=642858
http://www.ams.org/mathscinet-getitem?mr=642858
http://www.ams.org/mathscinet-getitem?mr=979789
http://www.ams.org/mathscinet-getitem?mr=979789


CRITICAL METRICS OF THE VOLUME FUNCTIONAL 2937

11. Miao, P. and Tam, L.-F., On the volume functional of compact manifolds with boundary with
constant scalar curvature, Calc. Var. Partial Differential Equations 36 (2009), no. 2, 141–171.
MR2546025 (2010j:53054)

12. Schoen, R. and Yau, S.-T., Proof of the positive mass theorem. II, Comm. Math. Phys. 79
(1981), no. 2, 231–260. MR612249 (83i:83045)

School of Mathematical Sciences, Monash University, Victoria, 3800, Australia

E-mail address: Pengzi.Miao@sci.monash.edu.au
Current address: Department of Mathematics, University of Miami, Coral Gables, Florida

33124
E-mail address: pengzim@math.miami.edu

The Institute of Mathematical Sciences and Department of Mathematics, The Chi-

nese University of Hong Kong, Shatin, Hong Kong, China

E-mail address: lftam@math.cuhk.edu.hk

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2546025
http://www.ams.org/mathscinet-getitem?mr=2546025
http://www.ams.org/mathscinet-getitem?mr=612249
http://www.ams.org/mathscinet-getitem?mr=612249

	1. Introduction
	2. Critical Einstein metrics
	3. Warped-product critical metrics
	4. Conformally flat critical metrics
	Appendix A. Estimates of graphical representationof hypersurfaces
	References

