
Preprint

An Einstein-Bianchi system for

Smooth Lattice General Relativity. II.

3+1 vacuum spacetimes.

Leo Brewin

School of Mathematical Sciences
Monash University, 3800

Australia

22-Mar-2011

Abstract

We will present a complete set of equations, in the form of an Einstein-
Bianchi system, that describe the evolution of generic smooth lattices
in spacetime. All 20 independent Riemann curvatures will be evolved
in parallel with the leg-lengths of the lattice. We will show that the
evolution equations for the curvatures forms a hyperbolic system and
that the associated constraints are preserved. This work is a gener-
alisation of our previous paper [1] on the Einstein-Bianchi system for
the Schwarzschild spacetime to general 3+1 vacuum spacetimes.

1 Introduction

In a series of papers we have shown that the smooth lattice method works
remarkably well for simple spacetimes such as the Schwarzschild spacetime in
various slicings [1, 2], the maximally sliced Oppenheimer-Snyder spacetime
[3], the vacuum Kasner cosmologies [4] and for constructing Schwarzschild
initial data [5]. The equations are simple and require little computational
sophistication to achieve stable and accurate results. The real test of the
method however must be in the context of generic spacetimes. This paper is
a first step in that direction.

1

ar
X

iv
:1

10
4.

13
56

v1
 [

gr
-q

c]
 7

 A
pr

 2
01

1

The logic behind the smooth lattice approach is quite simple. We assume
that we are given a lattice, built from a large collection of interconnected
vertices, and where each path that connects a pair of vertices is taken to be
a geodesic segment of the spacetime. The only data that we are given for
the lattice is the connection matrix (which describes the topology as a list of
pairs of connected vertices) and the lengths of each geodesic segment (which
describes the metric properties). In this picture we are assuming that the
lattice geometry is a close approximation to some underlying smooth geome-
try. The question that (should) spring to mind is – Given the leg lengths on a
lattice, how do we compute the Riemann curvatures? We will return to this
important question in just a moment, but for now let us suppose we have a
suitable algorithm by which we can accurately compute the Riemann curva-
tures. It is then a simple matter to impose the vacuum Einstein equations∗

which in turn will impose constraints† on the leg-lengths. This furnishes us
with a discrete set of equations for the leg-lengths. Solving these equations
will yield a discrete solution of the vacuum Einstein equations.

We now return to the question of how to recover the Riemann curvatures
given the set of leg-lengths. In one of our earlier papers [5] we argued that if
the lattice was sufficiently well refined then a local Riemann normal coordi-
nate frame could be constructed in the neighbourhood of any vertex extend-
ing to include, at least, the immediate neighbouring vertices. We called this
neighbourhood the computational cell for the vertex (for lattices built from
tetrahedra this would consist of the tetrahedra attached to the vertex). In
this computational cell we can expand the metric as a power series [6] around
the central vertex

gµν(x) = gµν −
1

3
Rµανβx

αxβ +O
(
L3
)

(1.1)

where L is a typical length scale for the computational cell. The requirement
that the legs are geodesic segments leads, after some detailed calculations
[6], to the following equation

L2
ij = gµν∆x

µ
ij∆x

ν
ij −

1

3
Rµανβx

µ
i x

ν
i x

α
j x

β
j +O

(
L5
)

(1.2)

where ∆xµij := xµj − xµi . The approach advocated in [5] was to use this
equation to extract the Riemann curvatures from the lattice. This may sound
simple but there are a number of troubling issues.

∗For pure pedagogy we will restrict the discussion to vacuum spacetimes.
†Not to be confused with any constraints that may exist at the continuum level, for

example the ADM constraints.

2

The first issue concerns the coordinates. How do we compute coordinates for
each vertex? Some can be set by simple gauge transformations (e.g., the ori-
gin can be tied to the central vertex) while the remainder must be computed
from the lattice data (i.e., the leg-lengths). This forces us to view the above
equations (1.2) as a coupled system for the curvatures and the coordinates.

The second issue is one of accountancy – do we have enough equations to
compute the curvatures and the coordinates? For most lattices (in 3 and
higher dimensions) the legs out number the coordinates xµi and curvatures
Rµανβ. As an example, the computational cell used in our earlier paper [5]
contained 78 legs and 19 vertices. Thus we had 78 equations for 6 curvatures
and 57 coordinates (of which 6 can be freely chosen). There are at least two
ways to handle this over supply of information. We can either form linear
combinations of the above equations (1.2) to produce a reduced system in
which the number of equations matches the number of unknowns. Or we
can include a sufficient number of higher order terms in the Taylor series
so as to produce a consistent set of equations. This later approach has the
possible benefit of producing higher order approximations for the Rµανβ but
at considerable extra expense. In both instances we still have a large coupled
non-linear system of equations to solve at each vertex and at each time step.
This is a considerable computational challenge.

Another important issue is one of uniqueness – how many distinct solutions
can we find for the xµi and Rµανβ? The equations are non-linear and thus it
is conceivable that more than one solution could be found. Do the solutions
form a continuous family or are there only a finite set of solutions? How
would we choose between these solutions? In our earlier paper [5] we resolved
these problems by extending the lattice data to include the angles between
each pair of legs attached to the central vertex. This allowed us to obtain
an explicit and unique solution for all of the coordinates in a computational
cell. It also had the added bonus of decoupling the coordinates from the
curvatures – we could calculate all of the coordinates before computing the
curvatures. The price we paid for this improvement was a significant increase
in the number of data to be evolved. Where previously we had 78 legs per
computational cell, now we had a further 33 angles.

However, there is a final issue which is much more serious than those just
mentioned. To obtain O (L) accurate estimates for the curvatures, the coor-
dinates must be computed to at leastO (L4) accuracy (i.e., the errors must be
no worse than O (L4)). This follows by inspection of equation (1.2). Suppose
the error in xµi is O (La) for some a > 0. This error will couple with the first
term on the right hand side of (1.2) to introduce an error of O (La+1). But

3

the curvature terms are O (L4) and will dominate the error term only when
a ≥ 4. Admittedly this is a somewhat naive analysis as it takes no account of
the smoothness of the underlying geometry which might ensure that various
lower order terms cancel (see for example the role smoothness plays in es-
tablishing the truncation errors in centred finite-difference approximations).
But in the absence of an explicit algorithm we are unable to demonstrate
that such cancellations do occur‡. The upshot is that if we persist with any
of the variations suggested above we must design a solution strategy that
guarantees, without invoking smoothness, that the errors in the coordinates
are no worse than O (L4). Despite our best efforts, we have not found a
reliable solution to this problem.

These issues are not altogether new nor surprising and have proved to be a
niggling concern throughout the development of the smooth lattice method.
The only working solution that we have found (there may be others) is to
surrender some (or all) of the main equations (1.2) in favour of the Bianchi
identities. In all of our papers [1, 2, 3, 4, 5] we used a combination of the
Bianchi identities and the geodesic deviation equation in 1 + 1 spacetimes.
The results were very encouraging. This was a hybrid scheme§ and we at-
tributed its success to the introduction of the Bianchi identities. This is
the motivation for the present paper – Can we use the Bianchi identities to
compute all of the Riemann curvatures in a 3 + 1 spacetime? We should
emphasise that there is one important difference between what we propose
here and our previous work. In this paper we will use the full set of Bianchi
identities to evolve all 20 independent Riemann curvatures. In contrast, in
our 1 + 1 experiments we used one Bianchi identity to compute one spa-
tial curvature (i.e., a purely 3-dimensional computation within one Cauchy
surface).

Why should we believe that this use of the Bianchi identities will overcome
the issues described above? Simply, it allows us to use lower order approxi-
mations for the vertex coordinates (even flat space approximations) without
compromising the quality of the estimates of the curvatures. We will return
to this point after we have presented the full set of evolution equations.

‡Though the introduction of angles does produce an explicit algorithm its analysis is
too unwieldily to be of any use.
§The geodesic deviation equation arises as a continuum limit of the smooth lattice

equations [5].

4

2 Notation

A typical computational cell will be denoted by Ω. This will be a compact
subset of the spacetime manifold. The central vertex of the cell will be
denoted by O and the subset of Ω obtained by the intersection of Ω with
the particular Cauchy surface that contains O will be denoted by ω. We will
describe ω as the floor of Ω. As Ω has a finite extent there will be an image
of ω that defines the future end of Ω. We will refer to this as the roof of Ω.
We will have little to reason to refer to the past end of Ω but calling it the
basement seems consistent.

We will assume throughout this paper that the vertex world lines are normal
to the Cauchy surfaces (i.e., zero drift, in the language of [4]). This may
seem restrictive but in our experiments to date it has worked very well.

Within Ω we will employ two sets of vectors essential to the evolution of
the lattice. The first set will be an orthonormal tetrad, denoted by ea,
a = 1, 2, 3, 4, tied to the world line of O and aligned so that e1 is the tangent
vector to the world line of O. As we have assumed that the drift vector is
everywhere zero this also ensures that e1 is the future pointing unit normal to
ω at O. Following convention, we will write nµ as the unit normal to ω though
as just noted, this is identical to e1. The second set of vectors will be based
on the set of radial legs attached to O. Each leg will be of the form (oi) and
we will use vi to denote the vector that joins (o) to (i). Note that the vi are
neither unit nor orthogonal. Latin characters will always be used to denote
tetrad indices while the spacetime indices will be denoted by Greek letters.
Latin characters will also be used as vertex labels and where confusion might
arise we will use subsets of the Latin alphabet with a, b, c, · · ·h reserved
for frame components while i, j, k, l,m will be reserved for vertex labels.
Obviously this distinction will only be imposed for equations that contain
both types of index.

Each cell will carry a Riemann normal coordinate frame (an RNC frame),
with coordinates xµ = (t, x, y, z), tied to the central vertex and aligned with
the tetrad. Note that this gives precedence to the tetrad over the coordinates.
Coordinate components will be written as Rµν or for specific components as,
for example, Rtx while for frame components we will use scripts characters
Rab. The coordinates for a typical vertex (i) will often be written as xµi but
on occasion we will have need to talk about the particular values for the xµi
in which case we will write (t, x, y, z)i or even xti, x

z
i etc.

Each RNC frame will be chosen so that at O the metric is diagonal, (gµν)o =

5

diag(−1, 1, 1, 1). Both spacetime and tetrad indices will be raised and low-
ered, at O, using the metric diag(−1, 1, 1, 1). With these choices we see that
the future pointing unit normal to the Cauchy surface at the central ver-
tex O is just (nµ)o = (1, 0, 0, 0)µ while (nµ)o = (−1, 0, 0, 0). We also see
that the tetrad ea has components eµa = δµa in this RNC frame. Note that
eµaeµ

b = δa
b, eµae

a
ν = δµν , e

µ
1 = nµ and eµ

1 = −nµ.

3 Evolving the leg-lengths

The legs of the lattice are required to be short geodesic segments. Thus
it should come as no surprise that the evolution of the leg-lengths can be
obtained from the equations for the second variation of arc length. In an
earlier paper [7] we showed that, for sufficiently short legs, these equations
can be written as follows

dL2
ij

dt
= −2NKµν∆x

µ
ij∆x

ν
ij +O

(
L3
)

(3.1)

d

dt

(
1

N

dL2
ij

dt

)
= 2N|αβ∆xαij∆x

β
ij (3.2)

+ 2N (KµαK
µ
β −Rµανβn

µnν) ∆xαij∆x
β
ij +O

(
L3
)

For numerical purposes it is somewhat easier to rewrite these in the following
form

dL2
ij

dt
= −2NPij (3.3)

dPij
dt

= −N|αβ∆xαij∆x
β
ij (3.4)

−N (KµαK
µ
β −Rµανβn

µnν) ∆xαij∆x
β
ij

in which we have introduced the new variables Pij, one per leg. The Kµν

can be obtained by a suitable weighted sum of equation (3.1) as described
in section (7.1). We have also dropped the truncation terms as these are not
used during a numerical integration.

Clearly, the evolution of the leg lengths requires a knowledge of the Riemann
curvatures and to that end we now present the evolution equations for those
curvatures.

6

4 Evolving the Riemann curvatures. Pt. 1

We know that there are only 20 algebraically independent Riemann curva-
tures in 4 dimensions. So which should we choose? By a careful inspection
of the algebraic symmetries of Rµανβ we settled upon the following

Rxyxy, Rxyxz, Rxyyz, Rxzxz, Rxzyz, Ryzyz

Rtxxy, Rtxxz, Rtyxy, Rtyxz, Rtyyz, Rtzxy, Rtzyz, Rtzyz (4.1)

Rtxtx, Rtyty, Rtztz, Rtxty, Rtxtz, Rtytz

4.1 Bianchi identities

Our aim is to use the Bianchi identities to obtain evolution equations for the
Riemann curvatures. We begin by writing down the Bianchi identities at the
central vertex, where the connection vanishes,

0 = Rµανβ,γ +Rµαβγ,ν +Rµαγν,β (4.2)

along with a contracted version of the same equation

0 = gµγRµανβ,γ −Rαβ,ν +Rαν,β (4.3)

This pair of equations, along with the vacuum Einstein field equations, and
a judicious choice of indices will provide us with all of the required evolution
equations. This leads to the following 14 differential equations

0 = Rxyxy,t −Rtyxy,x +Rtxxy,y (4.4)

0 = Rxyxz,t −Rtzxy,x +Rtxxy,z (4.5)

0 = Rxyyz,t −Rtzxy,y +Rtyxy,z (4.6)

0 = Rxzxz,t −Rtzxz,x +Rtxxz,z (4.7)

0 = Rxzyz,t −Rtzxz,y +Rtyxz,z (4.8)

0 = Ryzyz,t −Rtzyz,y +Rtyyz,z (4.9)

0 = Rtyxy,t −Rxyxy,x +Rxyyz,z (4.10)

0 = Rtxxy,t +Rxyxy,y +Rxyxz,z (4.11)

0 = Rtzxy,t −Rxyxz,x −Rxyyz,y (4.12)

0 = Rtzxz,t −Rxzxz,x −Rxzyz,y (4.13)

7

0 = Rtxxz,t +Rxyxz,y +Rxzxz,z (4.14)

0 = Rtyxz,t −Rxyxz,x +Rxzyz,z (4.15)

0 = Rtzyz,t −Rxzyz,x −Ryzyz,y (4.16)

0 = Rtyyz,t −Rxyyz,x +Ryzyz,z (4.17)

There are of course 20 independent Rµανβ, 14 of which are subject to the
above evolution equations while the remaining 6 can be obtained from the
vacuum Einstein equations

0 = Rxx = −Rtxtx +Rxyxy +Rxzxz (4.18)

0 = Ryy = −Rtyty +Rxyxy +Ryzyz (4.19)

0 = Rzz = −Rtztz +Rxzxz +Ryzyz (4.20)

0 = Rxy = −Rtxty +Rxzyz (4.21)

0 = Rxz = −Rtxtz −Rxyyz (4.22)

0 = Ryz = −Rtytz +Rxyxz (4.23)

Though these are not differential equations they do, none the less, provide a
means to evolve the 6 curvatures Rtxtx, Rtxty · · ·Rtytz.

The important point to note about this system of equations is that it is
closed, there are 20 evolution equations for 20 curvatures. The source terms,
such as Rxyxy,x, could be computed by importing data from the neighbouring
cells, by an appropriate combination of rotations and boosts, and using a
suitable finite difference approximation (see section (7) for more details)). In
this way the lattice serves as a scaffold on which source terms such as these
can be computed.

4.2 Constraints

In deriving the 20 evolution equations of the previous section we used only 6
of the 10 vacuum Einstein equations. Thus the 4 remaining vacuum Einstein
equations must be viewed as constraints. These equations are

0 = Rtt = Rtxtx +Rtyty +Rtztz (4.24)

0 = Rtx = Rtyxy +Rtzxz (4.25)

0 = Rty = −Rtxxy +Rtzyz (4.26)

0 = Rtz = −Rtxxz −Rtyyz (4.27)

8

Finally, we have the following 6 constraints that arise from the Bianchi iden-
tities.

0 = Rxyxy,z +Rxyyz,x −Rxyxz,y (4.28)

0 = Rxyxz,z +Rxzyz,x −Rxzxz,y (4.29)

0 = Rxyyz,z +Ryzyz,x −Rxzyz,y (4.30)

0 = Rtxxy,z +Rtxyz,x −Rtxxz,y (4.31)

0 = Rtyxy,z +Rtyyz,x −Rtyxz,y (4.32)

0 = Rtzxy,z +Rtzyz,x −Rtzxz,y (4.33)

So all up we have 20 evolution equations assembled from the 14 differential
equations (4.4–4.17) and 6 algebraic equations (4.18–4.23) plus 10 constraints
comprising 4 Einstein equations (4.24–4.27) and 6 Bianchi identities (4.28–
4.33). This is a such a simple system that it allows simple questions to be
explored and answered with ease. The questions that we will address are

1. Are the constraints preserved by the evolution equations?

2. Do the evolution equations constitute a hyperbolic system?

For both questions the answer is yes and we shall now demonstrate that this
is so.

4.3 Constraint preservation

In the following discussion we will assume that, by some means, we have
constructed an initial data set for the 20 Rµανβ. That is, the 20 Rµανβ are
chosen so that the 10 constraints (4.24–4.33) vanish at the central vertex of
every computational cell in the lattice.

We will also need the trivial result that

R = 2 (Rxyxy +Rxzxz +Ryzyz) (4.34)

which follows directly from equations (4.18,4.19,4.20,4.24).

Consider now the constraint 0 = Rtz. By assumption, this constraint is satis-
fied on the initial slice. To demonstrate that it continues to hold throughout
the evolution we need to show that 0 = Rtz,t. From (4.27) this requires us to
show that 0 = Rtxxz,t +Rtyyz,t. Using (4.14,4.17) we see that

Rtxxz,t +Rtyyz,t = −Rxyxz,y −Rxzxz,z +Rxyyz,x −Ryzyz,z

9

however on the initial slice we also have, by assumption, (4.28)

0 = Rxyxy,z +Rxyyz,x −Rxyxz,y

which when combined with the previous equation leads to

Rtxxz,t +Rtyyz,t = − (Rxyxy +Rxzxz +Ryzyz),z

But by equation (4.34) we see that the right hand side is just −R,z/2 and
as R = 0 across the initial slice we also have that 0 = R,z at every central
vertex. This completes the proof. The two other constraints, 0 = Rty and
0 = Rtx, can be dealt with in a similar fashion.

All that remains is to show that 0 = Rtt is conserved. We proceed in a
manner similar to the above. First we use Rtt = Rxyxy + Rxzxz + Ryzyz and
then use equations (4.4,4.7,4.9) to compute the time derivative

(Rxyxy +Rxzxz +Ryzyz),t = Rxyxy,t +Rxzxz,t +Ryzyz,t

= Rtyxy,x −Rtxxy,y

+Rtzxz,x −Rtxxz,z

+Rtzyz,y −Rtyyz,z

= Rtx,x +Rty,y +Rtz,z

where the last line arose by inspection of equations (4.25–4.27). But 0 = Rµν

at every central vertex on the initial slice. Thus 0 = Rµν,i, i = x, y, z on the
central vertex which in turn shows that 0 = Rtt,t on the initial slice.

A key element in the above proofs was the use of constraints based on the
Bianchi identities. The question now must be – do the evolution equations
preserve those constraints? The answer is yes which we will now demonstrate
on a typical case. Consider the constraint (4.28)

0 = Rxyxy,z +Rxyyz,x −Rxyxz,y

We know this to be true on the initial slice and we need to show that the
evolution equations (4.4–4.17) guarantee that it will be satisfied on all sub-
sequent slices. The calculations follow a now familiar pattern,

(Rxyxy,z +Rxyyz,x −Rxyxz,y) ,t = Rxyxy,tz +Rxyyz,tx −Rxyxz,ty

= (Rtyxy,x −Rtxxy,y) ,z

+ (Rtzxy,y −Rtyxy,z) ,x

− (Rtzxy,x −Rtxxy,z) ,y

= 0

The same analysis can be applied to the remaining constraint equations.

10

4.4 Hyperbolicity

Our approach to proving hyperbolicity will be quite simple. We will manip-
ulate the evolution equations (4.4–4.17) to demonstrate that each of our 20
Rµανβ satisfies the standard second order wave equation.

Let us start with a simple example, equation (4.4). We take one further time
derivative, commute the mixed partial derivatives and then use equations
(4.10,4.11) to eliminate the single time derivative. This leads to

0 = Rxyxy,tt −Rxyxy,xx −Rxyxy,yy +Rxyyz,zx −Rxyxz,zy

However, we also have 0 = Rxyxy,z + Rxyyz,x − Rxyxz,y, which allows us to
reduce the last two terms of the previous equation to just −Rxyxy,zz. Thus
we have

0 = Rxyxy,tt −Rxyxy,xx −Rxyxy,yy −Rxyxy,zz

This is the standard flat space wave equation for Rxyxy. A similar analysis
shows that Rxzxz, Ryzyz, Rxyxz, Rxyyz and Rxzyz are also solutions of the wave
equation.

We now turn to the 8 Rµανβ in which the indices µανβ contain just one t.
The proof (that each such Rµανβ satisfies the wave equation) differs from the
above only in the way the Bianchi identities are used. Applying the first few
steps outlined above to equation (4.10) leads to

0 = Rtyxy,tt −Rtyxy,xx −Rtyxy,yy −Rtyxy,zz

+Rtyxy,yy +Rtxxy,xy +Rtzxy,zy

in which we have deliberately introduced the pair of terms Rtyxy,yy to aid in
the following exposition. The last three terms can be dealt with as follows.
First notice that

Rtyxy,yy +Rtxxy,xy +Rtzxy,zy = (Rtyxy,y +Rtxxy,x +Rtzxy,z) ,y

= (−Rµ
txy,µ) ,y

= (−Rty,x +Rtx,y) ,y

where in last line we have used the contracted Bianchi identity 0 = Rµ
ναβ,µ−

Rνβ,α + Rνα,β. But we know that 0 = Rµν at every central vertex, thus all
of its partial derivatives will be zero and so the each term on the right hand
vanishes leading to our desired result

0 = Rtyxy,tt −Rtyxy,xx −Rtyxy,yy −Rtyxy,zz

11

Finally we note that the remaining 6 Rµανβ, that is those that carry two t’s in
their indices, are linear combinations of the previous 14 Rµανβ, see equations
(4.18–4.23), and thus will also be solutions of the wave equation. Thus we
have shown, as claimed, that all 20 Rµανβ satisfy the wave equation.

5 Evolving the Riemann curvatures. Pt. 2

There are two problems in the forgoing analysis. The first problem is that
we chose a unit lapse function when presenting the evolution equations (4.4–
4.17). We can easily remedy this problem by making a simple vertex depen-
dent coordinate substitution t = Nt′ in each of the evolution equations.

The second problem is somewhat more of a challenge. It stems from the
simple fact that each computational cell is local in both space and time and
therefore no single RNC can be used to track the evolution for an extended
period of time. We will have no choice but to jump periodically to a new RNC
frame. But how might we do this? One approach goes as follows. Build, on
the world line of a typical vertex, a pair of distinct but overlapping cells, with
one cell lying slightly to the future of the other. Then evolve the curvatures
in the frame of one cell into the overlap region followed by a coordinate
transformation to import the newly evolved curvatures into the frame of the
future cell. This completes one time step of the integration whereupon the
whole process can be repeated any number of times along the vertex world
line. A useful improvement on this is to use a local tetrad to construct
scalars thus avoiding the need for explicit coordinate transformations when
passing from one cell to the next. The price we pay for this is that we have
to account for the evolution of the tetrad along the world line. As we shall
see this is rather easy to do (essentially we project the tetrad onto the legs
of the lattice). We will explore this method first on a simple example before
presenting the computations for the curvature evolution equations.

5.1 A simple example

In this example we will suppose that we have a vector W µ that evolves along
the world line of the central vertex according to

dW µ

dt′
= NF µ (5.1)

12

Our aim is to obtain a related equation that describes the evolution of the
vector along the whole length of the world line, not just the short section
contained within this one cell.

Suppose that we have an orthonormal tetrad ea = eµa∂µ, a = 1, 2, 3, 4 on
ω with e1 aligned to nµ∂µ, the future pointing normal to ω, and that we
have aligned the RNC coordinate axes with the tetrad (note how this gives
precedence to the tetrad over the coordinates). Thus at the central vertex of
Ω we have

ea = ∂a , eµa = δµa , eµ
a = δµ

a

nµ = eµ1 , −nµ = eµ
1

eµaeµ
b = δa

b , eµaeν
a = δµ

ν

gµν = diag(−1, 1, 1, 1) , gab = diag(−1, 1, 1, 1)

We now propose the following evolution equations along the world line of the
central vertex in Ω.

deµ1
dt′

= eµi∇iN ,
deµ

1

dt′
= −eµi∇iN (5.2)

deµi
dt′

= eµ1∇iN ,
deµ

i

dt′
= −eµ1∇iN , i = 2, 3, 4 (5.3)

where ∇iN = (⊥N,ν)e
ν
i and ∇iN = (⊥N ,ν)eν

i, i = 2, 3, 4. What can we
say about the evolved data? First, note that the orthonormal conditions are
preserved, that is

deµaeµ
b

dt′
= 0 ,

deµaeν
a

dt′
= 0

Thus the tetrad obtained by integrating the above equations will remain
orthonormal along the world line of the central vertex. Second, using

(Nnµ);ν = N,νn
µ −⊥(N ,µ)nν −NKµ

ν (5.4)

to compute dnµ/dt′ = nµ;ν (Nnν) we see that

deµ1
dt′

=
dnµ

dt′
,

deµ
i

dt′
= −dnµ

dt′
(5.5)

which shows that eµ1 = nµ and eµ
1 = −nµ everywhere along the world line.

That is, eµ1 remains tied to the world line. All that remains is to account for
how the tetrad rotates around the world line. This we shall do by evolving the
projections of the eµi, i = 2, 3, 4 onto the legs of the lattice. Let va = vµa∂µ,

13

a = 1, 2, 3 be any three distinct legs of the lattice attached to the central
vertex. Now consider a short time step in which the vector va sweeps out a
short quadrilateral in spacetime (see figure (2)). The upper and lower edges
will be the past and future versions of va while the remaining two sides will
be generated by the word lines of the vertices that define va. Since we have
assumed at the outset that all vertices evolve normal to the Cauchy surface
we see that these vertical vectors correspond to Nnµ. The important point
is that this set of four vectors forms a closed loop, in short the vectors va
and Nnµ∂µ commute, thus

vµa;ν (Nnν) = vνa (Nnµ);ν (5.6)

The left hand side is simply dvµ/dt′, while the right hand side can be ex-
panded using (5.4). This leads to

dvµa
dt′

= (N,νn
µ −NKµ

ν) v
ν
a (5.7)

where we have dropped the term involving nµv
µ
a as this would be O (Lm)

with m ≥ 2 while the remaining terms are all O (L).

We are now ready to construct our scalar evolution equations. Let Wa :=
Wµe

µ
a and va

b := vµaeµ
b then

dWa

dt
=
dWµ

dt′
eµa +Wµ

deµa
dt′

dva
b

dt′
=
dvµa
dt′

eµ
b + vµa

deµ
b

dt′
, b = 1, 2, 3, 4

Each of these equations can be re-cast entirely in terms of the scalars by first
using (5.2,5.3,5.7) to eliminate the time derivatives on the right hand side
followed by the substitutions Wµ =Waeµ

a and vµa = va
beµb. This leads to

dWn

dt′
= NFn +Wi∇iN (5.8)

dWi

dt′
= NFi +Wn∇iN , i = 2, 3, 4 (5.9)

dva
1

dt′
=

1

N

dN

dt′
va

1 (5.10)

dva
i

dt′
= −NKijvaj , i, j = 2, 3, 4 , a = 1, 2, 3 (5.11)

14

where we have introduced the scalars Wn = Wµn
µ, Fn = Fµn

µ, Fi = Fµe
µ
i,

and Kij = Kµ
νeµ

ieνj. These are our final equations. They are valid along
the whole length of the world line, not just the part contained in one cell.

Equation (5.11) describes the motion of the tetrad relative to the legs of the
lattice. As we integrate forward in time we can use the values of va

i to locate
the tetrad within the computational cell. If we chose to construct an RNC
within the cell then we can go one step further and recover the values of eµi
and the W µ.

5.2 Curvature evolution equations

Now we can return to the task of constructing the generalised evolution
equations for the curvatures. We start by introducing a pair of relations
between the tetrad and coordinate components of the curvature tensor

Rabcd = Rµανβe
µ
ae
α
be
ν
ce
β
d

Rµανβ = Rabcdeµ
aeα

beν
ceβ

d

and then forming a typical evolution equation

dRabcd

dt′
=
dRµανβ

dt′
eµae

α
be
ν
ce
β
d +Rµανβ

d
(
eµae

α
be
ν
ce
β
d

)
dt′

(5.12)

with each d/dt′ term on the right hand side replaced by a suitable combina-
tion of the existing evolution equations, (4.4–4.17) for the curvature terms
and (5.2,5.3) for the tetrad terms.

Rather than working through all 14 equations we will demonstrate the pro-
cedure on just one equation (4.4) leaving the remaining equations (but not
their working) to the Appendix. So our starting point is

dRxyxy

dt′
=
dRxyxy

dt′
+Rµανβ

d
(
eµxe

α
ye
ν
xe
β
y

)
dt′

and using (4.4) we obtain

dRxyxy

dt′
= Rtyxy,x −Rtxxy,y +Rµανβ

d
(
eµxe

α
ye
ν
xe
β
y

)
dt′

Finally we use (5.2,5.3) to eliminate the time derivative of eµa, leading to

dRxyxy

dt′
= Rtyxy,x −Rtxxy,y

+Rtyxy∇xN −Rtxxy∇yN +Rtyxy∇xN −Rtxxy∇yN (5.13)

15

This is as far as we need go, though it is tempting to make the substitutions
Rtyxy = Rabcdet

aey
bex

cey
d and Rtxxy = Rabcdet

aex
bex

cey
d. But that is not

really necessary as we can defer those substitutions until we actually need
values for the stated partial derivatives. This is described in more detail in
section (7).

Note that when introducing the lapse function by the substitution t = Nt′

we have not made explicit the coordinate transformation on the curvatures
other than to use distinct labels t and t′. In this way we use t′ as an integra-
tion parameter on the world line of each vertex while retaining the original
coordinates (t, x, y, z) as the local Riemann normal coordinates (and thus at
any point on the world line we continue to have (gµν)o = diag(−1, 1, 1, 1)).
We choose to maintain this distinction between t and t′ not only to keep the
equations tidy but also because it leaves the equations in a simple form well
suited to numerical integrations.

Clearly the above procedure can be applied directly to each of the remaining
13 curvature evolution equations. The final results for all 14 equations can
be found in the Appendix.

5.3 Hyperbolicity and constraint preservation

It is natural to ask if the new system of evolution equations are hyperbolic
and also, are the new constraints preserved by the new evolution equations?
The answer to both questions is yes and we will demonstrate this as follows.

Given that Rabcd = Rµανβe
µ
ae
α
be
ν
ce
β
d we see that

Rabcd,ef = Rµανβ,ρτe
µ
ae
α
be
ν
ce
β
de
ρ
ee
τ
f + Vabcdef

(
R,N, ∂R, ∂N, ∂2N

)
where Vabcdef is a function of Rµανβ, N and the indicated partial deriva-
tives. Importantly, Vabcdef does not contain any second partial derivatives
of the curvatures. We have previously shown that, at the central vertex,
each Rµανβ satisfies a wave equation of the form 0 = gρτRµανβ,ρτ with gρτ =
diag(−1, 1, 1, 1). Thus we find that

gefRabcd,ef = gefVabcdef
(
R, ∂R,N, ∂N, ∂2N

)
where gef = diag(−1, 1, 1, 1). It follows that each Rabcd satisfies a wave equa-
tion with source terms and therefore we have shown that the new evolution
equations constitute a hyperbolic system.

16

A similar analysis can be applied to the constraints. We begin by writing a
typical differential constraint (4.28–4.33) in the form

0 = Wµανβ(∂R)

where the right hand side depends only on the the first derivatives of Rµανβ.
Introducing the lapse function is trivial (there are no time derivatives, so the
equation is unchanged). If we define the frame components Wabcd by

Wabcd = Wµανβe
µ
ae
α
be
ν
ce
β
d

then we find

Wabcd,t = Wµανβ,ρe
µ
ae
α
be
ν
ce
β
de
ρ
t +Wµανβ

(
eµae

α
be
ν
ce
β
d

)
,t

and as we have previously shown that Wµανβ = 0 and Wµανβ,ρ = 0 it follows
thatWabcd = 0 andWabcd,t = 0. It is easy to see that the same procedure can
be applied to the remaining constraints (4.18–4.24) with the same outcome.
Thus we have shown that the new constraints are conserved by the new
evolution equations.

6 Coordinates

There are at least two instances where the vertex coordinates are required.
First, when constructing the transformation matrix used when importing
data from neighbouring cells. Second, as part of the time integration of leg-
lengths, equations (3.1–3.2). They are also required when computing the
extrinsic curvatures (7.1) and the hessian (7.2).

Recall that within each cell we employ two distinct coordinate frames, one
is tied to the tetrad associated with the central vertex while the other is
aligned with the lattice. Both frames share the central vertex as the origin.
We will describe first how to construct the lattice coordinates, which we will
denote by yµ, followed by the tetrad coordinates, denoted by xµ. The lattice
coordinates are only ever used in the construction of the tetrad coordinates,
once these are known then the lattice coordinates can be discarded. Note
that terms such as Rxyxy, Kxy,z etc. are referred to the tetrad coordinates.

For a large part of this discussion we will be concerned mainly with the
scaling of the coordinates with respect to the typical lattice scale (e.g., to
establish that t = O (L2)). This applies equally well to both coordinate

17

frames and so, to be specific, we will present the arguments in terms of the
tetrad coordinates. Once we have sorted out these scaling issues we will
compute the lattice coordinates followed by the tetrad coordinates.

Our first task will be to construct the piece of the Cauchy surface that is
covered by a typical computational cell. Recall that we view the Cauchy sur-
face to be a smooth 3-dimensional surface that passes through each vertex
of the lattice and that it shares with the lattice, at each vertex, the same
future pointing unit normal and second fundamental form (the extrinsic cur-
vatures). In our local Riemann normal coordinates we wish to construct an
equation of the form 0 = −t+ f(xu) that passes through the vertices of this
computational cell and with given extrinsic curvature at the central vertex.
For this we use the familiar definition that δnµ = −Kµ

νδx
ν for the small

change in the unit normal under a displacement across the Cauchy surface.
If we take the displacement to be from the central vertex (o) to a nearby
vertex (a) then we have

nµa − nµo = −Kµ
νx

ν
a (6.1)

But we chose the coordinates so that nµo = (1, 0, 0, 0)µ while for the surface
0 = −t + f(xu) the unit normal at (a) is simply nµa = gµν(−1, f,u)ν/M =
(1, f,u)

µ/M where M = 1 +O (L2) is a normalization factor. Thus we have
(1, f,u)

µ = (1, 0, 0, 0)µ −Kµ
νx

ν
a +O (L2) and this is easily integrated to give

ta = −1

2
Kµνx

µ
ax

ν
a +O

(
L3
)

(6.2)

Note that since Kµ
νn

ν = 0 we can use this last equation to compute the
time coordinates for each vertex in the computational cell (given the spatial
coordinates xua and the extrinsic curvatures Kuv).

Consider the geodesic segment that joins the central vertex (o) to a typical
nearby vertex (a). Then from the definition of Riemann normal coordinates
we have

xµa = mµ
aLoa (6.3)

where mµ
a is the unit tangent vector to the geodesic at (o).¶ Thus it follows

that
|xµa | = O (L) (6.4)

for each vertex in the computational cell. Combining this with the above
equation (6.2) for ta shows that

|ta| = O
(
L2
)

(6.5)

¶Actually, by virtue of the fact that the path is a geodesic segment expressed in Riemann
normal coordinates, the values for mµ

a are constant along the geodesic.

18

This result could also be inferred from the simple observation that mt → 0
as L→ 0 (this is a consequence of the smoothness of the Cauchy surface at
(o)).

We turn now to the simple question – How accurate do we need the coor-
dinates to be? That is, if x̃µi are the exact Riemann normal coordinates for
vertex i, then how large can we allow |xµi − x̃

µ
i | to be? The answer can be

found by a simple inspection of the evolution equations (3.1–3.2). The trun-
cation terms in those equations are O (L3) thus we can safely get by with
O (L2) errors in the coordinates, that is

|xµi − x̃
µ
i | = O

(
L2
)

(6.6)

The good news is that such coordinates are readily available – flat space will
do. To see that this is so, assume, for the moment, that we have estimates
for the Kµν and then look back at equations (6.2,1.2). This is a coupled
system of equations for the coordinates (t, x, y, z)µa for each vertex in the
computational cell. We are fortunate to have an explicit equation for the
time coordinates, namely (6.2). This allows us, in principle, to eliminate
each time coordinate that appears in equation (1.2). The result would be a
set of equations for the spatial coordinates xua. In the following we will not
make this elimination explicit but take it as understood that such a process
has been applied. We will have a little more to say on this matter in a short
while.

For a typical vertex (l) we will need to compute three spatial coordinates and
thus we look to the legs of a tetrahedron. Suppose that that tetrahedron has
vertices (ijkl) and suppose that we have computed, by some means, the exact
Riemann normal coordinates x̃µ for vertices (ijk). The exact coordinates x̃µl
for vertex (l) could be obtained by solving the system of equations

L2
al = gµν(x̃

µ
a − x̃

µ
l)(x̃νa − x̃νl)−

1

3
Rµανβx̃

µ
a x̃

ν
ax̃

α
l x̃

β
l a = i, j, k (6.7)

but we could also construct flat space coordinates xµl for vertex l by solving
the system

L2
al = gµν(x̃

µ
a − x

µ
l)(x̃νa − xνl) a = i, j, k (6.8)

From the last equation we conclude that |x̃µa − x
µ
l | = O (L) for a 6= l. Next,

make the trivial substitution x̃µl = xµl + (x̃µl − x
µ
l) in the first term in (6.7),

expand and use (6.8) to obtain

0 = −2gµν(x̃
µ
a − x

µ
l)(x̃νl − xνl) + gµν(x̃

µ
l − x

µ
l)(x̃νl − xνl)

− 1

3
Rµανβx̃

µ
a x̃

ν
ax̃

α
l x̃

β
l a = i, j, k

19

and as each x̃µa = O (L) for a = i, j, k we easily see that

|x̃ul − xul | = O
(
L3
)

(6.9)

The fly in the ointment in the above analysis is the assumption that we
knew the Kµν (and thus we could eliminate the ta). This is not exactly
correct for the Kµν are found by solving equations (3.1) which in turn requires
the coordinates xua which we have yet to compute (at that stage). Luckily,
this is not a major problem. Look carefully at equation (6.7) and recall
that gµν = diag(−1, 1, 1, 1). Thus the t-terms will appear only in the form
−(t̃a− tl)2 and in the curvature terms of the form Rtuvwtax

u
ax

v
l x

w
l . The point

to note is that since t = O (L2) we see that each of these terms is O (Ln)
with n ≥ 4 and thus they have no effect on the above analysis. Thus even
though we argued previously that we should eliminate the ta using equation
(6.2) the above argument shows that we can put ta = 0 without harm.

Our final calculation concerns the errors induced in ta by using the approxi-
mate xua and Kµν rather than their exact counterparts. Our analysis is very
similar to that just presented. We start with the two sets of equations, the
approximate and exact equations,

2ta = −Kuvx
u
ax

v
a and 2t̃a = −K̃uvx̃

u
ax̃

v
a (6.10)

We will assume that |K̃uv − Kuv| is at least O (L) (this is one assumption
that we will not relax at a later stage). Then we make the trivial substitution
x̃ul = xul + (x̃ul − xul) as above to obtain

2t̃a = 2ta −
(
K̃uv −Kuv

)
xuxv − 2K̃uvx

u
a (x̃va − xva)− K̃uv (x̃ua − xua) (x̃va − xva)

(6.11)
Using xua = O (L), x̃ua = O (L) and |K̃uv −Kuv| = O (L) we find that

|t̃a − ta| = O
(
L3
)

(6.12)

6.1 The lattice coordinates

We return now to the concrete question of how to compute the vertex co-
ordinates within one computational cell. We will first compute the lattice
coordinates yµ followed by the tetrad coordinates xµ. Our present challenge
is to find the solutions of the coupled system of equations

L2
ab = gµν(y

µ
a − y

µ
b)(yνa − yνb) (6.13)

20

for a suitable subset of the legs (ab) in the computational cell (equal in num-
ber to the number of unknown coordinates). The problem here is that if we
treat this as a system of equations for the spacetime coordinates (t, x, y, z)µa
it is extremely unlikely that we will find any solutions (or if we do then the
numerics will almost certainly be extremely unstable). The reason is quite
simple – the vertices are assumed to lie within one 3-dimensional Cauchy
surface. This suggest that we should use the above equations to determine
the spatial coordinates (x, y, z)ua with the time coordinates found by other
considerations. Fortunately we already know, from the above analysis, that
each |ta| = O (L2) while |yua | = O (L). Thus we see that all terms involving
the ta are O (L4) and thus will be consumed by the O (L4) truncation errors
inherent in the above equation (as an approximation to equation (6.7)). So
we may safely discard all the of the ta terms in the above equations. The
next trick that we will use is the observation that the coordinates can be
computed one vertex at a time. This is easily shown by direct construction.
Consider a typical tetrahedron with vertices (oijk) where (o) is the central
vertex and suppose we have computed the coordinates for (ojk). Our task
now is to solve the following equations

L2
ok = guvy

u
ky

v
k (6.14)

L2
ok + L2

oi − L2
ik = 2guvy

u
i y

v
k (6.15)

L2
ok + L2

oj − L2
jk = 2guvy

u
j y

v
k (6.16)

where the last pair of equations were obtained by expanding L2
ab = guv(y

u
a −

yub)(yva − yvb). A simple calculation shows that the solution is given by [4]

yuk = Pyui +Qyuj +Rnu

where

nu = guvεxyzvrsy
r
i y

s
j

P =
mikL

2
oj −mjkmij

L2
n

Q =
mjkL

2
oi −mikmij

L2
n

R = ±
(
L2
ok − P 2L2

oi −Q2L2
oj − 2PQmij

)1/2
Ln

L2
n = L2

oiL
2
oj −m2

ij

and where the mab are defined by

2mij = L2
oi + L2

oj − L2
ij

2mik = L2
oi + L2

ok − L2
ik 2mjk = L2

oj + L2
ok − L2

jk

21

The two solutions, one for each choice of the ± sign, correspond to the
two possible locations of the third vertex (k), one on each side of the plane
containing the triangle (oij). Which choice is taken will depend on the design
of the lattice. A systematic choice can be made by noting that the vectors
yui , yuj and nu form a right handed system. With R > 0 the vector yuk lives
on the same side of the plane as nu.

To complete the picture we need coordinates for the first two vertices (1)
and (2). Since we chose to align our coordinates so that the x-axis passed
through vertex (1) while the vertex (2) is contained in the xy-plane we must
have yu1 = (A, 0, 0)u and yu2 = (B,C, 0) for some numbers A > 0, B and
C > 0 such that

L2
01 = guvy

u
1y

v
1

L2
02 = guvy

u
2y

v
2

L2
01 + L2

02 − L2
12 = 2guvy

u
1y

v
2

The solution is readily found to be A = L01, B = (L2
01 + L2

02 − L2
12)/(2L01)

and C = (L2
02 −B2)1/2.

6.2 The tetrad coordinates

The transformation from the lattice to tetrad coordinates is quite simple.
Let ea be the basis for the tetrad frame and let ∂µ be the corresponding
basis for the lattice frame. Recall that we have previously chosen the frames
so that both e1 and ∂t are aligned with the normal to the Cauchy surface.
Now consider a typical vector va that joins (0) to (a). In the lattice frame
this vector has components yµa while in the tetrad frame, with basis eb, its
components are just va

b. That is we have, for a = 1, 2, 3

n = ∂t = e1 (6.17)

yta = va
t (6.18)

va = yµa∂µ = va
beb (6.19)

In the last equation both the yµa and va
b are known. Thus we have sufficient

information to compute ∂µ in terms of ea and vice versa. Note that the tetrad
coordinates xµa are given by

xµa = va
beµb with eµb = δµb (6.20)

22

Finally, using equation (6.2), we can compute the time coordinate for every
vertex, not just the three vertices associated with va

b, a = 1, 2, 3

yta = xta = −1

2
Kµνx

µ
ax

ν
a , a = 1, 2, 3, · · · (6.21)

7 Source terms

We have previously mentioned, without giving details, that source terms such
as Rxyxy,z can be computed by applying a finite difference approximation to
data imported from neighbouring cells. Here we will outline how such a
procedure can be applied (the exact details will of course depend on the
structure of the lattice). The same procedure can also be used to estimate
the spatial derivatives of the eµa.

Suppose we have two neighbouring computational cells that have a non-trivial
overlap (as indicated in Figure (1)). Each cell will carry values for Rxyxy in
their own local RNC frames. Our first task would be to import the values
form the one cell to the other. This will entail a coordinate transformation,
composed of a boost (to account for the change in the unit normal between
the two cells) and a spatial rotation (to account for the different orientations
of the legs of the cells).

Let xµ be the (tetrad) coordinates in one cell and let x′µ be coordinates in the
other cell. Our plan is to import data form the x′µ frame to the xµ frame. We
will demand that the overlap region be such that it contains at least one set
of three linearly independent vectors (i.e., legs), at O′, which we will denote
by wi, i = 1, 2, 3. Since we know the coordinates of each vertex in each cell
we can easily compute the components of wi, i = 1, 2, 3 in each frame. The
normal vector no′ at O′ will have components n′µo′ = (1, 0, 0, 0)µ in the x′µ

frame. But in the xµ frame we expect nµo′ = nµo −Kµ
νx

ν
o′ . Thus we have 4

linearly independent vectors at O′, expressed in two different frames, and so
there must exist a mapping from the components in one frame to those in
the other. That is there exists a Uµ

ν such that

nµo′ = Uµ
νn
′ν
o′ (7.1)

wµi = Uµ
νw
′ν
i , i = 1, 2, 3 (7.2)

Since we have values for the components of no′ and wi, i = 1, 2, 3 in both
frames we can treat this as a system of equations for the Uµ

ν .

23

With the Uµ
ν in hand, we can compute the values of Rµανβ at O′ in the xµ

frame of O by way of

(Rµανβ)o′ = Uµ
θUν

φUα
ρUβ

τ
(
R′θφρτ

)
o′

(7.3)

with Uµ
ν = gµαg

νβUα
β and gµν = diag(−1, 1, 1, 1). This can be repeated for

all of the vertices that surround O. The result is a set of point estimates for
Rµανβ in the neighbourhood of O which in turn can be used to estimate the
derivatives of Rµανβ at O. This part of the process is similar to that required
when computing the Hessian (see below) and presumably similar methods
could be applied.

Note that for a sufficiently refined lattice, the Uµ
ν should be close to the

identity map, that is Uµ
ν = δµν +V µ

νO (L) where the V µ
ν are each of order

O (1). This can be used to simplify some of the above computations.

See [1] for a complete example in the context of the Schwarzschild spacetime.

In section (5.2) we noted that substitutions such as Rtyxy = Rabcdet
aey

bex
cey

d

could be introduced into the curvature evolution equation (5.13). At that
time we argued that that was not necessary for the coordinate data, in this
instance Rtyxy, could easily be recovered when needed by using Rtyxy =
Rabcdet

aey
bex

cey
d. Then the scheme described above could be used to com-

pute Rtyxy,x. However there may be numerical advantages in making a formal
substitution before estimating any of the partial derivatives. For Rtyxy,x this
would lead to the following

Rtyxy,x =
(
Rabcdet

aey
bex

cey
d
)
,x

= Rabcd,xet
aey

bex
cey

d +Rabcd

(
et
aey

bex
cey

d
)
,x

Since the Rabcd are scalars, their partial derivatives can be estimated without
requiring any of the frame transformations described above (importing such
data from neighbouring cells is trivial). This leaves us with the derivatives
of the form (eµ

a),x. Since nµ = −eµ1 we can use (5.4) to eliminate any of
the spatial derivatives of eµ

1, in this case (eµ
1),x. This would introduce the

extrinsic curvatures into the evolution equations. However the remaining
partial derivatives, (eµ

i),x, i = 2, 3, 4, would have to be estimated using the
methods described above (by importing data from neighbouring cells etc.).
This approach does incur a small computational overhead which may be
justified if it brings some improvement to the quality of the numerical data
(e.g., better accuracy and or stability). Judging the merits of this variation
against the simple method given in section (5.2) might best be decided by
direct numerical experimentation.

24

7.1 Extrinsic curvatures

A cursory glance at equation (3.1) might give the impression that it consti-
tutes a simple linear system for the Kuv. But things are never as simple as
they seem. The problem, as already noted, is that there are far too many
equations for the six Kuv. If we make the reasonable assumption that the
lattice data is a good approximation to the (unknown) continuum spacetime
then we can expect considerable redundancy in this overdetermined system.
How then do we pull out just six equations for the six Kuv? One option is to
reject all but six of the equations and hope that this yields an invertible sys-
tem for the Kuv. A better, and more flexible approach, is to take a weighted
sum of the equations, that is we create a new set of equations of the form

0 =
∑
ab

W n
ab (Pab −Kuv∆x

u
ab∆x

v
ab) (7.4)

where W n
ab are a set of weights of our own choosing (typical values being 0 and

±1). With n = 1, 2, 3 . . . 6 we have six equations for the six unknowns. This
idea has been used previously [4] and worked very well. There are certainly
other options that could be explored (e.g., different choices of weights, least
squares) but we have tested none simply because the above scheme seems to
work well.

7.2 The Hessian

At some point we will need to estimate the N|uv at a central vertex. Since
N is a scalar function and since we are using Riemann normal coordinates
this computation is essentially that of computing all of the second partial
derivatives on an unstructured grid. There is an extensive literature on this
point in the context of finite element schemes. We mention here one approach
which we discussed in one of our earlier papers [4] (but which we have yet to
test).

Consider a typical leg (ij) in some computational cell. We can estimate N|u
at the centre of the leg by the centred finite difference approximation(

N|u
)
ij

=
Nj −Ni

Lij
(mu)ij (7.5)

in which (mu)ij is the unit vector tangent to the geodesic and oriented so
that it points from (i) to (j). We can repeat this computation for each leg

25

in the computational cell and then estimate N|uv by a least squares fit of the
function

Ñ|u(x) = Ñ|u + Ñ|uvx
v (7.6)

to the data generated above by equation (7.5). A suitable least squares sum
would be

S(Ñ|u, Ñ|uv) =
∑
u

∑
ij

((
N|u
)
ij
− Ñ|u − Ñ|uv x̄vij

)2
(7.7)

where x̄vij is the centre of the leg (ij). Note that this least squares fit must

be made subject to the constraint N|uv = N|vu. The coefficients Ñ|u and Ñ|uv
would then be taken as our estimates for the corresponding quantities at the
central vertex.

8 Discussion

There are a number of aspects of this paper that could easily be debated.
For example, should we proceed with the substitutions such as Rtyxy =
Rabcdet

aey
bex

cey
d in equation (5.13)? As already noted in section (7) this

would introduce a raft of new terms including the extrinsic curvatures. We
chose not to use the substitution solely for reasons of simplicity. There is also
a question over our choice of tetrad. Do we really need to demand that the
tetrad be orthonormal? Not at all. We could choose to tie the tetrad to the
legs of the lattice (and then the tetrad would no longer be needed) but that
would produce a coupling amongst all of the evolution equations (e.g., the
evolution equation for Rxyxy would be a linear combination of all of the evo-
lution equations for Rµανβ). The resulting equations would not be anywhere
near as simple as those listed in the Appendix. Then we have the issue of
estimating partial derivatives on an irregular lattice (for the Hessian and the
source terms in the curvature evolution equations). This is non-trivial but at
least there is an extensive literature on the subject and so a workable solu-
tion should not be too hard to find (which may be the least squares method
suggested in section (7.2)). All of these issues (and most likely others) can
be explored by direct numerical exploration on a non-trivial 3 + 1 spacetime.
We plan to report on such investigations soon. For a simple application to
the 1 + 1 Schwarzschild spacetime see [1].

26

A The curvature evolution equations

Here we list all 14 curvature evolution equations (this follows on from sec-
tion (5.2) where we provided details of the derivation for the first equation
below).

dRxyxy

dt′
= Rtyxy,x −Rtxxy,y

+Rtyxy∇xN −Rtxxy∇yN +Rtyxy∇xN −Rtxxy∇yN (A.1)

dRxyxz

dt′
= Rtzxy,x −Rtxxy,z

+Rtyxz∇xN −Rtxxz∇yN +Rtzxy∇xN −Rtxxy∇zN (A.2)

dRxyyz

dt′
= Rtzxy,y −Rtyxy,z

+Rtyyz∇xN −Rtxyz∇yN +Rtzxy∇yN −Rtyxy∇zN (A.3)

dRxzxz

dt′
= Rtzxz,x −Rtxxz,z

+Rtzxz∇xN −Rtxxz∇zN +Rtzxz∇xN −Rtxxz∇zN (A.4)

dRxzyz

dt′
= Rtzxz,y −Rtyxz,z

+Rtzyz∇xN −Rtxyz∇zN +Rtzxz∇yN −Rtyxz∇zN (A.5)

dRyzyz

dt′
= Rtzyz,y −Rtyyz,z

+Rtzyz∇yN −Rtyyz∇zN +Rtzyz∇yN −Rtyyz∇zN (A.6)

dRtyxy

dt′
= Rxyxy,x −Rxyyz,z

+Riyxy∇iN +Rtyty∇xN −Rtxty∇yN (A.7)

dRtxxy

dt′
= −Rxyxy,y −Rxyxz,z

+Rixxy∇iN +Rtxty∇xN −Rtxtx∇yN (A.8)

dRtzxy

dt′
= Rxyxz,x +Rxyyz,y

+Rizxy∇iN +Rtytz∇xN −Rtxtz∇yN (A.9)

dRtzxz

dt′
= Rxzxz,x +Rxzyz,y

+Rizxz∇iN +Rtztz∇xN −Rtxtz∇zN (A.10)

27

dRtxxz

dt′
= −Rxyxz,y −Rxzxz,z

+Rixxz∇iN +Rtxtz∇xN −Rtxtx∇zN (A.11)

dRtyxz

dt′
= Rxzxz,x −Rxzyz,z

+Riyxz∇iN +Rtytz∇xN −Rtxty∇zN (A.12)

dRtzyz

dt′
= Rxzyz,x +Ryzyz,y

+Rizyz∇iN +Rtztz∇yN −Rtytz∇zN (A.13)

dRtyyz

dt′
= Rxyyz,x −Ryzyz,z

+Riyyz∇iN +Rtytz∇yN −Rtyty∇zN (A.14)

Note that in the above there are two instances of Rtxyz, in (A.3) and (A.5),
and these should be replaced with Rtyxz −Rtzxy.

B Riemann normal coordinates

We recall here a few basic properties of Riemann normal coordinates. A set
of coordinates xµ are said to be in Riemann normal form if every geodesic
passing through a given point O (the origin) is described by xµ(s) = svµ

where s is an affine parameter and vµ is constant along the geodesic. It
follows from the geodesic equation and its successive derivatives, that the
connection and its higher symmetric derivatives‖ all vanish at the chosen
point, that is at O

0 = Γµα1α2
(B.1)

0 = Γµ(α1α2;α3···αn)
n = 3, 4, 5, · · · (B.2)

These conditions do not uniquely determine the coordinates for we are free
to apply a transformation of the form xµ 7→ Λµ

νx
ν which clearly preserves

the property that the geodesics through O are of the form xµ(s) = svµ.
This freedom can be used to ensure that the metric at O is simply gµν =
diag(−1, 1, 1, 1).

Choosing the coordinates so that the connection vanishes at the origin does
introduce some nice properties, in particular covariant differentiation reduces,

‖Here we take a small liberty with notation, the upper index on the Christoffel symbol
should be ignored when computing covariant derivatives.

28

at the origin, to simple partial differentiation. This fact was essential to the
analysis given in sections (4).

There are two main impediments to the existence of Riemann normal coordi-
nates. The metric must be smooth throughout the neighbourhood (i.e., away
from curvature singularities) and each point in the neighbourhood should be
connected to the origin by exactly one geodesic (i.e., no pair of geodesics
through O should cross, except at O). These conditions are easily satisfied
by simply choosing the neighbourhood around O to be sufficiently small (but
not vanishingly small).

In these coordinates the metric and connection can be expanded as a Taylor
series around O leading to

gµν(x) = gµν −
1

3
Rµανβx

αxβ − 1

6
Rµανβ,γx

αxβxγ +O
(
L4
)

(B.3)

gµν(x) = gµν +
1

3
Rµ

α
ν
βx

αxβ +
1

6
Rµ

α
ν
β,γx

αxβxγ +O
(
L4
)

(B.4)

Γµαβ(x) =
1

3
Rµ

αγβx
γ +

1

24
(2Rµ

γδβ,α + 4Rµ
αδβ,γ +Rγαδβ

,µ)xγxδ

+ (α↔ β) +O
(
L3
)

(B.5)

If we know the Riemann normal coordinates, xµi and xµj , for a pair of points,
i and j, then we can compute the length of the geodesic segment that joins
the points by

L2
ij =

(
gµν −

1

3
Rµανβx̄

α
ijx̄

β
ij −

1

6
Rµανβ,γx̄

α
ijx̄

β
ijx̄

γ
ij

)
∆xµij∆x

ν
ij +O

(
L6
)

(B.6)

where ∆xµij := xµj − x
µ
i and x̄µij := (xµj + xµi)/2 is the mid-point of the leg.

The unit tangent vector mµ
ij to the geodesic at i, is given by

Lijm
µ
ij = ∆xµij +

1

3
xα∆xνij∆x

β
ijR

µ
ναβ +

1

12
xαxν∆xβij∆x

γ
ijR

µ
ανγ,β

+
1

6
xαxν∆xβij∆x

γ
ijR

µ
βνγ,α +

1

24
xαxν∆xβij∆x

γ
ijR

,µ
αβνγ (B.7)

+
1

12
xα∆xνij∆x

β
ij∆x

γ
ijR

µ
βαγ,ν

Finally, if we have a geodesic triangle built on the three points i, j, k then
the generalised cosine law takes the form

2LikLjk cos θij = L2
ik+L2

jk−L2
ij−

1

3
Rµανβ∆xµik∆x

ν
ik∆x

α
jk∆x

β
jk+O

(
L5
)

(B.8)

in which θij is the angle subtended at vertex k by the geodesic that connects
i to j.

29

Figure 1: An example of the overlap, the shaded region, between a pair of com-
putational cells. The central vertex of each computational cell is denoted by the
large dots whereas the smaller dotes denote the vertices that define the bound-
ary of the computation cells. These vertices are themselves the central vertices of
other computational cells. In this 2-dimensional example the overlap consists of
just the pair of triangles. In 3 dimensions the over lap would consist of a closed
loop of tetrahedra. In each case there is ample information available to obtain a
coordinate transformation between the pair of local Riemann normal frames.

30

Figure 2: Here we show the evolution of one leg (oa) within one computational
cell. Clearly the four vectors form a closed loop and thus (Nn)oδt

′ + v′a = va +
(Nn)a)δt

′ which leads directly to equation (5.6).

31

References

[1] L. Brewin, An Einstein-Bianchi system for Smooth Lattice General
Relativity. I. The Schwarzschild spacetime., arXiv:1101.3171.

[2] L. Brewin, Long term stable integration of a maximally sliced
Schwarzschild black hole using a smooth lattice method, Class.
Quantum Grav. 19 (2002) 429–455.

[3] L. Brewin and J. Kajtar, A Smooth Lattice construction of the
Oppenheimer-Snyder spacetime, Phys. Rev. D 80 (2009) 104004,
arXiv:0903.5367. http://users.monash.edu.au/~leo/research/
papers/files/lcb09-05.html.

[4] L. Brewin, An ADM 3+1 formulation for smooth lattice general
relativity, Class. Quantum Grav. 15 (1998) 2427–2449.

[5] L. Brewin, Riemann normal coordinates, smooth lattices and numerical
relativity, Class. Quantum Grav. 15 (1998) 3085–3120.

[6] L. Brewin, Riemann Normal Coordinate expansions using Cadabra,
Class. Quantum Grav. 26 (2009) 175017, arXiv:0903.2087.
http://users.monash.edu.au/~leo/research/papers/files/

lcb09-03.html.

[7] L. Brewin, Deriving the ADM 3+1 evolution equations from the second
variation of arc length, Phys. Rev. D 80 (2009) 084030,
arXiv:0903.5365. http://users.monash.edu.au/~leo/research/
papers/files/lcb09-04.html.

32

http://arxiv.org/abs/arXiv:1101.3171
http://dx.doi.org/10.1103/PhysRevD.80.104004
http://arxiv.org/abs/arXiv:0903.5367
http://users.monash.edu.au/~leo/research/papers/files/lcb09-05.html
http://users.monash.edu.au/~leo/research/papers/files/lcb09-05.html
http://dx.doi.org/10.1088/0264-9381/26/17/175017
http://arxiv.org/abs/arXiv:0903.2087
http://users.monash.edu.au/~leo/research/papers/files/lcb09-03.html
http://users.monash.edu.au/~leo/research/papers/files/lcb09-03.html
http://dx.doi.org/10.1103/PhysRevD.80.084030
http://arxiv.org/abs/arXiv:0903.5365
http://users.monash.edu.au/~leo/research/papers/files/lcb09-04.html
http://users.monash.edu.au/~leo/research/papers/files/lcb09-04.html

	1 Introduction
	2 Notation
	3 Evolving the leg-lengths
	4 Evolving the Riemann curvatures. Pt. 1
	4.1 Bianchi identities
	4.2 Constraints
	4.3 Constraint preservation
	4.4 Hyperbolicity

	5 Evolving the Riemann curvatures. Pt. 2
	5.1 A simple example
	5.2 Curvature evolution equations
	5.3 Hyperbolicity and constraint preservation

	6 Coordinates
	6.1 The lattice coordinates
	6.2 The tetrad coordinates

	7 Source terms
	7.1 Extrinsic curvatures
	7.2 The Hessian

	8 Discussion
	A The curvature evolution equations
	B Riemann normal coordinates

