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Abstract Upon treating the whole closed string massless

sector as stringy graviton fields, Double Field Theory may

evolve into Stringy Gravity, i.e. the stringy augmentation

of General Relativity. Equipped with an O(D, D) covari-

ant differential geometry beyond Riemann, we spell out the

definition of the energy–momentum tensor in Stringy Grav-

ity and derive its on-shell conservation law from doubled

general covariance. Equating it with the recently identified

stringy Einstein curvature tensor, all the equations of motion

of the closed string massless sector are unified into a sin-

gle expression, G AB = 8πGTAB , which we dub the Ein-

stein Double Field Equations. As an example, we study

the most general D = 4 static, asymptotically flat, spheri-

cally symmetric, ‘regular’ solution, sourced by the stringy

energy–momentum tensor which is nontrivial only up to a

finite radius from the center. Outside this radius, the solu-

tion matches the known vacuum geometry which has four

constant parameters. We express these as volume integrals

of the interior stringy energy–momentum tensor and discuss

relevant energy conditions.

One must be prepared to follow up the consequence of theory, and feel

that one just has to accept the consequences no matter where they lead.

Paul Dirac

Our mistake is not that we take our theories too seriously, but that we

do not take them seriously enough.

Steven Weinberg
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1 Introduction

The Einstein–Hilbert action is often referred to as ‘pure’ grav-

ity, as it is formed by the unique two-derivative scalar curva-

ture of the Riemannian metric. Minimal coupling to matter

follows unambiguously through the usual covariant deriva-

tives,

▽μ = ∂μ + γμ + ωμ,

γ ρμσ = 1
2

gρτ (∂μgστ + ∂σ gμτ − ∂τ gμσ ),

ωμpq = ep
ν(∂μeνq − γ λμνeλq), (1.1)

which ensures covariance under both diffeomorphisms and

local Lorentz symmetry. In the words of Cheng-Ning Yang,

symmetry dictates interaction. The torsionless Christoffel

symbols of the connection and the spin connection are fixed

by the requirement of compatibility with the metric and

the vielbein. The existence of Riemann normal coordinates

supports the Equivalence Principle, as the Christoffel sym-

bols vanish pointwise. Needless to say, in General Relativity

(GR), the metric is privileged to be the only geometric and
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thus gravitational field, on account of the adopted differential

geometry a la Riemann, while all other fields are automati-

cally categorized as additional matter.

String theory may put some twist on this Riemannian

paradigm. First of all, the metric is merely one segment of

closed string massless sector which consists of a two-form

gauge potential, Bμν , and a scalar dilaton, φ, in addition

to the metric, gμν . A genuine stringy symmetry called T-

duality then converts one to another [1,2]. Namely, the closed

string massless sector forms multiplets of O(D, D)T-duality.

This may well hint at the existence of Stringy Gravity as an

alternative to GR, which takes the entire massless sector as

geometric and therefore gravitational. In recent years this

idea has been realized concretely through the developments

of so-called Double Field Theory (DFT) [3–8]. The rele-

vant covariant derivative has been identified [9,10] and reads

schematically,

DA = ∂A + ŴA +A + ̄A, (1.2)

where ŴA is the DFT version of the Christoffel symbols for

generalized diffeomorphisms, while A and ̄A are the two

spin connections for the twofold local Lorentz symmetries,

Spin(1, D−1)× Spin(D−1, 1). They are compatible with,

and thus formed by, the closed string massless sector, con-

taining in particular the H -flux (H = dB). The doubling of

the spin group implies the existence of two separate locally

inertial frames for left and right closed string modes, respec-

tively [11]. In a sense, it is a prediction of DFT (and also Gen-

eralized Geometry [12]) that there must in principle exist two

distinct kinds of fermions [13]. The DFT-Christoffel sym-

bols constitute DFT curvatures: scalar and ‘Ricci’. The scalar

curvature naturally defines the pure DFT Lagrangian in anal-

ogy with GR. However, in Stringy Gravity the Equivalence

Principle is generically broken [13,14]: there exist no nor-

mal coordinates in which the DFT-Christoffel symbols would

vanish pointwise. This should not be a surprise since, strictly

speaking, the principle holds only for a point particle and

does not apply to an extended object like a string, which is

subject to ‘tidal forces’ via coupling to the H -flux.

Beyond the original goal of reformulating supergravities

in a duality-manifest framework, DFT turns out to have

quite a rich spectrum. It describes not only the Rieman-

nian supergravities but also various non-Riemannian theo-

ries in which the Riemannian metric cannot be defined [15],

such as non-relativistic Newton–Cartan or ultra-relativistic

Carroll gravities [16], the Gomis–Ooguri non-relativistic

string [17,18], and various chiral theories including the one

by Siegel [19]. Without resorting to Riemannian variables,

supersymmetrizations have been also completed to the full

order in fermions, both on target spacetime [20,21] and on

worldsheet [22].

Combining the scalar and ‘Ricci’ curvatures, the DFT

version of the Einstein curvature, G AB , which is identi-

cally conserved, DAG A
B = 0, and generically asymmetric,

G AB �= G B A, has been identified [23]. Given this identi-

fication, it is natural to anticipate the ‘energy–momentum’

tensor in DFT, say TAB , which should counterbalance the

stringy Einstein curvature through the Einstein Double Field

Equations, i.e. the equations of motion of the entire closed

string massless sector as the stringy graviton fields,

G AB = 8πG TAB, (1.3)

where G (without any subscript index) denotes Newton’s

constant. For consistency, the stringy energy–momentum

tensor should be asymmetric, TAB �= TB A, and conserved,

DAT A
B = 0, especially on-shell, i.e. up to the equations of

motion of the additional matter fields.

In order to compare the ‘gravitational’ aspects of DFT

and GR, circular geodesic motions around the most general

spherically symmetric solution to ‘G AB = 0’ have been stud-

ied in [24] for the case of D = 4. While the solution was a

re-derivation of a previously known result in the supergrav-

ity literature [25], the new interpretation was that it is the

‘vacuum’ solution to DFT, with the right-hand side of (1.3)

vanishing: it is analogous to the Schwarzschild solution in

GR. The DFT spherical vacuum solution turns out to have

four (or three, up to a radial coordinate shift) free parame-

ters, in contrast to the Schwarzschild geometry which pos-

sesses only one free parameter, i.e. mass. With these extra

free parameters, DFT modifies GR at ‘short’ scales in terms

of the dimensionless parameter R/(MG), i.e. the radial dis-

tance normalized by the mass times Newton’s constant. For

large R/(MG), DFT converges to GR, but for finite R/(MG)

they differ generically. It is an intriguing fact that the dark

matter and dark energy problems all arise from astronomical

observations at smaller R/(MG) � 107, corresponding to

long distance divided by far heavier mass [14,24]. Such a

‘uroboros’ spectrum of R/(MG) is listed below in natural

units.
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The purpose of the present paper is twofold: (i) to propose

the definition of the stringy energy–momentum tensor which

completes the Einstein Double Field Equations spelled out

in (1.3), and (ii) to analyze the most general spherically sym-

metric D = 4 ‘regular’ solution which will teach us the phys-

ical meanings of the free parameters appearing in the vacuum

solution of [24,25]. The rest of the paper is organized as fol-

lows.

– We start Sect. 2 by reviewing DFT as Stringy Gravity. We

then consider coupling to generic matter fields, propose

the definition of the stringy energy–momentum tensor,

and discuss its properties including the conservation law.

Some examples will follow.

– In Sect. 3 we devise a method to address isometries in

the vielbein formulation of Stringy Gravity. We gener-

alize the known generalized Lie derivative one step fur-

ther, to a ‘further-generalized Lie derivative’, which acts

not only on O(D, D) vector indices but also on all the

Spin(1, D−1)× Spin(D−1, 1) local Lorentz indices.

– Section 4 is devoted to the study of the most general,

asymptotically flat, spherically symmetric, static ‘regu-

lar’ solution to the D = 4 Einstein Double Field Equa-

tions. We postulate that the stringy energy–momentum

tensor is nontrivial only up to a finite cutoff radius, rc.

While we recover the vacuum solution of [24] for r > rc,

we derive integral expressions for its constant parame-

ters in terms of the stringy energy–momentum tensor for

r < rc, and discuss relevant energy conditions.

– We conclude with our summary and comments in Sect. 5.

– In “Appendix A” we collect some known features of

GR, such as the general properties of the energy–

momentum tensor and the most general spherically

symmetric (Schwarzschild type) regular solution to the

undoubled Einstein Field Equations, which we double-

field-theorize in the present paper.

2 Einstein double field equations

In this section we first give for completeness a self-contained

review of DFT as Stringy Gravity, following which we

propose the DFT, or stringy, extensions of the energy–

momentum tensor and the Einstein Field Equations.

2.1 Review of DFT as stringy gravity

We review DFT following the geometrically logical – rather

than historical – order: (i) conventions, (ii) the doubled-yet-

gauged coordinate system with associated diffeomorphisms,

(iii) the field content of stringy gravitons, (iv) DFT exten-

sions of the Christoffel symbols and spin connection, and

(v) covariant derivatives and curvatures. For complementary

aspects, we refer readers to [34–36] as well as [37,38].

• Symmetries and conventions

The built-in symmetries of Stringy Gravity are as follows.

– O(D, D) T-duality

– DFT diffeomorphisms

– Twofold local Lorentz symmetries,1 Spin(1, D−1) ×
Spin(D−1, 1).

We shall use capital Latin letters, A, B, . . . , M, N , . . . for

the O(D, D) vector indices, while unbarred small Latin let-

ters, p, q, . . . or Greek letters, α, β, . . . will be used for the

vectorial or spinorial indices of Spin(1, D−1), respectively.

Similarly, barred letters denote the other Spin(D−1, 1) rep-

resentations: p̄, q̄, . . . (vectorial) and ᾱ, β̄, . . . (spinorial).

In particular, each vectorial index can be freely lowered or

raised by the relevant invariant metric,

JAB =
(

0 1

1 0

)
, ηpq = diag(− + + · · · +),

η̄ p̄q̄ = diag(+ − − · · · −). (2.1)

• Doubled-yet-gauged coordinates and diffeomorphisms

By construction, functions admitted to Stringy Gravity are

of special type. Let us denote the set of all the functions

in Stringy Gravity by F = {i }, which should include not

only physical fields but also local symmetry parameters. First

of all, each function, i (x), has doubled coordinates, x M ,

M = 1, 2, . . . , D+D, as its arguments. Not surprisingly,

the set is closed under addition, product and differentiation

such that, if i , j ∈ F and a, b ∈ R, then

a i + b j ∈ F , i j ∈ F , ∂Ai ∈ F , (2.2)

and hence i is C∞. The truly nontrivial property of F is

that every function therein is invariant under a special class

of translations: for arbitrary i , j ,k ∈ F ,

i (x) = i (x +�), �M =  j∂
Mk, (2.3)

where �M is said to be derivative-index-valued. We empha-

size that this very notion is only possible thanks to the

built-in O(D, D) group structure, whereby the invariant

metric can raise the vector index of the partial derivative,

1 In the most general case, the two spin groups can have different dimen-

sions [15].
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∂M = J M N ∂N . It is straightforward to show2 that the above

translational invariance is equivalent to the so-called ‘section

condition’,

∂M∂
Mi = 0, ∂Mi∂

M j = 0, (2.4)

which is of practical utility. From (2.3), we infer that

‘physics’ should be invariant under such a shift of �M =
 j∂

Mk . This observation further suggests that the doubled

coordinates may be gauged by an equivalence relation [39],

x M ∼ x M +�M , �M∂M = 0. (2.5)

Diffeomorphisms in the doubled-yet-gauged spacetime

are then generated (actively) by the generalized Lie deriva-

tive, L̂ξ , which was introduced initially by Siegel [4], and

also later by Hull and Zwiebach [6]. Acting on an arbitrary

tensor density, TM1···Mn ∈ F , with weight ω, it reads

L̂ξTM1···Mn := ξ N ∂N TM1···Mn + ω∂N ξ
N TM1···Mn

+
n∑

i=1

(∂Mi
ξN − ∂N ξMi

)TM1···Mi−1

N
Mi+1···Mn .

(2.6)

Thanks to the section condition, the generalized Lie deriva-

tive forms a closed algebra,

[
L̂ζ , L̂ξ

]
= L̂[ζ,ξ ]C

, (2.7)

where the so-called C-bracket is given by

[ζ, ξ ]M
C = 1

2

(
L̂ζ ξ

M − L̂ξ ζ
M
)

= ζ N ∂N ξ
M − ξ N ∂N ζ

M

+ 1
2
ξ N∂MζN − 1

2
ζ N ∂MξN . (2.8)

Along with this expression, it is worthwhile to note the ‘sum’,

L̂ζ ξ
M + L̂ξ ζ

M = ∂M (ζN ξ
N ). (2.9)

Further, if the parameter of the generalized Lie derivative,

ξM , is ‘derivative-index-valued’, the first two terms on the

right-hand side of (2.6) are trivial. Moreover, if this param-

eter is ‘exact’ as ξM = ∂M, the generalized Lie deriva-

tive itself vanishes identically. Now, the closure (2.7) implies

that the generalized Lie derivative is itself diffeomorphism-

covariant:

2 Consider the power series expansion of i (x + s�) around s = 0,

where we have introduced a real parameter, s ∈ R. The linear-order term

gives ∂Mi∂
M j = 0, which in turn, after replacingi and j by ∂L

and ∂N, implies that ∂L∂
M∂M∂

N = 0. Consequently, ∂M∂
N is

a nilpotent matrix and thus must be traceless, ∂M∂
M = 0 [40].

δξ (L̂ζ TM1···Mn ) = L̂ζ (δξTM1···Mn )+ L̂δξ ζ TM1···Mn

= L̂ζ L̂ξTM1···Mn + L̂
L̂ξ ζ

TM1···Mn

= L̂ξ L̂ζ TM1···Mn + L̂[ζ,ξ ]C+L̂ξ ζ
TM1···Mn

= L̂ξ (L̂ζ TM1···Mn ), (2.10)

where in the last step, from (2.8), (2.9), we have used the

fact that [ζ, ξ ]M
C + L̂ξ ζ

M = 1
2
∂M (ζN ξ

N ) , which is exact

and hence null as a diffeomorphism parameter. However,

if the tensor density carries additional Spin(1, D−1) ×
Spin(D−1, 1) indices, e.g. TMpq̄αᾱ , its generalized Lie

derivative is not local-Lorentz-covariant. Hence the general-

ized Lie derivative is covariant for doubled-yet-gauged dif-

feomorphisms but not for local Lorentz symmetries. We shall

fix this limitation in Sect. 3 by further generalizing the gen-

eralized Lie derivative.

In contrast to ordinary Riemannian geometry, the infinites-

imal one-form, dx M , is not (passively) diffeomorphism

covariant in doubled-yet-gauged spacetime,

δx M = ξM , δdx M = dξM = dx N ∂N ξ
M

�= (∂N ξ
M − ∂MξN )dx N . (2.11)

Furthermore, it is not invariant under the coordinate gauge

symmetry shift, dx M �= d(x M + �M ). However, if we

gauge dx M explicitly by introducing a derivative-index-

valued gauge potential, AM ,

Dx M := dx M − AM , AM∂M = 0, (2.12)

we can ensure both the diffeomorphism covariance and the

coordinate gauge symmetry invariance,

δx M = ξM , δAM = ∂MξN (dx N − AN )

�⇒ δ(Dx M ) = (∂N ξ
M − ∂MξN )Dx N ;

δx M = �M , δAM = d�M

�⇒ δ(Dx M ) = 0 . (2.13)

Utilizing the gauged infinitesimal one-form, Dx M , it is then

possible to define the duality-covariant ‘proper length’ in

doubled-yet-gauge spacetime [14,15], and construct asso-

ciated sigma models such as for the point particle [24,42],

bosonic string [40,41], Green–Schwarz superstring [22] (and

its coupling to the R–R sector [43]), exceptional string [44,

45], etc.

With the decomposition of the doubled coordinates, x M =
(x̃μ, xν), in accordance with the form of the O(D, D) invari-

ant metric, JM N (2.1), the section condition reads ∂̃μ∂μ = 0.

Thus up to O(D, D) rotations, the section condition is gener-

ically solved by setting ∂̃μ = 0, removing the dependence on

x̃μ coordinates. It follows that AM = Aλ∂
M xλ = (Aμ, 0)

and hence the x̃μ coordinates are indeed gauged, Dx M =
(dx̃μ − Aμ, dxν).
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• Stringy graviton fields from the closed string massless

sector

The O(D, D) T-duality group is a fundamental structure in

Stringy Gravity. All the fields therein must assume one repre-

sentation of it, such that the O(D, D) covariance is manifest.

The stringy graviton fields consist of the DFT dilaton, d,

and DFT metric, HM N . The former gives the integral mea-

sure in Stringy Gravity after exponentiation, e−2d , which is a

scalar density of unit weight. The latter is then, by definition,

a symmetric O(D, D) element:

HM N = HN M , HK
LHM

N JL N = JK M . (2.14)

Combining JM N and HM N , we acquire a pair of symmetric

projection matrices,

PM N = PN M = 1
2
(JM N + HM N ), PL

M PM
N = PL

N ,

P̄M N = P̄N M = 1
2
(JM N − HM N ), P̄L

M P̄M
N = P̄L

N ,

(2.15)

which are orthogonal and complete,

PL
M P̄M

N = 0, PM
N + P̄M

N = δM
N . (2.16)

It follows that the infinitesimal variations of the projection

matrices satisfy

δPM
N = −δ P̄M

N = (PδP P̄)M
N + (P̄δP P)M

N ,

PL
MδPM

N = δPL
M P̄M

N . (2.17)

Further, taking the “square roots” of the projectors,

PM N = VM
pVN

qηpq , P̄M N = V̄M
p̄ V̄N

q̄ η̄ p̄q̄ , (2.18)

we acquire a pair of DFT vielbeins, which satisfy four defin-

ing properties:

VMpV M
q = ηpq , V̄M p̄ V̄ M

q̄ = η̄ p̄q̄ ,

VMp V̄ M
q̄ = 0,

VM
pVN p + V̄M

p̄ V̄N p̄ = JM N , (2.19)

such that (2.15) and (2.16) hold. Essentially, (VM
p, V̄M

p̄),

when viewed as a (D + D) × (D + D) matrix, diagonal-

izes JM N and HM N simultaneously into ‘diag(η,+η̄)’ and

‘diag(η,−η̄)’, respectively. The presence of twofold viel-

beins as well as spin groups are a truly stringy feature, as

it indicates two distinct locally inertial frames existing sepa-

rately for the left-moving and right-moving closed string sec-

tors [11], and may be a testable prediction of Stringy Gravity

in itself [13].

It is absolutely crucial to note that DFT [3,4,8] and its super-

symmetric extensions [20–22] are formulatable in terms of

nothing but the very fields satisfying precisely the defin-

ing relations (2.14), (2.19). The most general solutions to

the defining equations turn out to be classified by two non-

negative integers, (n, n̄). With 1 ≤ i, j ≤ n and 1 ≤ ı̄, j̄ ≤ n̄,

the DFT metric is of the most general form [15],

HM N =
(

Hμν −Hμσ Bσλ + Y
μ
i X i

λ − Ȳ
μ
ı̄ X̄ ı̄

λ

BκρH
ρν + X i

κY ν
i − X̄ ı̄

κ Ȳ ν
ı̄ Kκλ − BκρH

ρσ Bσλ + 2X i
(κ

Bλ)ρY
ρ
i − 2X̄ ı̄

(κ
Bλ)ρ Ȳ

ρ
ı̄

)
(2.20)

where ((i) H and K are symmetric, but B is skew-symmetric,

i.e. Hμν = Hνμ, Kμν = Kνμ, Bμν = −Bνμ; (ii) H and K

admit kernels, HμνX i
ν = Hμν X̄ ı̄

ν = 0, KμνY ν
j = Kμν Ȳ ν

j̄ =
0; (iii) a completeness relation must be met, HμρKρν +
Y
μ
i X i

ν + Ȳ
μ
ı̄ X̄ ı̄

ν = δμν .

It follows from the linear independence of the kernel

eigenvectors that

Y
μ
i X

j
μ = δi

j , Ȳ
μ
ı̄ X̄

j̄
μ = δı̄

j̄ , Y
μ
i X̄

j̄
μ = Ȳ

μ
ı̄ X

j
μ = 0,

HρμKμνH
νσ = Hρσ , KρμHμνKνσ = Kρσ .

With the section choice ∂̃μ = 0 and the parameter decom-

position ξ A = (ξ̃μ, ξ
ν), the generalized Lie derivative,

L̂ξHM N , reduces to the ordinary (i.e. undoubled) Lie deriva-

tive, Lξ , plus B-field gauge symmetry,

δX i
μ = Lξ X i

μ, δ X̄ ı̄
μ = Lξ X̄ ı̄

μ, δY ν
j = LξY ν

j ,

δȲ ν
j̄ = Lξ Ȳ ν

j̄ ,

δHμν = LξH
μν, δKμν = LξKμν,

δBμν = Lξ Bμν + ∂μξ̃ν − ∂ν ξ̃μ.

(2.21)

Only in the case of (n, n̄) = (0, 0) can Kμν and Hμν be iden-

tified with the (invertible) Riemannian metric and its inverse.

The (0, 0)Riemannian DFT metric then takes the rather well-

known form,

HM N =
(

gμν −gμλBλτ
Bσκgκν gστ − BσκgκλBλτ

)
, (2.22)

and the corresponding DFT vielbeins read

VMp = 1√
2

(
ep

μ

eν
qηqp + Bνσ ep

σ

)
,

V̄M p̄ = 1√
2

(
ē p̄

μ

ēν
q̄ η̄q̄ p̄ + Bνσ ē p̄

σ

)
, (2.23)
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where eμ
p and ēμ

p̄ are a pair of Riemannian vielbeins for

the common Riemannian metric,

eμ
peνp = −ēμ

p̄ ēν p̄ = gμν . (2.24)

With the non-vanishing determinant, g = det gμν �= 0, the

DFT dilaton can be further parametrized by

e−2d =
√

−g e−2φ . (2.25)

In this way, the stringy gravitons may represent the conven-

tional closed string massless sector, {gμν, Bμν, φ}.
Other cases of (n, n̄) �= (0, 0) are then generically non-

Riemannian, as the Riemannian metric cannot be defined.

They include (1, 0) or (D − 1, 0) for non-relativistic

Newton–Cartan or ultra-relativistic Carroll gravities [16],

(1, 1) for the Gomis–Ooguri non-relativistic string [17,18],

and various chiral theories, e.g. [19].

For later use, it is worth noting that the two-indexed pro-

jectors generate in turn a pair of multi-indexed projectors,

PABC
DE F := PA

D P[B
[E PC]F] + 2

PM
M −1

PA[B PC][E P F]D,

P̄ABC
DE F := P̄A

D P̄[B
[E P̄C]F] + 2

P̄M
M −1

P̄A[B P̄C][E P̄ F]D,

(2.26)

satisfying

PABC
DE FPDE F

G H I = PABC
G H I ,

P̄ABC
DE F P̄DE F

G H I = P̄ABC
G H I . (2.27)

They are symmetric and traceless in the following sense:

PABC DE F = PDE F ABC ,

PABC DE F = PA[BC]D[E F],

P ABPABC DE F = 0,

P̄ABC DE F = P̄DE F ABC ,

P̄ABC DE F = P̄A[BC]D[E F],

P̄ ABP̄ABC DE F = 0. (2.28)

• Covariant derivatives with stringy Christoffel symbols

and spin connections

The ‘master’ covariant derivative in Stringy Gravity,

DA = ∂A + ŴA +A + ̄A, (2.29)

is equipped with the stringy Christoffel symbols of the dif-

feomorphism connection [9],

ŴC AB = 2
(
P∂C P P̄

)
[AB] + 2

(
P̄[A

D P̄B]
E − P[A

D PB]
E
)
∂D PEC

−4
(

1
PM

M −1
PC[A PB] D + 1

P̄M
M −1

P̄C[A P̄B] D
)(

∂Dd

+(P∂E P P̄)[E D]

)
, (2.30)

and the spin connections for the twofold local Lorentz sym-

metries [10],

Apq = A[pq] = V B
p∇AVBq ,

̄A p̄q̄ = ̄A[ p̄q̄] = V̄ B
p̄∇A V̄Bq̄ . (2.31)

In the above, we set

∇A := ∂A + ŴA, (2.32)

which, ignoring any local Lorentz indices, acts explicitly on

a tensor density with weight ω as

∇C TA1 A2···An := ∂C TA1 A2···An − ωT Ŵ
B

BC TA1 A2···An

+
n∑

i=1

ŴC Ai

B TA1···Ai−1 B Ai+1···An . (2.33)

The stringy Christoffel symbols (2.30) can be uniquely deter-

mined by requiring three properties:

(i) full compatibility with all the stringy graviton fields,

DA PBC = ∇A PBC = 0, DA P̄BC = ∇A P̄BC = 0,

DAd = ∇Ad = − 1
2

e2d∇A(e
−2d) = ∂Ad + 1

2
ŴB

B A = 0,

(2.34)

which implies, in particular,

DAJBC = ∇AJBC = 0, ŴABC = −ŴAC B; (2.35)

(ii) a cyclic property (traceless condition),

ŴABC + ŴBC A + ŴC AB = 0, (2.36)

which makes ∇A compatible with the generalized Lie

derivative (2.6) as well as the C-bracket (2.8), such that

we may freely replace the ordinary derivatives therein

by ∇A,

L̂ξ (∂) = L̂ξ (∇), [ζ, ξ ]C(∂) = [ζ, ξ ]C(∇); (2.37)

(iii) projection constraints,

PABC
DE FŴDE F = 0, P̄ABC

DE FŴDE F = 0, (2.38)

which ensure the uniqueness.

Unlike the Christoffel symbols in GR, there exist no nor-

mal coordinates where the stringy Christoffel symbols would

vanish pointwise. The Equivalence Principle holds for the

point particle but not for the string [13,14].
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Once the stringy Christoffel symbols are fixed, the spin

connections (2.31) follow immediately from the compatibil-

ity with the DFT vielbeins,

DAVBp = ∇AVBp +Ap
q VBq = ∂AVBp + ŴAB

C VCp

+Ap
q VBq = 0,

DA V̄B p̄ = ∇A V̄B p̄ + ̄A p̄
q̄ V̄Bq̄ = ∂A V̄B p̄ + ŴAB

C V̄C p̄

+ ̄A p̄
q̄ V̄Bq̄ = 0.

(2.39)

The master derivative is also compatible with the two sets of

local Lorentz metrics and gamma matrices,

DAηpq = 0, DAη̄ p̄q̄ = 0, DA(γ
p)αβ = 0,

DA(γ̄
p̄)ᾱ β̄ = 0, (2.40)

such that, as in GR,

Apq = −Aqp, ̄A p̄q̄ = −̄Aq̄ p̄,

A
α
β = 1

4
Apq(γ

pq)αβ , ̄A
ᾱ
β̄ = 1

4
̄A p̄q̄(γ̄

p̄q̄)ᾱ β̄ .

(2.41)

The master derivative (2.29) acts explicitly as

DN TMp
α

p̄
ᾱ = ∇N TMp

α
p̄
ᾱ +N p

q TMq
α

p̄
ᾱ

+N
α
βTMp

β
p̄
ᾱ + ̄N p̄

q̄ TMp
α

q̄
ᾱ

+ ̄N
ᾱ
β̄TMp

α
p̄
β̄

= ∂N TMp
α

p̄
ᾱ − ωŴL

L N TMp
α

p̄
ᾱ

+ŴN M
L TLp

α
p̄
ᾱ +N p

q TMq
α

p̄
ᾱ

+N
α
βTMp

β
p̄
ᾱ

+ ̄N p̄
q̄ TMp

α
q̄
ᾱ + ̄N

ᾱ
β̄TMp

α
p̄
β̄ . (2.42)

Unsurprisingly the master derivative is completely covariant

for the twofold local Lorentz symmetries. The characteris-

tic of the master derivative, DA, as well as ∇A is that they

are actually ‘semi-covariant’ under doubled-yet-gauged dif-

feomorphisms: the stringy Christoffel symbols transform as

δξŴC AB = L̂ξŴC AB + 2[(P + P̄)C AB
F DE

−δ F
C δ D

A δ E
B ]∂F∂[DξE],

δξApq = L̂ξApq + 2PApq
DE F∂D∂[EξF],

δξ ̄A p̄q̄ = L̂ξ ̄A p̄q̄ + 2P̄A p̄q̄
DE F∂D∂[EξF],

(2.43)

such that DA and ∇A are not automatically diffeomorphism-

covariant, e.g.

δξ (∇C TA1···An ) = L̂ξ (∇C TA1···An )

+
n∑

i=1

2(P+P̄)C Ai

B DE F∂D∂EξF TA1···Ai−1 B Ai+1···An .

(2.44)

Nevertheless, the potentially anomalous terms are uniquely

given, or controlled, by the multi-indexed projectors, as seen

in (2.43) and (2.44), such that they can be easily projected

out. Completely covariantized derivatives include [9]

PC
D P̄A1

B1 · · · P̄An

Bn ∇DTB1···Bn ,

P̄C
D PA1

B1 · · · PAn

Bn ∇DTB1···Bn ,

P AB P̄C1

D1 · · · P̄Cn

Dn ∇ATB D1···Dn ,

P̄ AB PC1

D1 · · · PCn

Dn ∇ATB D1···Dn (divergences),

P AB P̄C1

D1 · · · P̄Cn

Dn ∇A∇B TD1···Dn ,

P̄ AB PC1

D1 · · · PCn

Dn ∇A∇B TD1···Dn (Laplacians),

(2.45)

which can be freely pulled back by the DFT vielbeins, with

Dp = V A
pDA and D p̄ = V̄ A

p̄DA, to

DpTq̄1···q̄n , D p̄Tq1···qn , DpT p
q̄1···q̄n , D p̄T p̄

q1···qn ,

DpD
pTq̄1···q̄n , D p̄D

p̄Tq1···qn . (2.46)

In particular, for a weightless vector, J A, it is useful to note

∂A(e
−2d J A) = ∇A(e

−2d J A) = e−2d∇A J A. (2.47)

Furthermore, from (2.43), the following modules of the

spin connections are completely covariant under diffeomor-

phisms:

P̄A
BBpq , PA

B̄B p̄q̄ , A[pq V A
r ], ̄A[ p̄q̄ V̄ A

r̄ ],

Apq V Ap, ̄A p̄q̄ V̄ A p̄. (2.48)

Consequently, acting on Spin(1, D−1) spinors, ρα , ψα
p̄ , or

Spin(D−1, 1) spinors, ρ′ᾱ , ψ ′ᾱ
p , the completely covariant

Dirac operators are, with respect to both diffeomorphisms

and local Lorentz symmetries [10,20],

γ pDpρ, γ pDpψ p̄, D p̄ρ, D p̄ψ
p̄, γ̄ p̄D p̄ρ

′,

γ̄ p̄D p̄ψ
′
p,Dpρ

′, Dpψ
′ p. (2.49)

For a Spin(1, D−1)×Spin(D−1, 1) bi-fundamental spino-

rial field or the Ramond–Ramond potential, Cαᾱ , a pair of

completely covariant nilpotent derivatives, D+ and D−, can

be defined [46] (c.f. [47]),

D±C := γ pDpC ± γ (D+1)D p̄Cγ̄
p̄, D2

±C = 0, (2.50)

where, with (2.41), DAC = ∂AC+AC−C̄A. Specifically,

the R–R field strength is given by F = D+C.

Finally, for a Yang–Mills potential, AM , the completely

covariant field strength reads [48]

Fpq̄ := V M
p V̄ N

q̄(∇M AN − ∇N AM − i[AM ,AN ]).
(2.51)

123



500 Page 8 of 33 Eur. Phys. J. C (2018) 78 :500

In order to recover the standard (undoubled) physical degrees

of freedom, one should impose additional “section condi-

tions” on the doubled Yang–Mills gauge potential [13],

AM∂M = 0, AM AM = 0. (2.52)

It turns out that the standard field strength,

FM N := ∂M AN − ∂N AM − i[AM ,AN ], (2.53)

then becomes completely covariant, and (2.51) reduces to

Fpq̄ = V M
p V̄ N

q̄ FM N . (2.54)

Upon Riemannian backgrounds (2.23), (2.25), the spin

connections (2.48) reduce explicitly to

V̄ A
p̄Apq = 1√

2
ē p̄

μ
(
ωμpq + 1

2
Hμpq

)
,

V A
p̄A p̄q̄ = 1√

2
ep

μ
(
ω̄μ p̄q̄ + 1

2
Hμ p̄q̄

)
,

A[pq V A
r ] = 1√

2

(
ω[pqr ] + 1

6
Hpqr

)
,

̄A[ p̄q̄ V̄ A
r̄ ] = 1√

2

(
ω̄[ p̄q̄r̄ ] + 1

6
H p̄q̄r̄

)
,

Apq V Ap = 1√
2

(
epμωμpq − 2eq

ν∂νφ
)
,

̄A p̄q̄ V̄ A p̄ = 1√
2

(
ē p̄μω̄μ p̄q̄ − 2ēq̄

ν∂νφ
)
, (2.55)

where, generalizing (1.1), we have ωμpq = ep
ν(∂μeνq −

γ λμνeλq), ω̄μ p̄q̄ = ē p̄
ν(∂μēνq̄ − γ λμν ēλq̄), and

▽μ := ∂μ + γμ + ωμ + ω̄μ, ▽μeν
p = 0, ▽μηpq = 0,

▽μēν
q̄ = 0, ▽μη̄ p̄q̄ = 0, ▽λgμν = 0. (2.56)

• Curvatures: stringy Einstein tensor

The semi-covariant Riemann curvature in Stringy Gravity is

defined by [9]

SABC D := 1
2
(RABC D + RC D AB − ŴE

ABŴEC D), (2.57)

where ŴABC are the stringy Christoffel symbols (2.30) and

RABC D denotes their “field strength”,

RC D AB = ∂AŴBC D−∂BŴAC D+ŴAC
EŴB E D−ŴBC

EŴAE D.

(2.58)

Crucially, by construction, it satisfies symmetric properties

and an algebraic “Bianchi” identity,3

SABC D = SC D AB = S[AB][C D], SA[BC D] = 0. (2.59)

Furthermore, just like the Riemann curvature in GR (A.14), it

transforms as ‘total’ derivatives under the arbitrary variation

of the stringy Christoffel symbols,4

δSABC D = ∇[AδŴB]C D + ∇[CδŴD]AB . (2.60)

In particular, it is ‘semi-covariant’ under doubled-yet-gauged

diffeomorphisms,

δξ SABC D = L̂ξ SABC D + 2∇[A((P+P̄)B][C D]
E FG∂E∂FξG)

+2∇[C ((P+P̄)D][AB]
E FG∂E∂FξG). (2.61)

In DFT there is no completely covariant four-indexed ‘Rie-

mann’ curvature [9,51], which is in a sense consistent with

the absence of ‘normal’ coordinates for strings. The com-

pletely covariant ‘Ricci’ and scalar curvatures are then, with

SAB = SB A = SC
AC B ,

Spq̄ := V A
p V̄ B

q̄ SAB,

S(0) := (P AC P B D − P̄ AC P̄C D)SABC D = Spq
pq − S p̄q̄

p̄q̄ .

(2.62)

These completely covariant curvatures contain both HM N

and d, as is the case for the connection, ŴL M N (2.30).

The DFT metric alone cannot generate any covariant cur-

vature c.f. [49].

It is worth noting the identities

Sprq̄
r = Spr̄ q̄

r̄ = 1
2

Spq̄ ,

Spq
pq + S p̄q̄

p̄q̄ = 0, Spq p̄q̄ = 0, Sp p̄qq̄ = 0, (2.63)

(γ pDp)
2ε + D p̄D

p̄ε = − 1
4

Spq
pqε = − 1

8
S(0)ε,

(γ̄ p̄D p̄)
2ε′ + DpD

pε′ = − 1
4

S p̄q̄
p̄q̄ε′ = 1

8
S(0)ε

′, (2.64)

and the commutation relations [12,50]

[Dp,Dq̄ ]T p = Spq̄ T p, [Dq̄ ,Dp]T q̄ = Spq̄ T q̄ ,

[γ pDp,Dq̄ ]ε = 1
2

Spq̄γ
pε, [γ̄ q̄Dq̄ ,Dp]ε′ = 1

2
Spq̄γ

q̄ε′.

(2.65)

3 As an alternative to direct verification, the Bianchi identity can also

be shown using (2.7), (2.37) and the relation [49]

0 = ([L̂ζ , L̂ξ ] − L̂[ζ,ξ ]C )

∣∣∣
∂→∇

TA1 A2···An

=
∑n

i=1
6SAi [BC D]ζ

BξC TA1···Ai−1

D
Ai+1···An .

4 Equation (2.60) can be generalized to include torsion, such that the

‘1.5’ formalism works in the full-order supersymmetric extensions of

DFT [20,21], where the connection becomes torsionful, Ŵ[ABC] �= 0.
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Combining the ‘Ricci’ and the scalar curvatures, it is pos-

sible to construct the stringy ‘Einstein’ tensor which is covari-

antly conserved [23],

G AB := 4V[A
p V̄B]q̄ Spq̄ − 1

2
JAB S(0), ∇AG AB = 0.

(2.66)

From (2.45), this conservation law is completely covariant.

Note also that in general, G AB �= G B A and ∇B G AB �= 0 .

However, we may symmetrize the stringy Einstein tensor,

still preserving the conservation law, by multiplying the DFT

metric from the right,

(GH)AB = (GH)B A := G ACHC
B = −4V(A

p V̄B)
q̄ Spq̄

− 1
2
HAB S(0), ∇A(GH)AB = 0. (2.67)

Since G A
A = −DS(0), the vanishing of the stringy Einstein

tensor, G AB ≡ 0, is equivalent to the separate vanishing of

the ‘Ricci’ and the scalar curvatures, Spq̄ ≡ 0 and S(0) ≡ 0,

respectively, which correspond to the original DFT equations

of motion [3,8].

Restricting to Riemannian backgrounds (2.23), (2.25), we

have explicitly,

Spq̄ = 1
2

ep
μēq̄

ν
[

Rμν + 2▽μ(∂νφ)− 1
4

Hμρσ Hν
ρσ

+ 1
2
▽ρHρμν − (∂ρφ)Hρμν

]
,

S(0) = R + 4�φ − 4∂μφ∂
μφ − 1

12
HλμνHλμν . (2.68)

In particular, the upper left D×D diagonal block of (GH)AB

contains the undoubled Einstein tensor in GR,

(GH)μν = Rμν − 1
2

gμν R + 2▽μ(∂νφ)

−2gμν(�φ − ∂σφ∂
σφ)

− 1
4

Hμρσ H ν
ρσ + 1

24
gμνHρστ Hρστ . (2.69)

2.2 Stringy energy–momentum tensor & Einstein double

field equations

We now consider Stringy Gravity coupled to generic matter

fields, in analogy to GR (A.1),

∫

�

e−2d
[

1
16πG

S(0) + Lmatter

]
, (2.70)

where Lmatter is the O(D, D) symmetric Lagrangian of the

matter fields,ϒa , equipped with the completely covariantized

derivatives, DM . Some examples will follow below in sub-

section 2.2.1, including cases (2.118), (2.125), (2.129) where

the Lagrangian density, Lmatter ≡ e−2d Lmatter, does not con-

tain, and hence decouples from, the DFT dilaton, d. The

integral is taken over a D-dimensional section, �, corre-

sponding to a ‘gauge slice’, c.f. (2.5). We seek the variation

of the above action which is induced by the arbitrary transfor-

mations of all the fields, δd, δPAB , δ P̄AB , δVAp, δV̄A p̄, and

δϒa . They are subject to the following algebraic relations,

originating from the defining properties the stringy graviton

fields, (2.14), (2.15), (2.19),

δPAB = −δ P̄AB = 1
2
δHAB = 2P(A

C P̄B)
DδPC D

= 2V̄(A
p̄VB)

q V̄ C
p̄δVCq , V̄ C

q̄δVCp = −V C
pδV̄Cq̄ ,

δVAp = V̄A
q̄ V̄ C

q̄δVCp + (δVC[pV C
q])VA

q ,

δV̄A p̄ = VA
q V C

qδV̄C p̄ + (δV̄C[ p̄ V̄ C
q̄])V̄A

q̄ . (2.71)

Firstly, as is known [9], the pure Stringy Gravity term

transforms, from (2.34), (2.59), (2.60), (2.62), as

δ(e−2d S(0)) = 4e−2d
(
δP AB VA

p V̄B
q̄ Spq̄ − 1

2
δd S(0)

)

+∂A[2e−2d(P AC P B D − P̄ AC P̄ B D)δŴBC D]
= 4e−2d

(
V̄ Aq̄δVA

p Spq̄ − 1
2
δd S(0)

)

+total derivative, (2.72)

of which the total derivative can be ignored in the variation

of the action.

Secondly, in a similar fashion to (A.12), the (local-

Lorentz-symmetric) matter Lagrangian transforms, up to

total derivatives (≃), as

δLmatter ≃ δVA
p δLmatter

δVA
p

+ δV̄A
p̄ δLmatter

δV̄A
p̄

+ δd
δLmatter

δd

+ δϒa

δLmatter

δϒa

≃ V̄ Bq̄δVB
p

(
V̄Aq̄

δLmatter

δVA
p

− VAp

δLmatter

δV̄A
q̄

)

+ δd
δLmatter

δd
+ δ′ϒa

δLmatter

δϒa

, (2.73)

where δLmatter
δϒa

corresponds to the Euler–Lagrange equation

for each matter field, ϒa , and δ′ϒa is the arbitrary variation

of the matter field, i.e. δϒa , supplemented by the infinitesi-

mal local Lorentz rotations set by the parameters δVC[pV C
q]

and δV̄C[ p̄ V̄ C
q̄]. Eq. (2.73) holds since Lmatter is supposed

to be Spin(1, D−1) × Spin(D−1, 1) local Lorentz sym-

metric and therefore the second terms in the variations of

the DFT vielbeins in (2.71) can be inversely traded with

the Spin(1, D−1) × Spin(D−1, 1) local Lorentz transfor-

mations of the matter fields, which justifies to the change

δϒa → δ′ϒa .

The variation (2.73) suggests the following two defini-

tions,

K pq̄ := 1

2

(
VAp

δLmatter

δV̄A
q̄

− V̄Aq̄

δLmatter

δVA
p

)
,

T(0) := e2d × δ(e−2d Lmatter)

δd
, (2.74)
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both of which will constitute the conserved energy–

momentum tensor in Stringy Gravity, see (2.85). We stress

that to avoid any ambiguity, the functional derivatives are best

computed from the infinitesimal variation of the Lagrangian.

Equation (2.73) then reads

δ
(

e−2d Lmatter

)

≃ e−2d

(
−2V̄ Aq̄δVA

p K pq̄ + δdT(0) + δ′ϒa

δLmatter

δϒa

)
.

(2.75)

It is worthwhile to note that, for the restricted cases of Lmatter

in which the DFT vielbeins are absent and only the projectors

are present, we have

δLmatter = δPAB

δLmatter

δPAB

+ δ P̄AB

δLmatter

δ P̄AB

+ δd
δLmatter

δd

+ δϒa

δLmatter

δϒa

, (2.76)

and, from (2.71), the above definition of K pq̄ reduces to

K pq̄ = VAp V̄Bq̄

(
δLmatter

δ P̄AB

− δLmatter

δPAB

)
. (2.77)

Now, collecting all the results of (2.71), (2.72) and (2.74), the

variation of the action (2.70) reads, disregarding any surface

integrals,

δ

∫

�

e−2d
[

1
16πG

S(0) + Lmatter

]

=
∫

�

e−2d

[
1

4πG
V̄ Aq̄δVA

p(Spq̄ − 8πG K pq̄)

− 1
8πG

δd(S(0) − 8πGT(0))+ δ′ϒa

δLmatter

δϒa

]
. (2.78)

All the equations of motion are then given by

Spq̄ = 8πG K pq̄ , S(0) = 8πGT(0),
δLmatter

δϒa

≡ 0,

(2.79)

where ‘≡’ is used to denote the on-shell equations for the

matter fields. Specifically, when the variation is generated

by doubled-yet-gauged diffeomorphisms, we have

δξd = − 1
2

e2d L̂ξ (e
−2d) = − 1

2
DAξ

A, δξϒa = L̂ξϒa,

(2.80)

and, from DB VAp = 0 (2.39),

δξVAp = L̂ξVAp = ξ B∇B VAp + 2∇[AξB]V
B

p

= −ξ BBp
q VAq + 2∇[AξB]V

B
p, (2.81)

which implies

V̄ Aq̄δξVA
p = 2D[AξB]V̄

Aq̄ V Bp,

δξ PAB = L̂ξ PAB = 4P̄(A
C PB)

DD[CξD]. (2.82)

Substituting these results into (2.78), utilizing the invariance

of the action under doubled-yet-gauged diffeomorphisms

while neglecting surface terms, we achieve a crucial result,

0 =
∫

�

e−2d

[
1

8πG
ξ BDA

{
4V[A

p V̄B]q̄(Spq̄ − 8πG K pq̄)

− 1
2
JAB(S(0) − 8πGT(0))

}
+ δ′ϒa

δLmatter

δϒa

]
. (2.83)

This leads to the definitions of the off-shell conserved stringy

Einstein curvature tensor (2.66) from [23],

G AB = 4V[A
p V̄B]

q̄ Spq̄ − 1
2
JAB S(0),

DAG AB = 0 (off-shell), (2.84)

and separately the on-shell conserved energy–momentum

tensor in Stringy Gravity,

TAB := 4V[A
p V̄B]

q̄ K pq̄ − 1
2
JAB T(0),

DAT AB ≡ 0 (on-shell). (2.85)

Note5 TAB �= TB A and DB T AB �= 0 . However, like

(GH)AB = (GH)B A (2.67), we may symmetrize the stringy

energy–momentum tensor,

(T H)AB = (T H)B A := TACHC
B = −4V(A

p V̄B)
q̄ K pq̄

− 1
2
HAB T(0), DA(T H)AB ≡ 0. (2.86)

G AB and TAB each have D2 + 1 components, given by

V A
p V̄ B

q̄ G AB = 2Spq̄ , G A
A = −DS(0),

V A
p V̄ B

q̄ TAB = 2K pq̄ , T A
A = −DT(0), (2.87)

respectively. The equations of motion of the DFT vielbeins

and the DFT dilaton are unified into a single expression, the

Einstein double field equations,

G AB = 8πGTAB, (2.88)

which is naturally consistent with the central idea that Stringy

Gravity treats the entire closed string massless sector as geo-

metrical stringy graviton fields.

From (2.80), (2.82) and (2.85), if we contract the stringy

energy–momentum tensor with an O(D, D) vector, its diver-

gence reads

DA(T
A

Bξ
B) ≡ TABDAξ B = −2V Ap V̄ Bq̄ K pq̄(L̂ξ PAB)

+T(0)(L̂ξd). (2.89)

5 Although we use the same conventional letter symbols, no component

of G AB or TAB coincides precisely with that of the undoubled Einstein

and energy–momentum tensors in GR, c.f. (A.2), (2.69).
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Therefore, if ξ A is a DFT-Killing vector satisfying the DFT-

Killing equations [23],

L̂ξ PAB = 4P̄(A
C PB)

D∇[CξD] = 0,

L̂ξd = − 1
2
∇Aξ

A = 0, (2.90)

the contraction T A
Bξ

B gives an on-shell conserved Noether

current (from (2.47)),

∂A(e
−2d T A

Bξ
B) = e−2dDA(T

A
Bξ

B) ≡ 0, (2.91)

and the corresponding Noether charge,

Q[ξ ] =
∫

�

e−2d T t
Aξ

A, (2.92)

where the superscript index, t , denotes the time component

for a chosen section. It is worthwhile to note that the alter-

native contraction with the symmetrized energy–momentum

tensor, (T H)A
Bξ

B , is not conserved even if ξ A is a Killing

vector.

Through contraction with the DFT vielbeins, the conser-

vation law of the energy–momentum tensor decomposes into

two separate formulae,

DAT AB VBp = −2Dq̄ K p
q̄ − 1

2
DpT(0) ≡ 0,

DAT AB V̄Bq̄ = 2Dp K p
q̄ − 1

2
Dq̄ T(0) ≡ 0. (2.93)

Restricting to Riemannian backgrounds (2.23), (2.25), with

▽μ = ∂μ + γμ + ωμ + ω̄μ (2.56), we have

0 ≡ DAT A
p = −

√
2ēq̄μ

(
▽μK pq̄ − 2∂μφ K pq̄

+ 1
2

Hμp
q Kqq̄

)
− 1

2
√

2
ep

μ∂μT(0)

= 1√
2

ep
ν
(
▽μKν

μ − 2∂μφ Kν
μ

+ 1
2

HνλμK λμ − 1
2
∂νT(0)

)
, (2.94)

and

0 ≡ DAT A
q̄ =

√
2epμ(▽μK pq̄ − 2∂μφ K pq̄

+ 1
2

Hμq̄
r̄ K pr̄ )− 1

2
√

2
ēq̄

μ∂μT(0)

= 1√
2

ēq̄
ν
(
▽μKμ

ν − 2∂μφ Kμ
ν

+ 1
2

HνλμK λμ − 1
2
∂νT(0)

)
. (2.95)

Thus, the conservation law reduces to the following two sets

of equations,

∇μK(μν) − 2∂μφ K(μν) + 1
2

Hν
λμK[λμ] − 1

2
∂νT(0) ≡ 0,

(2.96)

∇μ(e−2φK[μν]) ≡ 0. (2.97)

In fact, for the above computations, we first put, c.f. (2.68),

K pq̄ ≡ 1
2

ep
μēq̄

νKμν ⇐⇒ Kμν ≡ 2eμ
p ēν

q̄ K pq̄ ,

(2.98)

and then let the Greek indices of Kμν be raised by the Rie-

mannian metric (2.24), gμν = ep
μepν = −ē p̄

μē p̄ν :

Kμ
ν = gμρKρν = 2epμēν

q̄ K pq̄ ;
Kμ

ν = gνρKμρ = −2eμ
p ēνq̄ K pq̄ . (2.99)

It follows that

VA
p V̄B

q̄ K pq̄ = 1
4

(
−Kμν Kμ

σ + KμλBλσ
−Kρ

ν − BρκK κν Kρσ + BρκK κλBλσ + Bρ
κKκσ + KρλBλ

σ

)
, (2.100)

and

TAB = 4V[A
p V̄B]q̄ K pq̄ − 1

2
JAB T(0)

=
(

−K [μν] K (μλ)gλσ + K [μλ]Bλσ − 1
2
δμσ T(0)

−gρκK (κν) − BρκK [κν] − 1
2
δρ

νT(0) K[ρσ ] + BρκK [κλ] Bλσ + Bρ
κK(κσ ) + K(ρλ)B

λ
σ

)
.

(2.101)

The Einstein Double Field Equations (2.88) reduce, upon

Riemannian backgrounds (2.23), (2.68), to

Rμν + 2▽μ(∂νφ)− 1
4

Hμρσ Hν
ρσ = 8πG K(μν), (2.102)

▽ρ(e−2φHρμν) = 16πGe−2φK[μν], (2.103)

R + 4�φ − 4∂μφ∂
μφ − 1

12
HλμνHλμν = 8πGT(0).

(2.104)

These also imply the two reduced conservation laws, (2.96)

and (2.97), as DAG AB = 0 is an off-shell identity. Explicitly,

we have
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▽μ▽ν(e
−2φHλμν) = 1

2
[▽μ,▽ν](e−2φHλμν)

= 1
2

Rλ
[ρμν]e

−2φHρμν

+R[μν]e
−2φHλμν = 0, (2.105)

which implies the second conservation law (2.97). On the

other hand, solving Rμν and R from (2.102) and (2.104)

respectively, we get

0 = ▽μ(Rμν − 1
2

gμν R) = 8πG
(
▽μK(μν)

−2∂μφK(μν) + 1
2

Hν
ρσ K[ρσ ] − 1

2
∂νT(0)

)

−2
(
Rμν + 2▽μ∂νφ − 1

4
Hμρσ Hν

ρσ

−8πG K(μν)

)
∂μφ

+ 1
4

e2φ[▽μ(e−2φHμρσ )− 16πGe−2φK[ρσ ]]
+ 1

3
Hμρσ ∂[μHρσν], (2.106)

where we have used the identity �∂νφ−▽ν�φ = Rνρ∂
ρφ .

The last three lines in (2.106) vanish separately up to (2.102),

(2.103), and the closedness of the H -flux. Therefore, we

recover the first conservation law (2.96) as the vanishing of

the first line on the right-hand side of the equality above.

2.2.1 Examples

Here we list various matter fields coupled to Stringy Gravity

and write down their contributions to the stringy energy–

momentum tensor (2.85), (2.101).

• Cosmological constant

In Stringy Gravity, the cosmological constant term is

given by a constant, �DFT, times the integral measure,

e−2d [9],

1
16πG

e−2d
(
S(0) − 2�DFT

)
. (2.107)

The corresponding energy–momentum tensor is

TAB = − 1
8πG

JAB�DFT, (2.108)

such that K pq̄ = 0 and T(0) = 1
4πG

�DFT.

• Scalar field

A free scalar field in Stringy Gravity is described by,

e.g. [13],

L = − 1
2
HM N ∂M∂N− 1

2
m2


2

= 1
2
(P̄ M N − P M N )∂M∂N− 1

2
m2


2. (2.109)

It is straightforward to see, with ∂p ≡ V A
p∂A, ∂q̄ ≡

V̄ A
q̄∂A,

K pq̄ = ∂p∂q̄,

T(0) = HM N ∂M∂N+ m2

2 = −2L. (2.110)

For Riemannian backgrounds (2.23), (2.25), and the sec-

tion choice ∂̃μ = 0, we have ∂p = 1√
2

ep
μ∂μ, ∂q̄ =

1√
2

ēq̄
μ∂μ, and

Kμν = K(μν) = ∂μ∂ν, K[μν] = 0. (2.111)

In particular, each diagonal component of Kμν is non-

negative, as Kμμ = (∂μ)
2.

• Spinor field

Fermionic spinor fields are described by [20]

Lψ = ψ̄γ pDpψ + mψψ̄ψ, (2.112)

where6 ψ̄ = ψ† A, A = A†, and (γ p)† = −Aγ p A−1.

Under arbitrary variations of the stringy graviton fields

and the spinor, the fermionic kinetic term transforms, up

to total derivatives (‘≃’), as (c.f. [20,21])

δ(e−2d ψ̄γ ADAψ) ≃ e−2dδVAp V̄ Aq̄ ψ̄γ pDq̄ψ

+ 1
4

e−2dδŴABC ψ̄γ Aγ BCψ

+e−2d
(
δψ̄ − 1

4
VApδV A

q ψ̄γ
pq − 2δd ψ̄

)
γ BDBψ

−e−2dDBψ̄γ
B
(
δψ + 1

4
VApδV A

qγ
pqψ

)
. (2.113)

In the full-order supersymmetric extensions of DFT [20,

21], the variation of the stringy Christoffel symbols,

δŴABC , vanishes automatically, which realizes the ‘1.5

formalism’. However, in the present example, we do not

consider any supersymmetry nor quartic fermionic terms.

Instead, we proceed, with δŴ[ABC] = 0, to obtain

1
4

e−2dδŴABC ψ̄γ Aγ BCψ = 1
2

e−2d P ABδŴABC ψ̄γ Cψ

= 1
2

e−2d ψ̄γ Aψ
(
DpδVA

p − 2∂Aδd
)

+ 1
2

e−2d ψ̄γ pψ DAδV A
p

≃ e−2dδd(DAψ̄γ
Aψ + ψ̄γ ADAψ)

−e−2dδV Ap
(
D(Aψ̄γp)ψ + ψ̄γ(ADp)ψ

)
, (2.114)

and derive the final form of the variation of the fermionic

part of the Lagrangian, c.f. an analogous expression in

GR (A.9),

6 In the specific case of four-dimensional spacetime with Minkowskian

signature [− + ++], we may set

(γ p)† = −Aγ p A−1,

A† = A �⇒ (Aγ p1 p2···pn )† = (−1)
1
2 n(n+1)Aγ p1 p2···pn ,

(γ p)T = −Cγ pC−1,

CT = −C �⇒ (Cγ p1 p2···pn )T = −(−1)
1
2 n(n+1)Cγ p1 p2···pn .

We may also, if desired, identify A with C and use the Majorana, ti.e. real

representation of the gamma matrices. Our analysis also holds for Majo-

rana spinors satisfying ψ† A = ψT C .
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δ[e−2d(ψ̄γ ADAψ + mψψ̄ψ)]
≃ 1

2
e−2dδVA

p V̄ Aq̄(ψ̄γpDq̄ψ − Dq̄ ψ̄γpψ)

+ e−2d(δψ̄ − δd ψ̄ − 1
4

VA[pδV A
q]ψ̄γ

pq)

×(γ BDBψ + mψψ)

−e−2d(DBψ̄γ
B − mψψ̄)(δψ − δd ψ

+ 1
4

VA[pδV A
q]γ

pqψ). (2.115)

This result is quite satisfactory: unlike (2.113), the her-

miticity is now manifest, as the first line on the right-hand

side is by itself real while the second and the third are

hermitian conjugate to each other. Further, as discussed

in the general setup (2.73), the infinitesimal local Lorentz

rotation of the spinor field by VA[pδV A
q] can be absorbed

into the equation of motion for the matter field through

δψ ′ = δψ + 1
4

VA[pδV A
q]γ pqψ . The variation of the

DFT dilaton can be also absorbed in the same manner.

Comparing (2.75) and (2.115), we obtain

K pq̄ = − 1
4
(ψ̄γpDq̄ψ − Dq̄ ψ̄γpψ), T(0) ≡ 0.

(2.116)

Upon Riemannian backgrounds (2.23), fermions thus

provide a nontrivial example of asymmetric Kμν ,

Kμν := 2eμ
p ēν

q̄ K pq̄

= − 1

2
√

2
(ψ̄γμ▽νψ − ▽νψ̄γμψ) �= Kνμ.

(2.117)

Finally, if we redefine the field in terms of a spinor den-

sity, χ := e−dψ , with weight ω = 1
2

, the DFT dilaton

decouples from the Lagrangian completely,

e−2d Lψ = e−2d
(
ψ̄γ pDpψ + mψψ̄ψ

)

= χ̄γ pDpχ + mψ χ̄χ. (2.118)

Like fundamental strings, c.f. (2.129), the weightful

spinor field χ couples only to the DFT vielbeins (or gμν
and Bμν for Riemannian backgrounds) [13]. In this case,

T(0) = 0 holds off-shell.

• Yang–Mills

With the field strength (2.51), the Yang–Mills theory is

coupled to Stringy Gravity by [13] (c.f. [48])

LYM = Tr[Fpq̄Fpq̄ ]. (2.119)

The corresponding stringy energy–momentum tensor is

given, from [23], by

K pq̄ = −Tr[Fpr Fr
q̄ − Fpr̄ Fr̄

q̄ + DM
(
Fpq̄AM

)
],

T(0) = −2Tr[Fpq̄Fpq̄ ]. (2.120)

When the doubled Yang–Mills gauge potential satisfies

the extra condition, AM∂M = 0 (2.52), the above expres-

sion reduces to, with (2.53),

K pq̄ = Tr[Fp
r̄ (Fr̄ q̄ + AM̄Mr̄q̄)

−(Fpr + AMMpr )F
r

q̄ ]
= −Tr[FK LHL M FM N V K

p V̄ N
q̄ ]. (2.121)

• Ramond–Ramond sector

The R–R sector of the critical superstring has the kinetic

term [21,46] (c.f. [47,52,53])

LRR = 1
2

Tr(FF̄), (2.122)

where F = D+C is the R–R field strength given by the

nilpotent differential operator D+ (2.50) acting on the

Spin(1, 9)× Spin(9, 1) bi-spinorial R–R potential Cαᾱ;

F̄ = C̄−1FT C is the charge conjugation of F ; and the

trace is taken over the Spin(1, 9) spinorial indices. This

formalism is ‘democratic’, as in [54], and needs to be

supplemented by a self-duality relation,

γ (11)F ≡ F . (2.123)

The R–R sector contributes to the stringy energy–

momentum tensor, from (25) of [21] as well as (3.3) of

[46], by

K pq̄ = − 1
4

Tr(γpF γ̄q̄F̄), T(0) ≡ 0. (2.124)

Upon Riemannian reduction, Kμν = 2eμ
p ēν

q̄ K pq̄ is

generically asymmetric, Kμν �= Kνμ, which can be ver-

ified explicitly after taking the diagonal gauge of the

twofold local Lorentz symmetries and then expanding

the R–R potential Cαβ̄ in terms of conventional p-form

fields [46]. The asymmetry is also consistent with the

observation that the O(D, D)-covariant nilpotent differ-

ential operator D+ (2.50) reduces to the H -twisted exte-

rior derivative, dH = d + H(3) ∧ , such that the B-field

contributes to the R–R kinetic term (2.122) in a nontrivial

manner.

• Point particle

We consider the doubled-yet-gauged particle action from

[24] and write the corresponding Lagrangian density

using a Dirac delta function,

e−2d Lparticle =
∫

dτ [ e−1 Dτ y ADτ yBHAB(x)

− 1
4

m2e ]δD
(
x − y(τ )

)
, (2.125)

where Dτ yM = d
dτ

yM (τ )−AM is the gauged infinitesi-

mal one-form (2.12). Integrating the above over a section,
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∫
�

e−2d Lparticle, one can recover precisely the action in

[24]. Note that in Stringy Gravity, the Dirac delta func-

tion itself should satisfy the section condition and meet

the defining property

∫

�

(x)δD(x − y) = (y). (2.126)

It follows straightforwardly that

K pq̄ = −
∫

dτ 2e−1 (Dτ y)p(Dτ y)q̄ e2d(x)δD
(
x − y(τ )

)
,

T(0) = 0, (2.127)

where, naturally, (Dτ y)p = Dτ y AVAp and (Dτ y)q̄ =
Dτ y A V̄Aq̄ .

Upon Riemannian backgrounds (2.23), (2.25), with

∂̃μ ≡ 0 and the on-shell value of the gauge connection,

AM = (Aμ, 0) ≡ ( d
dτ

ỹμ − Bμν
d
dτ

yν, 0) [24], we have

Kμν = 2eμ
p ēν

q̄ K pq̄

=
∫

dτ 2e−1 gμρgνσ
dyρ

dτ

dyσ

dτ

δD
(
x − y(τ )

)
e2φ

√−g
,

(2.128)

which is symmetric, Kμν = Kνμ, as one may well expect

for the point particle. Each diagonal component is non-

negative, Kμμ ≥ 0, as
(
gμρ

dyρ

dτ

)2 ≥ 0.

• String

In a similar fashion, the doubled-yet-gauged bosonic

string action [41][40] gives

e−2d Lstring = 1
4πα′

∫
d2σ

[
− 1

2

√
−hhαβDα y ADβ yBHAB(x)

−ǫαβDα y AAβA

]
δD
(
x − y(σ )

)
, (2.129)

and hence

K pq̄ = 1
4πα′

∫
d2σ

√
−hhαβ (Dα y)p(Dβ y)q̄ e2d(x)δD

(
x − y(σ )

)
,

T(0) = 0. (2.130)

Upon reduction to Riemannian backgrounds (2.23),

(2.25), the on-shell value of the gauge connection is

AM
α =(Aαμ, 0) ≡ (∂α ỹμ−Bμν∂α yν+ 1√

−h
ǫα

βgμν∂β yν,

0) [40], and we have

Kμν = 2eμ
p ēν

q̄ K pq̄

= − 1
2πα′

∫
d2σ gμρgνσ

(√
−hhαβ

+ǫαβ
)
∂α yρ∂β yσ

δD
(
x − y(τ )

)
e2φ

√−g
, (2.131)

which is generically asymmetric, Kμν �= Kνμ, due to

the B-field. It is easy to see in lightcone gauge that the

diagonal components of Kμν , or gμρ∂+yρgμσ ∂−yσ , are

not necessarily positive.

The above analysis further generalizes to the doubled-

yet-gauged Green–Schwarz superstring [22],

K pq̄ = 1
4πα′

∫
d2σ

√
−hhαβ�αp�βq̄ e2d(x)δD

(
x − y(σ )

)
,

T(0) = 0, (2.132)

where �M
α = ∂α yM − AM

α − i θ̄γ M∂αθ − i θ̄ ′γ̄ M∂αθ
′ is

the supersymmetric extension of Dα yM .

Upon Riemannian reduction with �M
α = (�̃αμ,�

ν
α),

the on-shell value of the gauge connection AM
α sets

�̃αμ − Bμν�
ν
α + 1√

−h
ǫα

βgμν�
ν
β ≡ 0 [22], and the cor-

responding Kμν is similarly asymmetric,

Kμν = 2eμ
p ēν

q̄ K pq̄ = − 1
2πα′

∫
d2σ gμρgνσ

(√
−hhαβ

+ǫαβ
)
�ρ
α�

σ
β

δD
(
x − y(τ )

)
e2φ

√−g
. (2.133)

The asymmetry, Kμν �= Kνμ, is a genuine stringy prop-

erty.

3 Further-generalized Lie derivative, L̃ξ

In analogy with GR, the notion of isometries in Stringy Grav-

ity can be naturally addressed through the generalized Lie

derivative (2.6), which can also, from (2.37), be expressed

using DFT-covariant derivatives (2.33), leading to the DFT-

Killing equations (2.90) [23],

L̂∂
ξ PAB = L̂∇

ξ PAB = 4P̄(A
C PB)

D∇[CξD]
!= 0,

L̂∂
ξd = L̂∇

ξ d = − 1
2
∇Aξ

A != 0, (3.1)

where the final equalities with ‘ ! ’ hold only in the case of

an isometry. However, in the vielbein formulation of Stringy

Gravity this result needs to be further generalized, as one

should be able to construct Killing equations for the DFT

vielbeins.

Using V A
p V̄ B

q̄ L̂ξ P̄AB = −V A
p V̄ B

q̄ L̂ξ PAB = 2D[pξq̄]
and the fact that the DFT vielbeins are covariantly constant,

DAVBp = DA V̄B p̄ = 0 (2.39), their generalized Lie deriva-

tives can be related to the generalized Lie derivatives of the

projectors,

L̂ξVAp = P̄A
B V C

p(L̂ξ PBC )−
(
ξ BBpq + 2D[pξq]

)
VA

q ,

L̂ξ V̄A p̄ = PA
B V̄ C

p̄(L̂ξ P̄BC )−
(
ξ B̄B p̄q̄ + 2D[ p̄ξq̄]

)
V̄A

q̄ .

(3.2)
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These expressions are quite instructive, as we can arrange

them as

ξ BDB VAp + 2D[AξB]V
B

p + 2D[pξq]VA
q

= P̄A
B(L̂ξ PBC )V

C
p,

ξ BDB V̄A p̄ + 2D[AξB]V̄
B

p̄ + 2D[ p̄ξq̄]V̄A
q̄

= PA
B(L̂ξ P̄BC )V̄

C
p̄. (3.3)

Motivated by the expressions of the left-hand sides above, we

propose to generalize the generalized Lie derivative one step

further by constructing a further-generalized Lie derivative,

L̃ξ , which can act on an arbitrary tensor density carrying

O(D, D) and Spin(1, D−1)× Spin(D−1, 1) indices7 as

L̃ξTMp p̄
α
β
ᾱ
β̄ := ξ N DN TMp p̄

α
β
ᾱ
β̄ + ωDN ξ

N TMp p̄
α
β
ᾱ
β̄

+ 2D[MξN ]T
N

p p̄
α
β
ᾱ
β̄

+ 2D[pξq]TM
q

p̄
α
β
ᾱ
β̄ + 1

2
D[rξs](γ

rs)αδTMp p̄
δ
β
ᾱ
β̄

− 1
2
D[rξs](γ

rs)δβTMp p̄
α
δ
ᾱ
β̄

+2D[ p̄ξq̄]TMp
q̄α

β
ᾱ
β̄ + 1

2
D[r̄ξs̄](γ̄

r̄ s̄)ᾱ δ̄TMp p̄
α
β
δ̄
β̄

− 1
2
D[r̄ξs̄](γ̄

r̄ s̄)δ̄ β̄TMp p̄
α
β
ᾱ
δ̄. (3.4)

In short, the further-generalized Lie derivative comprises the

original generalized Lie derivative and additional infinitesi-

mal local Lorentz rotations given by the terms

ξ AApq + 2D[pξq] = 2∂[pξq] +r̄ pqξ
r̄ + 3[pqr ]ξ r ,

ξ ĀA p̄q̄ + 2D[ p̄ξq̄] = 2∂[ p̄ξq̄] + ̄r p̄q̄ξ
r + 3̄[ p̄q̄r̄ ]ξ r̄ ,

(3.5)

such that, for example,

L̃ξTMp p̄
αᾱ = L̂ξTMp p̄

αᾱ + (ξ NN pq + 2D[pξq])TM
q

p̄
αᾱ

+ 1
4
(ξ NNrs + 2D[rξs])(γ

rs)αβTMp p̄
βᾱ

+(ξ N ̄N p̄q̄ + 2D[ p̄ξq̄])TMp
q̄αᾱ

+ 1
4
(ξ N ̄Nr̄ s̄ + 2D[r̄ξs̄])(γ̄

r̄ s̄)ᾱ β̄TMp p̄
αβ̄ . (3.6)

The further-generalization is also equivalent to replacing the

ordinary derivatives in the original generalized Lie deriva-

tive by master derivatives, L̂∂
ξ → L̂D

ξ , and adding the local

Lorentz rotations, 2D[pξq] and 2D[ p̄ξq̄].
It is then crucial to note that the further-generalized Lie

derivative is completely covariant for both the twofold local

Lorentz symmetries and the doubled-yet-gauged diffeomor-

phisms, as follows. The local Lorentz covariance is guaran-

teed by the use of the master derivatives everywhere in the

definition (3.4). The diffeomorphism covariance also holds,

7 c.f. [12,52,53] where the generalized Lie derivative was extended

to act not on local Lorentz but on O(D, D) spinors. Our further-

generalized Lie derivative acts on both O(D, D) and Spin(1, D−1)×
Spin(D−1, 1) indices.

since the original generalized Lie derivative and the addi-

tional local Lorentz rotations (3.5) are separately diffeomor-

phism covariant, from (2.10) and (2.48). For example, the

further-generalized Lie derivative acting on a Spin(1, D−1)

spinor field, ψα , reads

L̃ξψ = ξMDMψ + 1
2
D[pξq]γ

pqψ = ξ p̄D p̄ψ

+ 1
2
γ pDp

(
γ qξqψ

)

+ 1
2
γ qξq

(
γ pDpψ

)
− 1

2

(
Dpξ

p
)
ψ. (3.7)

As expected, or directly seen from (2.49), this expression is

completely covariant under both the local Lorentz and the

doubled-yet-gauged diffeomorphism transformations. It is

advantageous to use L̃ξ because of its local Lorentz covari-

ance; whereas, in contrast, L̂ξ is not locally Lorentz covari-

ant.

The isometry of the DFT vielbeins is then characterized

by the vanishing of their further-generalized Lie derivatives,

which is then, with (2.17), (3.1), (3.3), equivalent to nothing

but the isometry of the projectors, as

L̃ξVAp = P̄A
B(L̂ξ PBC )V

C
p = (L̂ξ PAC )V

C
p,

L̃ξ V̄A p̄ = PA
B(L̂ξ P̄BC )V̄

C
p̄ = (L̂ξ P̄AC )V̄

C
p̄. (3.8)

Moreover, gamma and charge conjugation matrices, (γ p)αβ ,

(γ̄ p̄)ᾱ β̄ , Cαβ , C̄ᾱβ̄ , are all compatible with L̃ξ ,

L̃ξγ
p =ξ N DNγ

p + 2D[pξq]γq + 1
2
D[rξs][γ rs, γ p] = 0,

L̃ξ γ̄
p̄ =ξ N DN γ̄

p̄ + 2D[ p̄ξ q̄]γ̄q̄ + 1
2
D[r̄ξs̄][γ̄ r̄ s̄, γ̄ p̄] = 0,

(3.9)

L̃ξCαβ =− 1
2
D[pξq]

(
Cγ pq + (γ pq)T C

)
αβ

= 0,

L̃ξ C̄ᾱβ̄ =− 1
2
D[ p̄ξq̄]

(
C̄ γ̄ p̄q̄ + (γ̄ p̄q̄)T C̄

)
ᾱβ̄

= 0. (3.10)

The further-generalized Lie derivative is closed by the C-

bracket (2.8) and twofold local Lorentz rotations,

[
L̃ζ , L̃ξ

]
= L̃[ζ,ξ ]C

+ ωpq(ζ, ξ)+ ω̄ p̄q̄(ζ, ξ), (3.11)

of which the two infinitesimal local Lorentz rotation param-

eters are specified by ζM and ξM as

ωpq(ζ, ξ) = −ωqp(ζ, ξ) = (D p̄ζp − Dpζ p̄)(D
p̄ξq − Dqξ

p̄)

−(D p̄ζq − Dqζ p̄)(D
p̄ξp − Dpξ

p̄),

ω̄ p̄q̄(ζ, ξ) = −ω̄q̄ p̄(ζ, ξ) = (Dpζ p̄ − D p̄ζp)(D
pξq̄ − Dq̄ξ

p)

−(Dpζq̄ − Dq̄ζp)(D
pξ p̄ − D p̄ξ

p). (3.12)
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Table 1 Variables and parameters for the spherical solution to the

D = 4 Einstein Double Field Equations. The final form of the solu-

tion is summarized in (4.66), (4.67), and (4.68), where the constant

parameters of the spherical vacuum geometry, {α, β, a, b, h}, are all

identified as integrals of the stringy energy–momentum tensor, TAB ,

localized at the center

A(r), B(r),C(r): Stringy graviton field components (4.6), (4.66)

D(r), E(r), F(r): Stringy energy–momentum tensor

components (4.14)

V(r),W(r),X (r),Y(r),Z(r): Integrals of the

stringy E–M tensor (4.35), (4.44), (4.68)

α, β, a, b, h: Spherical vacuum parameters [24]

(4.6), (4.48), (4.52), (4.67)

The closure essentially boils down to8

[
L̃ζ , L̃ξ

]
VMp = L̃[ζ,ξ ]C

VMp + ωpq(ζ, ξ)VM
q ,

[
L̃ζ , L̃ξ

]
V̄M p̄ = L̃[ζ,ξ ]C

V̄M p̄ + ω̄ p̄q̄(ζ, ξ)V̄M
q̄ ,

(3.13)

which can easily be verified using (2.7) and (3.8).

4 Regular spherical solution to Einstein double field

equations

In this section we derive the most general, spherically sym-

metric, asymptotically flat, static, Riemannian, regular solu-

tion to the D = 4 Einstein Double Field Equations. Here-

after, we fix the section as ∂̃μ ≡ 0, adopt spherical coordi-

nates, {t, r, ϑ, ϕ}, and focus on the Riemannian parametriza-

tions (2.22)–(2.25). We shall encounter various parameters

and variables, as listed in Table 1.

4.1 Most general D = 4 spherical ansatz

The spherical symmetry in D = 4 Stringy Gravity is charac-

terized by three Killing vectors, ξ N
a , a = 1, 2, 3, which form

an so(3) algebra through the C-bracket,

[ξa, ξb]C =
∑

c

ǫabcξc. (4.1)

8 Note, e.g. with Tp = T AVAp ,

[
L̃ζ , L̃ξ

]
Tp =

[
L̃ζ , L̃ξ

] (
T AVAp

)

=
([

L̃ζ , L̃ξ

]
T A
)

VAp + T A
[
L̃ζ , L̃ξ

]
VAp

=
(
L̃[ζ,ξ ]C

T A
)

VAp + T A
(
L̃[ζ,ξ ]C

VAp + ωpq (ζ, ξ)VA
q
)

= L̃[ζ,ξ ]C

(
T AVAp

)
+ ωpq (ζ, ξ)T

q

= L̃[ζ,ξ ]C
Tp + ωpq (ζ, ξ)T

q .

With ∂̃μ ≡ 0, the so(3) Killing vectors, ξ N
a = (ξ̃aμ, ξ

ν
a ),

decompose explicitly into ξ̃a = ξ̃aμdxμ and ξa = ξ νa ∂ν [24],

ξ̃1 = cosϕ
sin ϑ

[
hdt + B(r)dr

]
, ξ1 = sin ϕ∂ϑ + cot ϑ cosϕ∂ϕ,

ξ̃2 = sin ϕ
sin ϑ

[
hdt + B(r)dr

]
, ξ2 = − cosϕ∂ϑ + cot ϑ sin ϕ∂ϕ,

ξ̃3 = 0, ξ3 = −∂ϕ,
(4.2)

where h is constant and B(r) is an arbitrary function of

the radius. The three of ξ
μ
a ∂μ’s are the standard (undou-

bled) so(3) angular momentum operators. In terms of the

further-generalized Lie derivative, the spherical symmetry

of the stringy graviton fields implies

L̃ξa VAp = 0, L̃ξa V̄A p̄ = 0, L̃ξa PAB = 0,

L̃ξa P̄AB = 0, L̃ξa d = 0, (4.3)

such that the DFT-Killing equations (3.1) are satisfied,

PA
C P̄B

D(∇Cξa D − ∇DξaC ) = 0 ⇐⇒ (P∇)A(P̄ξa)B

= (P̄∇)B(Pξa)A, ∇Aξ
A
a = 0. (4.4)

On Riemannian backgrounds (2.22), (2.23), (2.25), the above

DFT-Killing equations reduce to

Lξa gμν = 0, Lξa Bμν + ∂μξ̃aν − ∂ν ξ̃aμ = 0, Lξaφ = 0.

(4.5)

In addition to the spherical symmetry we also require the

static condition, such that all the fields are time-independent,

∂t ≡ 0. By utilizing ordinary diffeomorphisms we can set

gtr ≡ 0 [26], and hence without loss of generality we can

put the Riemannian metric into the diagonal form [24]

ds2 = e2φ(r)
[
−A(r)dt2 + A−1(r)dr2 + A−1(r)C(r) d"2

]
,

B(2) = B(r) cosϑ dr ∧ dϕ + h cosϑ dt ∧ dϕ,

(4.6)

where d"2 = dϑ2 + sin2 ϑdϕ2 and B(2) = 1
2

Bμνdxμ ∧ dxν .

This ansatz solves the spherical DFT-Killing equations, or

(4.5), with four unknown radial functions, A(r), B(r), C(r),

φ(r), and one free constant, h. It differs slightly from the

rather well known ansatz in GR (A.29), but accords with the

analytic solution in [24]. The H -flux then corresponds to the

most general spherically symmetric three-form,9

H(3) = dB(2) = B(r) sin ϑ dr ∧ dϑ ∧ dϕ + h sin ϑ dt

∧dϑ ∧ dϕ, Lξa H(3) = 0. (4.7)

9 In terms of Cartesian coordinates, x1 = r sin ϑ cosϕ, x2 =
r sin ϑ sin ϕ, x3 = r cosϑ , we have

sin ϑ dϑ ∧ dϕ = 1
2
ǫi jk(x

i/r3) dx j ∧ dxk .
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The above ansatz reduces to the flat Minkowskian spacetime

if and only if A = 1, C = r2, B = φ = h = 0.

It is worth expanding the DFT integral measure, and its inte-

gration over 0 ≤ ϑ < π and 0 ≤ ϕ < 2π , on the Riemannian

background,

e−2d = e−2φ√−g = e2φ A−1C sin ϑ = R2 sin ϑ,∫

ϑ

∫

ϕ

e−2d ≡
∫ π

0

dϑ

∫ 2π

0

dϕ e−2d = 4πe2φ A−1C = 4πR2,

(4.8)

where R denotes the so-called ‘areal radius’,

R := eφ
√

C/A. (4.9)

We further let the energy–momentum tensor, i.e. matter,

be spherically symmetric,

L̃ξa TAB = 0, (4.10)

which, with (2.74) and (4.3), decomposes into

L̃ξa K pq̄ = 0, L̃ξa T(0) = 0. (4.11)

The latter implies that T(0)(r) is another radial function, while

the former gives, using the convention K pq̄ = 1
2

ep
μēq̄

ν

Kμν (2.98),

Lξa Kμν = 0, (4.12)

which follows from the generic expression of the further-

generalized Lie derivative acting on K pq̄ ,

L̃ξ K pq̄ = 1
4

ep
μēq̄

ν[2Lξ Kμν

+{2∂[μξ̃ρ] + Lξ (B − g)μρ}gρσ Kσν

−{2∂[ν ξ̃ρ] + Lξ (B + g)νρ}gρσ Kμσ ], (4.13)

together with the isometry condition (4.5).

Combining these results, we arrive at the final form of

Kμν ,

Kμν =

⎛
⎜⎜⎝

Kt t (r) D(r)+ E(r) 0 0

D(r)− E(r) Krr (r) 0 0

0 0 Kϑϑ (r) F(r) sin ϑ

0 0 − F(r) sin ϑ Kϑϑ (r) sin2 ϑ

⎞
⎟⎟⎠ ,

(4.14)

such that there are six radial functions, Kt t (r), Krr (r),

Kϑϑ (r), D(r), E(r) and F(r), with

K(tr) = D(r), K[tr ] = E(r),

Kϑϕ = −Kϕϑ = F(r) sin ϑ. (4.15)

In particular, it includes anti-symmetric components which

induce a two-form,

K(2) := 1
2

K[μν]dxμ∧dxν = E(r)dt∧dr+F(r) sin ϑdϑ∧dϕ.

(4.16)

This is a novel feature of Stringy Gravity which is not present

in GR. For later use, it is worthwhile to note, from (2.92),

(2.101), that

T t
Aξ

A = (Kt
t − 1

2
T(0))ξ

t + gt t K(tr)ξ
r

+K [tr ]Brϕξ
ϕ − K [tr ]ξ̃r

= ξ t (Kt
t − 1

2
T(0))− ξ r e−2φ A−1 D

−e−4φE(ξϕB cosϑ − ξ̃r ),

(4.17)

and

Kϑ
ϑ = e−2φ AC−1 Kϑϑ = Kϕ

ϕ,

e−2d K ϑϕ = e−2φ AC−1 F,
(4.18)

both of which depend on the radius, r , only.

4.2 Solving the Einstein double field equations

Having prepared the most general spherically symmetric

static ansatz, (4.6), (4.14), we now proceed to solve the Ein-

stein double field equations (2.102), (2.103), (2.104). Sub-

tracting the ‘trace’ of (2.102) from (2.104) and employing

the differential form notation of (4.7) and (4.16), we focus

on the three equivalent equations

�φ − 2∂μφ∂
μφ + 1

12
HμνρHμνρ = 4πG(T(0) − Kμ

μ),

(4.19)

Rμν + 2▽μ(∂νφ)− 1
4

Hμρσ Hν
ρσ = 8πG K(μν), (4.20)

− ⋆ d ⋆ (e−2φH(3)) = 16πGe−2φK(2). (4.21)

We will assume that the stringy energy–momentum tensor

is nontrivial only up to a finite radius, rc, and thus vanishes

outside this radius:

TAB = 0 i f r ≥ rc. (4.22)

That is to say, matter is localized only up to the finite ‘cutoff’

radius, rc, in a spherically symmetric manner. We emphasize

that we never force the H -flux nor the gradient of the string

dilaton to be trivial outside a finite radius: this would have

been the case if we had viewed them as extra matter, but in

the current framework of Stringy Gravity, they are part of the

stringy graviton fields, on the same footing as the Riemannian

metric, gμν . Their profiles are dictated by the Einstein Double

Field Equations only.

The strict localization of the matter (4.22) motivates us to

restrict spacetime to be asymptotically ‘flat’ (Minkowskian)
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at infinity, by imposing the following boundary condi-

tions [24],

lim
r→∞

A = 1, lim
r→∞

A′ = 0, lim
r→∞

A′′ = 0,

lim
r→∞

r−2C = 1, lim
r→∞

C ′C−1/2 = 2, lim
r→∞

C ′′ = 2,

lim
r→∞

φ = 0, lim
r→∞

φ′ = 0, lim
r→∞

φ′′ = 0.

(4.23)

The vacuum expectation value of the string dilaton at infinity,

or limr→∞ e−2φ = 1, is our conventional normalization, as

we have the Newton constant, G, at our disposal as a sepa-

rate free parameter in the master action of Stringy Gravity

coupled to matter (2.70). The conditions of (4.22) and (4.23)

should enable us to recover the previously acquired, most

general, spherically symmetric, asymptotically flat, static

vacuum solution to D = 4 Stringy Gravity [24] (c.f. [25])

outside the cutoff radius, r ≥ rc.

In addition, we postulate that matter and hence the space-

time geometry are ‘regular’ and ‘non-singular’ at the origin,

r = 0. We require

lim
r→0

C = 0, lim
r→0

A′C = 0, lim
r→0

φ′C = 0, (4.24)

of which the first is a natural condition for the consistency

of the spherical coordinate system at the origin (4.6). The

second and third can then be satisfied easily as long as A′

and φ′ are finite at r = 0. Note also that the areal radius,

R = eφ
√

C/A (4.9), vanishes at the origin.

All the nontrivial (Riemannian) Christoffel symbols of the

metric ansatz (4.6) are, exhaustively [24],

γ t
tr = γ t

r t = 1
2

A′ A−1 + φ′, γ r
tt = 1

2
A′ A + φ′ A2,

γ r
ϑϑ = 1

2
A′ A−1C − 1

2
C ′ − Cφ′,

γ r
rr = − 1

2
A′ A−1 + φ′, γ r

ϕϕ = sin2 ϑγ r
ϑϑ ,

γ ϑrϑ = γ ϑϑr = − 1
2

A′ A−1 + 1
2

C ′C−1 + φ′,

γ ϑϕϕ = − sin ϑ cosϑ, γ
ϕ
ϑϕ = γ

ϕ
ϕϑ = cot ϑ,

γ ϕrϕ = γ ϕϕr = − 1
2

A′ A−1 + 1
2

C ′C−1 + φ′. (4.25)

From the off-shell conservation of the stringy Einstein ten-

sor, the three equations (4.19), (4.20), (4.21) must imply the

on-shell conservation of the stringy energy–momentum ten-

sor as in (2.96) and (2.97). For the present spherical and

static ansatz, the nontrivial components of (2.96) come from

‘ν = t’ and ‘ν = r ’ only. They are, respectively,

he−2φ AC−1 F = − d

dr
(C D), (4.26)

and

d

dr
(Kr

r − 1
2

T(0))

= 1
2

A′ A−1(Kt
t + Kr

r − 2Kϑ
ϑ )

+φ′(Kt
t − Kr

r + 2Kϑ
ϑ )

−C ′C−1(Kr
r − Kϑ

ϑ )− e−4φ A2 BC−2 F. (4.27)

On the other hand, for (2.97), there appears only one non-

trivial relation from the choice of ‘ν = t’,

d
dr

(
e−2φ A−1C E

)
= 0. (4.28)

We will confirm that these relations are indeed satisfied

automatically by the three Eqs. (4.19), (4.20), (4.21) which

reduce, with the Christoffel symbols (4.25), as follows.

Firstly, the scalar equation (4.19) becomes

4πG(T(0) − Kμ
μ) = e−2φφ′ A

d

dr
ln(φ′C)

+ 1
2

e−6φ(A3 B2C−2 − h2 AC−2).

(4.29)

The Ricci curvature, Rμν , and the two derivatives of the string

dilaton, ▽μ∂νφ, are automatically diagonal, such that the

tensorial equation (4.20) is almost diagonal,

8πGKt t = Rt t + 2▽t∂tφ − 1
4

Htρσ Ht
ρσ

= 1
2

A′ A d
dr

ln(A′ A−1C)+ φ′ A2 d
dr

ln(φ′C)− 1
2

h2 A2C−2e−4φ,

8πGKrr = Rrr + 2▽r∂rφ − 1
4

Hrρσ Hr
ρσ

= 1
2

A′ A−1 d
dr

ln(A′ A−1C)− 1
2

A′2 A−2 − C−1/2 d
dr

(
C ′C−1/2

)

− 2φ′2 − φ′ d
dr

ln(φ′C)− 1
2

A2 B2C−2e−4φ,

8πGKϑϑ = Rϑϑ + 2▽ϑ∂ϑφ − 1
4

Hϑρσ Hϑ
ρσ

= 1 − 1
2

C ′′ + d
dr

(
1
2

A′ A−1C − φ′C
)
− 1

2
(A2 B2 − h2)C−1e−4φ,

8πGKϕϕ = 8πG sin2ϑKϑϑ = Rϕϕ + 2▽ϕ∂ϕφ

− 1
4

Hϕρσ Hϕ
ρσ = sin2ϑ

(
Rϑϑ + 2▽ϑ∂ϑφ − 1

4
Hϑρσ Hϑ

ρσ
)
,

(4.30)

with one exception, an off-diagonal component,

8πG K(tr) = 8πG D(r) = Rtr + 2▽t∂rφ − 1
4

Htρσ Hr
ρσ

= − 1
4

Htρσ Hr
ρσ = − 1

2
h Be−4φ A2C−2. (4.31)

The last equation for the H -flux (4.21) becomes

− ⋆d ⋆ (e−2φH(3)) = − ⋆ d(e−4φ A2 BC−1dt + e−4φhC−1dr)

= A−1C sin ϑ
d

dr

(
e−4φ A2 BC−1

)
dϑ ∧ dϕ

= 16πGe−2φK(2) = 16πGe−2φ
(
E(r)dt

∧dr + F(r) sin ϑdϑ ∧ dϕ
)
, (4.32)
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which gives

K[tr ](r) = E(r) = 0,

16πGe−2φ AC−1 F(r) = d

dr

(
e−4φ A2 BC−1

)
. (4.33)

The former result of (4.33) satisfies the conservation rela-

tion (4.28) trivially, while the latter combined with (4.31)

implies the conservation relation (4.26). Integrating the lat-

ter, we get

e−4φ A2 BC−1 = q + V(r), (4.34)

where we set

V(r) := −16πG

∫ ∞

r

dr ′ e−2φ(r ′)A(r ′)F(r ′)/C(r ′)

= −16πG

∫ ∞

r

dr e−2d K ϑϕ, (4.35)

and q is a constant of integration. From our assump-

tion (4.22), when r ≥ rc, both F(r) and V(r) vanish, and

consequently e−4φ A2 BC−1 assumes the constant value, q.

Now, substituting (4.34) into the second formula in (4.30),

we get

8πG Krr = 1
2

A′ A−1 d

dr
ln(A′ A−1C)− 1

2
A′2 A−2

−C−1/2 d

dr

(
C ′C−1/2

)
− 2φ′2 − φ′ d

dr
ln(φ′C)

− 1
2

e4φ A−2 (q + V)2 . (4.36)

The infinite radius limit of this expression implies, with the

conditions of (4.22) and (4.23), that actually q must be trivial:

q = 0. Therefore, from (4.34), we are able to fix B(r) and

hence Hrϑϕ ,

B = e4φ A−2CV, Hrϑϕ = e4φ A−2CV sin ϑ, (4.37)

which vanish when r ≥ rc, in agreement with the known

vacuum solution [24].

The remaining Einstein Double Field Equations (4.29),

(4.30), (4.31) reduce, with

∫

ϑ

∫

ϕ

e−2d ≡ 4πe2φ A−1C from

(4.8), to

hV = −16πG K(tr)C, (4.38)

C ′′ = 2 + 4G(Kr
r + Kϑ

ϑ − T(0))

(∫

ϑ

∫

ϕ

e−2d

)

+ e4φ A−2CV2, (4.39)

d

dr
(A′ A−1C) = 2G(Kμ

μ − 2Kt
t − T(0))

(∫

ϑ

∫

ϕ

e−2d

)

+e4φ A−2CV2, (4.40)

d

dr
(φ′C) = 1

2
h2e−4φC−1 − G(Kμ

μ − T(0))

(∫

ϑ

∫

ϕ

e−2d

)

− 1
2

e4φ A−2CV2, (4.41)

4(φ′C)2 + (A′ A−1C)2 + 4C − C ′2 + h2e−4φ

+ e4φ A−2C2V2 + 4CG(2Kr
r − T(0))

(∫

ϑ

∫

ϕ

e−2d

)
= 0.

(4.42)

The first Eq. (4.38) indicates that h is a proportionality con-

stant relating V = e−4φ A2 BC−1 to K(tr)C . On the other

hand, the radial derivative of the entire expression in the last

formula (4.42), after substitution of (4.37), (4.39), (4.40), and

(4.41), implies the remaining conservation relation (4.27):

d

dr

[
4(φ′C)2 + (A′ A−1C)2 + 4C − C ′2 + h2e−4φ

+e4φ A−2C2V2 + 4CG(2Kr
r − T(0))

(∫

ϑ

∫

ϕ

e−2d

)]

=
[ d

dr
(Kr

r − 1
2

T(0))− 1
2

A′ A−1(Kt
t + Kr

r − 2Kϑ
ϑ )

−φ′(Kt
t − Kr

r + 2Kϑ
ϑ )+ C ′C−1(Kr

r − Kϑ
ϑ )

+e−4φ A2 BC−2 F
]

× 8CG

(∫

ϑ

∫

ϕ

e−2d

)
. (4.43)

This provides a consistency check for the Eqs. (4.39)–(4.42),

and completes our concrete verification that all the energy–

momentum conservation laws indeed follow from the Ein-

stein double field equations.

In order to solve or integrate the second and the third equa-

tions, (4.39), (4.40), we prepare the following definitions,

W(r) :=
∫ r

0

dr e4φ A−2C V2 = 1
4π

∫ r

0

dr

∫

ϑ

∫

ϕ

e−2d HrϑϕH rϑϕ,

Ŵ(r) :=
∫ r

0

dr W,

X (r) := G

∫ r

0

dr

∫

ϑ

∫

ϕ

e−2d (Kr
r + Kϑ

ϑ − T(0)),

X̂ (r) :=
∫ r

0

dr X ,

Y(r) := G

∫ r

0

dr

∫

ϑ

∫

ϕ

e−2d (Kr
r + Kϑ

ϑ + Kϕ
ϕ − Kt

t − T(0)),

(4.44)

which all vanish at the origin, r = 0. Further, when r ≥ rc,

the un-hatted functions, W(r), X (r), Y(r), become constant

– for example, X (r) = X (rc) ≡ Xc for r ≥ rc. Conse-

quently, the hatted functions become linear in the outside

region,

Ŵ(r) = Ŵc + (r − rc)Wc,

X̂ (r) = X̂c + (r − rc)Xc for r ≥ rc.
(4.45)
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Integrating (4.39) twice, we can solve for C(r). There are

two constants of integration which we fix by imposing the

boundary conditions at the origin: firstly we set C(0) = 0

directly from (4.24) and secondly, with φ0 ≡ φ(0), we fix

C ′(0) = ±he−2φ0 from the consideration of the small r limit

of (4.42). We get

C(r) = r2 ± he−2φ0r + 4X̂ (r)+ Ŵ(r). (4.46)

Outside the matter this reduces to a quadratic equation,

C(r) = (r − α)(r + β) = r2 + (4Xc + Wc ± he−2φ0)r

+4X̂c − 4rcXc + Ŵc − rcWc for r ≥ rc,

(4.47)

where we set two constants,

α := 1
2

[
−(4Xc + Wc ± he−2φ0 )

+
√
(4Xc + Wc ± he−2φ0 )2 + 16rcXc − 16X̂c + 4rcWc − 4Ŵc

]
,

β := 1
2

[
4Xc + Wc ± he−2φ0

+
√
(4Xc + Wc ± he−2φ0 )2 + 16rcXc − 16X̂c + 4rcWc − 4Ŵc

]
.

(4.48)

Similarly, (4.40) gives

A′ A−1C = 2Y + W, lim
r→0

A′ A−1C = 0, (4.49)

for which the trivial constant of integration (zero) has been

chosen to meet the boundary condition at the origin (4.24).

Eq.(4.49) can be further integrated to determine A(r) with

the boundary condition, this time at infinity (4.23),

A(r) = exp

[
−
∫ ∞

r

dr (2Y + W)C−1

]
, lim

r→∞
A(r) = 1.

(4.50)

Away from the matter, with (4.47), this reduces to a closed

form,

A(r) =
(

r−α
r+β

) a
α+β

f or r ≥ rc, (4.51)

where we have introduced another constant,

a := lim
r→∞

A′ A−1C = 2Y(rc)+ W(rc) = 2Yc + Wc,

(4.52)

such that outside the matter,

A′ A−1C = a f or r ≥ rc. (4.53)

For A(r) to be real and positive, it is necessary to restrict the

range of r . Since α+β is positive semi-definite from (4.48),

we are lead to require the cutoff radius to be greater than α,

such that

r ≥ rc > α ≥ −β, r − α

r + β
> 0. (4.54)

However, note that the signs of α and β are not yet fixed: in

the next Sect. 4.3 we shall assume some energy conditions

which will ensure both α and β are positive.

We now turn to the last differential equation (4.42). Upon

substitution of (4.47) and (4.49), it takes the form

4(φ′C)2 + h2e−4φ = h2e−4φ0 + 8XW − 4(Y + W)Y

+ 16(X 2 − X̂ )− 4Ŵ − e4φ A−2C2V2

+4
(
r ± 1

2
he−2φ0

)
(4X + W)

−4CG(2Kr
r − T(0))

(∫

ϑ

∫

ϕ

e−2d

)
,

(4.55)

which, from (4.51), (4.52), reduces outside the matter to

4(φ′C)2 + h2e−4φ ≡ b2 f or r ≥ rc. (4.56)

This new constant, b, meets

b2 := (α + β)2 − a2 = 16rcXc − 16X̂c + 4rcWc − 4Ŵc

+
(
4Xc + Wc ± he−2φ0

)2 −
(
2Yc + Wc

)2
. (4.57)

Since the left-hand side of (4.56) is positive, b should be real,

and from (4.48), α + β is positive since

α + β =
√

a2 + b2

=
√
(4Xc + Wc ± he−2φ0 )2 + 16rcXc − 16X̂c + 4rcWc − 4Ŵc.

(4.58)

Therefore, outside the matter we have

2φ′C = ±
√

b2 − h2e−4φ f or r ≥ rc, (4.59)

such that

±
∫

2dφ√
b2 − h2e−4φ

=
∫

dr

(r − α)(r + β)
f or r ≥ rc,

(4.60)

of which both sides can be integrated to give

± 1

|b| ln

(
e2φ +

√
e4φ − h2/b2

)

= 1

α + β
ln

(
r − α

r + β

)
+ constant. (4.61)

We can determine the constant of integration in (4.61) from

the boundary condition at infinity (4.23),

lim
r→∞

e2φ = 1, (4.62)
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to obtain the profile of the string dilaton outside the matter,

e2φ = γ+
(

r−α
r+β

) b√
a2+b2 + γ−

(
r+β
r−α

) b√
a2+b2

f or r ≥ rc,

(4.63)

where b can be either positive or negative, and γ+, γ− denote

two positive semi-definite constants,

γ± := 1
2
(1 ±

√
1 − h2/b2). (4.64)

For the sake of reality, we require10

b2 ≥ h2. (4.65)

This completes our derivation of the spherically symmetric,

static, regular solution to D = 4 Stringy Gravity with a local-

ized stringy matter distribution.

We conclude this subsection by summarizing and analyz-

ing our results.

• Outside the cutoff radius, r ≥ rc, we recover the spheri-

cally symmetric static vacuum solution [24]:

e2φ = γ+
(

r−α
r+β

) b√
a2+b2 + γ−

(
r+β
r−α

) b√
a2+b2

,

B(2) = h cosϑ dt ∧ dϕ,

ds2 = e2φ

[
−
(

r−α
r+β

) a√
a2+b2

dt2 +
(

r+β
r−α

) a√
a2+b2

×
{
dr2 + (r − α)(r + β)d"2

}]
.

(4.66)

• Moreover, the constants, α, β, a, b, h, are now all deter-

mined by the stringy energy–momentum tensor of the

matter localized inside the cutoff radius: from (4.48),

(4.52), (4.57),

α = 1
2

[√(
Zc ± he−2φ0

)2 + 4Z̃c −
(
Zc ± he−2φ0

)]
,

β = 1
2

[√
(Zc ± he−2φ0)2 + 4Z̃c +

(
Zc ± he−2φ0

)]
,

10 In fact, when b = 0, from (4.56), we get h = 0 and φ′ = 0. Although

(4.60) and (4.61) would be problematic if b = 0, the final result (4.63)

is still valid, as e2φ = 1.

a =
∫ ∞

0

dr

∫ π

0

dϑ

∫ 2π

0

dϕ e−2d

[
1

4π
HrϑϕH rϑϕ

+2G
(
Kr

r + Kϑ
ϑ + Kϕ

ϕ − Kt
t − T(0)

) ]
,

b2 =
(
Zc ± he−2φ0

)2
+ 4Z̃c − a2,

h = Ktr C∫ ∞

r

dr e−2d K ϑϕ

, (4.67)

where, with (4.44),

Z(r) :=
∫ r

0

dr

∫ π

0

dϑ

∫ 2π

0

dϕ e−2d

[
1

4π
HrϑϕH rϑϕ

+4G
(
Kr

r + Kϑ
ϑ − T(0)

)]
= W(r)+ 4X (r),

Z̃c :=
∫ rc

0

dr [Zc − Z(r)]. (4.68)

As before, the subscript index, c, denotes the position at

r = rc, such that Zc = Z(rc).

• Some further comments are in order.

– There are two classes of solutions: b =
√
(α + β)2 − a2

≥ 0 or b = −
√
(α + β)2 − a2 < 0.

– Direct computation from (4.63) shows

2φ′Ce2φ = b

[
γ+
(

r−α
r+β

) b√
a2+b2 − γ−

(
r+β
r−α

) b√
a2+b2

]

= ε̂φ b

√
e4φ − h2/b2, (4.69)

where we define a sign factor,

ε̂φ :=

⎧
⎨
⎩

+1 if b > 0 and r ≥ rφ
−1 if b > 0 and rφ > r ≥ α

+1 if b < 0 and r ≥ α,

(4.70)

with the zero of φ′ given by

rφ :=
α + β

(
γ−
γ+

)√
a2+b2

2b

1 −
(
γ−
γ+

)√
a2+b2

2b

, φ′(rφ) = 0,

φ(rφ) = 1
2

ln |h/b| < 0. (4.71)

When h is trivial, we have γ− = 0, rφ = α and hence

ε̂φ is fixed to be +1. If h �= 0 and b > 0, then rφ > α.

Otherwise (h �= 0 and b < 0) we have the opposite,

rφ < α. In fact, when b is negative, rφ also becomes

negative and thus unphysical. That is to say, for large

enough r , i.e. either r ≥ α with negative b or r ≥ rφ
with positive b, the sign of φ′ coincides with that of b,
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but when b is positive, φ′ becomes negative in the finite

interval α ≤ r < rφ .

– Since b is real, the following inequality must be met:

(Zc ± he−2φ0)2 + 4Z̃c ≥ a2, (4.72)

which imposes a constraint on the stringy energy–

momentum tensor through (4.67).

– From (4.8), outside the matter the integral measure in

Stringy Gravity reads

e−2d = R2 sin ϑ =
[
γ+

(
r + β

r − α

) a−b√
a2+b2

+γ−

(
r + β

r − α

) a+b√
a2+b2

]

(r − α)(r + β) sin ϑ for r ≥ rc. (4.73)

– With the boundary condition at the origin (4.24), the Ein-

stein double field equations (4.40), (4.41) enable us to

evaluate, for arbitrary r ≥ 0,

2φ′C + A′ A−1C =
∫ r

0

dr
d

dr

(
2φ′C + A′ A−1C

)

=
∫ r

0

dr
(

h2e−4φC−1 − 16πG Kt
t e2φ A−1C

)

=
∫ r

0

dr

∫ π

0

dϑ

∫ 2π

0

dϕ e−2d

×
(

1

4π

∣∣HtϑϕH tϑϕ
∣∣− 4G Kt

t

)
,

(4.74)

where HtϑϕH tϑϕ = −h2e−6φ AC−2.

– Combining (4.69) and (4.74) with the boundary condition

at infinity (4.23), (4.53), we acquire

a + b

√
1 − h2/b2 =

∫ ∞

0

dr

∫ π

0

dϑ

∫ 2π

0

dϕ e−2d

×
(

1

4π

∣∣HtϑϕH tϑϕ
∣∣− 4G Kt

t

)
.

(4.75)

We stress that this result is valid irrespective of the sign

of b.

– The constant parameter, h, corresponding to the electric

H -flux, is given by the formula (4.67)

h = Ktr (r)C(r)
/[∫ ∞

r

dr e−2d K ϑϕ

]
. (4.76)

While this is a nontrivial relation, as the right-hand side

of the equality must be constant independent of r , it is

less informative compared to the integral expressions of

a in (4.67) or a + b
√

1 − h2/b2 in (4.75). We expect a

fuller understanding of the h parameter will arise if we

solve for the time-dependent dynamical Einstein Double

Field Equations, allowing h to be time-dependent, h →
h(t). In any case, (4.76) implies that if Ktr is nontrivial

somewhere in the interior, there must be electric H -flux

everywhere, including outside the matter.

– The small-r radial derivative of the areal radius R (4.9)

outside the matter reads, with the sign factor ε̂φ (4.70),

dR

dr
= e2φ A−1 R−1

[
r − α + 1

2

√
a2 + b2 − 1

2
a

+ 1
2
ε̂φ b

√
1 − (h2/b2)e−4φ

]
for r ≥ rc.

(4.77)

– From (4.8), (4.17), (4.33), (4.38), the Noether charge

(2.92) for a generic Killing vector reads

Q[ξ ] =
∫

�

e−2d T t
Aξ

A =
∫ ∞

0

dr

∫ π

0

dϑ

∫ 2π

0

dϕ

×
[

e−2d(Kt
t − 1

2
T(0))ξ

t + 1

16πG
hV A−2ξ r sin ϑ

]
.

(4.78)

4.3 Energy conditions

In this subsection we assume that the stringy energy–

momentum tensor and the stringy graviton fields satisfy the

following three conditions:

(i) the strong energy condition, with magnetic H -flux,

∫ ∞

0

dr

∫ π

0

dϑ

∫ 2π

0

dϕ e−2d

(
−Kt

t + Kr
r + Kϑ

ϑ

+Kϕ
ϕ − T(0) +

1

8πG

∣∣HrϑϕH rϑϕ
∣∣
)

≥ 0 ; (4.79)

(ii) the weak energy condition, with electric H -flux,

∫ ∞

0

dr

∫ π

0

dϑ

∫ 2π

0

dϕ e−2d

(
−Kt

t + 1

16πG

∣∣Htϑϕ H tϑϕ
∣∣
)

≥ 0 ;

(4.80)

(iii) the pressure condition, with magnetic H -flux and

without integration,

Kr
r + Kϑ

ϑ − T(0) +
1

16πG

∣∣HrϑϕH rϑϕ
∣∣ ≥ 0. (4.81)
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While the nomenclatures are in analogy with those in General

Relativity, the precise expression in each inequality, includ-

ing the H -flux, is what we shall need in our discussion.

Since the magnetic H -flux vanishes outside the matter along

with the stringy energy–momentum tensor, (4.35), (4.37),

the radial integration in the strong energy condition (4.79)

is taken effectively from zero to the cutoff radius, i.e.
∫ rc

0 .

In contrast, the electric H -flux has a long tail and the weak

energy condition genuinely concerns the infinite volume inte-

gral.

If the matter comprises point particles only as in (2.125),

the above conditions are all clearly met, since Kr
r , Kϑ

ϑ ,

Kϕ
ϕ and −Kt

t are individually positive semi-definite, while

T(0) is trivial. In such cases, not only the integrals but also

the integrands themselves are positive semi-definite, which

would imply

−Kt
t + 1

16πG

∣∣HtϑϕH tϑϕ
∣∣ ≥ 0 :

weak energy density condition? (4.82)

and similarly for the strong energy density condition. How-

ever, for stringy matter, such as fermions (2.112) or funda-

mental strings (2.129), the diagonal components, Kμμ, may

not be positive definite, and so the above inequalities appear

not to be guaranteed (hence the question mark in (4.82)). If

the diagonal components are negative, the positively squared

H -fluxes need to compete with them. In fact, while we take

the energy and the pressure conditions (4.79), (4.80), (4.81)

for granted,11 we shall distinguish the energy condition from

the energy density condition, and in particular investigate the

implications of the relaxation of the latter (4.82).

Obviously, from (4.67), the strong energy condition sets

the constant, a, to be positive semi-definite. Similarly, the

pressure condition ensures Z(r) is a non-decreasing positive

function, reaching its maximum value at the cutoff radius,

such that 0 ≤ Z(r) ≤ Zc and Z ′ ≥ 0. Consequently, Z̃c is

positive semi-definite and thus α and β are both safely real

and positive. In this way, the strong energy and the pressure

conditions ensure

α = |α| ≥ 0, β = |β| ≥ 0, a = |a| ≥ 0. (4.83)

Given this positiveness, the string dilaton, φ, outside the mat-

ter (4.63),

φ = 1

2
ln

[
γ+

(
r − α

r + β

) b√
a2+b2

+ γ−

(
r + β

r − α

) b√
a2+b2

]

forr > rc, (4.84)

diverges to plus infinity when r → α+ and h �= 0,

irrespective of the sign of b. Specifically, if b > 0 and

11 Strictly speaking, we might relax the pressure condition (4.81) and

require Z̃c ≥ 0 only. However we do not pursue this here.

h �= 0, φ decreases from ∞ over the finite interval of

α < r < rφ , crossing the horizontal axis of φ = 0 at

r = α+β(γ−/γ+)
√

1+a2/b2

1−(γ−/γ+)
√

1+a2/b2
, reaches its minimum, φmin =

1
2

ln |h/b| < 0 at r = rφ (4.71), and then increases to con-

verge to zero over the semi-infinite range, rφ < r ≤ ∞.

On the other hand, when b > 0 and h = 0, the dilaton φ

increases monotonically from −∞ to zero over the whole

range, α < r ≤ ∞, and if b < 0, for all h, it is the opposite:

φ decreases monotonically from ∞ to zero over α < r ≤ ∞.

Now we turn to the weak energy condition. To see its

implications, we consider the circular geodesic motion of a

point particle (2.125), which orbits around the central matter

with fixed r larger than rc,

d2xλ

dτ 2
+ γ λμν

dxμ

dτ

dxν

dτ
= 0,

dr

dτ
= 0, ϑ = π

2
. (4.85)

With the nontrivial Christoffel symbols (4.25), the radial

‘λ = r ’ component of the geodesic equation, d2r
dτ 2 +

γ r
tt

(
dt
dτ

)2 + γ r
ϕϕ

( dϕ
dτ

)2 = 0, determines the angular veloc-

ity [24],

(
dϕ

dt

)2

= −
(

dgt t

dr

)(
dgϕϕ

dr

)−1

= − g′
t t

2R R′

= 2φ′ A2 + A′ A

2φ′C − A′ A−1C + C ′ . (4.86)

Associating this with the centripetal acceleration measured

by the areal radius through Newtonian gravity, we define and

analyze an effective mass, M(r), as a function of the radius,

G M(r)

R2
≡ R

(
dϕ

dt

)2

. (4.87)

From (4.69) and (4.74), we have explicitly, with the sign

factor, ε̂φ (4.70),

M(r) = I(r)× 1

2G

[
(a + b)γ+

(
r − α

r + β

) 2b√
a2+b2

+ (a − b)γ−

]

×
[
γ+

(
r − α

r + β

) 2b√
a2+b2

+ γ−

]−1

= I(r)× 1

2G

(
a + ε̂φ b

√
1 − e−4φ h2/b2

)

= I(r)×
∫ r

0

dr

∫ π

0

dϑ

∫ 2π

0

dϕ e−2d

×
(

1

8πG

∣∣HtϑϕH tϑϕ
∣∣− 2Kt

t

)
, (4.88)
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where we have set

I(r) := e3φ
√

AC

φ′C − 1
2

A′ A−1C + 1
2

C ′

=

√
(r − α)(r + β)

[
γ+
(

r−α
r+β

) b+a/3√
a2+b2 + γ−

(
r+β
r−α

) b−a/3√
a2+b2

] 3
2

r − α + 1
2

√
a2 + b2 − 1

2
a + 1

2
ε̂φ b
√

1 − e−4φ h2/b2
,

(4.89)

which is positive definite for sufficiently large r , having the

limit,

lim
r→∞

I(r) = 1. (4.90)

In fact, for r > α, h �= 0,12 the numerator in (4.89) is

positive-definite, while the denominator,

"(r) := r −α+ 1
2

√
a2 + b2 − 1

2
a + 1

2
ε̂φ b

√
1 − e−4φ h2/b2,

(4.91)

is a monotonically increasing function over α < r ≤ ∞,

taking values from a non-positive number to plus infinity:

with (4.69),

"′ = 1 + h2e−4φ

2(r − α)(r + β)
> 0,

lim
r→α

"(r) = 1
2

(√
a2 + b2 − |a| − |b|

)
≤ 0,

lim
r→∞

"(r) = ∞. (4.92)

If and only if ab = 0, we have strictly lim
r→α

"(r) = 0. Other-

wise, I(r) diverges generically for some finite r = r" > α,

as "(r") = 0.

We consider taking the large r limit of (4.88), with the

boundary condition (4.23), to obtain

M∞ ≡ lim
r→∞

M(r) = a + b
√

1 − h2/b2

2G

=
∫ ∞

0

dr

∫ π

0

dϑ

∫ 2π

0

dϕ e−2d

×
(

1

8πG

∣∣HtϑϕH tϑϕ
∣∣− 2Kt

t

)
.

(4.93)

While the first equality, or G M∞ = 1
2
(a +b

√
1 − h2/b2), is

the confirmation of the known result in [24], the second equal-

ity reveals the relationship of the mass, M∞, to the infinite-

volume integral of the stringy energy–momentum tensor and

the electric H -flux. The weak energy condition (4.80) then

precisely corresponds to the sufficient and necessary condi-

tion for the mass to be positive semi-definite, M∞ ≥ 0.

12 For the case of h = 0, see (4.97).

In fact, the mass, M∞, appears in the expansion of the met-

ric, specifically the temporal component, gt t , in the inverse

of the areal radius,13

ds2 = gt t dt2 + gR RdR2 + R2d"2,

gt t (R) = −
(

1 − 2G M∞
R

+ b2+ab
√

1−h2/b2− 1
2 h2

R2 + · · ·
)
,

gR R(R) = 1 + a−b
√

1−h2/b2

R
+ a2+b2− 5

2 ab
√

1−h2/b2− 1
4 h2

R2 + · · · ,
(4.94)

and similarly,

2G M(R) = 2G M∞+ h2 − 2b2 − 2ab
√

1 − h2/b2

R
+ · · · .
(4.95)

Thus, effectively, the circular geodesic becomes Keplerian

for large enough R: that is to say, Stringy Gravity tends to

agree with GR at long distances (R >> G M∞). However, if

M(r) is ever negative for some finite r , it means that the grav-

itational “force” a la (4.87) is repulsive! With (4.92), if M(r")

diverges to plus infinity, the gravitational force is attractive

and singular at r = r". On the other hand, if M(r") = −∞,

there appears an infinite ‘wall’ of repulsive force at the sur-

face of r = r".

We proceed to investigate if M(r) can be negative. For

this, we look for the zero of M(r), denoted by rM , which

from (4.54) should be greater than α,

M(rM) = 0, rM ≥ rc > α. (4.96)

Firstly, for the special case of h = 0 (and thus γ+ = 1,

γ− = 0), we have outside the matter,

2G M(r) = (a + b)
√
(r − α)(r + β)

r − α + 1
2
(
√

a2 + b2 + b − a)

(
r − α

r + β

) a+3b

2
√

a2+b2

.

(4.97)

This does not admit any zero which is greater than rc. In

particular, if b = 0, we get 2G M = a constant. Henceforth

we focus on nontrivial h �= 0. In this case, if and only if

|b| ≥ |a|, M(r) admits a zero, rM , which is uniquely fixed a

priori from the first equality of (4.88): with a = |a| (4.83),

13 However, the mass, M∞, does not coincide with the time-

translational Noether charge (4.78) for the Killing vector ξμ∂μ = ∂t , nor

the ADM mass a la Wald, G MADM = 1
4

[
a +

(
a−b
a+b

)√
a2 + b2

]
[24]

(c.f. [23,55]).
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rM =
α + β

[
γ−(b−a)
γ+(a+b)

]√
a2+b2

2b

1 −
[
γ−(b−a)
γ+(a+b)

]√
a2+b2

2b

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α + β
[
γ−(|b|−|a|)
γ+(|b|+|a|)

] 1
2

√
1+a2/b2

1 −
[
γ−(|b|−|a|)
γ+(|b|+|a|)

] 1
2

√
1+a2/b2

=
α + β

[
γ−(|b|−|a|)

γ−(|b|−|a|)+2G M∞

] 1
2

√
1+a2/b2

1 −
[

γ−(|b|−|a|)
γ−(|b|−|a|)+2G M∞

] 1
2

√
1+a2/b2

for b > 0

α + β
[
γ+(|b|−|a|)
γ−(|b|+|a|)

] 1
2

√
1+a2/b2

1 −
[
γ+(|b|−|a|)
γ−(|b|+|a|)

] 1
2

√
1+a2/b2

=
α + β

[
γ+(|b|−|a|)

γ+(|b|−|a|)+2G M∞

] 1
2

√
1+a2/b2

1 −
[

γ+(|b|−|a|)
γ+(|b|−|a|)+2G M∞

] 1
2

√
1+a2/b2

for b < 0.

(4.98)

Clearly in the case of |b| ≥ |a| (and h �= 0), rM is real

valued and thus can be physical. The second equality of (4.88)

implies that the zero of M(r) necessarily meets

|a| −
√

b2 − h2e−4φ(rM ) = 0, (4.99)

such that, from (4.70), when b > 0, the zero must be between

α and rφ ,

α < rM < rφ for b > 0. (4.100)

Indeed, this can be verified directly as follows. Provided

|b| > |a|, the root is greater than α, since

rM − α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
a2 + b2

[
γ−(|b|−|a|)+2G M∞

γ−(|b|−|a|)

] 1
2

√
1+a2/b2

− 1

for b > 0

√
a2 + b2

[
γ+(|b|−|a|)+2G M∞

γ+(|b|−|a|)

] 1
2

√
1+a2/b2

− 1

for b < 0,

(4.101)

and 2G M∞ is positive definite, irrespective of the sign of

b, owing to the weak energy condition (4.80). Further, with

b > 0, we have from (4.71),

rφ − rM

=

√
a2 + b2

[(
γ−
γ+

) 1
2

√
1+a2/b2

−
(
γ−(|b|−|a|)
γ+(|b|+|a|)

) 1
2

√
1+a2/b2

]

[
1 −

(
γ−
γ+

) 1
2

√
1+a2/b2

][
1 −

(
γ−(|b|−|a|)
γ+(|b|+|a|)

) 1
2

√
1+a2/b2

] ,

(4.102)

which is positive since 0 <
γ−(|b|−|a|)
γ+(|b|+|a|) <

γ−
γ+

< 1. This

completes our direct verification of (4.100).

In order to see the behaviour of M(r), or its sign change

around the zero, r = rM , we need to analyze I(r). As men-

tioned earlier, the numerator is (harmlessly) positive. There-

fore, we focus on the denominator, "(r) (4.91). At r = rM ,

with |b| ≥ |a| it reads

"(rM ) = rM − α + 1
2

√
a2 + b2 − |a|

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
a2+b2

2

⎡
⎣ 1+

(
γ−(|b|−|a|)

γ−(|b|−|a|)+2G M∞

) 1
2

√
1+a2/b2

1−
[

γ−(|b|−|a|)
γ−(|b|−|a|)+2G M∞

] 1
2

√
1+a2/b2

⎤
⎦− |a| for b > |a|

√
a2+b2

2

⎡
⎣ 1+

[
γ+(|b|−|a|)

γ+(|b|−|a|)+2G M∞

] 1
2

√
1+a2/b2

1−
(

γ+(|b|−|a|)
γ+(|b|−|a|)+2G M∞

) 1
2

√
1+a2/b2

⎤
⎦− |a| for b < − |a| .

(4.103)

Clearly, "(rM) is negative when |b| = |a|, as it reads

"(rM) = ( 1√
2

− 1) |a|. On the other hand, when |b| is suffi-

ciently large it becomes positive, for example, |b| ≥
√

3 |a|.
In order to locate the exact critical value of |b|, we let

|b| = |a| sinh υ. For |b| ≥ |a|, we restrict the range of the

parameter υ ≥ ln(1 +
√

2). Now, the precise critical value

of υ for which "(rM) (4.103) is trivial is determined by the

following relation:

(sinh υ − 1)

[(
2 + cosh υ

2 − cosh υ

)2 tanh υ

− 1

]

=

⎧
⎪⎨
⎪⎩

2G M∞
γ− |a| = 1 + (γ+ − γ−) sinh υ

γ−
for b > |a|

2G M∞
γ+ |a| = 1 − (γ+ − γ−) sinh υ

γ+
for b < − |a| .

(4.104)

The left-hand side of the first equality, viewed as a function

of υ, increases monotonically from zero to infinity over the

range ln(1 +
√

2) ≤ υ ≤ ln(2 +
√

3), corresponding to

1 ≤ sinh υ ≤
√

3. For the right-hand side, we treat the two

cases, b > |a| and b < − |a|, separately. When b > |a|,
the far right-hand side increases from zero to a finite positive
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value, 1/γ− +
√

3(γ+/γ− − 1) > 0. Hence there must be

one critical value of υ, say υc, that meets the above equality.

For the opposite case of b < − |a|, since the right-hand

side or M∞ should be positive, the range of sinh υ is further

restricted to 1 ≤ sinh υ ≤ min
[√

3, (γ+ − γ−)−1
]
. In either

case,
√

3 ≥ 1
γ+−γ−

or
√

3 < 1
γ+−γ−

, it is easy to see, from

the boundary values, that there must also exist υc satisfying

the above equality for b < − |a|.
Lastly, when |b| = |a| sinh υc, we have rM = r" and

G M(rM) turns out be positive-finite:

2a −
√

a2 + b2

2a +
√

a2 + b2
=
[
γ−(b − a)

γ+(b + a)

]√
a2+b2

2b

,

G M(rM) = |h| 3
2

(
2a +

√
a2 + b2

) (
b2 − a2

) 1
4

a2 + b2

[
γ−(b − a)

γ+(b + a)

] 2a+
√

a2+b2

4b

. (4.105)

In this case, it diverges at r = α as lim
r→α+

G M(r) = ∞.

To summarize, there exists a critical value of |b| given

by |a| sinh υc which is located between |a| and
√

3 |a|, such

that if |b| > |a| sinh υc, we have r" < rM and hence, crossing

r = rM from outside (r > rM ) to inside (r < rM ), the grav-

ity changes from being attractive, M(r) > 0, to repulsive,

M(r) < 0. Further deep inside at r = r", there is an infi-

nite repulsive wall. On the other hand, if |b| < |a| sinh υc,

we have rM < r", such that upon approaching from infinity

towards the center, the effective mass, M(r), or the attrac-

tive gravitational force, increases and eventually diverges at

r = r". In the special case of |b| = |a| sinh υc, M(r) is

positive-definite for r ≥ rc > α.

In either the case of |b| > |a| sinh υc or |b| < |a| sinh υc,

in order to avoid (crossing) the singularity at r", it seems

physically reasonable to have

rc ≥ r". (4.106)

Specifically when |b| is large enough, or |b| > |a| sinh υc,

and thus there is an infinite repulsive wall at r = r", the above

assumption (4.106) appears even more physically natural, as

no falling body can penetrate the wall. In contrast, if b is

small such that |b| < |a| sinh υc, it may be hard to maintain

the above condition since the gravitational attraction may

become too strong. For this reason, it appears necessary to

postulate the large |b| condition, i.e.

|b| > |a| sinh υc, (4.107)

along with the strong energy (4.79), weak energy (4.80), and

pressure (4.81) conditions. The allowed parameter region is

shown in Fig. 1.

Fig. 1 The parameter space for (h/ |b| , |a| /b). In the gray region we

have rM > r" , whereas this is not satisfied in the outer white region.

The black region corresponds to violation of the weak energy condition

and is thus excluded

5 Conclusion

In this work we have proposed that Double Field Theory is

Stringy Gravity, i.e. the upgrade of General Relativity which

is in accordance with the symmetries of string theory. To

this end we developed a definition for the stringy energy–

momentum tensor and presented the Einstein Double Field

Equations. As an example, we focused on D = 4 regular

solutions. Our main results are summarized below with com-

ments.

∗ For a generic action of Stringy Gravity (2.70),

∫

�

e−2d
[

1
16πG

S(0) + Lmatter

]
, (5.1)

the stringy energy–momentum tensor is defined by (2.85),

TAB := 4V[A
p V̄B]

q̄ K pq̄ − 1
2
JAB T(0), (5.2)

which contains D2 + 1 components (2.74),

K pq̄ := 1

2

(
VAp

δLmatter

δV̄A
q̄

− V̄Aq̄

δLmatter

δVA
p

)
,

T(0) := e2d ×
δ
(
e−2d Lmatter

)

δd
. (5.3)

The general covariance of the action (5.1) under doubled-

yet-gauged diffeomorphisms implies the on-shell conser-

vation law,
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DAT AB ≡ 0, (5.4)

which holds up to the equations of motion of the matter

fields and consists of D + D components.

∗ The Einstein Double Field Equations (2.88) equate

the stringy Einstein tensor and the stringy energy–

momentum tensor as

G AB = 8πGTAB . (5.5)

They comprise the full set of equations of motion for

the closed string massless sector, i.e. the stringy graviton

fields, {VAp, V̄Bq̄ , d}, which may reduce to the conven-

tional fields, {gμν, Bμν, φ}, upon reduction to Rieman-

nian backgrounds. They can also be applied readily to

non-Riemannian spacetimes (2.20), [15].

∗ The further-generalized Lie derivative is defined as (3.4)

L̃ξTMp p̄
α
β
ᾱ
β̄ := ξ N DN TMp p̄

α
β
ᾱ
β̄

+ωDN ξ
N TMp p̄

α
β
ᾱ
β̄

+2D[MξN ]T
N

p p̄
α
β
ᾱ
β̄

+2D[pξq]TM
q

p̄
α
β
ᾱ
β̄

+ 1
2
D[rξs](γ

rs)αδTMp p̄
δ
β
ᾱ
β̄

− 1
2
D[rξs](γ

rs)δβTMp p̄
α
δ
ᾱ
β̄

+2D[ p̄ξq̄]TMp
q̄α

β
ᾱ
β̄

+ 1
2
D[r̄ξs̄](γ̄

r̄ s̄)ᾱ δ̄TMp p̄
α
β
δ̄
β̄

− 1
2
D[r̄ξs̄](γ̄

r̄ s̄)δ̄ β̄TMp p̄
α
β
ᾱ
δ̄, (5.6)

which is completely covariant for doubled-yet-gauged

diffeomorphisms, twofold local Lorentz symmetries, and

O(D, D) rotations. It is closed by the C-bracket plus

twofold local Lorentz transformations, (3.11). Specifi-

cally, acting on DFT vielbeins, they read (3.8)

L̃ξVAp = P̄A
B
(
L̂ξ PBC

)
V C

p,

L̃ξ V̄A p̄ = PA
B
(
L̂ξ P̄BC

)
V̄ C

p̄. (5.7)

Thus, by setting these further-generalized Lie derivatives

to vanish, it becomes possible to characterize the isometry

of the doubled-yet-gauged spacetime within the DFT-

vielbein formalism.

∗ The most general D = 4 spherically symmetric

ansatzes for both the (Riemannian) stringy graviton fields

and the stringy energy–momentum tensor are identified,

(4.6), (4.14), which enjoy so(3) isometries (4.1), (4.2),

(4.3). In particular, with Kμν ≡ 2eμ
p ēν

q̄ K pq̄ , the spher-

ically symmetric energy–momentum tensor may possess

not only diagonal but also off-diagonal components, such

as generic Ktr = K(tr) + K[tr ] and skew-symmetric

K[ϑϕ] components. The skew-symmetry is a genuine

feature of fermionic or stringy matter, (2.117), (2.131),

which is induced by their coupling to the B-field.

∗ The D = 4 Einstein Double Field equations were solved

for the most general spherically symmetric, asymptot-

ically flat, static ‘regular’ configurations in which the

stringy energy–momentum tensor of the ‘matter’ van-

ishes completely outside a cutoff radius rc: TAB = 0 for

r ≥ rc (4.22).

Outside the matter, we recover the known vacuum geom-

etry [24] with four constant parameters including electric

H -flux, {α, β, a, h} (4.66),

e2φ = γ+
(

r−α
r+β

) b√
a2+b2 + γ−

(
r+β
r−α

) b√
a2+b2

, H(3) = h sin ϑ dt ∧ dϑ ∧ dϕ,

ds2 = e2φ

[
−
(

r−α
r+β

) a√
a2+b2

dt2 +
(

r+β
r−α

) a√
a2+b2

{
dr2 + (r − α)(r + β)d"2

}] for r ≥ rc, (5.8)

where b =
√
(α + β)2 − a2 ≥ 0 or b =

−
√
(α + β)2 − a2 < 0, and γ± = 1

2
(1 ±

√
1 − h2/b2).

Inside the matter, i.e. r < rc, while the electric H -

flux assumes the same form as outside, magnetic H -

flux, i.e. Hrϑϕ , may be present, being sourced by the

skew-symmetric angular component, K[ϑϕ], c.f. (4.35),

(4.37). Crucially, we derive integral expressions for all

the constants, {α, β, a, h}, with the integrands given

by the stringy energy–momentum tensor (4.67), which

thus reveal the physical meanings of the “free” con-

stant parameters in the vacuum geometry. In particular,

while in General Relativity a diagonal metric implies a

diagonal energy–momentum tensor (A.33) through the

Einstein Field Equations, in Stringy Gravity we can

have a non-zero off-diagonal component K(tr) which

sources nontrivial electric H -flux and thus modifies the

Schwarzschild geometry. This reflects the general nature

of Stringy Gravity: the richer stringy energy–momentum

tensor – (D2 + 1) degrees of freedom vs. D(D + 1)/2 –

enhances the geometry beyond General Relativity.

∗ We spell out the strong energy condition (4.79) and the

pressure condition (4.81), which makeα,β and a positive

semi-definite (4.83). For the solution to be real and non-

degenerate, we postulate that rc should exceedα (4.54). If

b > 0 and h �= 0,φ decreases from ∞ to a single negative

minimum value and then starts to increase monotonically

converging to zero as r → ∞ (4.84). On the other hand,
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if b < 0, φ decreases monotonically from ∞ to zero over

the whole range of α ≤ r ≤ ∞.

∗ We consider an effective mass, M(r) (4.87), which is

responsible for the centripetal acceleration of circular

geodesics,

G M(r)

R2
= R

(
dϕ

dt

)2

. (5.9)

Taking the large-r limit, we derive an integral expression

for the asymptotic mass (4.93),

M∞ = lim
r→∞

M(r) = a + b
√

1 − h2/b2

2G

=
∫ ∞

0

dr

∫ π

0

dϑ

∫ 2π

0

dϕ e−2d

×
(

1

8πG

∣∣HtϑϕH tϑϕ
∣∣− 2Kt

t

)
, (5.10)

where the integrand comprises the electric H -flux squared

and the stringy energy–momentum component, Kt
t .

Requiring M∞ to be positive-definite amounts to the

weak energy condition (4.80).

Compared to the mass formula in GR (A.48), (A.50),

the above result (5.10) is in a sense more satisfactory,

as the integration is equipped with the proper integral

measure in Stringy Gravity, e−2d , while from (2.99),

Kt
t = −2K0

0̄ which is a diffeomorphism scalar.

Rather than requiring the integrand of (5.10) to be strictly

positive-definite, namely, the weak energy density condi-

tion (4.82), by demanding this only of the whole integral,

i.e. the weak energy condition, we may allow M(r) to

possibly assume negative values, and hence for gravity

to become repulsive for some range of the radius.

While we view Stringy Gravity as a unique string-theory-

based alternative to General Relativity, from (5.10) one

may regard the H -flux, especially the electric compo-

nent, as dark matter (c.f. [56]) and −2Kt
t as the baryonic

energy (mass) density.

∗ As long as ab �= 0 and h �= 0, M(r) becomes singular at

one finite radius greater than α, r = r" > α. If M(r") =
+∞, the gravitational “force” remains attractive and

diverges. If the opposite is true, M(r") = −∞, then there

exists an infinite repulsive ‘wall’ located at r = r". Fur-

thermore, when |b| > |a|, M(r) admits a single real root

which is greater than α: M(rM) = 0, rM > α. Thus,

with M∞ > 0, if rM is either complex (non-physical) or

less than r", the gravity is attractive in the entire region

from r = ∞ to the singular surface of r = r". On

the other hand, if rM > r", the gravity is attractive for

rM < r ≤ ∞, vanishes at r = rM , and becomes repulsive

for r" ≤ r < rM , encountering the infinite wall at r = r".

∗ Indeed, when |b| is sufficiently large, such as |b| �√
3 |a|, the zero of M(r) is guaranteed to exceed the sin-

gular radius, rM > r". In such cases, gravity (i) remains

attractive over the semi-infinite range, rM < r ≤ ∞,

featuring Keplerian limiting behavior towards infinity,

(ii) vanishes at r = rM , and (iii) becomes repulsive in

the finite interval rM < r ≤ r", with the infinite wall at

r = r". It is then physically reasonable to assume that

the cutoff radius should be larger than or equal to the sin-

gular radius of the infinite wall, rc ≥ r". Specifically, for

non-interacting dust, r = rc may well coincide with the

surface of zero gravity: rc = rM . This seems to provide a

dynamical mechanism to avoid the singularity.

Possible future work includes exhaustive exploration of the

parameter space, exploring the causal structure, direct veri-

fication of the energy and pressure conditions including the

large-|b| condition, c.f. (4.72), extensions to non-Riemannian

spacetimes, stringy thermodynamics, applications to cosmol-

ogy, and last but not least, tests against observations.
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A C20 GR prior to C21 DFT

In this Appendix, after reviewing the energy–momentum ten-

sor and Einstein Field Equations in GR, we discuss the most

general static spherically symmetric regular solution in four-

dimensional spacetime.

A.1 Energy–momentum tensor and Einstein field equations

in GR

Let us consider the Einstein–Hilbert action coupled to generic

matter,

∫
dDx

√
−g
(

1
16πG

R + Lmatter

)
, (A.1)
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where Lmatter is the Lagrangian for various matter fields,

which we denote by ϒa . The energy–momentum tensor is

conventionally defined by

Tμν := −2√−g

δ(
√−gLmatter)

δgμν
= −2

δLmatter

δgμν
+ gμνLmatter,

(A.2)

where δ
δgμν

is the standard functional derivative which is best

computed from the infinitesimal variation of the Lagrangian

density induced by δgμν , as

δ
(√

−gLmatter

)
+ 1

2

√
−g δgμνgμνLmatter

=
√

−g δgμν
δLmatter

δgμν
+ total derivatives, (A.3)

where the disregarded total derivatives appear generically,

since Lmatter includes covariant derivatives of the form ▽μϒa ,

and the connections contain the derivatives of the metric. The

right-hand side of (A.3) then gives, or operationally defines,

the functional derivative, δLmatter
δgμν

, as the functional ‘coeffi-

cient’ of
√−g δgμν . It is also useful to note that if we vary

not the Lagrangian density but the weightless scalar, Lmatter,

covariant total derivatives of the form ‘▽μ Jμ’ will appear

and should be neglected,

δLmatter = δgμν
δLmatter

δgμν
+ covariant total derivatives.

(A.4)

Of course, when Lmatter involves fermions,

√
−gL fermion = |e| ρ̄(γ μ▽μρ + mρ), (A.5)

one should consider a priori the variation of the vielbein

rather than the metric,

δγ
ρ
μν = 1

2
gρσ

(
▽μδgσν + ▽νδgμσ − ▽σ δgμν

)
, δgμν = 2e(μ

aδeν)a,

δωμab = eμ
c
(

e−1
[a ▽c]δeνb − e−1

[b ▽c]δeνa + e−1
[a ▽b]δeνc

)
.

(A.6)

Up to the fermionic equations of motion,

γ μ▽μρ + mρ ≡ 0, (A.7)

we note that

▽λ

(
ρ̄γ λμνρ

)
≡ −2

(
ρ̄γ [μ▽ν]ρ + ▽[μρ̄γ ν]ρ

)
. (A.8)

Here the equivalence symbol, ‘≡’, denotes on-shell equality

which holds up to the equations of motion of the matter fields.

Using this relation and disregarding any total derivatives

(≃), we derive the variation of the fermionic Lagrangian,√−gL fermion (A.5), given by

δ
[
|e| ρ̄(γ μ▽μρ + mρ)

]

≃ 1
2
|e| δeμp

(
▽(μρ̄γ p)ρ − ρ̄γ (μ▽p)ρ

)

= − 1
4
|e| δgμν

(
▽(μρ̄γν)ρ − ρ̄γ(μ▽ν)ρ

)
. (A.9)

This result shows that even for fermions, the definition of

the energy–momentum tensor through the ‘metric’ varia-

tion (A.2) is in a sense still valid, leading to the following

‘symmetric’ contribution,

T fermion
μν = 1

2

(
▽(μρ̄γν)ρ − ρ̄γ(μ▽ν)ρ

)
. (A.10)

That is to say, the energy–momentum tensor is always sym-

metric in GR.14 In fact, this can be shown in a more general

setup. The arbitrary variation of the vielbein decomposes into

two parts,

δeμ
a = eμbδeν

(aeb)ν + δeν
[aeb]νeμb

= 1
2

eaνδgμν + δeν
[aeb]νeμb, (A.11)

of which the last term can be viewed as the infinitesimal

local Lorentz transformation of the vielbein. Since Lmatter is

supposed to be a singlet of local Lorentz symmetry, using

(A.11) the generic variation of Lmatter can be written as

δLmatter = δeμ
a δLmatter

δeμa
+ δϒa

δLmatter

δϒa

+ · · · = 1
2
δgμν

(
eaν δLmatter

δeμa

)

+δ′ϒa

δLmatter

δϒa

+ · · · . (A.12)

Here the dots, ‘· · · ’, denote any disregarded covariant total

derivatives; δ′ϒa is the arbitrary variation of the matter

field supplemented by the infinitesimal local Lorentz rota-

tion, δeν
[aeb]ν . Further, δLmatter

δϒa
corresponds to the Euler–

Lagrange equation for each matter field, ϒa . Thus, the

energy–momentum tensor (A.2) is ‘on-shell’ equivalent to

14 c.f. (2.85), (2.86) for Stringy Gravity, i.e. DFT.
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Tμν = − 1
2

e−1

[
eμa

δ(eLmatter)

δea
ν

+ eνa

δ(eLmatter)

δea
μ

]

= − 1
2

(
eμa

δLmatter

δea
ν

+ eνa

δLmatter

δea
μ

)
+ gμνLmatter.

(A.13)

Now for the Einstein–Hilbert term, it is useful to remem-

ber that the variation of the Riemann curvature is given by

covariant total derivatives,

δRρ
σμν = ▽μ(δγ

ρ
νσ )− ▽ν(δγ

ρ
μσ ), (A.14)

such that

δR = δ(gμν Rμν) = δgμν Rμν + ▽ρ(g
μνδγ ρνμ − gρμδγ ννμ),

(A.15)

and

δ(
√

−gR) = δgμν
√

−g(Rμν − 1
2

gμν R)

+∂ρ(
√

−ggμνδγ ρνμ −
√

−ggρμδγ ννμ).

(A.16)

Bringing this all together, while disregarding any surface

integral, the arbitrary variation of the action reads

δ

∫
dDx

√
−g
(

1
16πG

R + Lmatter

)

≡
∫

dDx
√

−g

[
1

16πG
δgμν

(
Rμν − 1

2
gμν R − 8πG Tμν

)

+δ′ϒa

δLmatter

δϒa

]
. (A.17)

Clearly the equation of motion of the metric leads to the

(undoubled) Einstein Field Equations,

Rμν − 1
2

gμν R = 8πGTμν, (A.18)

which are equivalent to

Rμν = 8πG
(

Tμν − 1
D−2

gμνT λ
λ

)
. (A.19)

In particular, when the variation is caused by diffeomor-

phisms, i.e. δgμν = Lξ gμν = −2▽(μξ ν), the action should

be invariant. From (A.17), we get, up to the equations of

motion, δLmatter
δϒa

≡ 0, and up to surface integrals,

0 ≡
∫

dDx ∂μ
[
ξμ

√
−g
(

1
16πG

R + Lmatter

)]

≡ 1
8πG

∫
dDx

√
−gξν▽μ

(
Rμν − 1

2
gμν R − 8πG Tμν

)
.

(A.20)

This should hold for arbitrary ξμ, e.g. highly localized delta-

function-type vector fields. Therefore the Einstein curvature

and the energy–momentum tensor should be conserved off-

shell and on-shell, respectively,

▽μ(R
μν − 1

2
gμν R) = 0, ▽μTμν ≡ 0. (A.21)

As is well known, the former can also be obtained directly

from the Bianchi identity, ▽[λRμν]ρσ = 0.

For any Killing vector satisfying the isometric condition,

Lξ gμν = ▽μξν + ▽νξμ = 0, (A.22)

the conservation of the energy–momentum tensor (A.21)

implies the existence of a conserved Noether current,

∂μ(
√

−gTμ
νξ

ν) =
√

−g▽μ(T
μνξν)

≡
√

−gTμν▽(μξν) ≡ 0, (A.23)

which in turn defines a Noether charge,

Q[ξ ] :=
∫

dx D−1 √
−gT t

μξ
μ. (A.24)

A.2 Regular spherically symmetric solution in D = 4 GR

Here we derive the most general, asymptotically flat, spher-

ically symmetric, static, regular solution to the D = 4 Ein-

stein Field Equations. We require the metric and energy–

momentum tensor to be spherically symmetric,

Lξa gμν = 0, Lξa Tμν = 0, (A.25)

with three Killing vectors, ξ
μ
a , a = 1, 2, 3, corresponding to

the usual angular momentum differential operators,

ξ1 = sin ϕ∂ϑ + cot ϑ cosϕ∂ϕ,

ξ2 = − cosϕ∂ϑ + cot ϑ sin ϕ∂ϕ, ξ3 = −∂ϕ . (A.26)

They satisfy the so(3) commutation relation,

[
ξa, ξb

]
=
∑

c

ǫabc ξc. (A.27)

It follows from (A.25) that

gϑϕ = gϕϑ = 0, gϕϕ = sin2 ϑgϑϑ ,

Tϑϕ = Tϕϑ = 0, Tϕϕ = sin2 ϑTϑϑ . (A.28)

Furthermore, without loss of generality, we can put gtr = 0,

gϑϑ = r2, and set the metric to be diagonal, utilizing diffeo-

morphisms (see e.g. [26]),

ds2 = −B(r)dt2 + A(r)dr2 + r2d"2, (A.29)

where we put as shorthand notation,

d"2 := dϑ2 + sin2 ϑ dϕ2. (A.30)
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The nonvanishing Christoffel symbols are then exhaustively,

γ t
tr = γ t

r t = B′
2B
, γ r

tt = B′
2A
, γ r

rr = A′
2A
,

γ r
ϑϑ = − r

A
, γ r

ϕϕ = − sin2 ϑ r
A
, γ ϑrϑ = γ ϑϑr = 1

r
,

γ ϑϕϕ = − sin ϑ cosϑ, γ
ϕ
rϕ = γ

ϕ
ϕr = 1

r
, γ

ϕ
ϑϕ = γ

ϕ
ϕϑ = cot ϑ,

(A.31)

and subsequently the Ricci curvature, Rμν , becomes diago-

nal, with components

Rt t = B ′′

2A
− B ′

4A

(
A′

A
+ B ′

B

)
+ 1

r

B ′

A
,

Rrr = − B ′′

2B
+ B ′

4B

(
A′

A
+ B ′

B

)
+ 1

r

A′

A
,

Rϑϑ = 1 + r

2A

(
A′

A
− B ′

B

)
− 1

A
,

Rϕϕ = sin2ϑ Rϑϑ .

(A.32)

Since both the Ricci curvature and the metric are diagonal, the

Einstein Field Equations imply that the energy–momentum

tensor must also be diagonal, thus fixing Ttr = 0,

Tμν = diag
(

Tt t , Trr , Tϑϑ , Tϕϕ = sin2ϑ Tϑϑ
)
. (A.33)

Now the conservation of the energy–momentum tensor,

▽μTμ
ν , boils down to a single equation:

d

dr

(
T r

r

)
+ 2

r

(
T r

r − T ϑ
ϑ

)
+ B ′

2B

(
T r

r − T t
t

)
= 0.

(A.34)

The Einstein Field Equations, or (A.19), reduce to

Rt t = B ′′

2A
− B ′

4A

(
A′

A
+ B ′

B

)
+ 1

r

B ′

A

= −4πG B
(
T t

t − T r
r − 2T ϑ

ϑ

)
,

Rrr = − B ′′

2B
+ B ′

4B

(
A′

A
+ B ′

B

)
+ 1

r

A′

A

= −4πG A
(
T t

t − T r
r + 2T ϑ

ϑ

)
,

Rϑϑ = 1 + r

2A

(
A′

A
− B ′

B

)
− 1

A

= −4πGr2
(
T t

t + T r
r

)
,

(A.35)

which are linearly equivalent to

d
dr

[
r
(
1 − 1

A

)]
= r A′

A2 + 1 − 1
A

= −8πGr2T t
t ,

d
dr

ln(AB) = A′
A

+ B′
B

= −8πG Ar(T t
t − T r

r ),

B′′
B

− B′
2B

(
A′
A

+ B′
B

)
− 1

r

(
A′
A

− B′
B

)
= 16πG AT ϑ

ϑ .

(A.36)

The first equation can be integrated to give

1
2
r

(
1 − 1

A

)
= −G

∫ r

0

dr ′4πr ′2T t
t (r

′), (A.37)

where we have assumed ‘regularity’ at the origin,

lim
r→0

r

(
1 − 1

A

)
= 0. (A.38)

This fixes the function A(r),

A(r) = 1

1 − 2G M(r)
r

, (A.39)

for which we have defined

M(r) := −
∫ r

0

dr ′4πr ′2 T t
t (r

′). (A.40)

The regularity condition (A.38) is then equivalent to

lim
r→0

M(r) = 0. (A.41)

Furthermore, the positive energy (density) condition implies

T t t ≥ 0, such that, owing to the convention of the mostly plus

signature of the metric (A.29), M(r) is generically positive.

Similarly, assuming the ‘flat’ boundary condition at infinity,

lim
r→∞

A(r)B(r) = 1, (A.42)

the second equation in (A.36) can be integrated to fix B(r),

B(r) =
[

1 − 2G M(r)

r

]

× exp

[
8πG

∫ ∞

r

dr ′r ′ A(r ′)
{
T t

t (r
′)− T r

r (r
′)
}]

,

(A.43)

such that the metric takes the final form:

ds2 = −e−2�(r)

(
1 − 2G M(r)

r

)
dt2

+ dr2

1 − 2G M(r)
r

+ r2d"2. (A.44)

Here M(r) is given by (A.40) and �(r) is defined by

�(r) := 4πG

∫ ∞

r

dr ′
{
T r

r (r
′)− T t

t (r
′)
}
r ′

1 − 2G M(r ′)
r ′

. (A.45)

Finally, we show that, up to the first and the second relations

in (A.36) and their solutions, (A.39), (A.43), the third relation

is equivalent to the conservation of the energy–momentum
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tensor (A.34). For this, we solve for T r
r and T r

r − T t
t from

the first and the second relations in (A.36),

T r
r = 1

8πG

(
B ′

ABr
+ 1

Ar2
− 1

r2

)
,

T r
r − T t

t = 1

8πG Ar

(
A′

A
+ B ′

B

)
, (A.46)

and substitute these two expressions into the left-hand side

of the conservation relation (A.34), to obtain

d
dr
(T r

r )+ 2
r

(
T r

r − T ϑ
ϑ

)
+ B′

2B

(
T r

r − T t
t

)

= 1
8πG Ar

[
B′′
B

− B′
2B

(
A′
A

+ B′
B

)
− 1

r

(
A′
A

− B′
B

)
− 16πG AT ϑ

ϑ

]
.

(A.47)

This result clearly establishes the equivalence between the

energy–momentum conservation equation (A.34) and the

third relation in (A.36).

Some comments are in order.

– When the matter is localized up to a finite radius rc, such

that outside this radius, r > rc, we have Tμν(r) = 0 and

�(r) = 0, we recover the Schwarzschild solution, in

which the mass agrees with the ADM mass [27] and from

(A.40) is further given by the volume integral,

M = −
∫ rc

0

dr 4πr2 T t
t (r) = −

∫ ∞

0

dr 4πr2 T t
t (r).

(A.48)

However, this differs from the Noether charge (A.24) of

the time translational Killing vector,

M �= −Q[∂t ] = −
∫ ∞

0

dr 4πr2 e−�(r) T t
t (r), (A.49)

since from (A.38) the integral measure is nontrivial,

√
−g = e−�(r) r2 sin ϑ �= r2 sin ϑ. (A.50)

This discrepancy and its remedy by an extra surface inte-

gral are rather well known, see [28–33].

– If there is a spherical void in which Tμν = 0 for

r1 < r < r2, both M(r) and�(r) become constant inside

the void as M(r) = M(r1) and �(r) = �(r2). After a

constant rescaling of the time, tnew = e−�(r2)t , the local

geometry inside the void coincides precisely with the

Schwarzschild solution. We note that the mass is deter-

mined through the integral over 0 < r < r1 only and is

independent of the matter distribution outside, r > r2.

While this is certainly true in Newtonian gravity (namely

the iron sphere theorem), if we solved the vacuum Ein-

stein Field Equations with vanishing energy–momentum

tensor inside the void, we would merely recover the

Schwarzschild geometry in accordance with Birkhoff’s

theorem. Nevertheless it would be hard to conclude that

the constant mass parameter is unaffected by the outer

region.

– The radial derivative of B(r) amounts to the gravitational

acceleration for a circular geodesic [24],

r

(
dϑ

dt

)2

= −1

2

dgt t (r)

dr
= 1

2
B ′

=
[

G M(r)

r2
+ 4πGrT r

r (r)

]
e−2�(r).

(A.51)

Again, inside a void or the outer vacuum region, we may

absorb the constant factor of e−2�(r) into the rescaled

time, and thus recover the Keplerian acceleration,

r

(
dϑ

dt

)2

= G M

r2
. (A.52)
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