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EINSTEIN–HILBERT TYPE ACTION

ON SPACETIMES

Vladimir Rovenski

Abstract. The mixed gravitational field equations have been recently intro-
duced for codimension one foliated manifolds, e.g. stably causal and globally

hyperbolic spacetimes. These Euler–Lagrange equations for the total mixed
scalar curvature (as analog of Einstein–Hilbert action) involve a new kind
of Ricci curvature (called the mixed Ricci curvature). In the work, we de-
rive Euler–Lagrange equations of the action for any spacetime, in fact, for
a pseudo-Riemannian manifold endowed with a non-degenerate distribution.
The obtained equations are presented in the classical form of Einstein field
equation with the new Ricci type curvature instead of Ricci curvature.

Introduction

Distributions on a manifold M (i.e., subbundles of TM) appear in various
situations, e.g. as fields of tangent planes of foliations or kernels of differential
forms, and many models in physics are foliated, e.g., twisted or warped products.

Let (M, g) be a pseudo-Riemannian manifold endowed with non-degenerate dis-
tribution D ⊂ TM . The mixed scalar curvature, Smix (that is an averaged sectional
curvature of planes that non-trivially intersect D and its orthogonal complement),
see (1.1) and [11], is one of the simplest curvature invariants of a manifold endowed
with a distribution. Note that from a mathematical point of view, a spacetime is
described as a d-dimensional, time-orientable manifold, equipped with a Lorentzian
metric, there also exists a timelike unit vector field N , whose orthogonal distribu-
tion is not necessarily integrable. Recall [3, 4] that stably causal and, in particular,
globally hyperbolic spacetimes are naturally endowed with a codimension-one foli-
ation (that is level hypersurfaces of a time-function). If D is spanned by N such
that g(N,N) = εN ∈ {−1, 1}, then Smix = εN RicN,N , where RicN,N is the Ricci
curvature in the N -direction.

The mixed Einstein–Hilbert action has been introduced in [1] as analog of the
Einstein–Hilbert action, with the scalar curvature replaced by Smix:
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(0.1) JD,Ω : g 7→

∫

Ω

{ 1

2a
(Smix(g) − 2 Λ) + L(g)

}

d volg .

Here Λ is the cosmological constant, L-Lagrangian describing the matter contents,
and a-the coupling constant. The integral is taken over M if it converges; oth-
erwise, one integrates over an arbitrarily large, relatively compact domain Ω con-
taining supports of variations gt with g0 = g. The physical meaning of (0.1) has
been discussed in [1] for the case of a globally hyperbolic spacetime (M4, g) when
D = Span(N) and hence Smix = g(N,N) RicN,N , and the following have been
obtained: the Euler–Lagrange equations, see (3.12), called the mixed gravitational

field equations; sufficient conditions for existence of solutions for empty space, the
conservation law analogous to conservation law of stress-energy tensor in relativity;
equations of motion of a particle on isoparametric foliations in the “mixed gravita-
tional field"; the linearized mixed field equations about the Minkowski metric; the
value of coupling constant a in the weak field and low velocity limit.

In this paper, we explore (0.1) for any spacetime, the obtained mixed gravi-
tational field equations generalize the result of [1]. In fact, we work in arbitrary
number of dimensions of a pseudo-Riemannian manifold endowed with a distri-
bution, and also generalize certain results of [2, 8], where the particular case of
variations of metric (called adapted variations) has been examined. In this set-
ting, we present the Euler–Lagrange equations for (0.1) in the classical form of the
Einstein field equations:

(0.2) Ric D −(1/2) ScalD ·g + Λ g = aΘ,

where Θ is the stress-energy tensor, while the Ricci tensor and scalar curvature
are replaced by a new Ricci type curvature and its trace. Consequently, (0.2) con-
tains the new mixed Einstein tensor G D := Ric D −(1/2) ScalD ·g, whose properties
should be further investigated. The following equations with Ric D seem to be in-
teresting to solve w.r.t. g (this issue will be addressed in further work): (i) (0.2) in
vacuum, i.e., for Λ = Θ = 0; (ii) Ric D(g) = λ g, i.e., the “mixed Einstein metrics";
(iii) the mixed Ricci equation: Ric D = r for a given (0, 2)-tensor r; (iv) the mixed
Ricci flow: ∂tgt = −2 Ric D(gt); (v) the Yamabe-type problem: ScalD(g) = const.

The paper has an introduction and three sections. Section 1 reviews necessary
definitions of tensors. Section 2 starts with variation formulas for quantities on a
manifold with a distribution. Using them, we deduce Euler–Lagrange equations of
(0.1), which generalize results in [2, 8] and use them to build the mixed Ricci tensor

Ric D obeying (0.2). In Proposition 2.2 we observe that the replacement of Smix by
ScalD in (0.1) leads to the same Euler–Lagrange equations (0.2). In Section 3 we
explore Ric D for spacetimes, see (3.6); for integrable D we compare the tensor, see
(3.10), with its initial prototype defined in [1] for globally hyperbolic spacetimes.

1. Preliminaries

The section reviews necessary definitions of tensors, some of them were in-
troduced in [8, 11]. We consider a connected manifold Mn+p with a pseudo-
Riemannian metric g and a non-degenerate distribution D of rank dim Dx = n for
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every x ∈ M . A distribution (i.e., a subbundle) D ⊂ TM is non-degenerate, if
Dx ⊂ TxM is a non-degenerate subspace of gx for every x ∈ M ; in this case, its
g-orthogonal complement D⊥ is also non-degenerate. A pair (D,D⊥) of complemen-
tary orthogonal distributions is called an almost product structure on (M, g), [5].

Let XM (resp., XD) be the module over C∞(M) of all vector fields on M (resp.
on D). The “musical" isomorphisms ♯ and ♭ are used for rank one tensors, e.g. if
ω ∈ T 1

0 (M) is a 1-form and X ∈ XM then ω(X) = g(ω♯, X) = X♭(ω♯). For (0, 2)-
tensors A and B we have 〈A,B〉 = Tr g(A

♯B♯) = 〈A♯, B♯〉. We get X = X⊤ +X⊥,
where X⊤ is the D-component of X ∈ XM w.r.t. g. Thus, g = g⊤ + g⊥, where

g⊥(X,Y ) = g(X⊥, Y ⊥), g⊤(X,Y ) = g(X⊤, Y ⊤), (X,Y ∈ XM ).

The following convention is adopted for the range of indices:

a, b, c, . . . ∈ {1, . . . , n}, i, j, k, . . . ∈ {1, . . . , p}, n+ p > 2.

It will be convenient to use orthogonal frames with certain nice properties. It is not
hard to show that the local adapted orthonormal frame {Ea, Ei}, where {Ea} ⊂ D,
and εi = g(Ei, Ei) ∈ {−1, 1}, εa = g(Ea, Ea) ∈ {−1, 1}, always exists on M .

We will define several tensors for one of distributions (say, D; similar tensors
for D⊥ will be denoted using ⊥ notation). Let ∇ be the Levi-Civita connection
of g. The integrability tensor and the second fundamental form of D, are given by

T (X,Y ) = (1/2) [X⊤, Y ⊤]⊥, h(X,Y ) = (1/2) (∇X⊤(Y ⊤) + ∇Y ⊤X⊤)⊥,

respectively. We use inner products of tensors, e.g.

〈h, h〉 =
∑

a,b
εaεb g(h(Ea, Eb), h(Ea, Eb)),

〈T, T 〉 =
∑

a,b
εaεb g(T (Ea, Eb), T (Ea, Eb)).

The mean curvature vector of D is H = Tr g h =
∑

a εah(Ea, Ea). A distribution D

is called totally umbilical, harmonic, or totally geodesic, if h= 1
nHg |D, H = 0, or

h= 0, resp. The Weingarten operator AZ of D w.r.t. Z ∈ XD⊥ , and the operator

T ♯Z are defined by

g(AZ(X), Y ) = g(h(X,Y ), Z), g(T ♯Z(X), Y ) = g(T (X,Y ), Z).

We will use the following convention for indices of various tensors: T ♯i := T ♯Ei
, Ai :=

AEi
, etc. Define a self-adjoint (1, 1)-tensor T =

∑

i εi(T
♯
i )2 and a self-adjoint (1, 1)-

tensor with zero trace

K :=
∑

i
εi [T ♯i , Ai] =

∑

i
εi (T ♯i Ai −Ai T

♯
i ),

which vanishes when D is either integrable or totally umbilical. Define (1, 2)-tensors

α(X,Y ) = (AX⊥(Y ⊤) +AY ⊥(X⊤))/2,

θ(X,Y ) = (T ♯
X⊥(Y ⊤) + T ♯

Y ⊥ (X⊤))/2,

δZ(X,Y ) = (g(∇X⊤Z, Y ⊥) + g(∇Y ⊤Z, X⊥))/2.

Note that α, θ and δZ are symmetric and vanish for (X,Y ) ∈ (D⊥× D⊥) ∪ (D × D).
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For any (0, 2)-tensors P,Q and S on TM , define a tensor ΥP,Q by

〈ΥP,Q, S〉 =
∑

ν,µ
ενεµ[S(P (eν , eµ), Q(eν , eµ)) + S(Q(eν , eµ), P (eν , eµ))],

where {eν} is a local orthonormal basis of TM and εν = g(eν , eν) ∈ {−1, 1}.
Notice the properties ΥP,Q = ΥQ,P and ΥP,Q1+Q2

= ΥP,Q1
+ ΥP,Q2

.
The curvature tensor is given by RX,Y Z = ∇[X,Y ]Z−[∇X ,∇Y ]Z. The function

(1.1) Smix =
∑

a,i
εaεi g(Ra,iEa, Ei)

is called the mixed scalar curvature of D (or D⊥) w.r.t. g. The following formula,
see [11], has many applications and is used in the proof of Theorem 2.1 below:

Smix = div(H +H⊥) + g(H,H) − 〈h, h〉 + 〈T, T 〉(1.2)

+ g(H⊥, H⊥) − 〈h⊥, h⊥〉 + 〈T⊥, T⊥〉.

The projection of the gradient of f ∈ C1(M) onto D is ∇⊤f := (∇f)⊤. The D-

Laplacian of f ∈ C2(M) is ∆⊤f = div⊤(∇⊤f). The D⊥-divergence of X ∈ XM

is defined by div⊥ X =
∑

i εi g(∇iX, Ei). Thus, divX = div⊥ X + div⊤ X . For

X ∈ XD⊥ we have div⊥X = divX + g(X,H). Similarly, for a (1, 2)-tensor P ,

define a (0, 2)-tensor div P = div⊤P + div⊥P , where

(div⊥P )(X,Y ) =
∑

i
εi g((∇i P )(X,Y ), Ei), X, Y ∈ XM .

For a D⊥-valued (0, 2)-tensor P , using 〈P, H〉(X,Y ) := g(P (X,Y ), H) we obtain

div⊥P = divP + 〈P, H〉 .(1.3)

2. Euler–Lagrange equations for variations of metric

The section contains the Euler–Lagrange equations of the variational principle
δJD,Ω(g) = 0 on a relatively compact domain Ω of a manifold M endowed with a
distribution D. We consider variations {gt} |t|<ε of metric g0 = g on M such that
the induced infinitesimal variations, presented by a symmetric (0, 2)-tensor Bt ≡
∂gt/∂t, are supported in Ω ⊂ M . We adopt the notations ∂t ≡ ∂/∂t, B ≡ ∂tgt | t=0.

For a (0, 2)-tensor C we have 〈C,B〉 = 〈Sym(C), B〉.
Given D, its gt-orthogonal complement D⊥

t depends on t; hence, the gt-projecti-
ons onto D (denoted by ⊤) and onto D⊥

0 = D⊥ (denoted by ⊥) also depend on t. If
(gt) preserve orthogonality of D and D⊥ then projections ⊤ and ⊥ do not depend
on t, and we obtain adapted variations, see [2, 8]. Among adapted variations, those
preserving metric on D will be called g⊥-variations.

Recall [10] that ∇t (the Levi-Civita connection of gt) is evolved as

2gt(∂t(∇
t
XY ), Z) = (∇t

XB)(Y, Z) + (∇t
Y B)(X,Z)(2.1)

− (∇t
ZB)(X,Y ), X, Y, Z ∈ XM .

Using (2.1), one may choose a nice evolution of a local orthonormal frame.
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Lemma 2.1. Let a local (D, D⊥)-adapted and orthonormal for t = 0 frame

{Ea(t), Ei(t)} be evolved by {gt}|t|<ε according to

∂tEa = −(1/2)B♯t(Ea)
⊤, ∂tEi = −(1/2)B♯t(Ei)

⊥ −B♯t (Ei)
⊤.

Then {Ea(t), Ei(t)} is a gt-orthonormal frame and {Ea(t)} ⊂ D, {Ei(t)} ⊂ D⊥
t .

Using (2.1), Lemma 2.1 and decomposition of tensor fields w.r.t. g = g⊤ + g⊥,
we obtain variation formulas (for detailed proof the reader is referred to [9]).

Proposition 2.1. For any variation gt of metric on M we have at t = 0

∂t〈h
⊥, h⊥〉 =

〈

div h⊥ − 4Υα⊥,θ + K♭ − 1
2 Υh⊥,h⊥ , B

〉

− div(〈h⊥, B〉),

∂tgt(H
⊥, H⊥) = 〈(divH⊥)g⊥ + 4〈θ,H⊥〉 −H⊥♭ ⊗H⊥♭, B〉 − div((Tr D⊥ B♯)H⊥),

∂t〈h, h〉 =
〈

div h+ K♭− 2 divα− 2Υα,α⊥+θ⊥ − 1
2 Υh,h, B

〉

+ div(〈2α− h,B〉),

∂tgt(H,H) =
〈

2〈θ⊥− α⊥, H〉+2 Sym(H♭⊗H⊥♭)

− 2δH+(divH)g⊤−H♭ ⊗H♭, B
〉

+ div(2(B♯H)⊤− (Tr D B♯)H),

∂t〈T
⊥, T⊥〉 =

〈

2T ⊥♭+ 2Υθ⊥,θ−α − 2 div θ⊥ + 1
2 ΥT⊥,T⊥ , B

〉

+ div(2〈θ⊥, B〉),

∂t〈T, T 〉 =
〈

1
2 ΥT,T + 2T ♭, B

〉

,

Remark 2.1. Formulas of Proposition 2.1 can be presented in three-component
form, in which D×D-and D⊥×D⊥-components are dual, i.e., of the same form with
interchanged D and D⊥. For example, for g⊤-variations we obtain the following:

∂t〈h, h〉 = 〈div h+ K♭, B〉 − div(〈h,B〉),

∂tgt(H,H) = 〈 (divH) g⊤, B〉 − div((Tr D B
♯)H),

∂t〈h
⊥, h⊥〉 = −〈Υh⊥,h⊥ , B〉/2,

∂tgt(H
⊥, H⊥) = −〈H⊥♭ ⊗H⊥♭, B〉,

∂t〈T, T 〉 = 2 〈 T ♭, B 〉,

∂t〈T
⊥, T⊥〉 = 〈ΥT⊥,T⊥ , B〉/2.

Assume that the Lagrangian can be written as a sum of two terms Lgr + L,
where Lgr = 1

2a (Smix −2 Λ) is the gravity Lagrangian, see (0.1), and the matter La-

grangian L depends only on g and not on its derivatives. Set J : g 7→
∫

Ω L(g) d volg
on M . Variation of the metric g with B = ∂tgt |t=0 produces the stress-energy
tensor Θ such that

d

dt
J(gt) | t=0 =

1

2

∫

Ω
〈Θ, B〉 d volg,

and which governs the interaction of the “gravitational field" with the given field
representing the matter. Note that, see [1],

Θµν = −2
∂L

∂gµν
+ gµνL,

(

2
∂L

∂gµν
+ gµνL

)

Bµν = ΘµνBµν = 〈Θ, B〉.

The product TM × TM is the sum of three subbundles, D⊥ × D⊥, D × D and

V := (D × D⊥) + (D⊥ × D).
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Definition 2.1. The symmetric (0, 2)-tensor Ric D defined by

Ric D | D⊥×D⊥ = divh⊥ + K⊥♭ − 2T ⊥♭ +H♭ ⊗H♭ −
1

2
Υh,h −

1

2
ΥT,T + η g⊥,

Ric D |V = 2 δH + 2 div(θ⊥ − α) − 4〈θ,H⊥〉 − 2〈θ⊥ − α⊥, H〉

− 4Υα⊥,θ − 2Υα,α⊥ − 2Υθ⊥,θ − 2 Sym(H♭ ⊗H⊥♭),(2.2)

Ric D| D×D = divh+ K♭ − 2T ♭ +H⊥♭ ⊗H⊥♭ −
1

2
Υh⊥,h⊥ −

1

2
ΥT⊥,T⊥ + µ g⊤,

where

(2.3) η = −
n− 1

p+ n− 2
div(H⊥ −H), µ =

p− 1

p+ n− 2
div(H⊥ −H),

is referred to as the mixed Ricci curvature. The trace of Ric D is then

(2.4) ScalD = Smix +
p− n

n+ p− 2
div(H⊥ −H).

Proposition 2.2. Euler–Lagrange equations for (0.1) are the same as for the

action

(2.5) ĴD,Ω : g 7→

∫

Ω

{ 1

2a
(ScalD(g) − 2 Λ) + L(g)

}

d volg .

Proof. For any Xt supported on Ω and any gt we have
∫

Ω
divXt d volgt

=

∫

∂Ω
g(Xt, ν) dAgt

,

ν being outward-pointing normal unit vector field to ∂Ω. If ∂tg and ∂tX are
supported in Ω then the rhs integral does not depend on t: d

dt

∫

Ω divXt d volgt
= 0.

Thus, for Xt = p−n
n+p−2 (H⊥ −H) and by (2.4), if we replace Smix by ScalD in (0.1)

then get the same Euler–Lagrange equations. �

Theorem 2.1 (Euler–Lagrange equations). A metric g on M with nondegen-

erate D is critical for (0.1), or equivalently, for (2.5), if and only if g is a solution

to (0.2), where Ric D is given by (2.2).

Proof. We derive for the gravitational part Jmix,D,Ω : g 7→
∫

Ω Smix(g) d volg
of (0.1). By (1.2),

d

dt
Jmix,D,Ω(gt) =

d

dt

∫

Ω
Q(gt) d volgt

,

where Q(g) := Smix(g) − div(H +H⊥) is given using (1.2) as

(2.6) Q(g) = g(H,H) − 〈h, h〉g + g(H⊥, H⊥) − 〈h⊥, h⊥〉g + 〈T, T 〉g + 〈T⊥, T⊥〉g .

Recall, see [10], that the volume form is evolved as

(2.7) ∂t
(

d volgt

)

| t=0 =
1

2
(Tr g B) d volg,
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and Tr g B = 〈g, B〉, where B = {∂tgt} | t=0. Applying Proposition 2.1 to (2.6),
using (1.3), (2.7) and removing integrals of divergences of vector fields compactly
supported in Ω, we obtain

d

dt
Jmix,D,Ω(gt)| t=0 =

=

∫

Ω

(

∂tQ(gt) | t=0 +
1

2
(Tr g B)(Smix(g) − div(H +H⊥))

)

d volg

=

∫

Ω

〈

4 〈θ,H⊥〉 −H⊥♭ ⊗ H⊥♭ − divh⊥ + 4Υα⊥,θ − K♭ +
1

2
Υh⊥,h⊥

−H♭ ⊗H♭ + 2 〈θ⊥ − α⊥, H〉 + 2 Sym(H♭ ⊗H⊥♭) − 2 δH + 2 div(α− θ⊥)

+ 2 Υα,α⊥+θ⊥ +
1

2
Υh,h − divh− K♭ + 2 T ⊥♭ + 2 Υθ⊥,θ−α +

1

2
ΥT⊥,T⊥

+
1

2
ΥT,T + T ♭ +

1

2
Smix · g +

1

2
div(H⊥ −H)( g⊥ − g⊤), B

〉

d volg .(2.8)

If g is critical for Jmix,D,Ω w.r.t. all variations (gt) then the integral in (2.8) is zero
for arbitrary symmetric (0, 2)-tensor B. We can further decompose the resulting
Euler–Lagrange equations into three independent parts: its V -, D×D- and D⊥×D⊥-
components. In this way, for the action (0.1) we obtain (2.2). The D⊥ × D⊥-
component (2.2)3 is dual to the D × D-component (2.2)1. Substituting (2.2) with
arbitrary (µ, η) into (0.2), and comparing the result with (2.2), we find (µ, η) in
(2.3) as solution of a linear system

(p− 2) η + nµ = div(H⊥ −H), (n− 2)µ+ p η = − div(H⊥ −H). �

Remark 2.2. Components (2.2)1 and (2.2)3 can be obtained using adapted
variations of metric, see also [8]. Component (2.2)2 is not symmetric under the
change D⊥ ↔ D, because Smix(gt) (when D is fixed) is different from the mixed
scalar curvature for gt when D⊥ is fixed while Dt varies. In order to organize better
the div-terms in (2.2)2, we introduce the symmetric (0, 2)-tensor:

Ric⊤(X,Y ) =
∑

a
εa

(

g(REa,X⊤Ea, Y
⊥) + g(REa,Y ⊤Ea, X

⊥)
)

.

Using the Codazzi equation of [5, Theorem 2.4], V -component (2.2)2 can be written
as

RicD|V = Ric⊤+ 2 div(θ⊥+ θ) + 2〈α− θ,H⊥〉(2.9)

+ 2〈α⊥− θ⊥, H〉 − 2 Sym(H♭ ⊗H⊥♭) − 2Υα,α⊥ + 2Υθ,θ⊥.

As an immediate consequence of (2.9), we get: if D and D⊥ are integrable then

Ric D |V = Ric⊤ + 2〈α,H⊥〉 + 2〈α⊥, H〉 − 2 Sym(H♭ ⊗H⊥♭) − 2Υα,α⊥ .

Corollary 2.1. A metric g on M with non-degenerate D is critical for the

action (0.1) w.r.t. all adapted variations of g if and only if g solves (0.2), where

RicD is built from (2.2)1 and (2.2)3 (that is RicD |V = 0).
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Next, we will examine (0.2) for generalized product metrics, having many appli-
cations. Let M = M1 ×M2 be a product of pseudo-Riemannian manifolds (Mi , gi)
(i = 1, 2), and let πi : M → Mi and dπi : TM → TMi be the canonical projec-
tions. Given positive twisting functions φ, ψ ∈ C∞(M), a double-twisted product

M1 ×(φ,ψ) M2 is M1 × M2 with the metric ḡ = φ g⊤ + ψ g⊥, where g⊤ = π∗
1g1 and

g⊥ = π∗
2g2. If either φ or ψ is constant, then we have a twisted product. The

leaves M1 ×{y} (tangent to D) and the fibers {x}×M2 (tangent to D⊥) are totally
umbilical in (M, ḡ) and this property characterizes double-twisted products, see [6].
Recall that Hessψ(X,Y ) = ḡ(∇̄X(∇̄ψ), Y ) for all X,Y ∈ XM .

The next proposition describes RicD for double-twisted products, and shows
that the stress-tensor in (0.2) should be of a particular structure. The result can
be also used for finding special solutions of the mixed Ricci equation and mixed
Einstein metrics mentioned in the introduction.

Proposition 2.3. Let g = g⊤+g⊥ be a direct product metric on M = M1×M2.

Then a double-twisted product metric ḡ = ψ g⊤ + φ g⊥ is critical for (0.1) if and

only if ḡ solves (0.2) with

RicD | D⊥×D⊥ = (F1 + Λ) g⊥+ F2(∇⊥φ)♭ ⊗ (∇⊥φ)♭,

RicD |V = F3(∇⊤φ)♭ ⊗ (∇⊥ψ)♭ + F4 (Hessψ)|V ,(2.10)

RicD | D×D = (F5 + Λ) g⊤+ F6(∇⊤ψ)♭ ⊗ (∇⊤ψ)♭,

where (F5, F6) are dual under the change (D⊥, ψ) ↔ (D, φ) to (F1, F2), resp., and

F1 =
n(n− 1)

4
ψ−2g(∇⊥ψ,∇⊥ψ) +

(

1 −
p

4

)

(p− 1)ψ−1φ−1g(∇⊤φ,∇⊤φ)

− (p− 1)ψ−1∆⊤φ+
(

1 −
n

2

)

(p− 1)ψ−2g(∇⊤ψ,∇⊤φ),

F2 = −
n(n− 1)

2
φ−2ψ−2,

F3 = −(n− 1)ψ−1
(p− 2

4
φ−1 −

1

2
ψ−1

)

, F4 =
1 − n

2
ψ−1.

Note that constant φ, ψ are the only solutions of (2.10) with Λ = 0 = Θ.

3. The mixed Ricci tensor on spacetimes

Let n = 1. In this case, D is spanned by a nonsingular vector field N , i.e.,
the distribution tangent to one-dimensional foliation of (Mp+1, g) by N -curves. An
example of such foliations is provided by a circle action S1 ×M → M without fixed
points. Now, let g(N,N) = εN ∈ {−1, 1}, then g = g⊤ + g⊥, where

(3.1) g⊤ = εNN
♭ ⊗N ♭.

For physically relevant applications, one should take p = 3 and εN = −1, while
g| D⊥ > 0. Note that Smix = εN RicN,N , and the action (0.1) reduces itself to

(3.2) JN,Ω : g 7→

∫

Ω

{ 1

2a
(εN RicN,N(g) − 2 Λ) + L(g)

}

d volg .
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For a foliation by N -curves we have T = 0, while 〈T⊥, T⊥〉 = εN〈T⊥♯
N , T⊥♯

N 〉.
It follows easily that h = H g⊤ and 〈h, h〉 = g(H,H), where H = εN∇NN is the
curvature of N -lines, and

(3.3) H⊥ = εNτ1N, h⊥ = h⊥
scN, g(H⊥, H⊥) = τ2

1 , 〈h⊥, h⊥〉 = τ2,

where h⊥
sc = εN〈h⊥, N〉 is the scalar second fundamental form of D⊥ and τi is the

trace of the ith power of A⊥
N . By (1.3), we obtain

(3.4) div h⊥ = ∇N h
⊥
sc − τ1h

⊥
sc, div h = (divH) g⊤.

Note that divN = −τ1 and div(τ1N) = N(τ1) − τ2
1 . Denote by RN : X → RN,XN

the Jacobi operator of N . Recall the identities, see [7, 8],

(3.5)
ǫN

(

RN + (A⊥
N )2 + (T⊥♯

N )2)♭
= N(h⊥

sc) −H♭ ⊗H♭ + DefD H,

ǫN RicN,N = divH + ǫN(N(τ1) − τ2) + 〈T⊥, T⊥〉.

The D-deformation tensor of Z ∈ XM is the symmetric part of ∇Z restricted to D:

2 (DefD Z)(X,Y ) = g(∇XZ, Y ) + g(∇Y Z,X), (X,Y ∈ XD).

Proposition 3.1. For D spanned by N , the symmetric tensor RicD is given by

Ric D | D⊥×D⊥ = ∇N h
⊥
sc − τ1h

⊥
sc − εN (2 (T⊥♯

N )2 + [T⊥♯
N , A⊥

N ])♭,

RicD(· , N) | D⊥ = div⊥(T⊥♯
N ) + 2 (T⊥♯

N H)♭(3.6)

Ric D(N,N) = εN(N(τ1) − τ2) − 〈T⊥, T⊥〉,

and its trace is

ScalD = εN RicN,N + div(εNτ1N −H).

Due to (3.5), an equivalent form of Ric D just involving the curvature tensor is

(3.7)

RicD | D⊥×D⊥ = εN (RN + (A⊥
N )2 − (T⊥♯

N )2 + [T⊥♯
N , A⊥

N ])♭ +H♭ ⊗H♭

− τ1h
⊥
sc − DefD H −

1

2
(εN RicN,N + div(εNτ1N −H)) g⊥,

RicD(· , N) | D⊥ = div⊥(T⊥♯
N ) + 2 (T⊥♯

N H)♭,

RicD(N,N) = εN RicN,N −4 〈T⊥, T⊥〉 − div(εN τ1N +H).

Proof. By (2.3), we have η = 0 and µ = εN (N(τ1)−τ2
1 )−divH . Substituting

values (3.3), (3.4) and

Υh,h = 2H♭ ⊗H♭, T = εN(T⊥♯
N )2, ΥT,T = 0

into (2.2)1 yields (3.6)1. Substituting values (3.3), (3.4) and

h = H g⊤, H⊥♭ ⊗H⊥♭ = εN τ
2
1 g

⊤, K = 0 = T ,

Υh⊥,h⊥ = 2 εN τ2 g
⊤, ΥT⊥,T⊥ = 2 〈T⊥, T⊥〉 g⊤
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into (2.2)3 yields (3.6)3. Note also that θ = 0; hence,

2 (divα)(X,N) = g(∇NH − τ1H,X),

2 〈θ⊥ − α⊥, H〉(X,N) = −g(T⊥♯
N (H) +A⊥

N (H), X),

2 Sym(H♭ ⊗H⊥♭)(X,N) = g(τ1H, X),

2 δH(X,N) = g(∇NH,X),

2Υα,α⊥(X,N) = g(A⊥
N (H), X)

for all X orthogonal to N , and the V -component (2.2)2 is

(3.8) Ric D |V = div θ⊥ − 〈θ⊥, H〉.

The lhs of (3.8) vanishes on all pairs of vectors except those from V . We have

2 div θ⊥(X,N) =
∑

i
εi g((∇i T

⊥♯
N )(X), Ei) + εNg(∇N (T⊥♯

N (X)), N)

= div⊥(T⊥♯
N )(X) + g(T⊥♯

N (H), X)

for X ∈ XD⊥ Hence, (3.8) is written as (3.6)2. Using (3.5) in (3.6) yields (3.7).
The above and (3.1) yield (0.2). �

Theorem 2.1 and Proposition 3.1 yield the following.

Corollary 3.1 (The mixed gravitational field equations). A metric g on M
with D spanned by a unit vector field N is critical for (3.2) if and only if g is a

solution of (0.2) with RicD given in (3.6). In this case, (0.2) splits into the system

(3.9)

∇N h
⊥
sc − τ1h

⊥
sc − εN

(

2(T⊥♯
N )2 + [A⊥

N , T
⊥♯
N ]

)♭

+ 〈T⊥, T⊥〉 −
1

2

(

εN (2N(τ1) − τ2
1 − τ2) − 2Λ

)

g⊥ = aΘ| D⊥×D⊥ ,

div⊥(T⊥♯
N ) + 2 (T⊥♯

N H)♭ = aΘ
� ,N | D⊥ ,

1

2
εN (τ2

1 − τ2) −
3

2
〈T⊥, T⊥〉 + Λ = aΘN,N .

Example 3.1. Let a unit vector field N generates a geodesic Riemannian flow
(i.e., h⊥ = 0 = h) on a pseudo-Riemannian manifold (Mp+1, g). In this case,

Ric D(X,N) = − RicX,N .

As an example, consider the Hopf fibration S2m+1 → CPm, for which N is tangent
to the fibers {S1}. We have T⊥(X,Y ) = g(JX, Y )N for the standard almost

complex structure J on R
2m+2 and metric g > 0, and hence T⊥♯

N (X) = J(X) and

〈T⊥, T⊥〉 = 2m. It follows that (∇Z T
♯
N )(X) = (∇Z J)(X) = 0, and (3.9)2 is valid

with Θ| D⊥×D = 0. Moreover, (3.9)1 and (3.9)3 are satisfied with

aΘ| D⊥×D⊥ = (2 −m+ Λ) g⊥, aΘN,N = Λ − 3.

The reader can find more examples in [8, 9], and for spacetimes, in [1].



EINSTEIN–HILBERT TYPE ACTION ON SPACETIMES 209

Corollary 3.2. A metric g on M with non-degenerate D = Span(N) and

integrable D⊥ is critical for (3.2) if and only if g solves (0.2), where the nonzero

components of Ric D are given by

(3.10) Ric D |D⊥×D⊥ = ∇N h
⊥
sc − τ1h

⊥
sc, Ric D(N,N) = εN(N(τ1) − τ2).

In this case, (0.2) splits into the system

(3.11)
∇N h

⊥
sc − τ1h

⊥
sc −

1

2
(εN (2N(τ1) − τ2

1 − τ2) − 2Λ) g⊥ = aΘ| D⊥×D⊥ ,

1

2
εN (τ2

1 − τ2) + Λ = aΘN,N .

Proof. Since (3.9)2 is valid for integrable D⊥, in this case, variations gt con-
stant on D yield the same Euler–Lagrange equations as adapted g⊥-variations. �

Action (3.2) has been studied in [1] for a globally hyperbolic spacetime (M4, g),
which is naturally foliated, see [3]. There, D = Span(N) with εN = −1, and D⊥

is integrable (i.e., T⊥ = 0). Although Euler–Lagrange equations for (3.2) coincide

with (3.11), they are written in [1] in terms of a non-symmetric tensor Ric1
D, which

is different from (3.10):

Ric1
D| D⊥×D⊥ = ∇N h

⊥
sc − τ1h

⊥
sc,

Ric1
D(X,N) = − Ric1

D(N,X) = div(A⊥
N (X)), X ∈ XD⊥ ,

Ric1
D(N,N) = divH,

with the trace Scal1D = εN RicN,N −εN (τ2
1 − τ2). Consequently, the mixed gravita-

tional field equations given in [1] are slightly different from (0.2):

(3.12) Ric1
D −

1

2
Scal1D ·g + εN RicN,N

(1

2
g − εNN

♭ ⊗N ♭
)

+ Λ g = aΘ.

Since we actually use the symmetric part of Ric1
D in (3.12), its left hand side

vanishes when evaluated on (X,N). Thus, comparing Ric D with Ric1
D, we find

Sym(Ric1
D) − Ric D = (divH − εN(N(τ1) − τ2)) g⊤,

Scal1D − ScalD = divH − εN (N(τ1) − τ2).

Certainly, (3.12) reduces to (3.11) when evaluated on D⊥ ×D⊥ and (N,N), respec-
tively. This corresponds to the following values of (η, µ) in (2.2) when n = 1:

η = − div(H⊥ −H) + εN RicN,N , µ = div(H⊥ −H) − εN RicN,N .

Comparing (3.12) with (0.2) we conclude that (2.3) is the best choice of (η, µ).
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