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EINSTEIN-LIKE CONDITIONS AND

COSYMPLECTIC GEOMETRY

BENIAMINO CAPPELLETTI MONTANO AND ANNA MARIA PASTORE

Abstract. We prove that every Einstein compact almost C-manifold M2n+s

whose Reeb vector fields are Killing is a C-manifold. Then we extend this result
considering some generalizations of the Einstein condition (η-Einstein, generalized
quasi Einstein, etc.). Moreover, we find some topological properties of compact
almost C-manifolds under the assumption that the Ricci tensor is transversally
positive definite and the Reeb vector fields are Killing, namely we prove that
the first Betti number is s and the first fundamental group is isomorphic to Z

s.
Finally, a splitting theorem for cosymplectic manifolds is found.

1. INTRODUCTION

In [19] S. I. Goldberg conjectured that any compact Einstein almost Kählerian
manifold is necessarily Kählerian, giving rise to a well-known problem which is still
unsolved, the so-called “Goldberg conjecture”. The best step toward proving the
conjecture has been given in 1987 by K. Sekigawa, who confirmed the Goldberg
conjecture under the assumption of non-negative scalar curvature (cf. [30]).

The odd dimensional counterparts of Kählerian manifolds are, from different
points of view, Sasakian manifolds and cosymplectic manifolds, so one can ask for
a Goldberg-like conjecture for these manifolds. In 2001 C. P. Boyer and K. Gal-
icki (cf. [8]) have investigated in this direction for Sasakian geometry, proving that
every compact Einstein K-contact manifold is Sasakian. More recently (cf. [2]) V.
Apostolov, T. Draghici and A. Moroianu have given an alternative proof of the same
result.

The corresponding result for cosymplectic manifolds is one of the motivations of
this paper. Thus we prove that every Einstein compact almost cosymplectic manifold
whose Reeb vector field is Killing is a cosymplectic manifold. More general, we
prove such a result in the context of f -structures and under the assumption that the
metric is η-Einstein. However the proof of the Goldberg-like conjecture in this last
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more general setting leads us to study some interesting topological properties of C-
manifolds. For instance, under the assumptions that the Ricci tensor is transversally
positive definite and the Reeb vector fields are Killing, we prove that the first Betti
number of a compact almost C-manifold M2n+s is s and π1(M

2n+s) is isomorphic to
Z
s. As a consequence we deduce the existence of odd-dimensional smooth manifolds

which admit a C-structure but no Sasakian structures. Conversely, we show that
any compact almost C-manifold M2n+s, whose first Betti number is s and such that
each Reeb vector field is Killing, necessarily fibres over the flat torus Ts.

Finally, in the last section of the paper we shall discuss some counterexamples
and make some final remarks.

2. PRELIMINARIES

An almost contact manifold is a (2n+ 1)-dimensional manifold M2n+1 which
carries a field φ of endomorphisms of the tangent spaces, a vector field ξ, called Reeb

vector field, and a 1-form η satisfying φ2 = −I+η⊗ξ, η (ξ) = 1. From the definition
it follows that φξ = 0, η ◦ φ = 0 and the (1, 1)-tensor field φ has constant rank 2n
(cf. [6]). An almost contact metric manifold (M2n+1, φ, ξ, η, g) is said to be normal

if the tensor field N = [φ, φ] + 2dη ⊗ ξ vanishes identically. It is known that any
almost contact manifold (M2n+1, φ, ξ, η) admits a Riemannian metric g such that

g (φX,φY ) = g (X,Y )− η (X) η (Y )

for all X,Y ∈ Γ(TM2n+1). This metric g is called a compatible metric and the
manifold M2n+1 together with the structure (φ, ξ, η, g) is called an almost contact

metric manifold. Setting D = ker (η), one can see that the tangent bundle TM2n+1

splits as the orthogonal sum TM2n+1 = D ⊕ Rξ. The 2-form Φ on M2n+1 defined
by Φ (X,Y ) = g (X,φY ) is called the fundamental 2-form of the almost contact
metric manifold M2n+1. Almost contact metric manifolds such that dη = Φ are
called contact metric manifolds and almost contact metric manifolds such that both
η and Φ are closed are called almost cosymplectic manifolds. Adding the normality
condition one has Sasakian and cosymplectic manifolds, respectively. It is known (cf.
[6]) that an almost contact metric manifold is cosymplectic if and only if ∇φ = 0,
∇ denoting the Levi-Civita connection. Another fundamental property of almost
cosymplectic manifolds is that the distribution D is integrable. Thus D defines a
2n-dimensional foliation of M2n+1. Every leaf of this foliation is a minimal almost
Kählerian manifold with the almost complex structure given by the restriction of φ
to the leaf.

In any almost cosymplectic manifold ∇ξξ = 0 and ξ is ∇-parallel if and only if it
is a Killing vector field. This occurs in particular in any cosymplectic manifold. In
fact in dimension 3 also the converse holds: if the Reeb vector field of a 3-dimensional
almost cosymplectic manifoldM2n+1 is Killing thenM2n+1 is cosymplectic (cf. [20]).

The main curvature properties of cosymplectic manifolds were studied by S.
Goldberg and K. Yano in [20]. In particular, they proved that in any cosymplectic
manifold R(φX,φY ) = R(X,Y ) for all X,Y ∈ Γ(TM2n+1). From this result it



Einstein-like conditions and cosymplectic geometry 29

easily follows that

Ric(φX,φY ) = Ric(X,Y ) (2.1)

for anyX,Y ∈ Γ(TM2n+1), where Ric denotes the Ricci tensor of (M2n+1, g). In par-
ticular, we have that Ric(X, ξ) = Ric(φX,φξ) = 0 and Ric(X,φY ) = Ric(φX,−Y +
η(Y )ξ) = −Ric(φX, Y ). This last property implies that the tensor

ρ(X,Y ) = Ric(X,φY ) (2.2)

is in fact a 2-form. Note that, since ξ is Killing and Lξφ = 0, the metric g and the
tensor field φ locally project along the leaves of the 1-dimensional foliation defined
by ξ, respectively, onto a Riemannian metric g′ and a tensor field J ′ such that (J ′, g′)
is a Kählerian structure on the space of leaves M ′2n = M2n+1/ξ. Then, as easily
follows from the O’Neill equations ([15]), also the Ricci tensor of the cosymplectic
manifold (M2n+1, φ, ξ, η, g) projects onto the Ricci tensor Ric′ of M ′2n. This implies,
in turn, that the above defined 2-form ρ is a foliated object, i.e. constant along the
leaves of the foliation defined by ξ, and locally it is just the pull-back of the Ricci-
form ρ′ of the Kahlerian structure (J ′, g′). Then, since ρ′ is closed (cf. [23]), also ρ
is a closed 2-form.

The notion of almost contact metric manifold can be generalized and extended
in the context of f -manifolds. Let M2n+s be a manifold of dimension 2n+ s, s ≥ 1.
We say that M2n+s has a metric f -structure with complemented frames (cf. [21]) if
M2n+s admits a tensor field f of type (1, 1) and constant rank 2n, s vector fields
ξ1, . . . , ξs and 1-forms η1, . . . , ηs satisfying

f2 = −I +

s
∑

α=1

ηα ⊗ ξα, ηα (ξβ) = δαβ , fξα = 0, ηα ◦ f = 0,

and a Riemannian metric g such that

g (fX, fY ) = g (X,Y )−

s
∑

α=1

ηα (X) ηα (Y ) (2.3)

for all vector fields X,Y on M2n+s. Note that, as an immediate consequence of
(2.3), we have ηα(X) = g(X, ξα) for all X ∈ Γ(TM2n+s) and each α ∈ {1, . . . , s}.
Let F be the 2-form defined by F (X,Y ) = g (X, fY ). Then (M2n+s, f, ξα, ηα, g),
or simply M2n+s, is said to be an almost C-manifold if the forms F and ηα are
closed for all α ∈ {1, . . . , s}. Note that η1 ∧ · · · ∧ ηs ∧ Fn never vanishes, so that
the manifold is orientable. When an almost C-manifold is normal, in the sense that

the tensor field N = [f, f ] + 2

s
∑

α=1

dηα ⊗ ξα vanishes identically, we say that M2n+s

is a C-manifold (cf. [5]). In terms of the Levi-Civita connection, a necessary and
sufficient condition for a metric f -manifold with complemented frames to be a C-
manifold is that ∇f = 0 ([5]). Note that for s = 1 we reobtain the definition of
(almost) cosymplectic structure.



30 Beniamino Cappelletti Montano and Anna Maria Pastore

As proven in [24], in an almost C-manifold we have ∇ξαξβ = 0 for all
α, β ∈ {1, . . . , s}. In particular [ξα, ξβ] = 0, so that the distribution spanned
by ξ1, . . . , ξs is integrable and defines a totally geodesic s-dimensional foliation of
M2n+s denoted by F. On the other hand, since dη1 = · · · = dηs = 0, the equa-
tions η1 = 0, . . . , ηs = 0 define a 2n-dimensional foliation D which is orthogonal to
F. The leaves of D are minimal almost Kählerian manifolds if M2n+s is an almost
C-manifold, and totally geodesic Kählerian if M2n+s is a C-manifold. However there
are also examples of non-normal almost C-manifolds such that the leaves of D are
Kählerian. These are called almost C-manifolds with Kählerian leaves. With regard
to this we have the following result.

Proposition 2.1 ([24]). An almost C-manifold with Kählerian leaves is a C-

manifold if and only if each ξα is a Killing vector field, that is F is a Riemannian

foliation or, equivalently, D is totally geodesic.

We remark that the condition that each ξα is Killing is equivalent to the re-
quirement that ∇ξα = 0. We point out also that the foliation F defined by the
vector fields ξ1, . . . , ξs is transversally orientable since the bundle Λs(D) is trivial,
η1 ∧ . . . ∧ ηs being a nowhere vanishing section (cf. [32]).

The standard example of an almost C-manifold is given by the product of an
almost Kählerian manifold with an abelian Lie group. Note that in this case the
almost Kählerian manifold is Kählerian if and only if the almost C-structure is
normal. Moreover, each vector field ξα is Killing. On the other hand it is well known
that ∇ξα = 0 for all α ∈ {1, . . . , s} if and only if the almost C-manifold M2n+s in
question is locally the Riemannian product of an almost Kählerian manifold and an
s-dimensional flat manifold. However, there are also several examples of C-manifolds
which are not the global products of a Kählerian manifold with an abelian Lie group
(see e.g. [12], [16], [17], [27]).

3. EINSTEIN CONDITIONS

In this section we focus on almost C-manifolds such that the canonical foliation F

is Riemannian, by stating and proving a Goldberg-like conjecture for these manifolds.
Firstly we recall the following preliminary lemma.

Lemma 3.1 ([26]). In any almost C-manifold (M2n+s, f, ξα, ηα, g) the following

relations hold, for any α ∈ {1, . . . , s},

Ric (ξα, ξα) + |∇ξα|
2 = 0, (3.1)

τ − τ∗ −
s

∑

α=1

Ric(ξα, ξα) +
1

2
|∇f |2 = 0, (3.2)

where τ denotes the scalar curvature and τ∗ the ∗-scalar curvature defined as the

trace of the Ricci-∗ tensor.

Theorem 3.1. Every compact Einstein almost C-manifold (M2n+s, f, ξα, ηα, g) such
that each ξα is a Killing vector field is a C-manifold.
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Proof. Since ξα is Killing, we have ∇ξα = 0 and by (3.1) we get that M2n+s, being
Einstein, is Ricci-flat. Now let us consider the product M ′ = M2n+s ×T

s, where Ts

denotes the s-dimensional flat torus. We define on M ′ an almost complex structure
J ′ by putting J ′X = fX for all X ∈ Γ(D) and J ′ξα = uα, J

′uα = −ξα for each α ∈
{1, . . . , s}, where uα denotes a unit vector field on each factor of Ts = S1× · · ·×S1.
Let us denote by g′ the product metric on M ′. Then one easily verifies that J ′ is
compatible with respect to g′. Moreover, some straightforward computations show
that the differential of the fundamental 2-form Ω′ associated to J ′ and g′ is given by

dΩ′

⎛

⎝X +

s
∑

α=1

hαuα, Y +

s
∑

β=1

kβuβ, Z +

s
∑

γ=1

ℓγuγ

⎞

⎠ =

= dF (X,Y,Z)−
2

3

s
∑

α=1

(ℓαdηα(X,Y ) + hαdηα(Y,Z) + kαdηα(Z,X)) = 0

for any vector fields X, Y , Z on M2n+s and smooth functions hα, kα, ℓα on M ′,
α ∈ {1, . . . , s}. Hence (M ′, J ′, g′) is an almost Kählerian manifold. Moreover the
Riemannian metric g′ is Ricci-flat, being the product of two Ricci-flat Riemannian
metrics. In particular, M ′ is an Einstein manifold with zero scalar curvature and by
Sekigawa theorem ([30]) J ′ is parallel. This last result, together with ∇ξα = 0, in
turn implies that ∇f = 0. Hence M2n+s is a C-manifold. �

Corollary 3.1. Any compact Ricci-flat almost C-manifold is a C-manifold.

Proof. In fact by virtue of (3.1) the Ricci flatness is equivalent to the requirement
that the metric g is Einstein and the vector fields ξα are Killing. �

Corollary 3.2. Every Einstein compact metric f -manifold
(

M2n+s, f, ξα, ηα, g
)

with

each ξα Killing, satisfying (3.1) and

τ − τ∗ −
sτ

2n+ s
+

1

2
|∇f |2 = 0.

is a C-manifold.

Proof. Theorem 4.1 in [26] states that a metric f -manifold satisfying (3.1) and (3.2)
is an almost C-manifold. Thus, the result follows from Theorem 3.1 applying the

relation
s

∑

α=1

Ric(ξα, ξα) =
sτ

2n + s
. �

Corollary 3.3. Let (M2n+s, f, ξα, ηα, g) be an Einstein compact C-manifold. Then

any other almost C-structure (f ′, ξ′α, η
′
α, g) on M2n+s is a C-structure.

Proof. Since the Riemannian metric g is Einstein and (f, ξα, ηα, g) is a C-structure,
(M2n+s, g) is Ricci-flat. Then, by applying the formula Ric (ξ′α, ξ

′
α)+ |∇ξ′α|

2 = 0, we
get ∇ξ′α = 0, hence each ξ′α is Killing and we are under the assumptions of Theorem
3.1. Thus (f ′, ξ′α, η

′
α, g) is a C-structure. �
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In particular, for s = 1 Theorem 3.1 implies the following result.

Theorem 3.2. Every compact Einstein almost cosymplectic manifold such that the

Reeb vector field is Killing is cosymplectic.

Theorem 3.2 may be interpreted as an odd dimensional analogue of the cele-
brated Goldberg conjecture stating that any compact Einstein almost Kähler man-
ifold is necessarily Kähler-Einstein ([19]). An analogous result in the context of
Sasakian manifolds was proven by Boyer-Galicki ([8]) in 2001 and Apostolov-Draghici-
Moroianu ([2]) in 2006.

4. η-EINSTEIN CONDITIONS

A generalization of Theorem 3.2 involves the notion of η-Einstein metric. An
almost cosymplectic manifold (M2n+1, φ, ξ, η, g) is said to be η-Einstein if the Ricci
tensor satisfies

Ric = ag + bη ⊗ η,

for some smooth functions a and b on M2n+1. In particular, any η-Einstein almost
cosymplectic manifold is quasi Einstein in the sense of [11]. Examples of this type
are given by cosymplectic manifolds of constant φ-sectional curvature c, whose Ricci

tensor is given by Ric =
c (n+ 1)

2
(g − η ⊗ η) (cf. [25]). Thus we will consider

compact η-Einstein almost cosymplectic manifolds whose Reeb vector field is Killing.
Note that, according to Theorem 2 of [10], if b > 0 and a+ b < 0 then there exist no
Killing vector fields in the manifold, but in our case we have that a+b = Ric(ξ, ξ) =
−|∇ξ|2 ≤ 0, so that it is meaningful to assume ξ Killing.

A similar notion can also be defined for almost C-manifolds (cf. [22]). Let
M2n+s be an almost C-manifold. Then the leaves of D are almost Kählerian and
the induced metric is an Einstein metric if and only if

Ric = ag +

s
∑

α=1

bαηα ⊗ ηα (4.1)

for some smooth functions a, b1, . . . , bs. In this case we say that M2n+s is an η-
Einstein almost C-manifold.

Now we discuss the case of η-Einstein compact almost C-manifolds, which in-
cludes, for s = 1, the case of η-Einstein compact almost cosymplectic manifolds.
We assume that each ξα is a Killing vector field and that a > 0, since a = 0 gives
the Ricci-flatness already discussed in the previous section. We may assume that
n ≥ 2, since any almost C-manifold of dimension 2+ s such that each ξα is Killing is
necessarily a C-manifold. Then a, b1, . . . , bs are necessarily constant. We recall that,
as proven in [26], the 1-forms ηα and the 2-form F are harmonic.

Proposition 4.1. Let M2n+s be a compact C-manifold with transversally positive

definite Ricci tensor. Then the space Λ1
H,F(M

2n+s) of the harmonic 1-forms which

annihilate all the ξα is trivial. Moreover one has dimΛ1
H(M2n+s) = s = b1(M

2n+s).
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Proof. Let β be a harmonic 1-form such that β(ξα) = 0 for each α ∈ {1, . . . , s} and
denote by B its dual vector field. Since ηα(B) = g(B, ξα) = β(ξα) = 0, we obtain
B ∈ D. Then, the well-known formula (cf. [18])

∫

M2n+s

Ric(B,B) + |∇β|2 = 0

implies B = 0 and β = 0.
Obviously, dimΛ1

H = r ≥ s. Let {η1, . . . , ηs, β1, . . . , βr−s} be a basis of Λ1
H .

Since the ξα are Killing, we have βi(ξα) = const. for any i ∈ {1, . . . , r − s} and
α ∈ {1, . . . , s}. We put for any j ∈ {1, . . . , r − s}

β̃j = βj −

s
∑

α=1

βj(ξα)ηα

and it is easy to verify that {η1, . . . , ηs, β̃1, . . . , β̃r−s} is again a basis of Λ1
H . Fur-

thermore β̃j(ξα) = 0 and this implies β̃j = 0 and r = s. �

It should be remarked that the proof of Proposition 4.1 does not depend on the
normality of the C-structure, but just on the weaker condition of all the Reeb vector
fields being Killing. Thus we have the following

Proposition 4.2. Let M2n+s be a compact almost C-manifold with each ξα Killing

and transversally positive definite Ricci tensor. Then

dimΛ1
H(M2n+s) = s = b1(M

2n+s).

Corollary 4.1. Let M2n+s be a compact almost C-manifold with each ξα Killing and

transversally positive definite Ricci tensor and assume that s is odd. Then M2n+s

can not admit any Sasakian structure.

Proof. The result follows from Proposition 4.2 and a well-known theorem of Tachibana
stating that the first Betti number of a Sasakian manifold is even or zero ([31]). �

For instance, the product of a compact Einstein Kählerian manifold of strictly
positive scalar curvature with the s-dimensional flat torus, s being an odd number,
provides an example of a C-manifold which satisfies the assumptions of Corollary
4.1. Thus in particular we have:

Corollary 4.2. There exist odd-dimensional manifolds which admit a C-structure

but no Sasakian structures.

We notice that Theorem 3.1 in [14] stated for compact cosymplectic manifolds
holds also for compact almost cosymplectic manifolds whose Reeb vector field is
Killing. Now, we extend such a result to compact almost C-manifolds. Clearly,
assuming s = 1 and the normality condition, we reobtain the quoted theorem.

Theorem 4.1. Let M2n+s be a compact almost C-manifold such that b1(M
2n+s) = s

and each ξα is Killing.
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(1) If L is a leaf of the foliation D, then the inclusion map induces a monomor-

phism i : π1(L) → π1(M
2n+s) and the quotient group

π1(M
2n+s)

π1(L)
is isomor-

phic to Z
s.

(2) There exists a fibration π : M2n+s → T
s of M2n+s onto the flat torus Ts such

that the leaves of D are the fibres of π.
(3) The leaves of D are compact.

Proof. We know that, since the ξα are Killing, M2n+s is locally a Riemannian prod-
uct of an almost Kählerian manifold and a flat manifold of dimension s. Then, its
almost C-structure lifts to an almost C-structure (φ̃, ξ̃α, η̃α, g̃) on the universal cov-

ering space M̃ . Moreover, M̃ is the product of a simply connected almost Kählerian
manifold K with R

s. The foliation D lifts to a foliation D̃ of M̃ , whose leaves are
of the form K × {x}, x ∈ R

s, and they are the lift of the leaves L of D.
As in the proof of Theorem 3.1 in [14], we get a homomorphism ρ : π1(M

2n+s) →
Diff(Rs) such that ker(ρ) = π1(L) and Im(ρ) is an abelian group isomorphic to
π1(M

2n+s)

π1(L)
, which is in turn isomorphic to Z

r, with r ≥ 0, being finitely generated

owing to the compactness of M2n+s. Now, r = 0 would imply M2n+s ≃ L × R
s

against the compactness of M2n+s. Assuming r ≥ 1, since
π1(M

2n+s)

π1(L)
≃ Z

r, there

exists an epimorphism

β :
π1(M

2n+s)

[π1(M2n+s), π1(M2n+s)]
−→

π1(M
2n+s)

π1(L)
≃ Z

r

and since
π1(M

2n+s)

[π1(M2n+s), π1(M2n+s)]
is isomorphic to the first integral homology group

H1(M
2n+s,Z) whose rank is the first Betti number, we obtain r ≤ s.

Denote by γ : Zr → Im(ρ) an isomorphism, put γ(εi) = ζi, i ∈ {1, . . . , r},
εi = (0, . . . , 1, . . . , 0) being generators of Zr. Then Im(ρ) is a normal subgroup of

the translation group of Rs, isomorphic to the subgroup

{

r
∑

i=1

miai | mi ∈ Z

}

of Rs,

ai ∈ (Rs)∗ denoting the displacement vector of ζi. Hence, we obtain a fibration

p : M2n+s −→ R
s/Zr

such that the diagram

R
s

K ×R
s M2n+s

R
s/Zr

✲π

✲

π′

❄

pr2
❄

p

commutes. Since M2n+s is compact we have r = s and R
s/Zr = T

s (cf. [23]).
Finally, the leaves of D are the fibres of p so they are compact. �

Then, we have:
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Theorem 4.2. Every compact η-Einstein almost C-manifold M2n+s such that a > 0
and each ξα is a Killing vector field is a C-manifold. Furthermore, M2n+s is locally a

product of a simply connected compact Einstein Kählerian manifold and a flat torus

T
s and π1(M

2n+s) is isomorphic to Z
s.

Proof. By (4.1) and (3.1), since each vector field ξα is Killing, we have b1 = · · · =
bs = −a, the Ricci tensor is transversally positive definite and Proposition 4.2 gives
b1(M

2n+s) = s. From Theorem 3.2.1 of [18] we know that the first Betti number
of a compact orientable Riemannian manifold of positive definite Ricci curvature is
zero. Hence, Theorem 4.1 implies that any leaf of D is a compact simply connected
Einstein almost Kählerian manifold with positive scalar curvature and then it is
Kählerian, by the quoted Sekigawa’s result. Thus M2n+s is an almost C-manifold
with Kählerian leaves and in view of Proposition 2.1, since each ξα is Killing, it is a
C-manifold. Finally, the last statement follows again from Theorem 4.1. �

Remark 4.1. One could try to weaken the hypotheses, requiring that the foliation
F is a conformal foliation, that is (LV g)(X,Y ) = λ(V )g(X,Y ) for all X,Y ∈ Γ(D)
and V ∈ Γ(D⊥), λ being a function depending on V . However this forces the ξα
to be Killing and we return to the discussed cases. Indeed, assuming that F is
conformal, the distribution D is totally umbilical and this implies that its leaves,
being minimal, are totally geodesic. Therefore F is a Riemannian foliation and each
ξα is Killing.

Note that Theorem 4.2 also holds in the more general setting of generalized
quasi Einstein almost cosymplectic manifolds. Recall that a non-flat Riemannian
manifold (Mn, g) (n ≥ 3) is called a generalized quasi Einstein manifold if its Ricci
tensor is not identically zero and satisfies the condition

Ric(X,Y ) = ag(X,Y ) + bA(X)A(Y ) + c(A(X)B(Y ) +A(Y )B(X)) (4.2)

where a, c ∈ R, b ∈ R
∗ and A, B are non-zero 1-forms such that

A = g(·, U), B = g(·, V ), (4.3)

U , V being two unit, mutually orthogonal vector fields on the manifold ([11]). Thus
let (M2n+1, φ, ξ, η, g) be a compact generalized quasi Einstein almost cosymplectic
manifold such that ξ = U is Killing. Let us assume that a > 0. Then by (4.2) we get
that the Ricci tensor is transversally positive definite, so that the proof of Theorem
4.2 still works in this situation and M2n+1 is cosymplectic. Moreover, M2n+1 is
locally a product of a simply connected Kähler-Einstein manifold and S1, and the
first fundamental group is isomorphic to Z.

Another possible generalization comes from the notion of mixed generalized
quasi Einstein metrics [4]. Recall that a non-flat Riemannian manifold is called
mixed generalized quasi Einstein manifold if the Ricci tensor is non-zero and satisfies
the condition

Ric(X,Y ) = ag(X,Y ) + bA(X)A(Y ) + cB(X)B(Y ) + d(A(X)B(Y ) +A(Y )B(X))
(4.4)
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where a, b, c, d are non-zero scalars and A, B are 1-forms satisfying (4.3) as above.
The previous arguments works also in this setting, so we conclude that any compact
mixed generalized quasi Einstein almost cosymplectic manifold, such that the Reeb
vector field ξ = U is Killing and a > 0, is cosymplectic. Moreover, one can try to
adapt this last generalization of the Einstein condition to the context of C-manifolds.
For instance we can consider a (2n+2)-dimensional almost C-manifold whose Ricci
tensor satisfies (4.4) with A = η1 and B = η2. However, as soon as we suppose
that the Reeb vector fields ξ1, ξ2 are Killing, we have Ric(ξ1, ξ1) = Ric(ξ1, ξ2) =
Ric(ξ2, ξ2) = 0, which yields d = 0 and b = c = −a, so that we come back to the
already studied η-Einstein condition.

Note that (4.4) reduces to (4.2) for c = 0. In turn (4.2) putting c = 0 reduces
to

Ric(X,Y ) = ag(X,Y ) + bA(X)A(Y ) (4.5)

which is clearly an extension of the η-Einstein condition to every Riemannian mani-
fold. Any non-flat Riemannian manifold satisfying (4.5) is called quasi Einstein man-

ifold ([11]). Thus, in particular, by Theorem 4 of [11] we have that any η-Einstein
almost cosymplectic manifold such that ξ is Killing is conformally conservative, i.e.
the divergence of the conformal curvature is zero.

The geometric meaning of the scalars a and b in (4.5) is that a+ b and a are the
(only and distinct) eigenvalues of the Ricci operator, of which the former is simple
and the latter is of multiplicity dim(Mn)− 1 ([11]). Now we just discuss the general
case of a cosymplectic manifold whose Ricci operator admits two distinct constant
eigenvalues.

Theorem 4.3. Let (M2n+1, φ, ξ, η, g) be a cosymplectic manifold. Let us assume

that the Ricci operator Q of (M2n+1, g) admits constant distinct eigenvalues λ and

µ such that TM2n+1 = Eλ ⊕ Eµ ⊕ Rξ, where Eλ and Eµ denote the eigenspace

distributions corresponding to λ and µ, respectively. Then M2n+1 admits a further

almost cosymplectic structure (φ′, ξ, η, g) such that φφ′ = φ′φ. Moreover, (φ′, ξ, η, g)
is cosymplectic if and only if (M2n+1, g) is locally product of an η-Einstein cosym-

plectic manifold and a Kähler-Einstein manifold.

Proof. Let λ and µ the two distinct eigenvalues of the Ricci operator Q (defined,
as usual, by g(QX,Y ) = Ric(X,Y )), stated by the theorem. Note that, since
Ric(ξ, ξ) = 0, ξ is an eigenvector of Q associated to the eigenvalue 0. Thus we may
distinguish the two cases (i) λ = 0, µ = 0 and (ii) λ = 0, µ = 0. We consider the first
case. By (2.1) we have that Eλ, Eµ, Rξ are invariant under the action of φ and this
in turn implies that Eλ and Eµ have even dimension. Now we define a tensor field
φ′ by setting φ′|Eλ

= φ|Eλ
, φ′|Eµ = −φ|Eµ , φ

′ξ = φξ = 0. Note that the definition of
φ′ is well-posed just because φEi ⊂ Ei for each i ∈ {λ, µ}. Easily one verifies that
(φ′, ξ, η, g) is an almost contact metric structure such that φ′ commutes with φ. Let α
and β the 2-forms on M2n+1 defined by α(X,Y ) = Φ(Xλ, Yλ), β(X,Y ) = Φ(Xµ, Yµ),
for all X,Y ∈ Γ(TM2n+1), where Xλ and Xµ denote the projections of X onto the
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subbundles Eλ and Eµ of TM2n+1, respectively. Then the tensor ρ defined in (2.2)
is given by

ρ(X,Y ) = Ric(Xλ +Xµ + η(X)ξ, φYλ + φYµ + φ(η(Y )ξ))

= Ric(Xλ, φYλ) + Ric(Xµ, φYµ)

= g(QXλ, φYλ) + g(QXµ, φYµ)

= λg(Xλ, φYλ) + µg(Xµ, φYµ)

= λα(X,Y ) + µβ(X,Y ),

thus ρ = λα + µβ. On the other hand Φ = α + β, so that, as both ρ and Φ are
closed, also α and β are closed 2-forms. Now let us compute the fundamental 2-form
of the almost contact metric structure (φ′, ξ, η, g). We have

Φ′(X,Y ) = g(Xλ +Xµ + η(X)ξ, φ′Yλ + φ′Yµ + φ′(η(Y )ξ))

= g(Xλ +Xµ + η(X)ξ, φYλ − φYµ)

= Φ(Xλ, Yλ)− Φ(Xµ, Yµ)

= α(X,Y )− β(X,Y ).

Therefore Φ′ = α − β and this implies that dΦ′ = dα − dβ = 0 since we have
just proven that α and β are closed. Thus (φ′, ξ, η, g) is almost cosymplectic. It is
cosymplectic if and only if ∇φ′ = 0. But note that

(∇Xφ′)Y = (∇Xφ′)Yλ + (∇Xφ′)Yµ + (∇Xφ′)η(Y )ξ

= ∇XφYλ − φ′(∇XYλ)−∇XφYµ − φ′(∇XYµ)−X(η(Y ))φξ

− η(Y )φ′∇Xξ

= 2φ(∇XYλ)µ − 2φ(∇XYµ)λ.

Hence (∇Xφ′)Y = 0 if and only if φ(∇XYλ)µ = 0 and φ(∇XYµ)λ = 0, i.e. if and
only if (∇XYλ)µ = 0 and (∇XYµ)λ = 0. Note that the last conditions, together with
∇ξ = 0, imply also the integrability of the distributions Eλ⊕Rξ and Eµ⊕Rξ. Then
one can define by restriction a cosymplectic structure, whose fundamental 2-form is
the restriction of α, on a manifold M1 integral to the distribution Eλ ⊕ Rξ and a
Kähler structure, whose fundamental 2-form is the restriction of β, on a manifoldM2

integral to Eµ. It is clear that the Ricci tensor on M1 is given by Ric1 = λg−λη⊗η,
whereas the Ricci tensor on M2 is given by Ric2 = µg. This proves the theorem in
the case (i). The case (ii) runs more or less in the same way, the only difference
being that ρ = µβ (since λ = 0), so that we can conclude immediately that β is
closed and hence also the fundamental 2-form Φ′ of the new almost contact metric
structure (φ′, ξ, η, g) (defined in the same way as previously) is closed, and M1 is
Ricci-flat. Then the result comes as in the case (i). �
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5. FINAL REMARKS

Without the assumption of compactness, Theorem 3.2 does not hold. For con-
structing counterexamples it is sufficient to consider the standard example of al-
most cosymplectic manifolds by means of product manifolds. Let (N2n, J, ω,G)
be any Einstein non-compact almost Kählerian manifold which is non-Kählerian
(examples of such manifolds are given, for instance, in [1] and [3]). Then clearly
M2n+1 = N2n×S1 with its canonical almost cosymplectic structure (cf. [28]) is not
cosymplectic. The same considerations can be done for almost C-manifolds.

More delicate is the discussion about the necessity of assuming ξ a Killing vector
field. However a class of counterexamples for this case can be given by compact
almost cosymplectic manifolds with the Reeb vector field ξ belonging to the k-
nullity distribution, i.e. satisfying R (X,Y ) ξ = k (η (Y )− η (X)Y ) for any X,Y ∈
Γ(TM2n+1). Indeed in this case the Ricci tensor is given by Ric = 2nkη ⊗ η (cf.
[13]), so that any such almost cosymplectic manifold is η-Einstein. Moreover, since
it has been shown that ξ in never Killing unless k = 0, the almost cosymplectic
structure can not be normal.

This last observation can been extended to the attempt of finding counterex-
amples to the Goldberg conjecture for contact metric manifolds. In [2] it was arisen
the question whether every compact Einstein contact metric manifold is Sasakian-
Einstein. As it is known, the answer is negative in general because the flat torus T3

with the 1-form η = cos (t) dx + sin (t) dy provides an example of compact contact
metric manifold which is not K-contact (cf. [6]). However, as remarked by the
authors, this is the only known counterexample. In order to show a class of negative
examples in higher dimensions, we recall the notion of contact metric (κ, µ)-manifold.
Let (M2n+1, φ, ξ, η, g) be a contact metric manifold and κ, µ ∈ R. One says that ξ
belongs to the (κ, µ)-nullity distribution or, simply, that M2n+1 is a contact metric
(κ, µ)-manifold, if the curvature of the Levi-Civita connection satisfies

R (X,Y ) ξ = κ (η (Y )X − η (X)Y ) + µ (η (Y )hX − η (X) hY ) (5.1)

for all X,Y ∈ Γ(TM2n+1), where h =
1

2
Lξφ. This notion was introduced by Blair,

Koufogiorgos and Papantoniou ([7]), who proved also that κ ≤ 1, being κ = 1
if and only if M2n+1 is Sasakian, and that for µ = 2 (1− n) M2n+1 is η-Einstein.
Moreover they proved also that the unit tangent sphere bundle of a space of constant
sectional curvature c satisfies the condition (5.1) for κ = c (2− c) and µ = −2c (if
c = 1 the corresponding sphere bundle is not Sasakian). Thus any compact contact
metric (κ, µ)-manifold with κ = 1 and µ = 2 (1− n) will provide an example of
compact η-Einstein contact metric manifold which is not Sasakian (note that for
κ = 1 no contact metric (κ, µ)-manifold can be K-contact). For instance, let Nm

be an m-dimensional manifold of constant sectional curvature c = m− 2 such that
the corresponding tangent sphere bundle T1N

m is compact. Then, by the above
results, T1N

m with its canonical contact metric structure is a contact metric (κ, µ)-
manifold with κ = c (2− c) = − (m− 2) (m− 4) and µ = −2c = −2 (m− 2). Since
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dim (T1N
m) = 2m− 1 = 2 (m− 1) + 1 = 2n+1, where we have put n = m− 1, one

has easily that µ = 2 (n− 1), so that T1N
m is η-Einstein and it is non-Sasakian for

m > 3.
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