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EINSTEIN MANIFOLDS AND CONTACT GEOMETRY

CHARLES P. BOYER AND KRZYSZTOF GALICKI

(Communicated by Christopher Croke)

Abstract. We show that every K-contact Einstein manifold is Sasakian-
Einstein and discuss several corollaries of this result.

1. Introduction

Recently the authors and their collaborators (cf. [BG1], [BG2]) have used the
geometry of special types of Riemannian contact manifolds to construct Einstein
metrics of positive scalar curvature. In particular, in [BG2] we studied Sasakian-
Einstein geometry. Since Sasakian geometry is the odd dimensional analogue of
Kähler geometry, one might inquire as to the validity of an odd dimensional Gold-
berg Conjecture. Recall that the Goldberg conjecture [Gol] states that a compact
almost Kähler manifold that is also Einstein is Kähler-Einstein, that is, the almost
complex structure is integrable. This conjecture has been confirmed by Sekigawa
[Sek1], [Sek2] in the case of nonnegative scalar curvature. Since Sasakian-Einstein
metrics necessarily have positive scalar curvature, it is tempting to believe that an
odd dimensional Goldberg Conjecture holds true. The form in which one would
expect this conjecture to be true assumes that the metric be bundle-like. If the
Reeb vector field is quasi-regular so that under a compactness assumption there is
an orbifold fibration over an almost Kähler-Einstein orbifold it seems quite likely
that such a result should follow directly from Sekigawa’s result. However, in gen-
eral one does not have such an orbifold submersion. We handle this more general
case by considering the closures of the leaves of the characteristic foliation together
with a construction of Molino [Mol1], [Mol2] which in the presence of a bundle-like
Riemannian metric gives the existence of a sheaf of commuting Killing vector fields.
This sheaf can then be used to approximate the geometry of the general case by
orbifold submersions. Thus the main purpose of this note is to prove the following:

Theorem A. Let (M,η, g) be a compact metric contact manifold whose Riemann-
ian metric g is bundle-like with respect to the characteristic foliation on M. Then if
g is Einstein, then it is Sasakian-Einstein. Equivalently, every compact K-contact
Einstein manifold is Sasakian-Einstein.

We also discuss some consequences of Theorem A to almost Kähler structures
on cones, and to some related work on η-Einstein manifolds.
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2. Some metric contact geometry

Let (M,D) be a contact manifold and fix a contact 1-form η such that D = ker η.
The pair (D, ω), where ω is the restriction of dη to D gives D the structure of a
symplectic vector bundle. We denote by J (D) the space of all almost complex
structures J on D that are compatible with ω, that is the subspace of smooth
sections J of the endomorphism bundle End D that satisfy

J2 = −I, dη(JX, JY ) = dη(X,Y ), dη(X, JX) > 0(2.1)

for any smooth sections X,Y ofD. Notice that each J ∈ J (D) defines a Riemannian
metric gD on D by setting gD(X,Y ) = dη(X, JY ). One easily checks that gD
satisfies the compatibility condition gD(JX, JY ) = gD(X,Y ). Furthermore, the
map J 7→ gD is one-to-one, and the space J (D) is contractible. A choice of J gives
M an almost CR structure with a strictly pseudoconvex Levy form.

Moreover, by extending J to all of TM one obtains an almost contact structure
[Bl], [YK]. There are some choices of conventions to make here. We define the
section Φ of End TM by Φ = J on D and Φξ = 0, where ξ is the Reeb vector field
associated to η. We can also extend the transverse metric gD to a metric g on all
of M by

g(X,Y ) = gD + η(X)η(Y ) = dη(X,ΦY ) + η(X)η(Y )(2.2)

for all vector fields X,Y on M. One easily sees that g satisfies the compatibility
condition g(ΦX,ΦY ) = g(X,Y ) − η(X)η(Y ). A contact manifold M with a fixed
contact form η together with a vector field ξ, a section Φ of End TM, and a
Riemannian metric g which satisfy the conditions

η(ξ) = 1, Φ2 = −I+ ξ ⊗ η, g(ΦX,ΦY ) = g(X,Y )− η(X)η(Y )(2.3)

is known [Bl] as a metric contact structure on M.
Let us consider the characteristic foliation Fξ generated by the Reeb vector field

ξ. If Fξ is a Riemannian foliation [Rei2], [Mol1], that is, the holonomy pseudogroup
induces isometries of Riemannian metrics on the local leaf spaces of the local sub-
mersions defining Fξ, then by pulling back the metrics on the local leaf spaces one
obtains a transverse metric gD on the vector bundle D that is invariant under the
(Reeb) flow generated by the Reeb vector field ξ. This is equivalent to the metric
g on M given by (2.2) being bundle-like [Rei1], [Rei2]. Hence

Definition 2.4. A contact metric manifold (M,η, g) is said to be bundle-like if the
Riemannian metric g is bundle-like.

We have

Proposition 2.5. On a complete contact metric manifold (M,η, g), the following
are equivalent:

(1) g is bundle-like.
(2) The Reeb flow is an isometry.
(3) The Reeb flow leaves the almost complex structure J on D invariant.
(4) The Reeb flow leaves the (1, 1) tensor field Φ invariant.
(5) The contact metric structure (M,η, g) is K-contact.

Proof. The conditions

η(ξ) = 1, ξcdη = 0
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defining the Reeb vector field imply that both the symplectic form dη and the
contact form η are invariant under the Reeb flow. From its definition [Rei1] g is
bundle-like if and only if the transverse metric gD is basic, that is, if and only if
the Reeb flow leaves gD invariant as well. Since dη is invariant under the Reeb
flow, gD is invariant if and only if J is invariant, or equivalently if and only if Φ is
invariant.

Remark 2.6. We prefer the appellation bundle-like contact metric structure to the
more common K-contact structure, since it is more descriptive and emphasizes the
foliation aspect. We shall use these two terms interchangeably depending on the
context. We also refer to the transverse structure (dη, J, gD) on M as a transverse
almost Kähler structure.

There are obstructions to admitting K-contact metric structures. Indeed, it is
well known [Bl] that K-contact metrics on a 2n + 1 dimensional manifold can be
characterized by the condition that the Ricci tensor in the direction of the Reeb
vector field ξ equals 2n. Thus, any metric of non-positive Ricci curvature cannot
have a K-contact metric in its homothety class. However, it is much stronger to
obtain obstructions which only depend on the smooth structure of the manifold.
We mention one such result that follows directly from the work of Gromov [Gr],
Carriere [Car], and Inoue and Yano [IY].

Theorem 2.7. If a compact manifold M admits a bundle-like contact metric struc-
ture, then the Gromov invariant ||M || and all the Pontrjagin numbers of M vanish.
In particular, if a compact manifold M admits a decomposition as a connected sum
M = M1# · · ·#Mk, where for some i = 1, · · · , k the manifold Mi admits a met-
ric of strictly negative sectional curvature, then M does not admit any bundle-like
contact metric structure.

3. The almost CR structure

In this section we consider the integrability of the almost CR structure J. Let
(M,η, g) be a contact metric manifold. The almost CR structure J is integrable,
that is, (D, J) defines a CR structure on M if and only if for any smooth sections
X,Y of D the following conditions hold:

(i) [X, JY ] + [JX, Y ] is a smooth section of D.
(ii) J [X, JY ] + J [JX, Y ] = [JX, JY ]− [X,Y ].

In our case condition (i) follows automatically from the antisymmetry of the sym-
plectic form dη. Condition (ii) is the vanishing of the Nijenhuis tensor of J.

Now let ∇ denote the Levi-Civita connection with respect to the metric g on
M. By restricting to D and taking the horizontal projection we get an induced
connection ∇D on D defined by [Ton]

∇DXY =

{
(∇XY )h if X is a smooth section of D,
[ξ, Y ]h if X = ξ,

(3.1)

where Y is a smooth section of D and the superscript h denotes the projection onto
D. An entirely standard computation gives

Proposition 3.2. Let (M,η, g) be an contact metric manifold. Then ∇DJ = 0 if
and only if the almost CR-structure J on D is integrable and LξΦ = 0.
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Proof. First we notice that as mentioned above condition (i) is automatically sat-
isfied. Next, one easily sees that the invariance of Φ under ξ holds if and only if
∇Dξ J = 0. Now the connection ∇D is torsion-free [Ton], so

∇DXY −∇DYX = [X,Y ]h.

Now as above the vertical part of NJ vanishes, and a straightforward computation
gives

NJ(X,Y )h = (∇DJXJ)(Y )− (∇DJY J)(X) + J(∇DY J)(X)− J(∇DXJ)(Y ).

The “only if” part clearly holds (which is all we shall need), and the “if” part
follows by a standard computation (cf. [YK]).

Recall that a contact metric structure (M,η, g) is said to be normal if the Ni-
jenhuis tensor NΦ defined by

NΦ(X,Y ) = [ΦX,ΦY ] + (Φ)2[X,Y ]− Φ[X,ΦY ]− Φ[ΦX,Y ](3.3)

satisfies

NΦ = −dη ⊗ ξ.(3.4)

A normal contact metric structure on M is also called a Sasakian structure.

Proposition 3.5. Let (M,η, g) be a contact metric manifold. Then (M,η, g) is
normal (Sasakian) if and only if the almost CR structure J is integrable and LξΦ =
0.

Proof. For any vector fields X,Y on M we have

NΦ(X,Y ) + dη(X,Y )ξ = [ΦX,ΦY ] + (Φ)2[X,Y ]

− Φ[X,ΦY ]− Φ[ΦX,Y ] + dη(X,Y )ξ.
(3.6)

If X and Y are both horizontal, then this equals

[ΦX,ΦY ]− [X,Y ]− Φ[ΦX,Y ]− Φ[X,ΦY ]

whose vanishing is equivalent to (ii) above. Also applying η to this equation and
replacing X by ΦX implies (i). If one vector field is vertical, say X = ξ, then we
have

NΦ(ξ, Y ) + dη(ξ, Y )ξ = (ξcdη)(Y )ξ − Φ ◦ (LξΦ)(Y ).

So the result follows.

4. The leaf closures of Fξ
In this section we study the leaf closures of the characteristic foliation. In [Mol1],

[Mol2] Molino has shown that on any compact connected manifold M with a Rie-
mannian foliationF there is a locally constant sheaf C(M,F), called the commuting
sheaf, consisting of germs of local transverse vector fields that are Killing vector
fields with respect to the transverse metric, and whose orbits are precisely the clo-
sures of the leaves of F . Moreover, Carrière [Car] (see also the appendix in [Mol1]
by Carrière) has shown in the case of Riemannian foliations of dimension one (Rie-
mannian flows) that the leaf closures are diffeomorphic to tori, and that the flow is
conjugate by the diffeomorphism to a linear flow on the torus.

Here we adapt this to our situation, that is, (M,η, g) is a compact bundle-like
metric contact manifold. We denote the isometry group of (M, g) by I(M, g), and
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the group of automorphisms of the K-contact structure (M,η, g), by A(M,η, g).
When M is compact the well known theorem of Myers and Steenrod says that
I(M, g) is a compact Lie group. Moreover, A(M,η, g) is a closed Lie subgroup
of I(M, g) [Tan1]. In our case the Reeb flow belongs to the automorphism group
A(M,η, g) which is a compact Lie group. Thus, the closure T of the Reeb flow is
a compact commutative Lie group, i.e., a torus, which lies in A(M,η, g). Now the
Reeb flow is a strict contact transformation lying in the center of the group of strict
contact transformations [LM]; hence, it lies in the center of A(M,η, g). It follows
that T also lies in the center of A(M,η, g). Summarizing we have

Proposition 4.1. Let (M,η, g) be a compact bundle-like contact metric manifold.
Then the leaf closures of the Reeb flow are the orbits of a torus T lying in the center
of the Lie group A(M,η, g) of automorphisms of (M,η, g), and the Reeb flow is the
orbit of a linear flow on T.

The dimension of the torus in Proposition 4.1 is an invariant of the K-contact
structure that we call the rank of (M,η, g) and denote by rk(M,η). We have (see
also [Ruk2])

Lemma 4.2. Let (M,η, g) be a compact bundle-like contact metric manifold of
dimension 2n + 1. Then the rank rk(M,η) depends only on the Pfaffian structure
(M,η) and satisfies 1 ≤ rk(M,η) ≤ n+ 1.

Proof. Consider the Lie algebra t of T. It consists of the Reeb vector field ξ together
with the infinitesimal generators of the leaf closures. The projections of these
generators onto D are global sections of Molino’s commuting sheaf C(M,Fξ). Thus,
they give integral submanifolds of the subbundle D. It is well known [LM] that the
integral submanifolds of maximal dimension, that is, the Legendre submanifolds of
the contact structure, have dimension n. Hence, these together with the Reeb vector
field generate a torus of dimension at most n+1. Furthermore, Molino [Mol1] shows
that the commuting sheaf is independent of the transverse metric, so rk(M,η) is
independent of g.

Now the rank rk(M,η) is not an invariant of the contact structure (M,D) but
only of the Pfaffian structure (M,η). The case rk(M,η) = 1 is the quasi-regular
case, while the other extreme rk(M,η) = n+ 1 is the toric case studied in [BM1],
[BM2], [BG3]. Furthermore, Rukimbira [Ruk1] showed that one can approximate
any K-contact form η by a sequence of quasi-regular K-contact forms in the same
contact structure. Thus, every K-contact manifold has an η of rank 1. Since we shall
discuss this approximation in detail in the next section, we only mention here that
one chooses a sequence of vector fields ξj in t with periodic orbits that converges to
the Reeb vector field ξ. Then the dual 1-forms ηj are quasi-regular contact forms
in the same contact structure.

5. The proof of Theorem A

We shall prove the following restatement of Theorem A:

Theorem A′. Let (M,η, g) be a compact K-contact Einstein manifold. Then
(M,η, g) is Sasakian-Einstein.

Proof. We first prove the theorem under the assumption that η is quasi-regular.
By Thomas [Tho] and [BG1], M is the total space of a principal S1 V-bundle over
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a compact almost Kähler orbifold Z. Furthermore, by [Bes] the induced metric
h on Z is almost Kähler-Einstein which has positive scalar curvature, since g has
positive scalar curvature. Now since Sekigawa’s [Sek1], [Sek2] proof of the Goldberg
conjecture in the case of nonnegative scalar curvature only involves local curvature
computations together with a Bochner type argument using Stokes Theorem, it
carries over to the case of a compact orbifold. So the almost complex structure
on Z is integrable, and (Z, h) is Kähler-Einstein. It then follows from the orbifold
version of Hatakeyama [Hat] that (M,η, g) is normal, hence, Sasakian-Einstein.
This proves the result under the assumption of quasi-regularity.

Now assume that (M,η, g) is K-contact and Einstein, but not quasi-regular.
Then by Proposition 4.1 the Reeb vector field ξ lies in the commutative Lie subal-
gebra t(M,Fξ) ⊂ a(M, g) which has dimension k > 1. Thus, there exists a sequence
of quasi-regular contact forms ηj and Reeb vector fields ξj ∈ t(M,Fξ) that ap-
proximate (η, ξ) in the compact-open C∞ topology. (In what follows we use this
topology on the space of smooth sections of all tensor bundles.) Explicitly, there is
a monotonically decreasing sequence {εj}∞1 with limj→∞ εj = 0 such that

ηj = f(εj)η, ξj = ξ + ρj , f(εj) =
1

1 + η(ρj)
,(5.1)

where f(εj) are positive functions in C∞(M) that satisfy limj→∞f(εj) = 1. Clearly
ρj ∈ t(M,Fξ) and limj→∞ ρj = 0. Moreover, ker ηj = ker η = D, so we have
the same underlying contact structure. We also have the following easily verified
relations for the induced contact endomorphisms Φj :

Φj = Φ− 1
1 + η(ρj)

Φρj ⊗ η = Φ− f(εj)Φρj ⊗ η.(5.2)

This implies that Φjξj = 0 and that the almost complex structure J on D remains
unchanged. However, the induced metrics become

gj = f(εj)gD ⊕ f(εj)2η ⊗ η = g − η(ρj)
(
gD + 2η ⊗ η

)
+ o(ε2j).

For εj small enough gj are well defined Riemannian metrics on M which can easily
be seen to satisfy the compatibility conditions

gj(ΦjX,ΦjY ) = gj(X,Y )− ηj(X)ηj(Y ).(5.3)

Moreover, since ξj ∈ t ⊂ a(M,η), it follows that the functions f(εj) ∈ C∞(M)T,
where C∞(M)T denotes the subalgebra of C∞(M) invariant under the action of
the torus T. Thus, from (5.2) we have

LξjΦj = 0.(5.4)

Hence (M,ηj , ξj ,Φj , gj) is a sequence of quasi-regular K-contact structures on M
whose limit with respect to the compact-open C∞ topology is the original K-contact
Einstein structure (M,η, ξ,Φ, g). Now the metrics gj are not Einstein, but their
Ricci tensor can be seen to satisfy

Ricgj = λjgj +A(εj , ρj , g),(5.5)

where A(εj , ρj, g) is a traceless symmetric 2-tensor field depending on εj , ρj, g that
tends to 0 with εj , and λj ∈ C∞(M) satisfy limj→∞λj = 2n.

Now there is a sequence of orbifold Riemannian submersions πj : M−−→Zj ,
where (Zj , hj) are a sequence of compact almost Kähler orbifolds satisfying π∗j hj =
f(εj)gD. Moreover, it follows from the above limits that the scalar curvatures of
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the hj are all positive. Notice that in Sekigawa’s proof [Sek2] of the positive scalar
curvature Goldberg conjecture, the Einstein condition is not used until section 4
of [Sek2]. Following [Sek2] and making the necessary adjustments to our situation,
we find that there are nonnegative numbers δj and nonnegative smooth functions
Fj such that ∫

Zj

(
Fj +

šj
n
||∇̌j J̌j ||2Zj +

1
2n
||∇̌j J̌j ||4Zj

)
σj ≤ δj ,(5.6)

where ∇̌j , J̌j , šj, σj and || · ||Zj are the Levi-Civita connection, almost complex
structure, scalar curvature, volume element, and Riemannian norm, respectively on
(Zj , hj). Now since the metrics g, gj are bundle-like the leaves of the characteristic
foliation are geodesics and the O’Neil tensors T and N vanish [Ton]. Moreover, for
any K-contact manifold of dimension 2n+ 1 the O’Neill tensor A satisfies ||A||2 =
g(Aξ,Aξ) = 2n. Thus, we have the relation between the functions λj on M and the
scalar curvatures šj on Zj ,

šj = (2n+ 1)λj + 2n,(5.7)

so that limj→∞šj = 2n + (2n + 1)limj→∞λj = 4n(n + 1). Furthermore, we have
limj→∞δj = 0. Thus, since Fj (see [Sek2]) and šj are nonnegative for each j, the
estimate (5.6) implies the estimate

||∇̌j J̌j ||Zj ≤ δ′j ,(5.8)

where δ′j are nonnegative numbers satisfying limj→∞δ
′
j = 0. Now for each j the hor-

izontal lift of ∇̌J̌j is the horizontal projection (∇jJj)h = (∇jΦj)h, where ∇j , Jj ,Φj
are the corresponding Levi-Civita connection and tensor fields with respect to the
metrics on M. But on M Jj = J for all j and we have

||(∇J)h|| = lim
j→∞
||(∇jJ)h||j ≤ lim

j→∞
δ′j = 0,(5.9)

where || · ||j is the Riemannian norm with respect to gj . So by Proposition 3.2 the
almost CR structure on D is integrable which, by Proposition 3.5, implies that
(M,η, g) is Sasakian-Einstein.

Remark 5.10. Notice that by (5.7) the scalar curvatures šj of the orbifolds (Zj , hj)
are close to 4n(n + 1). But the integrability argument actually holds for a much
larger range of scalar curvatures, namely šj ≥ 0. We shall make use of this in section
7 when discussing η-Einstein metrics.

6. Almost Kähler cones

Here we give a corollary of Theorem A concerning almost Kähler cones. We
consider the symplectification of (M,η), namely, the symplectic cone

C(M) = (M × R+, d(r2η)).

We can extend the almost complex structure J on D to an almost complex structure
I on TC(M) by setting

I = J on D, Iξ = −Ψ, IΨ = ξ,(6.1)
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where Ψ = r ∂∂r is the Euler vector field. Then the metric gD + η ⊗ η on M

corresponds to the metric dr2 + r2(gD + η ⊗ η) on C(M). We have arrived at:

Proposition 6.2. Contact metric geometry on M corresponds to almost Kähler
geometry on C(M).

So what does the K-contact condition on M correspond to? We have

Proposition 6.3. A compact metric contact manifold (M,η, gM ) is K-contact if
and only if (C(M), d(r2η), dr2+r2gM ) is almost Kähler with Ψ−iξ pseudo-holomor-
phic.

Proof. By the properties of the Reeb vector field one easily sees that Ψ−iξ is pseudo-
holomorphic, i.e., an infinitesimal automorphism of I if and only if LξJ = 0. But
this holds if and only if LξgD = 0.

Remark 6.4. In the case that the complex vector field Ψ − iξ on C(M) is not
pseudo-holomorphic, a quotient formed by dividing by the resulting C∗ action, or
equivalently, by the symplectic reduction of the S1 action, will lose both the almost
complex structure and the Riemannian structure.

Corollary 6.5. Let M be compact with a metric contact structure (η, gM ), and
consider the almost Kähler cone (C(M), d(r2η), dr2 +r2gM ). Suppose that the (1, 0)
vector field Ψ− iξ is pseudo-holomorphic and the cone metric dr2 + r2gM is Ricci
flat. Then the almost complex structure is integrable and the cone metric is Calabi-
Yau.

Proof. It is well known that a cone metric dr2 +r2gM on a cone C(M) of dimension
N is Ricci flat if and only if the metric gM is Einstein with Einstein constant N−2.
Thus, the result follows from Proposition 6.3 and Theorem A.

Another easy consequence of our results involves Vaisman’s generalized Hopf
manifolds. Consider an almost Kähler cone (C(M), dr2 + r2gM ). Then on M × S1

defined as the quotient manifold of C(M) by the discrete group generated by r 7→
ear, where 0 < a < 1 is fixed, the metric gM + (drr )2 is locally conformally almost
Kähler. Furthermore, the vector field Ψ and the almost complex structure I pass
to the quotient. Then we have

Corollary 6.6. Let M be compact with a metric contact structure (η, gM ) and
consider the locally conformally almost Kähler manifold (M × S1, gM + (drr )2).
Suppose further that the (1, 0) vector field Ψ − iξ is pseudo-holomorphic and that
the locally defined almost Kähler metrics dr2 +r2gM are Ricci flat. Then the almost
complex structure I is integrable so the manifold (M × S1, gM + (drr )2) is a locally
conformal Calabi-Yau manifold [BG2].

7. Some remarks on η-Einstein metrics

We conclude with some results about η-Einstein metrics. First recall [Tan2, YK]

Definition 7.1. A metric contact structure (η, g) on M is said to be η-Einstein if
there are constants a, b such that Ricg = ag + bη ⊗ η.

Actually if (M,η, g) is Sasakian and such a condition holds for Ricg, where a, b
are smooth functions, then these functions must be constant [YK]. In this section

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EINSTEIN MANIFOLDS AND CONTACT GEOMETRY 2427

we shall prove:

Theorem 7.2. Let (M,η, g) be a compact K-contact manifold such that g is η-
Einstein. Then

(i) If a > −2 the almost CR-structure J is integrable, so g is Sasakian. Moreover,

for α =
a+ 2

2n+ 2
the metric αg + α(α − 1)η ⊗ η is Sasakian-Einstein. Hence,

π1(M) is finite.
(ii) If a = −2 the almost CR-structure is integrable, so (g, η) is Sasakian η-

Einstein. Moreover, if M has finite fundamental group, then rk(M,η) = 1
so the K-contact manifold (M,η, g) is quasi-regular, and the total space of a
principal S1 V-bundle over a Calabi-Yau orbifold.

(iii) If a < −2, then rk(M,η) = 1 so the K-contact manifold is quasi-regular, and
the total space of a principal S1 V-bundle over an almost Kähler-Einstein
orbifold with Einstein constant 2n(a+ 2).

Proof. (i) Notice that Tanno [Tan2] proves the second statement of (i) under the
assumption that (M,η, g) is Sasakian. However, as we shall see, this assump-
tion is not necessary. Since the O’Neill tensors T and N vanish and A satisfies
g(AX , AY ) = g(ΦX,ΦY ) = g(X,Y ), it follows that the Ricci curvature of the
transverse metric gD satisfies

RicgD = Ricg |D×D + 2g|D×D.(7.3)

The condition that on D the Ricci curvature satisfies Ricg > −2 is equivalent to the
condition that RicgD > 0. Now even though in general we do not have a Riemannian
submersion (even in the orbifold sense), the canonical variation described in Besse
[Bes] applies equally well to our foliation since it is based on the O’Neill formulas
which do hold in our case. Then one easily sees that by choosing α = a+2

2n+2 the
metric g′ = αg+α(α−1)η⊗η is Einstein, so (M,αη, g′) is K-contact and Einstein.
Thus, by Theorem A it is Sasakian-Einstein. Since the underlying almost CR-
structure hasn’t changed, the original K-contact structure (M,η, g) is Sasakian;
hence, it is Sasakian η-Einstein.

(iii) Let a < −2. Then from (7.3) RicgD < 0. Suppose that the K-contact struc-
ture (M,η, g) is not quasi-regular. Then Molino’s commuting sheaf C(M,Fξ) is
non-vanishing. So by a perturbation of the K-contact structure there is a quasi-
regular K-contact structure (η′, g′) with the same commuting sheaf. But by a
theorem of Molino and Sergiescu [MoSe] the sheaf C(M,Fξ) has a global trivializa-
tion. Thus, there are transverse Killing vector fields on (M,η′, g′). These project to
non-trivial Killing vector fields on a compact orbifold Z ′ with negative Ricci curva-
ture. But as in the manifold case a compact orbifold with negative Ricci curvature
can have no Killing fields. This gives a contradiction.

(ii) By (7.3) the case a = −2 corresponds to the vanishing of the scalar curvature
of the transverse metric gD. But then as mentioned in Remark 5.10 the proof of
Theorem A holds in this case, and the almost CR-structure J is integrable. In
this case the transverse geometry is Calabi-Yau, and the metric g is Sasakian η-
Einstein with a = −2 and b = 2n+ 2. To prove the second statement we proceed as
in the proof of (iii), only now the transverse Ricci tensor vanishes implying that any
Killing fields on Z ′ must be parallel. Moreover, the vector space of these Killing
fields has dimension equal to the first Betti number b1(Z ′). But the finiteness of
π1(M) together with the long exact homotopy sequence of the orbifold fibration
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π : M−−→Z ′ implies that πorb1 (Z ′) is also finite, and this implies that H1(Z ′,Q) =
Horb

1 (Z ′,Q) = 0. This gives a contradiction.

Actually our proof gives a bit more:

Proposition 7.4. Let (M,η, g) be a compact K-contact manifold. Suppose that the
transverse Ricci tensor satisfies RicgD ≤ 0 and RicgD (v, v) < 0 for all v ∈ Dp−{0}
for some p ∈ M. Then rk(M,η) = 1 so the K-contact manifold is quasi-regular,
and the total space of a principal S1 V-bundle over an almost Kähler orbifold.

8. A remark on contact 3-structures

It is interesting to inquire about a quaternionic analogue of our main theorem. In
this regard it has been recently observed by Kashiwada [Kas] that a much stronger
result is available. Indeed, a metric contact 3-structure on a manifold M is a triple
of contact structures {ηa, ξa,Φa}3a=1 associated with the same metric g such that

Φa ◦ Φb − ξa ⊗ ηb = −εabcΦc − δabid

where εabc is the totally antisymmetric symbol and sum over repeated indices is
used. If each contact structure is normal the triple is called 3-Sasakian (cf. [BG1]).

Theorem (Kashiwada). Every metric contact 3-structure is 3-Sasakian.

The key to the proof of this theorem is a result of Hitchin buried deep in his
famous stable pairs paper [Hit]. This result says that an almost hyperkähler struc-
ture must be hyperkähler. More explicitly, if one has a manifold with a triple of
almost complex structures satisfying the algebra of the quaternions, together with
a triple of compatible Kähler forms all of which are closed, then the almost com-
plex structures are integrable. That is, the quaternionic algebra and the closedness
of the forms are strong enough to force integrability. Then Kashiwada’s Theorem
follows from Hitchin’s Lemma together with the following quaternionic analogue of
Proposition 6.2:

Proposition 8.1. A Riemannian manifold (M, g) has a compatible contact 3-
structure (ηa, ξa,Φa) if and only if the cone (C(M), dr2+r2g) is almost hyperkähler.
Furthermore, (M, g) is 3-Sasakian if and only if (C(M), dr2 + r2g) is hyperkähler.

We conclude by mentioning that some weaker results have been obtained in
the last few years, first by Tanno [Tan3] and then by Jelonek [Jel]. In 1996 Tanno
observed that in dimension 7 any 3-K-contact manifold must be 3-Sasakian and later
Jelonek (using similar techniques but assuming leaf compactness of the associated 3-
dimensional foliation) extended this result to any 3-Sasakian dimension other than
11. Neither of the two authors noticed Hitchin’s result. Instead they considered
geometry of the associated foliation of M by 3-dimensional leaves. It is likely that
one could also give a direct proof of Kashiwada’s Theorem working exclusively on
M.
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