Einstein Metrics on Spheres

CHARLES BOYER

University of New Mexico

Bilbao, País Vasco, July, 2012

History

• General Relativity.

(Einstein) Use Riemannian geometry with Lorentz signature as a theory of gravity. Reasoning: total amount of energy and momentum in the universe should equal the curvature of the universe.

Energy and momentum is represented by a symmetric 2-tensor $T_{\mu\nu}$. There are exactly two symmetric 2-tensors in the theory, the Ricci curvature, $R_{\mu\nu}$, and the (Lorentzian) metric itself $g_{\mu\nu}$. So Einstein tensor

 $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}sg_{\mu\nu} = 8\pi T_{\mu\nu}$

s scalar curvature.

Later add 'cosmological constant' $\Lambda g_{\mu\nu}$ to r.h.s. "The biggest blunder of my life." (Einstein) But recently 'not so big a blunder' dark energy $\Rightarrow \Lambda$ small but > 0.

Riemannian manifold (M, g)

A Riemannian metric g is Einstein if $\operatorname{Ric}_g = \lambda g$ λ constant

Three cases:

- (1) $\lambda > 0$,
- (2) $\lambda = 0$,
- (3) $\lambda < 0$.

Motivation

•Variational Principle Normalize: (vol of g) = 1. $g \mapsto \int_{M} s_{g} d\mu_{g}, \mu_{g}$ volume (Hilbert) Einstein metrics are critical points.

Quadratic functionals: $g \mapsto \int_{M} s_{g}^{2} d\mu_{g}$ (Calabi) Einstein metrics are critical points. Maybe Einstein metrics are distinguished.

Spheres

•History: Einstein metrics

- Round metric on S^n (Gauss-Riemann)
- Squashed metrics on S^{4n+3} (Jensen, 1973)
- Homogeneous Einstein metric on S^{15} (Bourguignon and Karcher, 1978).
- \bullet These are all homogeneous Einstein metrics on S^n and they are the only such metrics up to homothety

(Ziller,1982).

• Infinite sequences of inhomogeneous Einstein metrics on S^5, S^6, S^7, S^8 and S^9 (Böhm,1998). Maybe not so distinguished

Exotic Spheres

(Milnor, 1956)

Spheres that are homeomorphic but not diffeomorphic to S^n . Homotopy spheres that bound a parallelizable manifold bP_{n+1} form an Abelian group. (Kervaire-Milnor) For S^{4n+1} , $bP_{4n+2} = \mathbb{Z}_2$ if $4n \neq 2^j - 4$ for any j. No bP exotics $S^5, S^{13}, S^{29}, S^{61}$.

 $bP_8 = \mathbb{Z}_{28}, bP_{12} = \mathbb{Z}_{992}$ $bP_{16} = \mathbb{Z}_{8128}, bP_{20} = \mathbb{Z}_{130816}$ Generally, $|bP_{4m}| =$ $2^{2m-2}(2^{2m-1}-1) \text{ num } (\frac{4B_m}{m})$

• **Results** (B-,Galicki,Kollár) $N_{SE} = \#$ of deformation classes Einstein metrics.

 $\mu_{SE} = \#$ moduli of Einstein metrics.

• Each 28 diffeo types of S^7 admits hundreds of Einstein metrics, many with moduli. Largest moduli has dimension 82, standard S^7 .

• All 992 diffeo types in bP_{12} and all 8128 diffeo types in bP_{16} admit Einstein metrics, i.e. on S^{11}, S^{15} .

• All elements of bP_{4n+2} admit Einstein metrics.

Our Einstein metrics are special, Sasaki-Einstein (SE)

• Both the number N_{SE} of deformation classes and the number μ_{SE} of moduli grow double exponentially with dimension.

(1) $N_{SE}(S^{13}) > 10^9$ and $\mu_{SE}(S^{13}) = 21300113901610$ (2) $N_{SE}(S^{29}) > 5 \times 10^{1666}$ and $\mu_{SE}(S^{29}) > 2 \times 10^{1667}$

Conjecture: Both $N_{SE}(S^{2n-1})$ and $\mu_{SE}(S^{2n-1})$ are finite.

Similar results for rational homology spheres (B-,Galicki) and other manifolds.

Ingredients of Proof

- 1. Contact geometry. Sasakian metrics
- 2. Differential topology. diffeomorphism types
- 3. Singularity theory. Links of isolated hypersurface singularities
- 4. Algebraic geometry. algebraic orbifolds
- 5. Analysis. Monge-Ampère deformations

Contact Manifold(compact)

A contact 1-form η such that

 $\eta \wedge (d\eta)^n \neq 0.$

defines a contact structure

 $\eta' \sim \eta \iff \eta' = f\eta$

for some $f \neq 0$, take f > 0. or equivalently a codimension 1 subbundle $\mathcal{D} = \text{Ker } \eta$ of TM. $(\mathcal{D}, d\eta)$ symplectic vector bundle

Unique vector field ξ , called the **Reeb vector** field, satisfying

$$\xi \rfloor \eta = 1, \qquad \xi \rfloor d\eta = 0.$$

The characteristic foliation \mathcal{F}_{ξ} each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times \iff quasi-regular, $k = 1 \iff$ regular, otherwise irregular

Contact bundle $\mathcal{D} \rightarrow$ choose **almost complex structure** J extend to Φ with $\Phi \xi = 0$

Get a compatible metric

 $g = d\eta \circ (\Phi \otimes 1 + \eta \otimes \eta)$

Quadruple $S = (\xi, \eta, \Phi, g)$ called **contact met**ric structure

Definition: The structure $S = (\xi, \eta, \Phi, g)$ is **K-contact** if $\pounds_{\xi}g = 0$ (or $\pounds_{\xi}\Phi = 0$). It is **Sasakian** if in addition (\mathcal{D}, J) is integrable. Note: Here we work entirely with Sasakian structures.

Geometry of Links

 \mathbb{C}^{n+1} coord's $\mathbf{z} = (z_0, \dots, z_n)$ weighted \mathbb{C}^* -action

 $(z_0,\ldots,z_n)\mapsto (\lambda^{w_0}z_0,\ldots,\lambda^{w_n}z_n),$

weight vector $\mathbf{w} = (w_1, \cdots, w_n)$ with $w_j \in \mathbb{Z}^+$ and

 $gcd(w_0, ..., w_n) = 1.$ f weighted homogeneous polynomial $f(\lambda^{w_0}z_0, ..., \lambda^{w_n}z_n) = \lambda^d f(z_0, ..., z_n)$ $d \in \mathbb{Z}^+$ is **degree** of f. $0 \in \mathbb{C}^{n+1}$ isolated singularity. **link** L_f defined by

$$L_f = f^{-1}(0) \cap S^{2n+1},$$

 S^{2n+1} unit sphere in \mathbb{C}^{n+1}

Special Case: Brieskorn-Pham poly. (BP)

$$f(z_0, \ldots, z_n) = z_0^{a_0} + \cdots + z_n^{a_n}$$

 $a_i w_i = d, \ \forall i.$

Brieskorn-Pham Graph Thm

For $\mathbf{a} = (a_0, \dots, a_n)$ integers $\geq 2 \Rightarrow a$ graph $G(\mathbf{a})$ whose vertices are a_i . And a_i is connected to a_j if $gcd(a_i, a_j) > 1$.

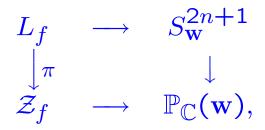
Link L_f is a homology sphere \iff (1): $G(\mathbf{a})$ contains at least two isolated points, or

(2): $G(\mathbf{a})$ has an odd # of vertices and a_i, a_j , gcd $(a_i, a_j) = 2$ if gcd $(a_i, a_j) > 1$.

Determine the diffeomorphism type:

(1): If dim \equiv 3mod 4: given by Hirzebruch signature of manifold that L_f bounds. Combinatorical formula (Brieskorn)

(2): If dim \equiv 1mod 4: $G(\mathbf{a})$ has one isolated point a_k such that $a_k \equiv \pm 3 \mod 8$ gives Kervaire sphere. $a_k \equiv \pm 1 \mod 8$ gives standard sphere. Fact: L_f has natural structure with commutative diagram: $S_{\mathbf{w}}^{2n+1}$ weight sphere $\mathbb{P}_{\mathbb{C}}(\mathbf{w})$ weighted projective space



horizontal arrows: Sasakian and Kählerian embeddings.

vertical arrows: orbifold Riemannian submersions.

 L_f is Sasaki-Einstein (SE) $\iff \mathcal{Z}_f$ is Kähler-Einstein (KE)

Question: When do we have SE or KE metrics?

- 1. $c_1^{orb}(\mathcal{Z}) > 0$ (easy)
- 2. solve Monge-Ampère equation (hard)

$$\frac{\det(g_{i\overline{j}} + \frac{\partial^2 \phi}{\partial z_i \partial \overline{z}_j})}{\det(g_{i\overline{j}})} = e^{f - t\phi}$$

Tian: uniform boundedness

$$\int_{\mathcal{Z}} e^{-\gamma t \phi_{t_0}} \omega_0^n < +\infty$$

Many people Yau, Tian, Siu, Nadel, and most recently by Demailly and Kollár in orbifold category.

alebraic geometry of orbifolds:

local uniformizing covers branch divisor: Q-divisor

$$\Delta := \sum (1 - \frac{1}{m_j}) D_j$$

canonical orbibundle

$$K_{\mathcal{Z}}^{orb} = K_{\mathcal{Z}} + \sum (1 - \frac{1}{m_j})[D_j],$$

ramification index: m_j

Kawamata log terminal or **klt** For every $s \ge 1$ and holomorphic section $\tau_s \in H^0(\mathcal{Z}, \mathcal{O}((K_{\mathcal{Z}}^{orb})^{-s}))$ there is $\gamma > \frac{n}{n+1}$ such that $|\tau_s|^{-\gamma/s} \in L^2(\mathcal{Z})$. Theorem 2: $c_1^{orb}(\mathcal{Z}) > 0$, klt \Rightarrow Sasaki-Einstein metric.

Sasaki-Einstein metrics

Positivity $\Rightarrow I = (\sum w_i - d) > 0$ klt estimates for L_f

$$d(\sum w_i - d) < \frac{n}{n-1} \min_{i,j} w_i w_j.$$

BP polyn: (better)

$$1 < \sum_{i=0}^{n} \frac{1}{a_i} < 1 + \frac{n}{n-1} \min_{i} \{\frac{1}{a_i}, \frac{1}{b_i b_j}\}.$$

 a_i BP exponents and

$$b_i = \gcd(a_i, \operatorname{lcm}(a_j \mid j \neq i))$$

 \exists other estimates. Positivity plus a klt estimate \Rightarrow SE metric

To determine the moduli μ_{SE} add monomials $z_{i_1}^{b_{i_1}} \cdots z_{i_k}^{b_{i_k}}$ such that $\sum_j b_{i_j} = d$ to BP polynomial. Divide by equivalence of $\mathfrak{Aut}(\mathcal{Z}_f)$.

Why double exponential growth?

Reason for growth: Sylvester's sequence determined by $c_{k+1} = 1 + c_0 \cdots c_k$ begins as 2, 3, 7, 43, 1807, 3263443, 10650056950807, ...

 N_{SE} : sequences $\mathbf{a} = (a_0 = c_0, \dots, a_{n-1} = c_{n-1}, a_n)$ with $c_{n-1} < a_n < c_0 \cdots c_{n-1}$ give SE metrics. Use prime number theorem.

 μ_{SE} : sequences $\mathbf{a} = (a_0 = c_0, \dots, a_{n-1} = c_{n-1}, a_n)$ where $a_n = (c_{n-1} - 2)c_{n-1}$. Polynomial f contains $G(z_{n-1}, z_n^{c_{n-1}-2})$. Again by prime number theorem gives double exponential growth.

Conjecture: All elements of bP_{2n} admit SE metrics.

Estimate of Lichnerowicz \Rightarrow if $I = (\sum w_i - d) > n \min_i w_i$ then \nexists SE metrics. Only applies to KE orbifolds! (Gauntlett, Martelli, Sparks, Yau) (Ghigi, Kollár) class of SE metrics where bound is sharp. $\times 10$ more on spheres.