Einstein Metrics on Spheres

CHARLES BOYER

University of New Mexico

Bilbao, País Vasco, July, 2012

History

- General Relativity.
(Einstein) Use Riemannian geometry with Lorentz signature as a theory of gravity. Reasoning: total amount of energy and momentum in the universe should equal the curvature of the universe.

Energy and momentum is represented by a symmetric 2-tensor $T_{\mu \nu}$. There are exactly two symmetric 2-tensors in the theory, the Ricci curvature, $R_{\mu \nu}$, and the (Lorentzian) metric itself $g_{\mu \nu}$. So Einstein tensor
$G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} s g_{\mu \nu}=8 \pi T_{\mu \nu}$
s scalar curvature.
Later add 'cosmological constant' $\wedge g_{\mu \nu}$ to r.h.s. "The biggest blunder of my life." (Einstein) But recently 'not so big a blunder'dark energy $\Rightarrow \Lambda$ small but >0.

Riemannian manifold (M, g)
A Riemannian metric g is Einstein if $\operatorname{Ric}_{g}=\lambda g$ λ constant
Three cases:
(1) $\lambda>0$,
(2) $\lambda=0$,
(3) $\lambda<0$.

Motivation

- Variational Principle

Normalize: (vol of g) $=1$.
$g \mapsto \int_{M} s_{g} d \mu_{g}, \mu_{g}$ volume
(Hilbert) Einstein metrics are critical points.

Quadratic functionals:
$g \mapsto \int_{M} s_{g}^{2} d \mu_{g}$ (Calabi)
Einstein metrics are critical points. Maybe Einstein metrics are distinguished.

Spheres

- History: Einstein metrics
- Round metric on S^{n} (Gauss-Riemann)
- Squashed metrics on $S^{4 n+3}$ (Jensen,1973)
- Homogeneous Einstein metric on S^{15} (Bourguignon and Karcher,1978).
- These are all homogeneous Einstein metrics on S^{n} and they are the only such metrics up to homothety
(Ziller,1982).
- Infinite sequences of inhomogeneous Einstein metrics on $S^{5}, S^{6}, S^{7}, S^{8}$ and S^{9} (Böhm,1998). Maybe not so distinguished

Exotic Spheres

(Milnor,1956)

Spheres that are homeomorphic but not diffeomorphic to S^{n}. Homotopy spheres that bound a parallelizable manifold $b P_{n+1}$ form an Abelian group. (Kervaire-Milnor)
For $S^{4 n+1}, b P_{4 n+2}=\mathbb{Z}_{2}$ if
$4 n \neq 2^{j}-4$ for any j.
No bP exotics $S^{5}, S^{13}, S^{29}, S^{61}$.
$b P_{8}=\mathbb{Z}_{28}, b P_{12}=\mathbb{Z}_{992}$
$b P_{16}=\mathbb{Z}_{8128}, b P_{20}=\mathbb{Z}_{130816}$
Generally, $\left|b P_{4 m}\right|=$
$2^{2 m-2}\left(2^{2 m-1}-1\right)$ num $\left(\frac{4 B_{m}}{m}\right)$

- Results (B-,Galicki,Kollár)
$N_{S E}=\#$ of deformation classes Einstein metrics.
$\mu_{S E}=\#$ moduli of Einstein metrics.
- Each 28 diffeo types of S^{7} admits hundreds of Einstein metrics, many with moduli. Largest moduli has dimension 82, standard S^{7}.
- All 992 diffeo types in $b P_{12}$ and all 8128 diffeo types in $b P_{16}$ admit Einstein metrics, i.e. on S^{11}, S^{15}.
- All elements of $b P_{4 n+2}$ admit Einstein metrics.
Our Einstein metrics are special, Sasaki-Einstein (SE)
- Both the number $N_{S E}$ of deformation classes and the number $\mu_{S E}$ of moduli grow double exponentially with dimension.
(1) $N_{S E}\left(S^{13}\right)>10^{9}$ and
$\mu_{S E}\left(S^{13}\right)=21300113901610$
(2) $N_{S E}\left(S^{29}\right)>5 \times 10^{1666}$ and $\mu_{S E}\left(S^{29}\right)>2 \times 10^{1667}$

Conjecture: Both $N_{S E}\left(S^{2 n-1}\right)$ and $\mu_{S E}\left(S^{2 n-1}\right)$ are finite.

Similar results for rational homology spheres (B -, Galicki) and other manifolds. Ingredients of Proof

1. Contact geometry. Sasakian metrics
2. Differential topology. diffeomorphism types
3. Singularity theory. Links of isolated hypersurface singularities
4. Algebraic geometry. algebraic orbifolds 5. Analysis. Monge-Ampère deformations

- Contact Manifold(compact)

A contact 1-form η such that

$$
\eta \wedge(d \eta)^{n} \neq 0 .
$$

defines a contact structure

$$
\eta^{\prime} \sim \eta \Longleftrightarrow \eta^{\prime}=f \eta
$$

for some $f \neq 0$, take $f>0$. or equivalently a codimension 1 subbundle $\mathcal{D}=$ Ker η of $T M$. ($\mathcal{D}, d \eta$) symplectic vector bundle

Unique vector field ξ, called the Reeb vector field, satisfying

$$
\xi\rfloor \eta=1, \quad \xi\rfloor d \eta=0 .
$$

The characteristic foliation \mathcal{F}_{ξ} each leaf of \mathcal{F}_{ξ} passes through any nbd U at most k times \Longleftrightarrow quasi-regular, $k=1 \leftrightarrow$ regular, otherwise irregular

Contact bundle $\mathcal{D} \rightarrow$ choose almost complex structure J extend to Φ with $\Phi \xi=0$

Get a compatible metric

$$
g=d \eta \circ(\Phi \otimes \mathbb{1}+\eta \otimes \eta)
$$

Quadruple $\mathcal{S}=(\xi, \eta, \Phi, g)$ called contact metric structure

Definition: The structure $\mathcal{S}=(\xi, \eta, \Phi, g)$ is K -contact if $£_{\xi} g=0$ (or $£_{\xi} \Phi=0$). It is Sasakian if in addition (\mathcal{D}, J) is integrable.
Note: Here we work entirely with Sasakian structures.

Geometry of Links

\mathbb{C}^{n+1} coord's $\mathbf{z}=\left(z_{0}, \ldots, z_{n}\right)$
weighted \mathbb{C}^{*}-action

$$
\left(z_{0}, \ldots, z_{n}\right) \mapsto\left(\lambda^{w_{0}} z_{0}, \ldots, \lambda^{w_{n}} z_{n}\right)
$$

weight vector $\mathbf{w}=\left(w_{1}, \cdots, w_{n}\right)$ with $w_{j} \in \mathbb{Z}^{+}$ and
$\operatorname{gcd}\left(w_{0}, \ldots, w_{n}\right)=1$.
f weighted homogeneous polynomial $f\left(\lambda^{w_{0}} z_{0}, \ldots, \lambda^{w_{n}} z_{n}\right)=\lambda^{d} f\left(z_{0}, \ldots, z_{n}\right)$
$d \in \mathbb{Z}^{+}$is degree of f.
$0 \in \mathbb{C}^{n+1}$ isolated singularity.
link L_{f} defined by

$$
L_{f}=f^{-1}(0) \cap S^{2 n+1},
$$

$S^{2 n+1}$ unit sphere in \mathbb{C}^{n+1}

Special Case: Brieskorn-Pham poly. (BP)

$$
f\left(z_{0}, \ldots, z_{n}\right)=z_{0}^{a_{0}}+\cdots+z_{n}^{a_{n}}
$$

$$
a_{i} w_{i}=d, \forall i .
$$

Brieskorn-Pham Graph Thm:

For $\mathbf{a}=\left(a_{0}, \ldots, a_{n}\right)$ integers $\geq 2 \Rightarrow$ a graph $G(\mathbf{a})$ whose vertices are a_{i}. And a_{i} is connected to a_{j} if
$\operatorname{gcd}\left(a_{i}, a_{j}\right)>1$.
Link L_{f} is a homology sphere \Longleftrightarrow
(1): $G(\mathbf{a})$ contains at least two isolated points, or
(2): $G(\mathbf{a})$ has an odd $\#$ of vertices and a_{i}, a_{j}, $\operatorname{gcd}\left(a_{i}, a_{j}\right)=2$ if $\operatorname{gcd}\left(a_{i}, a_{j}\right)>1$.

Determine the diffeomorphism type:
(1): If dim $\equiv 3 \mathrm{mod} 4$: given by Hirzebruch signature of manifold that L_{f} bounds. Combinatorical formula (Brieskorn)
(2): If $\operatorname{dim} \equiv 1 \bmod 4: G(a)$ has one isolated point a_{k} such that $a_{k} \equiv \pm 3$ mod 8 gives Kervaire sphere. $a_{k} \equiv \pm 1 \mathrm{mod} 8$ gives standard sphere.

Fact: L_{f} has natural structure with commutative diagram: $S_{\mathrm{w}}^{2 n+1}$ weight sphere $\mathbb{P}_{\mathbb{C}}(\mathrm{w})$ weighted projective space

horizontal arrows: Sasakian and Kählerian embeddings. vertical arrows: orbifold Riemannian submersions.
L_{f} is Sasaki-Einstein (SE) $\Longleftrightarrow \mathcal{Z}_{f}$ is KählerEinstein (KE)

Question: When do we have SE or KE metrics?

1. $c_{1}^{o r b}(\mathcal{Z})>0$ (easy)
2. solve Monge-Ampère equation (hard)

$$
\frac{\operatorname{det}\left(g_{i \bar{j}}+\frac{\partial^{2} \phi}{\partial z_{i} \bar{z}_{j}}\right)}{\operatorname{det}\left(g_{i \bar{j}}\right)}=e^{f-t \phi} .
$$

Tian: uniform boundedness

$$
\int_{\mathcal{Z}} e^{-\gamma t \phi_{t}} \omega_{0}^{n}<+\infty
$$

Many people Yau, Tian, Siu, Nadel, and most recently by Demailly and Kollár in orbifold category.
alebraic geometry of orbifolds: local uniformizing covers branch divisor: \mathbb{Q}-divisor

$$
\Delta:=\sum\left(1-\frac{1}{m_{j}}\right) D_{j}
$$

canonical orbibundle

$$
K_{\mathcal{Z}}^{o r b}=K_{\mathcal{Z}}+\sum\left(1-\frac{1}{m_{j}}\right)\left[D_{j}\right]
$$

ramification index: m_{j}
Kawamata log terminal or kIt For every $s \geq 1$ and holomorphic section $\tau_{s} \in H^{0}\left(\mathcal{Z}, \mathcal{O}\left(\left(K_{\mathcal{Z}}^{\text {orb }}\right)^{-s}\right)\right.$ there is $\gamma>\frac{n}{n+1}$ such that $\left|\tau_{s}\right|^{-\gamma / s} \in L^{2}(\mathcal{Z})$.

Theorem 2: $c_{1}^{\text {orb }}(\mathcal{Z})>0$, klt \Rightarrow Sasaki-Einstein metric.

Sasaki-Einstein metrics
Positivity $\Rightarrow I=\left(\sum w_{i}-d\right)>0$ klt estimates for L_{f}

$$
d\left(\sum w_{i}-d\right)<\frac{n}{n-1} \min _{i, j} w_{i} w_{j} .
$$

BP polyn: (better)

$$
1<\sum_{i=0}^{n} \frac{1}{a_{i}}<1+\frac{n}{n-1} \min _{i}\left\{\frac{1}{a_{i}}, \frac{1}{b_{i} b_{j}}\right\} .
$$

$a_{i} \mathrm{BP}$ exponents and

$$
b_{i}=\operatorname{gcd}\left(a_{i}, \operatorname{Icm}\left(a_{j} \mid j \neq i\right)\right)
$$

\exists other estimates. Positivity plus a klt estimate \Rightarrow SE metric

To determine the moduli $\mu_{S E}$ add monomials $z_{i_{1}}^{b_{i_{1}}} \cdots z_{i_{k}}^{b_{i_{k}}}$ such that $\sum_{j} b_{i_{j}}=d$ to BP polynomial. Divide by equivalence of $\mathfrak{A u t}\left(\mathcal{Z}_{f}\right)$.

Why double exponential growth?

Reason for growth: Sylvester's sequence determined by $c_{k+1}=1+c_{0} \cdots c_{k}$ begins as $2,3,7,43$, 1807, 3263443, 10650056950807, ...
$N_{S E}$: sequences a $=\left(a_{0}=c_{0}, \ldots, a_{n-1}=c_{n-1}, a_{n}\right)$ with $c_{n-1}<a_{n}<c_{0} \cdots c_{n-1}$ give SE metrics. Use prime number theorem.
$\mu_{S E}$: sequences $\mathbf{a}=\left(a_{0}=c_{0}, \ldots, a_{n-1}=c_{n-1}, a_{n}\right)$ where $a_{n}=\left(c_{n-1}-2\right) c_{n-1}$. Polynomial f contains $G\left(z_{n-1}, z_{n}^{c_{n-1}-2}\right)$. Again by prime number theorem gives double exponential growth.

Conjecture: All elements of $b P_{2 n}$ admit SE metrics.

Estimate of Lichnerowicz \Rightarrow if $I=\left(\sum w_{i}-d\right)>n \min _{i} w_{i}$ then $\nexists \mathrm{SE}$ metrics. Only applies to KE orbifolds! (Gauntlett, Martelli,Sparks,Yau) (Ghigi,Kollár) class of SE metrics where bound is sharp. $\times 10$ more on spheres.

