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The Einstein relation connecting the diffusion constant and the mobility is violated beyond the linear
response regime. For a colloidal particle driven along a periodic potential imposed by laser traps, we test
the recent theoretical generalization of the Einstein relation to the nonequilibrium regime which involves
an integral over measurable velocity correlation functions.
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A comprehensive theory of systems driven out of equi-
librium is still lacking quite in contrast to the universal
description of equilibrium systems by the Gibbs-
Boltzmann distribution. Linear response theory provides
exact relations valid, however, only for small deviations
from equilibrium [1]. The arguably most famous linear
response relation is the Einstein relation

 D � kBT�; (1)

involving the diffusion constant D, the mobility �, and the
thermal energy kBT [2]. In his original derivation for a
suspension in a force field, Einstein balances the diffusive
current with a linear drift. The Einstein relation embodies a
deep connection between fluctuations causing diffusion
and dissipation responsible for friction expressed by a
finite mobility.

In the present Letter, we report on the extension of the
classical Einstein relation beyond the linear response re-
gime using a driven colloidal particle as a paradigmatic
system. Our previous theoretical work [3] and its present
experimental test thus introduce a third type of exact
relation valid for and relevant to small driven systems
coupled to a heat bath of constant temperature T. The
previously discovered exact relations comprise, first, the
fluctuation theorem [4,5] which quantifies the steady state
probability of observing trajectories of negative entropy
production. Second, the Jarzynski relation [6] expresses
the free energy difference between different equilibrium
states by a nonlinear average of the work spent in driving
such a transition [7]. Both the fluctuation theorem and the
Jarzynski relation as well as their theoretical extensions
[8–10] have been tested in various experimental systems
such as micromechanically manipulated biomolecules
[11,12], colloids in time-dependent laser traps [13–15],
Rayleigh-Benard convection [16], mechanical oscillators
[17], and optically driven single two-level systems [18].
Such exact relations (and the study of their limitations) are
fundamentally important since they provide the first ele-
ments of a future more comprehensive theory of nonequi-
librium systems.

For a nonequilibrium extension of the Einstein relation
(1), consider the overdamped motion x�t� of a particle
moving along a periodic one-dimensional potential V�x�
governed by the Langevin equation

 _x�t� �
1

�
F�x�t�� � ��t�; (2)

with F � �@V=@x� f and f a nonconservative force.
The friction coefficient � determines the correlations
h��t���t0�i � 2�kBT=����t� t0� of the white noise �.
Therefore, Eq. (2) describes a colloidal bead driven to
nonequilibrium under the assumption that the fluctuating
forces arising from the heat bath are not affected by the
driving.

For the crucial quantities D and �, it is convenient to
adapt definitions which can be used both in equilibrium
and beyond linear response, i.e., in a nonequilibrium steady
state characterized by f � const � 0. The diffusion coef-
ficient is given by

 D � lim
t!1
�hx2�t�i � hx�t�i2�=�2t�; (3)

where h� � �i denotes the ensemble average. Both theoretical
work [19] and a recent experiment [20] have shown that the
force-dependent diffusion constant can be substantially
larger than its equilibrium value. The mobility

 � �
@h _xi
@f

(4)

quantifies the response of the mean velocity h _xi to a small
change of the external force f. If the response is taken at
f � 0, which corresponds to equilibrium, one has the
linear response relation (1). How does the Einstein relation
change for f � 0; i.e., what is the relation between a force-
dependent diffusion constant D�f� and a force-dependent
mobility ��f�? Is there a simple relation at all? We have
recently shown that under nonequilibrium conditions the
Einstein relation (1) has to be replaced by [3]

 D � kBT��
Z 1

0
d�I���; (5)

where the second term on the right-hand side is given by an
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integral over a known ‘‘violation function’’ I��� involving
measurable velocity correlations to be discussed in detail
below. Such a relation is complementary to introducing an
effective temperature which replaces T in Eq. (1) in an
attempt to keep its simple form [21,22]. It has the advan-
tage that knowledge of I��� offers us a better understanding
of the crucial characteristics of the nonequilibrium steady
state that causes the breakdown of the Einstein relation (1).

In our experiment, we subject a single colloidal silica
bead with 1:85 �m diameter to a nonequilibrium steady
state by forcing it along a toroidal trap (R � 1:75 �m)
created by tightly focused rotating optical tweezers [23,24]
(see Fig. 1). This is achieved by focusing the beam of a
Nd:YAG laser (� � 532 nm) with a microscope objective
(100	 , NA � 1:3) into a sample cell containing a highly
diluted aqueous suspension of silica particles with
1:85 �m diameter. A pair of galvanometric driven mirrors
with telescope optics deflects the beam along a circular
path and thus confines the silica bead to an effectively one-
dimensional motion. Depending on the velocity of the
rotating trap, three different regimes can be distinguished
[23]. (i) For small velocities, friction forces are much
smaller than the trapping force, the trapped particle is
able to follow the trap. (ii) With increasing velocity, the
trap is not strong enough to compensate the viscous force

of the fluid, the particle escapes from the laser trap.
However, every time the laser passes the particle, it is still
dragged a small distance along the circle and moves with a
constant mean velocity around the torus. (iii) As the focus
speed increases, (quasi)equilibrium conditions are estab-
lished, and the particle is able to diffuse freely along the
torus. With the trap rotation frequency set to 567 Hz, the
experiments are performed in the intermediate regime (ii)
where the particle is observed to circulate with a constant
mean velocity. Since the displacement of the particle by a
single kick depends on the laser intensity and is approxi-
mately 10 nm, under our experimental conditions the
spatial (50 nm) and temporal (80 ms) resolution of digital
video microscopy is not sufficient to resolve single ’’kick-
ing’’ events. Therefore, the particle can be considered to be
subjected to a constant force f along the angular direction
x. Additionally, the scanning motion is synchronized with
an electro-optical modulator (EOM) which allows the pe-
riodic variation of the laser intensity along the toroid. In the
experiment, the tweezer intensity P is weakly modulated
(�P=P 
 10%). This small intensity modulation super-
imposes an additional periodic potential V�x� acting on
the particle when moving along the torus. As the result, the
particle moves in a tilted periodic potential. Both the
potential V�x� and the driving force f are not known
from the input values to the EOM but must be recon-
structed as described in detail below.

The central quantitity of Eq. (5) is the violation function
I���, which can be written as [3]

 I��� � h� _x�t� �� � h _xi�fvs�x�t�� � h _xigi: (6)

It correlates the actual velocity _x�t� with the local mean
velocity vs�x� subtracting from both the global mean ve-
locity h _xi � 2�Rjs that is given by the net particle flux js
through the torus. In one dimension for a steady state, the
current must be the same everywhere, and, hence, js is a
constant. The offset t is arbitrary because of time-
translational invariance in a steady state, and in the follow-
ing we set t � 0. The local mean velocity vs�x� is the
average of the stochastic velocity _x over the subset of
trajectories passing through x. An equivalent expression
is js � vs�x�ps�x� connecting the current with the proba-
bility density ps�x�. The local mean velocity can thus be
regarded as a measure of the local violation of detailed
balance. In equilibrium, detailed balance holds, and there-
fore vs�x� � h _xi � 0. Then the violation (6) vanishes, and
Eq. (5) reduces to Eq. (1).

For an experimental test of the nonequilibrium Einstein
relation (5), we measure trajectories of a single colloidal
particle for different driving forces f by adjusting the
intensity transmitted through the EOM. From a linear fit
to the data, we first determine the mean global velocity h _xi.
Next, we extract the mean local velocity vs�x� from the
histogram ps�x� with the coordinate x confined to 0 
 x 

2�R. Since measurements are performed with a sampling
rate of 80 ms, we cannot directly access the velocity _x�t�
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FIG. 1. (a) Experimental setup. (b) Typical trajectory of the
angular particle position for a mean particle revolution time ’
5:8 s.
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experimentally. To calculate the violation integral I���, we
decompose _x�t� into a randomly fluctuating Brownian part
and a drift term; see Eq. (2). We then transform I��� as

 

I��� �
��
vs�x���� �

kBT
�

@�

@x
�x����

�
vs�x�0��

�

� h _xi2 � h����vs�x�0��i: (7)

The generalized potential ��x� is determined via the mea-
sured stationary probability distribution ps�x� �
exp����x�� [3]. For � > 0, the last term vanishes because
then ��t� �� and x�t� are uncorrelated. Thus, the function
I��� depends on two measurable quantities: the current js
and the stationary probability distribution ps�x�.

The potential V and the driving force f are determined
by integrating the force

 F � �
@V
@x
� f � �vs � kBT

@�

@x
(8)

along the torus. We obtain

 f �
�

2�R

Z 2�R

0
dxvs�x� (9)

and

 V�x� � kBT��x� �
Z x

0
dx0�f� �vs�x0�� (11)

up to an irrelevant constant. In Eq. (9), terms involving V
and � are zero due to the periodicity of our system. Both
the potential V�x� and the tilted potential V�x� � fx are
shown in Fig. 2. The mobility � � �h _xi=�f is determined
from the change of the global mean velocity �h _xi upon a
small variation of the force �f.

With the experimentally determined quantities, we mea-
sure the violation function I��� shown as a solid line in
Fig. 3(a) for f � 0:06 pN. It clearly displays the two time
scales present in the system. First, the driving leads to an
oscillatory behavior with a period equal to the mean revo-
lution time ’ 5:8 s. Second, the diffusion causes a broad-
ening of the particle’s position resulting in a decorrelation
between actual and local velocity and, hence, an exponen-
tial decay with time constant ’ 2:3 s indicated by the
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FIG. 2. (a) Reconstructed potential
V�x�. (b) Tilted potential. The colloidal
particle is subjected to a constant driving
force f ’ 0:06 pN and the periodic po-
tential V�x�.
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FIG. 3. (a) Experimentally measured violation function I��� (solid line). (b) Comparison of the velocities involved in the violation
function I���. For an ideal cosine potential, we sketch the probability distribution ps�x� (solid gray line) and the local mean velocity
vs�x�, together with the drift velocity and their mean h _xi versus the angular particle position. The drift velocity is the deterministic part
F=� of the actual velocity _x. The sign change in I��� at (2), (3), and (4) can be understood as follows. In a steady state, a single particle
trajectory will start with highest probability in the shaded region, and, for an illustration, we choose its maximum as starting point (1)
determining the value vs�x�t�� in Eq. (6). Neglecting thermal fluctuations, the particle would follow the dashed line, and during a small
time step � the product F�x�t� ���vs�x�t�� is positive. If the particle passes (2), the product would become negative. The sign changes
again if the particle passes (3) and then (4) and so on due to the periodic nature of the potential. Thermal noise and averaging over all
trajectories does not change this behavior responsible for the oscillations of I���.
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dashed line [Fig. 3(a)]. To understand the behavior of I���
in more detail, it is helpful to compare the different veloc-
ities involved in the violation function I���, which are
sketched in Fig. 3(b).

After numerical integration of the experimentally deter-
mined I���, we finally calculate the diffusion coefficient
according to Eq. (5). To quantify the relative importance of
the violation integral, we plot the two terms of the right-
hand side of Eq. (5) separately for five different values of
the driving force in Fig. 4. Their sum is in good agreement
with the independently measured diffusion coefficient di-
rectly obtained from the particles trajectory using Eq. (3).
As the maximal error for the independent measurements,
we estimated from our data �3% for the diffusion coeffi-
cient D, up to �10% for the violation integral, and �7%
for the mobility �.

We emphasize that, under our experimental parameters,
the violation term dominates the diffusion coefficient (up
to 80%) and must not be ignored. In Fig. 4, one observes a
nonmonotonic dependence of the violation integral on the
driving force. This is due to the fact that the maxima of
��f� and D�f� do not occur at the same driving force but
are slightly offset [19]. This implies for the violation
function a maximum followed by a minimum as a function
of f. For very small driving forces, the bead is close to
equilibrium, and its motion can be described using linear
response theory. As a result, the violation integral is neg-
ligible. Experimentally, this regime is difficult to access
since D and � become exponentially small and cannot be
measured at reasonable time scales for small forces and
potentials as deep as 40kBT [cf. Fig. 2(a)]. For much larger
forces, the relative magnitude of the violation term be-
comes smaller as well. In this limit, the imposed potential
becomes irrelevant, and the spatial dependence of the local
mean velocity, which is the source of the violation term,
vanishes. The fact that in our regime the violation term is of

the same order of magnitude as the mobility proves that we
are indeed probing the regime beyond linear response.
Still, the description of the colloidal motion by a
Markovian (memoryless) Brownian motion with drift as
implicit in our analysis remains obviously a faithful repre-
sentation since the theoretical results are derived from such
a framework.

The Einstein relation generalized to nonequilibrium as
presented and tested here for the driven motion along a
single coordinate could be considered as a paradigm.
Extending such an approach to interacting particles and
resolving frequency-dependent versions of Eq. (6) [3],
while certainly experimentally challenging, will provide
further insight into crucial elements of a future systematic
theory of nonequilibrium systems.
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FIG. 4. Experimental test of Eq. (5) for different driving forces
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