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Abstract. The problem of formulating a local quantum theory of Einstein equations
is examined. It is proved that Einstein equations cannot hold as operator equations if
written in terms of a potential h,,(x) which is a weakly local field. This result is independent
of the kind of metric chosen in the Hilbert space and it doesn’t require covariance of h,,.

As a consequence, the peculiar features of the radiation gauge method, i.e. non locality
and non covariance, appear as necessary features of any solution not involving unphysical
particles.

1. Introduction

The object of the present paper is to analyse those difficulties [1]
which arise in the quantization of the Finstein equations, mainly because
of the zero mass of the gravitons. This kind of difficulties are strictly
connected with the introduction of the potentials, i.e. with the gauge
problem, and have a counterpart in the simpler case of quantum electro-
dynamics [2]. In the theory of gravitation, however, they seem to have
deeper implications because the “potentials” g,, are strictly related to
the geometry of the four-dimensional space.

Wightman’s approach to quantum field theory appears as the natural
framework to deal with this problem and his philosophy will be adopted
throughout the paper. When discussed in the language of axiomatic field
theory, the problem of quantizing the Einstein equation shows his basic
difficulties in a clear way. As it will be shown, they have very little to do
with subsidiary conditions, indefinite metric etc. as usually stated in the
literature. On the contrary, they are strictly connected with two basic
assumptions of quantum field theory: Lorentz covariance and locality.

* On leave of absence from: Istituto Nazionale di Fisica Nucleare, Sezione di Pisa,
Pisa, Italy.
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More precisely, one cannot quantize the Einstein equations in terms of a
potential h, (x) which is a covariant and/or weakly local field. As a
matter of fact, we will prove that the Einstein equations cannot even
hold on the vacuum state

RuvT0=0 £”vgdavR“ga'I’0=0

in a Hilbert space in which the potential 4, (x) is defined as a covariant
and/or weakly local operator valued distribution. Otherwise, one would
get that all the Wightman functions of the field R,,,, vanish and the
theory is trivial. This result is obtained independently of the metric in the
Hilbert space.

As a consequence, the peculiar features of the radiation gauge
method [3], i.e. non locality and non covariance, appear as necessary
features of any solution not involving unphysical particles.

2. Quantization of the Einstein’s Equations in the Linear
Approximation. Basic Assumptions

In order to simplify the discussion, we will consider the Einstein’s
equations in vacuum, in the weak-field approximation. Clearly, the
difficulties we will find in this case will be present also in the more general
case. In fact, if a complete theory exists, it must make sense also in the
weak-field approximation. This situation is described by the following
equations [4]

R,,(x)=0 R(x)=0 1)
where R,,=¢P*R;,,, R=g9"R,,. ()
Here g'©*¢ stands for the constant metric tensor, g?°% =1, @ = —1,

g‘9*e¢ =0 for A # ¢. For simplicity, in the following we will omit the upper
label ©. Besides Eqs. (1) and (2), the gravitational field R,,, ,, satisfies the
following identities [4]

Rluva= _Ruva=Rulgv=Rvglu5 (3)
Rlvga+Rlavg+ngav=01 (4)
eV 0,R,5,,=0 (Bianchi’s identities). 5)

The set of Egs. (3)+5) imply that the basic fields R, ,,(x) may be
written in terms of lower order tensors h,,(x) in the following way

R,y ,0(x)=%(0,0,050% +0,0,6565 — 0,0,6%04 — 0,0,0508) h,5(x)  (6)

where h,,(x)= h,,(x) are defined as operator valued distributions in J#.
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Therefore, the quantization of R, ,,(x) is reduced to the problem of
quantizing the fields h,,(x). The need of using the quantities h, (x) in a
quantum field theory of gravitation follows also from the fact that
h,,(x) (not R,,, ,,) enter in any local interaction! and in S-matrix elements
and that by using only the fields R,,,,(x) one cannot account for the
production and absorption of soft gravitons (long range forces) [5]. In
addition the field h, (x) are strictly related to the metric of the four
dimensional space and play a fundamental role in the theory of gravita-
tion.

In this section we will consider the basic properties a quantum field
theory of Einstein’s equations must have. In a certain sense the following
basic “assumptions” may be regarded as a definition of our problem [6]:

a) The fields h,,(x), u,v=0,1,2,3, may be defined as operator
valued distributions [7] in a Hilbert space .

b) There exists a “unitary”? representation of the Poincaré group
{a, A} > U(a, A) such that the fields R, ,,(x) transform as tensor fields
under U(a, A)

Ula, A) R, 05(x) Ula, A) " = A 1A P A7 A7 R, 5(Ax +a)  (7)

and the fields h,,(x) have the following transformation properties under
the space time translation group

U(a, 1) hy,(x) Ula, 1)~ = hy,(x +a). ®)
c) There exists a state ¥, (vacuum state) which is invariant under

v 4) Ula, A) ¥o = ¥

uveo

and the spectral condition is satisfied by the generators of Uf(a, 1).

It is important to stress that no assumption has been made about
the transformation properties of h,, under the Lorentz group*. As a
matter of fact h,,(x) are not observable quantities and there is no need
for requiring that A, ,(x) transform as the components of a tensor field.
One may, however, show that the transformation properties of h, (x)
under U(0, A) are not arbitrary as a consequence of condition (7).

! As a matter of fact, it seems that one cannot write a local interaction Lagrangian
involving R, ,,(x).

2 Unitarity is here defined in terms of the metric of #. It may be that all the physically
meaningful quantities have to be defined in terms of “products” which do not coincide
with the ordinary scalar product in 5. In this case unitarity is defined in terms of such new
“products”.

3 It is worthwhile to note that conditions a), b) and c) are obviously satisfied in the
standard quantizations of the Einstein equations like the Gupta formulation or the radiation
gauge method, in spite of the many contradictory statements one may find in the literature.

4 Even if we shall not assume all of the Wightman’s axioms, we shall use the Wightman
formulation as guide.
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Statement 1. If R, ,,(x) transform according to Eq. (7), the fields
h,,(x) transform in the following way under the Lorentz group:

A 17U, 4)7 Hhy o AX) U0, A) = hy (x) + 0,7,(x;4) + 0,7,(x; 1) (9)

where the “fields” %,(x;A) do not necessarily transform as tensors under
U(0, A).
Proof. Without loss of generality we define

Fu(x; )= A, 12N U0, 4) 1 h, (Ax) U, A) — h,,(x) = F, (x;4) .
7 I (" (" ©

By using Eq. (6), and Eq. (7) it is not difficult to see that &, (x; A) must
satisfy the following equation

0,0, 7 o(x; A) + 0,0,F,,(x; A) — 0,0,F,,(x; A) — 0,0,F;,(x; 4)=0.

The above equation implies that #,, is a “gauge” field and therefore
it must have the following form

Fun(x; )= 0,7,(x; A) + 0,7,(x; 4)..
In concluding this section we want to stress that no assumption has
been made about the metric in the Hilbert space s, in which h,, are

defined as operator valued distributions. The “product” of two vectors ¥,
¥,, may be defined as a sesquilinear form

(Y, V)=, P

where <, ) is the scalar product in 5# and # is the metric operator which
may be non-positive definite. It may be that the physically meaningful
quantities like vacuum expectation values, transition probabilities etc.,
have to be defined in terms of the products (,) instead of the products
{,>. This is the case usually referred to as indefinite metric [9]. It is
worthwhile to remark that in this case the operators U(a, A) must be
unitary with respect to the product (,):

Ut=qU™1y.
The following results do not depend on whether # is a positive definite
operator or not.

3. Quantization of Einstein’s Equations and Lorentz Covariance

In this section we shall discuss the implications of the assumption of
Lorentz covariance in the quantum field theory of Einstein’s equations.
A natural question is whether one may assume that the fields h,,(x)
transform as the components of a second rank tensor under the Lorentz
group

b”) U, A)h, (x) U, A) "' =4, 1A h,,(AX). (10)
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This is equivalent to put #,(x; 4)=0 in Eq. (9).

As discussed in detail in Ref. [10], one may prove that the addition
of condition b”) to the properties a’), b'), ¢) and d), leads to a trivial
theory, i.e. one has

((I/Os Rluvg(x) Raﬂyé(y) lIIO) = 0 .

For the details of the proof and a discussion of the results we refer
the reader to Ref. [10].

Therefore, a quantum field theory of Einstein’s equations requires
the use of a gravitational potential h, (x) which does not transform
covariantly under the Lorentz group. Thus, the use of non covariant
fields, which is in general regarded as a feature of the radiation gauge
method [11] is an unavoidable step in the quantization of Einstein’s
equations, as operator equations satisfied on the physical states.

Finally, we want to remark that the above results prove that one
cannot define spin two projection operators in contrast to what is some-
times stated in the literature [12]. As a matter of fact, if one could give
any meaning to operators like

§2-2)§?
o 87 —25
P 24
= %{35;“ vlaﬂz\’z + 35#1\‘25#2"1 - 25#1#25\’1\’2 + _D%aﬂlaﬂzavla"z

- % [5;“ vi a#z a\’z + 5#2\’2 am avz (1 1)

- %(5u1uzav1 avz + 5V1vzau16#z)]}

0,0y, + 81y 000y, + 6

H1v2 2 H2V1

which are ill-defined in the case of massless fields, one would obtain
fields

2 (x) = PR e h; o (x) (12)

which satisfy the following equations
Okr2(x)=0, (13)
O“(h3) ~ 39, hP*)=0. (13)

The above Egs.(13), (13) are equivalent to the Einstein’s equations.
Thus, one would get a theory to which the above results apply, i.e.

(.P09 Rluvg(x)Raﬁvé(y) 'PO) =0
and consequently [10]
W2 =0a,h,+0,h,.

This contradicts the definition of the projection operator P, according
to which A should be the spin-two part of the field 4,,.
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4. Quantization of Einstein’s Equations and Weak Local Comimutativity

Another basic property one would like to have for the fields h,,(x)
is microscopic causality or weak local commutativity (WLC). Thus, in
the present section we shall investigate the possibility of constructing a
local quantum theory of Einstein’s equations by using non covariant
potentials h,,(x) which are weakly local fields.

Again we will find that, like Lorentz covariance, WLC cannot be
required for the fields h,,(x). Otherwise, one would get a trivial theory.

Microscopic causality or weak local commutativity means that the
fields h,, satisfy the following condition

e) (Yo, [hu(f*), hyo(9®)] ¥o) =0 (14

if the support of the test function f*¥ is spacelike with respect to the
support of g¢°. Here and in the following the operators h,,(f**) are
defined in the following way

hu(f*)=h(f)= 2 [ h () 2 () d*x.

In terms of Wightman function WLC is expressed in the following
way:

Wuvga(x_y)=WQauv(y_x) if (X—y)2<0

Weak local commutativity constitutes the simplest and most direct
way of imposing causality in the theory of quantized fields. Furthermore,
it is a fundamental requirement in order to prove some general theorems
of quantum field theory, like the PCT theorem or the theorem on the
connection between spin and statistics [13]. In order to give a meaning
to condition e) one has to require that the operator valued distribution
h,,(x) can be smeared with test functions with compact support. For
example the class of strictly local fields satisfy this requirement [8].

5. Impossibility of a Weakly Local Quantum Theory of
FEinstein’s Equations

In this section we will give the details of the proof that h,,(x) cannot
be a weakly local field. To this purpose we consider the two-point
function

Wuvaﬁv&(x'_y):(‘po’ huv(x)Raﬁ'y&(y) lIIO) . (16)
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Lemma 1. The two point function W,,,,,s(x) transforms covariantly
under the homogeneous Lorentz group, i.e.
Wovapys(AX)= A} AL AL AGATAFW 4oy o(X) - 17)
Proof. By inserting U(0, 4) U(0, A1)~ ! in the expression (16) and by
using Egs. (7), (9) one easily gets

Wovapys(Ax — Ay)=(¥o, U0, A) U(0, 4)" h,,(4x) U(0, 4)
U(0, 4)™ Ry, 5(4) U(0, 4) U0, A)~ 1 ¥,)
= AF AL AL NS ATAS W o eX — Y) (18)
+ (W0, F4(x; A) Ryyo(y) Wo) + 0g(Fo, Falx; A) Rogyey) Fo)]-

In order to prove the Lemma, we have to show that the distribution

geCrpt(x y) (WO’ X A) Re{r’r(y) Y’O) (19)

vanishes.

One may easily show that F,,,,.(x, y) depends only on the variable
{=x—y, as a consequence of Eq. (8), and that F,,., (x—y) satisfies
WLC as a consequence of Eq. (9) and condition (e).

By using the spectral condition (d) and the above properties one may
write [6] F),,,.(£) as the boundary value of an analytic function F,,,.(2).
WLC implies that F,,.,(z) is analytic [13] in the extended tube:
7' = {union of all the open sets which may be obtained from the forward
tube J by applying all the transformations of the proper complex
Lorentz group L, (C).}

To prove that F,,,,.(2) vanishes, first we observe that due to the
antisymmetry properties of R,,,. the following equation holds

2*Z°F etnc(2)=2°Hypp . =0 (20)

eent

where H,, =z'F

eent eelne
Now 7' contains intervals of the form {z:2°=0,2z/ 40, 2/ =0, i %}.

Thus, on those intervals one has
z2'H,1,.=0, z2H92,,,=0, z3HQ3,,,=O (21)

and consequently
H

eint

=0 i=1,23 on J. 22)

Thus, z2H

eent
way one proves that also F,

=0 implies that also H,,,, vanishes on 7"'. In an analogous

F,.¢,. vanishes on J".
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Lemma 2. The two point function W,,,s,s may be written in the
following form:
Wivaprs(X) = 903955 — 9us9p,) (G, A(X) + 0,0,B(x))
+(9p59x09v0 + 92198 ¢950 — 981920950 — 9us9p er0)
- [(6565 + 6;69) C(x) +(620,0° + 630,0° + 05,0,0° + 650,09 D(x)]
+ (9570205 + 905950y — a3 0505 — 9550,0,) [9,, F (%) + 0,0, E(x)]
+ (95970020 + 920955050y = 950955920y — 9097595 05) (5365 + 6,68) G(x)
+ [2840p 1090305 = 9560,) + 284751, 0" (95u0p — 95502
+800y20%G5 05— 95508) + 920" 90502 — Goals)
+ 2005209008 — 955 0) + €0p520" (G500, — 94 0,)]
(0867 + 620¢) H(x) (23)
where A, B, C, D, E, F, G, H are Lorentz invariant distributions.

Proof. The expression (23) represents the most general tensor with
the right symmetry properties
Wuvaﬂv& = Wvuaﬂyé = - Wuvﬂayé = Wuvﬁa&y = Wuvyaaﬂ
Wuvaﬂvé + Wuvavéﬂ + Wuvuéﬂv =0.
The detailed proof is rather lengthy. For details see Ref. [15].

Lemma 3. As a consequence of Bianchi’s identities the two point
Sfunction W, ;.5 takes the following form:

Wvapys(X) =(0,050505 + 050,6205 — 05050205 — 0,0,0503)
[9009un(€X* + F) +(9yovs + 9vo9ps) (€ X* + G) + g,,0,0,E]
where ¢ and ¢’ are constants.
Proof. As a first step we shall prove that
H(x)=ax*+b (24)
where a and b are constants. To this purpose we shall use Bianchi’s
identities, which imply
PO W yapys=0. 25)
By using the expression (23) for W,,,;,5» and by contracting Eq. (25)
with g, one gets
0(A+4C+ D) e"**+10(0g** — 8*0") °H =0. (26)
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The symmetric and the antisymmetric part with respect to the indices p, 1
must vanish separately. Thus, one has

A+4C+ D =const, (27)
(Og**—o0*0*)°H=0. (28)
By contracting Eq. (28) with'g,,, one has
0°H=0.
Hence, Eq. (28) gives
0,0,0,H=0. (29)
The Lorentz invariant solutions of Eq. (29) are the following
H=ax*+b

where a and b are constants. One may easily check that the above
expression for H gives zero contribution to the two-point function when
substituted in Eq. (23).

By contracting Eq. (25) with g,,, one obtains

0(A—2C)e"o*h =0,

ie. A=2C +const. (30)
Then, Eq. (27) takes the form
6C + D =const. (31)

Similarly, by contracting Eq. (25) with £°°* and by using Eq. (30)
and (31) one gets

10(0°g** + 0"g*° + 0*¢*?°) C+ 0#0°°(3B+4D)=0. (32
Multiplying the above Eq. (32) by 0,9,, — 0,9,, yields
(6, —40"0,) C=0. (33)

As shown in Ref. [10],the Lorentz invariant solutions of Eq. (33) have
the following form

C=a,x*+b, (34

where a, and b, are constants. By substituting the above expression for C
in Eq. (32), one may write Eq. (32) in the following way

70" * (3B + 4D +3a,x*) =0. (35)
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This implies
3B+4D+3a.x*=a,x*+b, (36)

where a, and b, are constants.
On the other hand, by contracting Eq. (25) with &*?°° one obtains

(05— 06,0 8"(B—2D)=0, (37)
ie.

where a, and b, are constants (Eq. (37) has the same form as Eq. (28)).
Finally, the contraction of Eq. (25) with &“?*° gives

5(g"20° + g% 3" + ¢"° %) C + 3°0" (B + 3D) =0. (39)

When combined with Egs. (32), (34) and Eq. (38), the above Eq. (39)
yields

B= —%a.x*+ax*+b (40)
D= —tax*+ax*+b (41)
where a, b, 4 and b are constants.
Hence,
A=2ax*+b,, B=—%ax*+ax*+b, 42)
C=ax*>+b,, D=-—lax*+ax*+h. (43)

By substituting the above expression for 4, B, C, D in (23), after some
lengthy algebra one gets
W yvapys(X) = (0,050505 + 050,0805 — 05050205 — 0,0,6503)
[ggaguv(cxz - acx4 + F) + (guggvcr + gvgguo-(clx2 + G)

+ 4050,0, (E + 5—2 x6>

where ¢ and ¢’ are suitable constants related to the constants appearing

in Egs. (42), (43). For details see Ref. [15].

Theorem 1. A quantum field theory of Einstein’s equations, with the
properties a’), b'), c), d), cannot be weakly local. Otherwise, one has

(TO> RlquRaﬁyé T0)=0 . (44)

Proof. The expression given in Lemma 3 for the two point function
vapys has the same form one would get by applying the operator

D55 = 02050507 + 050,0303 — 05050305 — 0,0,005 45)

W,

n
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to a covariant two point function W, ,, (see Ref. [10]). This is just the
operator which gives R,;,; when applied to h,,, see Eq. (6). Thus, one
may retrace step by step the proof of the theorem given in Ref. [10] to get
Eq. (44).

As a matter of fact, the theorem proved gives restrictions on the
invariant functions which appear in the covariant distribution

Wuvaﬁy&(x) = Dg%yé WCOV-

uveas °

As the form of W, 4,5 as given by Lemma 3 coincides with the form
of W,,.s,5 as given in Ref. [10] the same conclusions of Ref. [10] hold
in this case.

6. Discussion of the Results

It is already clear from the content of Theorem 1 that one cannot
hope to quantize the Finstein’s equations, while preserving microscopic
causality. The argument can be made stronger if one assumes that the
metric operator is positive definite on the physical states. Here and in the
following by physical states we mean the set D, of vectors which can be
obtained from the vacuum state by applying polynomials in the smeared
fields R,g,5(f*#?%). Then, one has the following

Corollary 1. If the metric operator v is nonnegative in D, then Eq. (44)
implies that all the Wightman functions vanish:

('P05 Ralﬁly;él(xl) Ranﬂnynén(xn) WO) =0

and therefore the theory is trivial.
In order to prove it we state beforehand the following

Lemma 4. Given a Hilbert space H in which w=n", let H' be a linear
set of vectors such that

<e,ne»>z0 VeeH'. (46)
Let v be a vector of H' with the property

<w,mp>=0.
Then we have

p,np>=0 VoeH.
Proof. By putting g =1¢ + v, A€R, ¢ € H' in Eq. (46), one finds
0= <2+, n(Ad +v)y =22{,ndp> +2ARe{p,nd> .
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As a consequence one has
Re<y,n¢p»=0.
On the other hand, by choosing ¢’ = A¢ + iy, one finds

0=2%{¢p,ne) —2AIm<p,nd>
from which it follows
Im{y,n¢p>=0.
In conclusion we have
$p,nyp»=0.

With the aid of this lemma we can now prove Corollary 1 in the following
way.

Since R(f)=R;,,,(f***9) is observable, it must be hermitian with
respect to the metric operator #

R*y=yR.
Then Eq. (44) implies
MR(f) Yo, R(f) ¥ = {n%Po, R(f)R(f) ¥o» =0.
Let us now consider the following scalar product

Mo, R(f1)... R(f,) Yoo
=¥, R*(f1)...R*(fu-)nR(f,) ¥o>
=<R(fn-1)---R(f) wo, nR(f,) ¥o) -

Since R(f,_4)...R(f1) ¥, € Dy and (R(f,) %5, nR(f,) ¥o> =0, Lemma 4

implies
%o, R(f1)...R(f,) ¥o» =0
and, by the nuclear theorem
Wo(tn) o (Xl cee x,,) == (To, Roulhynh(xl) e Ranﬁnvnén(xn) Wo) - 0 .

1...0n

The above results have been obtained under fairly general assump-
tions. This proves that many of the solutions suggested in the literature
for the problem of quantizing the Einstein’s equations are inconsistent
with the locality postulate [16].

In particular, any quantum field theory which satisfies assumptions
a), b), ¢) and d), in which the Einstein’s equations

R, ¥,=0 R¥,=0, @7)
¢ R, Wo=0 48)

af oo
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are satisfied in the vacuum state, must necessarily involve a gravitational
potential h,, which is non-covariant and non-local. Thus, two of the most
important assumptions of axiomatic quantum field theory must be
abandoned if one wants the Einstein’s equations satisfied on the physical
states, i.e. on D,,.

The above results shed light on the radiation gauge method [11] of
quantizing the Einstein’s equations. Non-covariance and non-locality are
usually regarded as characteristic features of the radiation gauge. As a
matter of fact one may reasonably expect that these peculiarities are
confined to a specific choice of the gauge and to the peculiar assumptions
which enter in the radiation gauge method like, e.g., Fock representation,
vanishing of the time like components of the gravitational potential
(ho,=0), particular choice of the phases in the representation of the
Poincaré group, temperedness of the fields etc. This is not the case, and
one cannot hope to get a quantum field theory of Einstein’s equation
(i.e. in which Egs. (47) and (48) hold) without violating Lorentz covariance
and microscopic causality. In this respect, the radiation gauge looks much
more general and important than usually emphasized in the literature.

In conclusion, the only way out of the difficulties related to the non-
covariance and non locality, is to abandon Egs. (47) and (48). As we will
discuss in a following paper, this implies that one must formulate the
theory in a Hilbert space in which unphysical states must be present, an
indefinite metric must be used etc. All this leads essentially to the Gupta
formulation.
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