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Abstract. The problem of formulating a local quantum theory of Einstein equations
is examined. It is proved that Einstein equations cannot hold as operator equations if
written in terms of a potential hμv(x) which is a weakly local field. This result is independent
of the kind of metric chosen in the Hubert space and it doesn't require covariance of hμv.

As a consequence, the peculiar features of the radiation gauge method, i.e. non locality
and non covariance, appear as necessary features of any solution not involving unphysical
particles.

1. Introduction

The object of the present paper is to analyse those difficulties [1]
which arise in the quantization of the Einstein equations, mainly because
of the zero mass of the gravitons. This kind of difficulties are strictly
connected with the introduction of the potentials, i.e. with the gauge
problem, and have a counterpart in the simpler case of quantum electro-
dynamics [2]. In the theory of gravitation, however, they seem to have
deeper implications because the "potentials" gμv are strictly related to
the geometry of the four-dimensional space.

Wightman's approach to quantum field theory appears as the natural
framework to deal with this problem and his philosophy will be adopted
throughout the paper. When discussed in the language of axiomatic field
theory, the problem of quantizing the Einstein equation shows his basic
difficulties in a clear way. As it will be shown, they have very little to do
with subsidiary conditions, indefinite metric etc. as usually stated in the
literature. On the contrary, they are strictly connected with two basic
assumptions of quantum field theory: Lorentz covariance and locality.

* On leave of absence from: Istituto Nazionale di Fisica Nucleare, Sezione di Pisa,
Pisa, Italy.
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More precisely, one cannot quantize the Einstein equations in terms of a
potential hμv(x) which is a covariant and/or weakly local field. As a
matter of fact, we will prove that the Einstein equations cannot even
hold on the vacuum state

in a Hubert space in which the potential hμv(x) is defined as a covariant
and/or weakly local operator valued distribution. Otherwise, one would
get that all the Wightman functions of the field Rμvρσ vanish and the
theory is trivial. This result is obtained independently of the metric in the
Hubert space.

As a consequence, the peculiar features of the radiation gauge
method [3], i.e. non locality and non covariance, appear as necessary
features of any solution not involving unphysical particles.

2. Quantization of the Einstein's Equations in the Linear
Approximation. Basic Assumptions

In order to simplify the discussion, we will consider the Einstein's
equations in vacuum, in the weak-field approximation. Clearly, the
difficulties we will find in this case will be present also in the more general
case. In fact, if a complete theory exists, it must make sense also in the
weak-field approximation. This situation is described by the following
equations [4]

Rμv(x) = 0 R(x) = 0 (1)

where Rμv = g(0)λβRλμvρ R = gi0)μvRμv. (2)

Here gi0)λρ stands for the constant metric tensor, g{0)0° = 1, g(0)ii = - 1 ,
g(θ)λQ = o for Λ, Φ ρ. For simplicity, in the following we will omit the upper
label ( 0 ). Besides Eqs. (1) and (2), the gravitational field Rμvρσ satisfies the
following identities [4]

Rλμ\Q= ~ Rμλxρ = Rμλg\ = Ryρλμτ w)

Rλvρσ + Rλσvρ + ^λρσv = 0 , (4)

εμvβσ dvRaβρσ = 0 (Bianchi's identities). (5)

The set of Eqs. (3)-(5) imply that the basic fields Rμvρσ(
x) m a Y be

written in terms of lower order tensors hμv(x) in the following way

μ β β μ μ t ί e μ β ( x ) (6)

where hμv(x) = hvμ(x) are defined as operator valued distributions in Jf.
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Therefore, the quantization of Rμvρσ(x) is reduced to the problem of
quantizing the fields hμv(x). The need of using the quantities hμv(x) in a
quantum field theory of gravitation follows also from the fact that
hμv(x) (not Rμvρσ) enter in any local interaction1 and in S-matrix elements
and that by using only the fields Rμvρσ(x) one cannot account for the
production and absorption of soft gravitons (long range forces) [5]. In
addition the field hμv(x) are strictly related to the metric of the four
dimensional space and play a fundamental role in the theory of gravita-
tion.

In this section we will consider the basic properties a quantum field
theory of Einstein's equations must have. In a certain sense the following
basic "assumptions" may be regarded as a definition of our problem [6]:

a) The fields hμv(x\ μ, v = 0,1, 2, 3, may be defined as operator
valued distributions [7] in a Hubert space Jf.

b) There exists a "unitary"2 representation of the Poincare group
{a, Λ}->L/(α, A) such that the fields Rμvρσ(x) transform as tensor fields
under ί/(α, A)

U(a,A)RμvβMU(a,A)AμA;AρA;RaβyMx + a) (7)

and the fields hμv(x) have the following transformation properties under
the space time translation group

l/(α, 1) hμv(x) U(a, 1)" ι = hμv(x + a). (8)

c) There exists a state Ψo (vacuum state) which is invariant under
U M U(a,Λ)Ψ0 = Ψ0

and the spectral condition is satisfied by the generators of U(a, I)3.
It is important to stress that no assumption has been made about

the transformation properties of hμv under the Lorentz group4. As a
matter of fact hμv(x) are not observable quantities and there is no need
for requiring that hμv(x) transform as the components of a tensor field.
One may, however, show that the transformation properties of hμv(x)
under t/(0, A) are not arbitrary as a consequence of condition (7).

1 As a matter of fact, it seems that one cannot write a local interaction Lagrangian
involving Rμvβσ(x).

2 Unitarity is here defined in terms of the metric of 2tf. It may be that all the physically
meaningful quantities have to be defined in terms of "products" which do not coincide
with the ordinary scalar product in J f . In this case unitarity is defined in terms of such new
"products".

3 It is worthwhile to note that conditions a), b) and c) are obviously satisfied in the
standard quantizations of the Einstein equations like the Gupta formulation or the radiation
gauge method, in spite of the many contradictory statements one may find in the literature.

4 Even if we shall not assume all of the Wightman's axioms, we shall use the Wightman
formulation as guide.
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Statement 1. If Rμvρσ(x) transform according to Eq. (7), the fields
hμv(x) transform in the following way under the Lorentz group:

μ(x;Λ) (9)

where the "fields" ϊFy(x\A) do not necessarily transform as tensors under

U(0,Λ).

Proof Without loss of generality we define

By using Eq. (6), and Eq. (7) it is not difficult to see that ίFμy(x\Λ) must
satisfy the following equation

dμdv^λβ(x; A) + dλdQ^μy(x;Λ) - dλdv^ρμ(x; A) - dρdμ^λv(x; A) = 0.

The above equation implies that J ^ v is a "gauge" field and therefore
it must have the following form

In concluding this section we want to stress that no assumption has
been made about the metric in the Hubert space Jf, in which hμv are
defined as operator valued distributions. The "product" of two vectors Ψl9

Ψ2, may be defined as a sesquilinear form

where < , > is the scalar product in 3tf and η is the metric operator which
may be non-positive definite. It may be that the physically meaningful
quantities like vacuum expectation values, transition probabilities etc.,
have to be defined in terms of the products (,) instead of the products
<, >. This is the case usually referred to as indefinite metric [9]. It is
worthwhile to remark that in this case the operators U(a, A) must be
unitary with respect to the product ( ,) :

U+=ηU"1η.

The following results do not depend on whether η is a positive definite
operator or not.

3. Quantization of Einstein's Equations and Lorentz Covariance

In this section we shall discuss the implications of the assumption of
Lorentz covariance in the quantum field theory of Einstein's equations.
A natural question is whether one may assume that the fields hμv(x)
transform as the components of a second rank tensor under the Lorentz
group

b") C/(0, A) hμv(x) 1/(0, A)-1 = Λ-^Λ; ίσhβσ(Ax) (10)
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This is equivalent to put ^(x;A) = 0 in Eq. (9).
As discussed in detail in Ref. [10], one may prove that the addition

of condition b") to the properties a'), b'), c) and d), leads to a trivial
theory, i.e. one has

For the details of the proof and a discussion of the results we refer
the reader to Ref. [10].

Therefore, a quantum field theory of Einstein's equations requires
the use of a gravitational potential hμv(x) which does not transform
covariantly under the Lorentz group. Thus, the use of non covariant
fields, which is in general regarded as a feature of the radiation gauge
method [11] is an unavoidable step in the quantization of Einstein's
equations, as operator equations satisfied on the physical states.

Finally, we want to remark that the above results prove that one
cannot define spin two projection operators in contrast to what is some-
times stated in the literature [12]. As a matter of fact, if one could give
any meaning to operators like

24

which are ill-defined in the case of massless fields, one would obtain
fields

*®(x) = P?rehle(x) (12)

which satisfy the following equations

(13)

0. (13')

The above Eqs. (13), (13') are equivalent to the Einstein's equations.
Thus, one would get a theory to which the above results apply, i.e.

and consequently [10]

This contradicts the definition of the projection operator P, according
to which hffl should be the spin-two part of the field hμv.
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4. Quantization of Einstein's Equations and Weak Local Commutativity

Another basic property one would like to have for the fields hμv(x)
is microscopic causality or weak local commutativity (WLC). Thus, in
the present section we shall investigate the possibility of constructing a
local quantum theory of Einstein's equations by using non covariant
potentials hμv{x) which are weakly local fields.

Again we will find that, like Lorentz covariance, WLC cannot be
required for the fields hμy(x). Otherwise, one would get a trivial theory.

Microscopic causality or weak local commutativity means that the
fields hμv satisfy the following condition

e) (Ψo,lhμAfμv\hβσ(9β°ϊ]Ψ0) = 0 (14)

if the support of the test function fμv is spacelike with respect to the
support of gρσ. Here and in the following the operators hμv(fμv) are
defined in the following way

= Σ ί W*)/μ v(*)d*x -

In terms of Wightman function WLC is expressed in the following
way:

WβVβσ(x-y)=Wβσμy(y-x) if (x-y)2<0.

Weak local commutativity constitutes the simplest and most direct
way of imposing causality in the theory of quantized fields. Furthermore,
it is a fundamental requirement in order to prove some general theorems
of quantum field theory, like the PCT theorem or the theorem on the
connection between spin and statistics [13]. In order to give a meaning
to condition e) one has to require that the operator valued distribution
hμy(x) can be smeared with test functions with compact support. For
example the class of strictly local fields satisfy this requirement [8].

5. Impossibility of a Weakly Local Quantum Theory of

Einstein's Equations

In this section we will give the details of the proof that hμv(x) cannot
be a weakly local field. To this purpose we consider the two-point
function

Wμvaβγδ(x -y) = (Ψ09 hμv(x)Raβ7δ(y) Ψo). (16)
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Lemma 1. The two point function Wμv(xβyδ(x) transforms covariantly
under the homogeneous Lorentz group, i.e.

Wμyaβ7i{Λx) = Λλ

μΛζΛ'aΛ'j,^ΛlWλβtinτ(x). (17)

Proof By inserting (7(0, A) (7(0, A)'1 in the expression (16) and by
using Eqs. (7), (9) one easily gets

Wμvaβγδ(Ax-Ay) = (Ψ0, U(09A) U^Λ^h^Ax) U(0,Λ)

(7(0, A)-' Raβyδ(Ay) 17(0, A) (7(0, A)~* ψ0)

= Aλ

μAξAl4A«Al [Wλρεζητ(x - y) (18)

+ dλ(Ψθ9 ^ρ(x;A) Rεζητ(y) Ψo) + dρ(Ψ0, &λ(x; A) Rεζητ(y) Ψofi .

In order to prove the Lemma, we have to show that the distribution

Fρεζητ(χ, y) = (Ψo> ̂ MU) Rεζητ(y) Ψ0) (19)

vanishes.

One may easily show that Fρεζητ(x, y) depends only on the variable
ξ = x — y, as a consequence of Eq. (8), and that Fλεζητ(x - y) satisfies
WLC as a consequence of Eq. (9) and condition (e).

By using the spectral condition (d) and the above properties one may
write [6] Fλεζητ(ξ) as the boundary value of an analytic function Fλεζητ(z).
WLC implies that Fλεζητ(z) is analytic [13] in the extended tube:
y = {union of all the open sets which may be obtained from the forward
tube ZΓ by applying all the transformations of the proper complex
Lorentz group L+(C).}

To prove that Fρεζητ(z) vanishes, first we observe that due to the
antisymmetry properties of Rεζητ the following equation holds

z*z%εζητ(z)^z*Hρεητ = 0 (20)

where Hρεητ = zζFρεζητ.
Now F' contains intervals of the form {z:z° = 0, zJ Φ 0, zι = 0, i Φj}.

Thus, on those intervals one has

z ^ l f 7 T = 0, z2Hρ2ητ = 0, z*Hρ3ητ = 0 (21)

and consequently

Hρiητ = 0 i = l , 2 , 3 on P'. (22)

Thus, zεHρεητ = 0 implies that also HρOητ vanishes on F'. In an analogous
way one proves that also Fρεζητ vanishes on F'.
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Lemma 2. The two point function Wμvaβγδ may be written in the
following form:

Wμvaβγδ(x) = (gaγgβδ - gaδgβy) (gμvΛ(x) + dμdvB(x))

+ (θβδθaρθγσ + QayQβρQδσ ~ θβyθaρθδσ ~ 9θLδ9βρ9yσ)

• Kδffi + δσ

μδ°) C(x) + (δeμdvd
σ + δ*vdμd

σ + δμdvd* + <5J3M

SΛ + gf̂ S^δy - όfαy^^ - gβδdadγ) lgμvF(x) + dμdvE(xj]

y) + 2εργδλ dλ(gσadβ - gσβdj

βyλSλ(gσδda - gσadδ)

+ ερ*δλdλ(gσydβ - gσβdγ) + ερβδλd
λ(gσoίdy - #σ y3α)]

( δ ^ + 5J5ί)fί(x) (23)

where A, B, C, D, E, F, G, H are Lorentz invariant distributions.

Proof The expression (23) represents the most general tensor with
the right symmetry properties

w —W — —W — W —W
vvμva.βyδ~ vvvμaβγδ~ vvμvβocγδ~ vyμvβaδγ~ vvμvγδoiβ

Wμvaβγδ + Wμγoίγδβ + WμvΛδβγ = 0.

The detailed proof is rather lengthy. For details see Ref. [15].

Lemma 3. As a consequence of Bianchΐs identities the two point
function Wμvuβγδ takes the following form:

wμvaβγδ(χ) = (dadδδ
Q

βδ; + dpdyδ*aδ°δ - dβdδδ°δ*y - dadγδ$δσ

δ)

iQρaQμA^2 + F) + (θμρdvσ + QvρQμo) WX* + G) + ^ ^ E ]

where c and d are constants.

Proof As a first step we shall prove that

H(x) = ax2 + b (24)

where a and b are constants. To this purpose we shall use Bianchi's
identities, which imply

^βSκWμvaβyδ = 0. (25)

By using the expression (23) for Wμvaβγδ, and by contracting Eq. (25)
with gyy one gets

dκ(A + 4C + ΠD) εμδκλ + lQ(\Jgλμ - dλdμ) dδH = 0. (26)
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The symmetric and the antisymmetric part with respect to the indices μ, λ
must vanish separately. Thus, one has

A + AC + ΠD = const, (27)

(Πgλμ-dλdμ)d*H = 0. (28)

By contracting Eq. (28) with' gλμ, one has

Hence, Eq. (28) gives

W a H = 0. (29)

The Lorentz invariant solutions of Eq. (29) are the following

H = ax2 + b

where a and b are constants. One may easily check that the above
expression for H gives zero contribution to the two-point function when
substituted in Eq. (23).

By contracting Eq. (25) with gvλ, one obtains

dκ(A-2C)εyδκμ = 0,

i.e. A = 2C + const. (30)

Then, Eq. (27) takes the form

6C+ΠD = const. (31)

Similarly, by contracting Eq. (25) with εyδσλ and by using Eq. (30)
and (31) one gets

10(dσgμv + Svgμσ + dμgvσ) C + dμdvdσ(3B + AD) = 0. (32)

Multiplying the above Eq. (32) by dμgσκ — dκgσμ yields

(Πδv

κ-4dvdκ)C = 0. (33)

As shown in Ref. [10], the Lorentz invariant solutions of Eq. (33) have
the following form

C = acx
2 + bc (34)

where ac and bc are constants. By substituting the above expression for C
in Eq. (32), one may write Eq. (32) in the following way

dσdμdv(3B + AD + f acx
4) = 0. (35)
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This implies

3B + 4D + f α cx
4 = ab x

2 + bb (36)

where ab and bb are constants.
On the other hand, by contracting Eq. (25) with εμyδσ one obtains

(Πδλ

σ-dσd
λ)dv(B-2D) = 0, (37)

i.e.
B = 2D+adx

2+bd (38)

where ad and /?d are constants (Eq. (37) has the same form as Eq. (28)).
Finally, the contraction of Eq. (25) with sμγλσ gives

5{gvδdσ + gδσdv + gvσdδ) C + dσdvdδ{B + 3D) = 0. (39)

When combined with Eqs. (32), (34) and Eq. (38), the above Eq. (39)
yields

(40)

(41)

where a, b, a and b are constants.
Hence,

+ b, (42)

C = acx
2 + bc, D=-iacx

4 + άx2 + b. (43)

By substituting the above expression for A, B, C, D in (23), after some
lengthy algebra one gets

wμvxβyδ(χ) = ( W K + dβdyδ'a8i - dβdδδiδ; - dadyδ$#ϊ)

LθβσΰμΛcx2 - acx
A + F) + (gμegva + gVΰgμAc'χ2 + G)

where c and d are suitable constants related to the constants appearing
in Eqs. (42), (43). For details see Ref. [15].

Theorem 1. A quantum field theory of Einstein's equations, with the
properties a'), br), c), d), cannot be weakly local. Otherwise, one has

(Ψo,RλμvβRΛβy3Ψo) = 0. (44)

Proof. The expression given in Lemma 3 for the two point function
WμvCίβγό has the same form one would get by applying the operator

D%ri=WK+Wa% - δβdsδiδ; - dadγδ$δ; (45)
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to a covariant two point function Wμvρσ (see Ref. [10]). This is just the
operator which gives Raβγδ when applied to hρσ, see Eq. (6). Thus, one
may retrace step by step the proof of the theorem given in Ref. [10] to get
Eq.(44).

As a matter of fact, the theorem proved gives restrictions on the
invariant functions which appear in the covariant distribution

As the form of Wμvaβγδ as given by Lemma 3 coincides with the form
of Wμvaβγδ as given in Ref. [10] the same conclusions of Ref. [10] hold
in this case.

6. Discussion of the Results

It is already clear from the content of Theorem 1 that one cannot
hope to quantize the Einstein's equations, while preserving microscopic
causality. The argument can be made stronger if one assumes that the
metric operator is positive definite on the physical states. Here and in the
following by physical states we mean the set Do of vectors which can be
obtained from the vacuum state by applying polynomials in the smeared
fields Raβyδ{f*βyδ\ Then, one has the following

Corollary 1. If the metric operator η is nonnegative in Do, then Eq. (44)
implies that all the Wightman functions vanish:

and therefore the theory is trivial

In order to prove it we state beforehand the following

Lemma 4. Given a Hilbert space H in which η = η+, let H' be a linear
set of vectors such that

0 VρeH'. (46)

Let ψ be a vector of H' with the property

Then we have

§ \/φGH'.

Proof By putting ρ = λφ + ψ, λ e 1R, φ e H' in Eq. (46), one finds

= λ2 <0, ηφ} + 22Re <tp, ηφ} .
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As a consequence one has

On the other hand, by choosing ρ' = λφ + iψ, one finds

from which it follows

In conclusion we have

With the aid of this lemma we can now prove Corollary 1 in the following
way.

Since R(f) = Rλμvρ{fλμvρ) is observable, it must be hermitian with
respect to the metric operator η

R + η = ηR.

Then Eq. (44) implies

{ηR(f) Ψo, R(f) Ψo} = iη Ψo, R(f) R(f)Ψo> = 0.

Let us now consider the following scalar product

<ηψo,R(fi) R(ΩΨo>

= <R(fn-1)...R(f1)ψo,ηR(fJΨo>.

Since R(fn_t)... R(f±) Ψo e Do and <R(fn) ψ0, ηR(fn) Ψo} = 0, Lemma 4
implies

(ηΨ0,R(fί)...R(fn)Ψ0} = 0

and, by the nuclear theorem

^ : : J * i » . * J = ( ^ o , ^

The above results have been obtained under fairly general assump-
tions. This proves that many of the solutions suggested in the literature
for the problem of quantizing the Einstein's equations are inconsistent
with the locality postulate [16].

In particular, any quantum field theory which satisfies assumptions
a;), b'), c) and d), in which the Einstein's equations

0, (47)

0 (48)
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are satisfied in the vacuum state, must necessarily involve a gravitational
potential hμv which is non-covarίant and non-local. Thus, two of the most
important assumptions ρf axiomatic quantum field theory must be
abandoned if one wants the Einstein's equations satisfied on the physical
states, i.e. on Do.

The above results shed light on the radiation gauge method [11] of
quantizing the Einstein's equations. Non-covariance and non-locality are
usually regarded as characteristic features of the radiation gauge. As a
matter of fact one may reasonably expect that these peculiarities are
confined to a specific choice of the gauge and to the peculiar assumptions
which enter in the radiation gauge method like, e.g., Fock representation,
vanishing of the time like components of the gravitational potential
(hOμ = 0), particular choice of the phases in the representation of the
Poincare group, temperedness of the fields etc. This is not the case, and
one cannot hope to get a quantum field theory of Einstein's equation
(i.e. in which Eqs. (47) and (48) hold) without violating Lorentz covariance
and microscopic causality. In this respect, the radiation gauge looks much
more general and important than usually emphasized in the literature.

In conclusion, the only way out of the difficulties related to the non-
covariance and non locality, is to abandon Eqs. (47) and (48). As we will
discuss in a following paper, this implies that one must formulate the
theory in a Hubert space in which unphysical states must be present, an
indefinite metric must be used etc. All this leads essentially to the Gupta
formulation.
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