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We discuss Einstein’s field equations in the presence of signature change using
variational methods, obtaining a generalization of the Lanczos equation relating the
distributional term in the stress tensor to the discontinuity of the extrinsic curvature.
In particular, there is no distributional term in the stress tensor, and hence no
surface layer, precisely when the extrinsic curvature is continuous, in agreement
with the standard result for constant signature. ©1996 American Institute of
Physics.@S0022-2488~96!02611-4#

I. INTRODUCTION

Classical cosmological models containing an initial region of Euclidean signature joined to a
final region with the usual Lorentzian signature were introduced by Elliset al.1,2 A basic feature
of this work is the use of the Darmois junction conditions at the surface where the signature
changes. This assumption has been questioned by Hayward,3 who prefers to assume the stronger
conditions appropriate for quantum cosmology. We argue here in favor of the Darmois approach
by deriving these junction conditions from the Einstein-Hilbert action.

What are Einstein’s equations in the presence of signature change? Formal computation
quickly goes astray: A signature-changing metric is necessarily degenerate at the hypersurface of
signature change. The Geroch-Traschen conditions4 for the existence of a distributional curvature
tensor thus fail to be satisfied, and it is not clear whether a preferred connection exists. Supposing
that a suitable distributional connection is available, the distributional curvature tensor could be
readily constructed, but it would still be unclear at best how to reverse its trace with the degenerate
metric to obtain a distributional Einstein tensor.

We adopt instead a variational approach, and begin with the natural generalization of the
Einstein-Hilbert action to signature change, subtracting the standard surface term used in the
nondegenerate case in the presence of boundaries. We choose to work with a discontinuous metric,
as this permits the introduction of a frame which is orthonormal almost everywhere. Having made
these choices, we find that the variations proceed unchanged from the degenerate case, and we
recover the identical result: The Darmois conditions~continuity of the extrinsic curvature! ensure
the absence of a surface layer, and the Lanczos equation relates the discontinuity of the extrinsic
curvature to the surface stress tensor. The former result agrees with one of Embacher’s variational
principles;5 the latter result is new.

The paper is organized as follows. In Section II we introduce the necessary notation for
dealing with signature change, and introduce the concept of an ‘‘almost’’ orthonormal frame. In
Section III we review the standard Einstein-Hilbert variational principle for Einstein’s equations,
showing that the usual derivation applies without change. Finally, in Section IV we discuss our
results.
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II. NOTATION

Let S be a~smooth! hypersurface in a smoothn-dimensional manifoldM which dividesM
into disjoint open regionsM6 with smooth, nondegenerate metric tensorsg6. We will assume that
the limits g6uS exist, and that the pullbacks ofg6uS to S agree. The common pullback is the
induced metric onS, which will be further assumed to be nondegenerate and which will be
denoted byh. In particular, we are assuming thatS is not null.

A tensor fieldF is said to beregularly discontinuous6,7 if F is continuous onM6 and if the
one-sided limits,

F6uS5 lim
→S6

F, ~1!

exist. Thediscontinuityof F is the tensor onS defined by

@F#S5F1uS2F2uS . ~2!

Note thatF itself need only be defined onM6. In thecontinuous metricapproach, one assumes
that @g#S50; this is the standard assumption for constant signature. If the signatures ofg6 differ,
g6uS will necessarily be degenerate (detg6uS50) in this approach, whereas for constant signature
one can also assume thatg6uS is nondegenerate. In thenondegenerate metricapproach, one
instead assumes thatg6uS are not degenerate. If the signatures ofg6 differ, this necessarily
implies that@g#S Þ 0; in this case, we will refer to this approach as thediscontinuous metric
approach. The two approaches are mutually exclusive in the presence of signature change,
whereas for constant signature one normally makes both sets of assumptions.

Introduce an orthonormal~with respect toh) frame onS, i.e. a basis$êi ,i51...n21% of
1-forms onS. In each ofM6 separately, we can extend this to a smooth orthonormal frame
$e6

a %5$e6
0 ,e6

i % with ei uS5êi . We have@ei #S50 by construction, and we will furtherassumethat
@e0#S50. This can always be done in the continuous metric approach, although if the signature
changes we havee6

0 uS50. For discontinuous metrics, this is a further restriction ong6, which
amounts to assuming that both 1-sided notions of the unit normal vector toS are the same—which
would imply continuity of the metric if the signature were constant—or equivalently that proper
time/distance fromS is aC1 coordinate. Let$Xa

6% denote the basis of vector fields onM6 which
is dual to$e6

a %. Note that in the presence of signature change,X0
6 will admit limits to S only in

the discontinuous case.
Consider the separate Hodge dual operators defined byg6 onM6, both written as* , and the

Hodge dual operator defined byh on S, written as*̂ . The metric volume element onS is

*̂ 15e6
1 `•••`e6

n21, ~3!

and the metric volume elements onM6 are

* 15e6
0 `e6

1 `•••`e6
n21, ~4!

which admit continuous limits toS by assumption. For discontinuous metrics, this provides the
usual Leray decomposition,

* 15e0` *̂ 1, ~5!

wheree0 here denotes the common limit ofe6
0 to S. However, in the continuous metric approach

for a signature-changing metric, these limits are identically zero!
We therefore take the nondegenerate metric approachin the remainder of the paper, resulting

in discontinuous metrics if the signature changes. We emphasize that this choice means that both
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@e0#S505@X0#S , ~6!

so that there is a continuous ‘‘orthonormal’’ frame on all ofM , which in turn defines a continuous,
nondegenerate, volume element on all ofM .

Metric-compatible connection 1-formsv6
a
b onM

6 satisfy

dgab5vm
agmb1vm

bgma , ~7!

and have torsion

Ta5dea1va
b`eb, ~8!

where we have dropped the6 index. For an orthonormal frame$ea%,

dgab50, ~9!

and the unique metric-compatible, torsion-free connection is given by8

2gamvm
b5gmne

mi Xa~ i Xb~de
n!!1gani Xb~de

n!2gmbi Xa~de
m!, ~10!

where

gab5g~Xa ,Xb!. ~11!

By assumption,gab is regularly discontinuous. We will further assume that the connection 1-forms
va

b are regularly discontinuous. Physically, this means that not onlyg6 but also their derivatives
admit 1-sided limits toS, so thatM6øS are ~pseudo! Riemannian manifolds-with-boundary.

III. VARIATIONAL APPROACH

We first review the Palatini formalism for obtaining Einstein’s equations in vacuum for
nondegenerate metrics. We then show by example how to include matter fields, and finally con-
sider degenerate metrics.

A. Nondegenerate metrics

The Einstein-Hilbert action on a manifold with nondegenerate metric but without boundary
can be written in terms of the Lagrangian density

LEH5gacR
c
b`* ~ea`eb!, ~12!

where the curvature 2-formsRa
b are defined by

Ra
b5dva

b1va
c`vc

b , ~13!

We adopt the Palatini approach and vary the action separately with respect toea andva
b , noting

thatgac is constant,R
c
b is independent ofe

a, and the remaining factor is independent ofva
b .

Taking thev variation first, ifv°v1dv then

dvR
a
b5d~dva

b1va
c`vc

b!

5d~dva
b!1dva

c`vc
b1va

c`dvc
b . ~14!

Thus,
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dvLEH5gacdvR
c
b`* ~ea`eb!

5gacd~dvc
b`* ~ea`eb!!1gacdvc

b`d* ~ea`eb!

1gacdvc
d`vd

b`* ~ea`eb!2gacdvd
b`vc

d`* ~ea`eb!. ~15!

Since there is no boundary, the surface term does not contribute. Furthermore, using~7! in the last
term yields

2gacdvd
b`vc

d5gcddvd
b`vc

a , ~16!

so that requiring thatdvR
a
b vanish for arbitrary variations inv results in

D* ~ea`eb!:5gacdvc
b~d* ~ea`eb!1vb

m`* ~ea`em!1va
m`* ~em`eb!!50. ~17!

Working in 4 dimensions for convenience and introducing the totally antisymmetric tensor
habcd with h012351, whose indices are raised and lowered withgab we have

* ~ea`eb!5
1

2!
hab

cd~e
c`ed!, ~18!

which leads directly to

D* ~ea`eb!5* ~Ta`eb1ea`Tb!52* ~Ta`eb!. ~19!

The result of thev variation is thus that the connection must be torsion-free

Ta50. ~20!

~We have assumed that the connection is metric-compatible. A similar computation starting in-
stead from the assumption that the connection is torsion-free leads to the requirement that the
connection be metric-compatible. A general computation, making noa priori restriction on the
connection, results in an equation relating the nonmetricity of the connection to its torsion.9!

Moving on to thee variation, we obtain

de* ~ea`eb!5deS 12! hab
cde

c`edD
5hab

cde
c`ded

52* ~ea`eb`emgmd!`ded

52 i Xd* ~ea`eb!`ded, ~21!

where we have used8

* ~f`X[!5 i X*f, ~22!

whereX[ denotes the 1-form which is the metric dual of the vector fieldX. Thus

deLEH52gacR
c
b` i Xd* ~ea`eb!`ded

52Gd`ded, ~23!
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where the right-hand-side defines8 the Einstein 1-formGd , which is related to the Einstein tensor
G by

Ga5G~Xa ,Xb!e
b. ~24!

Thus, in the absence of a matter Lagrangian, we obtain the vacuum Einstein equations

Ga50. ~25!

B. Matter terms

Before considering boundaries, we show by example what changes need to be made in the
presence of matter. Consider for simplicity a massless scalar fieldF, with Lagrangian density

2LF5dF`* dF. ~26!

The field equations

d* dF50 ~27!

are derived by varyingLF with respect toF.10 The stress 1-forms are obtained by varyingLF

with respect toea. We first note that

05dedF5de~Xa~F!ea!

5dXa~F!ea1Xa~F!dea. ~28!

The variation is thus essentially a variation of* , and we obtain

de* dF5de~Xa~F!* ea!

5deSXa~F!
1

3!
hbcd
a eb`ec`edD

5dXa~F!* ea1Xa~F!
1

2
hbcd
a eb`ec`ded

52Xa~F!* dea1Xa~F!* ~ea`emgmd!`ded

52 i Xa~dF!* dea1Xa~F!i Xd~* e
a!`ded, ~29!

where we have again used~22!. Thus,

2 deLF5dF`de* dF

52 i Xa~dF!dF`* dea1dF` i Xd~* dF!`ded

52 i Xa~dF!dea`* dF1dF` i Xa~* dF!`dea

5 i Xa~dF!* dF`dea1dF` i Xa~* dF!`dea, ~30!

so that the stress 1-forms are
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2 * ta52
dL

dea
5 i Xa~dF!* dF1dF` i Xa~* dF!. ~31!

The stress 1-forms are related to the stress tensorT by

ta5T~Xa ,Xb!e
b ~32!

@compare~24!#. If we now take as our total Lagrangian

L5LEH216pGLF , ~33!

then the variation with respect tov is unchanged, and the variation with respect toe yields
Einstein’s equations in the form

Ga58pGta . ~34!

C. Signature change

We now consider a manifoldM divided as before into disjoint open regionsM6 by a hyper-
surfaceS. We will take as our Lagrangian the piecewise sum of the Einstein-Hilbert Lagrangians.
For variations with support away fromS, everything is as before, and we obtain Einstein’s
equations separately in the two regions. But for variations ofv in a neighborhood ofS, the
surface term which we previously discarded would now contribute, and we do not wish to impose
anya priori conditions on the smoothness of the variations ofv, and thus implicitly onv itself.
We thus modify the Einstein-Hilbert action by adding a surface term,

Lg5LEH2d~gacv
c
b`* ~ea`eb!!, ~35!

and note that this will precisely cancel the surface term in the variation ofv. We emphasize that
this change in the action has nothing to do with signature change, and is required for the standard,
constant signature case.5,11

We thus consider the theory with action,

S 5E
M1
Lg

11E
M2
Lg

2 , ~36!

and reiterate that variations with support away fromS lead as expected to Einstein’s equations and
the torsion-free condition separately in the two regions. If we now assume that

@ea#S50, ~37!

and consider continuous variations ofea across the boundary, we obtain on each side a surface
term of the form

2E
S
de~gacv

c
b`* ~ea`eb!!5E

S
gacv

c
b` i Xd* ~ea`eb!`ded, ~38!

where we have used~21!. Consider the term

rd :5gacv
c
b` i Xd* ~ea`eb!, ~39!

and note that only the pullbackr̂d of rd occurs in~38!. A tedious but straightforward computation
making repeated use of identities like
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gamgbn* ~em`en!5gbni Xa* e
n5 i Xai Xb* 1, ~40!

va
b` i Xca52 i Xc~va

b`a!1 i Xcv
a
b`a, ~41!

g00* ~e0`ei !5 *̂ ei , ~42!

shows that

r̂0522v i
j~Xi ! *̂ e

j , ~43!

r̂ i5~2v0
j~Xi !22d i jd

klv0
k~Xl !! *̂ ej , ~44!

and we see at once thatr̂0 is continuous, as it only depends on the frame atS. Requiring that~38!
vanish for arbitrary variations, we thus obtain the boundary condition

@ r̂ i #S50. ~45!

The extrinsic curvature ofS is defined by~the 1-sided limits toS of!

K~X,Y!52¹Xe
0~Y!. ~46!

~One usually assumesX0 is geodesic to ensure thatK only has components tangent toS; it is in
any case only these components which matter. One can therefore without loss of generality restrict
X andY to the tangent space toS, which is spanned by$Xi : i51, . . . ,n21%.! We have

K~Xi ,Xj !52~¹Xi
e0!~Xj !5v0

c~Xi !e
c~Xj !5v0

j~Xi !. ~47!

We define the trace ofK by

tr K:5hi j K~Xi ,Xj !5d i j K~Xi ,Xj !. ~48!

Inserting~47! and ~48! into ~45! and ~44!, we see that thee variation yields

05@ r̂ i #S5~2@K~Xi ,Xj !#S22d i j @ tr#SK ! *̂ ej , ~49!

which is equivalent to

@K~Xi ,Xj !#S50, ~50!

so that the extrinsic curvature must be continuous.

D. Lanczos equation

If the matter Lagrangian contains a surface term of the form

S S5E
S
LS , ~51!

then there will be a surface stress tensor of the form

*̂ t i
S5

dLS

dei
. ~52!
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Relating this to the variation of the~surface term of the! Einstein-Hilbert action yields the Lanczos
equation12,13 in the form

@ r̂ i #S516pGt i
S , ~53!

or equivalently

~@K~Xi ,Xj !#S2d i j @ tr#SK !ej58pGt i
S , ~54!

relating the discontinuity in the extrinsic curvature to the surface stress tensor. This equation is
identical in form to that obtained when the metric is nondegenerate.

IV. DISCUSSION

We reiterate that there are no canonical ‘‘Einstein’s equations’’ in the presence of signature
change. One can try to construct a theory by formal substitution of a signature-changing metric
into equations derived for constant signature, but it is not at all obvious that the resulting theory
could be derived from an appropriate starting principle. For instance, for continuous, signature-
changing metrics there is no~metric! volume element at the surface of signature change, so in this
approach it is not clear what one should mean by a surface layer. And for discontinuous metrics,
it is not even clear whether a~distributional! metric-compatible connection exists, since the stan-
dard computational techniques involve contracting the distributional derivatives of the metric with
the discontinuous metric. One intriguing possibility involves a connection which is merely dis-
continuous but not metric-compatible.14 Even with a discontinuous~as opposed to distributional!
connection, however, the formal computation of Einstein’s equations fails in general: While a
distributional curvature tensor~or 2-form! can be constructed, with a signature-changing metric
there is no way to take the trace to obtain the Einstein tensor.

Our results agree with Embacher5 that the boundary condition obtained from the action~35! is
precisely that the extrinsic curvature be continuous, which is the well-known Darmois junction
condition for the absence of a surface layer.15 Our derivation thus supports the work of several
authors1,2,16,17who postulate the Darmois conditions for Einstein’s equations in the presence of
signature change. Hellaby and Dray16–18 have pointed out, however, that in the presence of
signature change the Darmois junction conditions are not sufficient to obtain the usual conserva-
tion laws, in contrast to the usual situation.4,19–22We note in particular that the Kossowski and
Kriele claim23 that the Darmois conditions lead to a surface layer which was missed by Ellis is
incorrect,24 as it is based on a smoothness assumption which does not hold in the Darmois
approach.

We emphasize that not only does our work support our previous claims that the Darmois
junction conditions are precisely the conditions for there to be no surface layer in the presence of
signature change, but it also derives the precise relationship between the discontinuity in the
extrinsic curvature and the stress tensor of the surface layer, namely the Lanczos equation.

Our theory is constructed using standard variational techniques from a straightforward gener-
alization of the standard Einstein-Hilbert Lagrangian. A surface term is added to avoid having to
specify continuity conditions on the connection variations without knowing anything in advance
about the continuity of the connection itself. It is remarkable that even though our metric is
discontinuous, there is still a continuous frame which is orthonormal almost everywhere, and we
work with this frame to avoid having to vary the metric.

One might question whether our variations of the frameea are indeed arbitrary. There are two
separate issues here, the first being that we have restricted our variations so that away fromS the
frame remains orthonormal. This is merely a reflection of the gauge freedom in Einstein’s theory
to work with a preferred category of frames, such as coordinate bases, null tetrads, or orthonormal
frames. The second issue is at first sight more worrisome: Our class of nearly orthonormal frames
for signature-changing metrics uniquely determinese0 at S, so that
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de0uS50 ~55!

~which also restricts the variationsdei uS to be tangent toS). The careful reader will have noticed
that we have not tried toderivethe condition@ r̂0#50 from the variational principle; we now see
that this can not in fact be done. Fortunately, this condition is identically satisfied. This is just a
reflection of the fact that we have fixed the hypersurfaceS, so thatX0uS is a geometric object, the
normal vector field to the given surface. So long asS is fixed, there is no physical or geometric
content to varyingX0, or equivalently varying its duale

0. This point of view is supported by the
fact that, if one permits such variations in the nondegenerate case, one obtains no new information.
In any case, we expect our results to generalize directly to permit continuous variations of an
arbitrary~non-orthonormal! frameea, yielding the same results. Strong evidence for this claim is
provided by the fact that Embacher5 obtains the same results as we do by varying~35! with respect
to the metric and connection in a coordinate basis.

Similar results to those obtained here were derived earlier for the scalar field10,25 from several
different approaches, including a variational principle. These results agree with those obtained by
Ellis et al.1,2 for the coupled Einstein-Klein/Gordon system. Carfora and Ellis26 have recently
given a an elegant approach to signature changing spacetimes, in which the Darmois conditions
are generalized to allow a diffeomorphism of the surfaceS of signature change.

ACKNOWLEDGMENTS

The inspiration of Robin Tucker is gratefully acknowledged. It is a pleasure to thank Chris
Clarke, George Ellis, John Friedman, David Hartley, Charles Hellaby, Marcus Kriele, Malcolm
MacCallum, Corinne Manogue, Jo¨rg Schray, and Philip Tuckey for helpful discussions. Further
thanks are due the School of Physics & Chemistry at Lancaster University and the Department of
Physics and Mathematical Physics at the University of Adelaide for kind hospitality.

This work was partially supported by NSF Grant No. PHY-9208494, as well as a Fulbright
Grant under the auspices of the Australian-American Education Foundation.

1G. Ellis, A. Sumeruk, D. Coule, and C. Hellaby, ‘‘Change of signature in classical relativity,’’ Class. Quantum Grav.9,
1535 ~1992!.

2G. F. R. Ellis, ‘‘Covariant change of signature in classical relativity,’’ Gen. Rel. Grav.24, 1047~1992!.
3S. A. Hayward, ‘‘Signature Change in General Relativity,’’ Class. Quantum Grav.9, 1851 ~1992!; Erratum: Class.
Quantum Grav.9, 2543~1992!.

4R. P. Geroch and J. Traschen, ‘‘Strings and other distributional sources in general relativity,’’ Phys. Rev. D36,
1017–1031~1987!.

5F. Embacher, ‘‘Actions for signature change,’’ Phys. Rev. D51, 6764~1995!.
6A. Lichnerowicz,Propagateurs, Commutateurs et Anticommutateurs en Relativite´ Générale, Publ. Math. IHES No. 10
~Presses Universitaires de France, Paris, 1961!.

7Y. Choquet-Bruhat, ‘‘Applications of generalized functions to shocks and discrete models,’’ Proceedings of the Inter-
national Symposium onGeneralized Functions and their Applications, Varanasi, 1991, edited by R. S. Pathak~Plenum,
New York, 1993!.

8I. M. Benn and R. W. Tucker,An Introduction to Spinors and Geometry with Applications in Physics~Hilger, Bristol,
1987!.

9R. W. Tucker and C. Wang, ‘‘Black holes with Weyl charge and non-Riemannian waves,’’ Class. Quantum Grav.12,
2587–2605~1995!.

10T. Dray, C. A. Manogue, and R. W. Tucker, ‘‘The scalar field equation in the presence of signature change,’’ Phys. Rev.
D 48, 2587~1993!.

11S. W. Hawking and G. T. Horowitz, ‘‘The gravitational Hamiltonian, action, entropy and surface terms,’’ gr-qc/9501014.
12C. Lanczos, Phys. Z.23, 539 ~1922!.
13C. Lanczos, Ann. Phys. Leipzig74, 518 ~1924!.
14T. Dray, D. Hartley, R. W. Tucker, and P. Tuckey, ‘‘Tensor distributions in the presence of degenerate metrics’’~in
preparation!.

15G. Darmois,Mémorial des Sciences Mathe´matiques, Fascicule 25~Gauthier-Villars, Paris, 1927!.
16C. Hellaby and T. Dray, ‘‘Failure of standard conservation laws at a classical change of signature,’’ Phys. Rev. D49,
5096 ~1994!.

17C. Hellaby and T. Dray, ‘‘Reply comment: Comparison of approaches to classical signature change,’’ Phys. Rev. D52,
7333 ~1995!.

5635Tevian Dray: Einstein’s equations in the presence of signature

J. Math. Phys., Vol. 37, No. 11, November 1996

Downloaded 19 Aug 2013 to 128.193.163.10. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



18T. Dray and C. Hellaby, ‘‘The patchwork divergence theorem,’’ J. Math. Phys.35, 5922–5929~1994!.
19W. Israel, ‘‘Singular hypersurfaces and thin shells in general relativity,’’ Nuovo Cimento B44, 1–14~1966!; ~partial!
corrections in Nuovo Cimento B48, 463 ~1967!.

20A. H. Taub, J. Math. Phys.21, 1423~1979!.
21C. J. S. Clarke and T. Dray, ‘‘Junction conditions for null hypersurfaces,’’ Class. Quantum Grav.4, 265 ~1987!.
22M. Mars and J. M. M. Senovilla, ‘‘Geometry of general hypersurfaces in spacetime: junction conditions,’’ Class.
Quantum Grav.10, 1865–1897~1993!.

23M. Kossowski and M. Kriele, ‘‘Smooth and discontinuous signature type change in general relativity,’’ Class. Quantum
Grav.10, 2363~1993!.

24T. Dray and C. Hellaby, ‘‘Comment on ‘Smooth and discontinuous signature type change in general relativity’,’’ Gen.
Rel. Grav.28, 1401–1408~1996!.

25T. Dray, C, A. Manogue, and R. W. Tucker, ‘‘Boundary conditions for the scalar field in the presence of signature
change,’’ Class. Quantum Grav.12, 2767–2777~1995!.

26M. Carfora and G. Ellis, ‘‘The geometry of classical change of signature,’’ Intl. J. Mod. Phys. D4, 175 ~1995!.

5636 Tevian Dray: Einstein’s equations in the presence of signature

J. Math. Phys., Vol. 37, No. 11, November 1996

Downloaded 19 Aug 2013 to 128.193.163.10. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions


