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A historical overview is given on the basic results which appeared by the year 1926 concerning  
Einstein�s fluctuation formula of black-body radiation, in the context of light-quanta and wave-
particle duality. On the basis of the original publications � from Planck�s derivation of the black-body 
spectrum and Einstein�s introduction of the photons up to the results of Born, Heisenberg and Jordan 
on the quantization of a continuum � a comparative study is presented on the first lines of thoughts 
that led to the concept of quanta. The nature of the particle-like fluctuations and the wave-like fluctua-
tions are analysed by using several approaches. With the help of classical probability theory, it is 
shown that the infinite divisibility of the Bose distribution leads to the new concept of  classical 
�poissonian photo-multiplets� or to the  �binary photo-multiplets� of fermionic character. As an ap-
plication, Einstein�s fluctuation formula is derived as a sum of fermion type fluctuations of the binary 
photo-multiplets.   
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1. Introduction 

Nearly one hundred years ago, in 1909, Albert Einstein published his famous paper [1]  
entitled �Zum gegenwärtigen Stand des Strahlungsproblems� (�To the recent state of art 

of the radiation problem�), where he gave the first mathematically correct formula ex-
pressing the �wave-particle duality� in the case of black-body radiation. This formula is 
called Einstein�s fluctuation formula. It gives the variance (mean square deviation) of the 
energy of black-body radiation in a narrow spectral range in a sub-volume of a cavity sur-
rounded by perfectly reflecting walls (a �Hohlraum� in the German terminology). The 
formula contains two terms, the �particle-term� (the Wien term) and the �wave-term� (the 
Rayleigh-Jeans term). The two terms simply add, as if they were stemming from inde-
pendent processes.  

Let us now imagine the photons as point-like particles, then it is clear that in thermal 
equilibrium they fill up the cavity homogeneously on average, but their actual number in 
any sub-volume will vary by chance. Thus the actual number of the photons is a random 
variable (following the Poisson distribution of �rare events�) whose variance governs the 
energy fluctuation in the sub-volume. Since in this case the variance of the photon number 
equals to its expectation value, the energy fluctuation is given by the product of one pho-
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ton energy and the average energy contained in the sub-volume. The �particle-term� of the 

fluctuation formula has the same form, but its numerical value is different.  

On the other hand, we can consider the heat radiation as a superposition of electro-

magnetic waves (the eigenmodes of the cavity), an oscillating continuum with random 

phases. Then, though the average of the amplitude of a spectral component is zero, the 

square of the amplitude (which is proportional to the electromagnetic energy density) will 

have an average a certain finite, uniform value determined by the temperature alone. The 

wave-like fluctuations in a sub-volume of the cavity can be imagined as a result of an 

irregular �breeding� of the beat waves formed from the interfering Fourier components. 

Classical analysis shows that this �wave-term� (in a narrow spectral range) equals to the 

ratio of the average energy squared to the number of modes in the sub-volume. The 

second term in Einstein�s fluctuation formula has the same form, but again its numerical 

value is different, like in the case of the particle fluctuations.  

In Einstein�s fluctuation formula the two terms are equal if the average occupation 

number of the modes is unity. In this case the photon energy hν  = kTlog2 just equals to 

the minimum amount of energy necessary to transmit one bit of information according to 

Shannon. For small densities of the black-body radiation (hν/kT >> 1) the particle-term 

(Wien-term) dominates, and for large radiation densities (hν/kT << 1) the wave-term 

(Rayleigh-Jeans-term) dominates (k denotes the Boltzmann constant and T is the absolute 

temperature). From the conceptual point of view, the importance of Einstein�s fluctuation 

formula appears in the contex of the introduction of photons. Einstein�s original analysis 

[3] was based on the study of the entropy of black-body radiation in the Wien limit: 

�Monochromatic radiation of small density (in the range of the validity of Wien�s 

radiation formula) behaves so from the point of view of heat theory as if it consisted of 

independent energy quanta ��. The derivation that led him to this conclusion does not 

work if one uses the exact Planck formula instead of the approximate Wien formula, so 

this way the photon concept could not be justified generally. However, his derivation of 

the fluctuation formula four years later was based on Planck�s exact expression, and it 

contains the particle-like fluctuation which may be identified with the fluctuation of the 

number of photons. In this way the photon concept received a firm support.  

We may safely state that all the results of Einstein concerning the photons (light-

quanta, as he called them) were based exclusively on the study of black-body radiation. 

That is why in Sec. 2 we have to start with a summary on the basics of black-body 

radiation, includig Planck�s original derivation of the correct spectral distribution, and the 

discovery of the elementary quantum of action. In Sec. 3 Einstein�s argumentation is 

presented which led him to introduce the concept of light quanta. The derivation of the 

fluctuation formula is given in two different ways. Then the physical content of the 

fluctuation formula is analysed on the basis of classical probability theory. In Sec. 4 an 

early derivation of the Bose distribution is discussed in the framework of a general 

combinatorial analysis, and then a part of Planck�s studies on the fluctuations are 

summarized briefly. In Sec. 5 the results of Ehrenfest and Smekal are reviewed. The 

superposition of classical random waves with discrete energy distributions, and the effect 

of a ponderable material particle on the fluctuations in the Hohlraum are discussed. The 

second part of Sec. 5 is devoted to the work of Born, Heisenberg and Jordan in which the 

first formulation of the field quantization appeared, where the field amplitudes were 

represented by matrices (operators). In Sec. 6 our recent new results on the infinite 

divisibility of the Bose distribution are presented and Einstein�s fluctuation formula is 

derived from pure particle-like and from fermion type fluctuations. Section 7 closes the 
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paper with a brief summary. Some of the derivations and interpretations to be presented 

here will surely be well known to the reader, because just these results have been widely 

accepted in the meantime and become basic parts of textbooks on the quantum theory of 

light or on quantum electronics. In our opinion, it is always very useful to get aquaintance 

with the development of original ideas and methods � even if some had led dead ends or 

detours � which finally led to the creation of the clean structure of today�s canonical sci-

ence. Einstein�s fluctuation formula can be derived in two lines if one uses the Bose distri-

bution or the creation and annihilation operators of the photons. On the other hand, the 

physical content of it, and the nature of the fluctuation of a real black-body radiation do 

not come out automatically from the formalism. In writing up the present paper � follow-

ing the original paths of the great masters � our main motivation was to give a deeper in-

sight to the physical significance of the fluctuation formula from the point of view of the 

wave-particle duality which still puzzles many physicists including us. Finally, some tech-

nical remarks: the calculations are presented in the main text, on purpose, because just 

these details show clearly the differentia specifica of the particular approaches. Though we 

have tried to make the paper a coherent unit, usually the original notations are also used 

separately, and the Sections are essentially self-contained.  

2. Planck�s Law of Black-Body Radiation 

2.1. The Stefan-Boltzmann law and  Wien�s displacement law 

The heat radiation of black-bodies has certain universal characters whose study has led 

Max Planck in 1900 to find � besides the correct spectral distribution of this radiation � 

the new universal constant h = 6.626 × 10-27erg.sec, the elementary quantum of action [2], 

which plays a fundamental role not only in quantum physics but also in our everyday life. 

Because five years later Einstein introduced his hypothesis of light quanta [3] on the basis 

of the thermodynamical analysis of black-body radiation, and he has returned from time to 

time to this subject in his investigations on light quanta, we cannot get around Planck�s 

path-breaking work in the present paper, at least up to a short summary [4]. 

Everyday experience shows and classical physics tells us that any material body of a 

finite temperature emits electromagnetic radiation, and it also absorbs such heat radiation 

from its surroundings. In general, this radiation consist of infinitely many components of 

different frequencies and of two independent polarizations. According to Kirchhoff, when 

a body is in thermal equilibrium with its surroundings, and moreover its material is homo-

geneous and isotropic, then all over in the inner part of the body and on its surface, too, 

the ratios of the emission and the absorption capabilities belonging to these spectral com-

ponents are independent of the material constitution of the body, and they are equal to the 

emission capability of an absolutely black body. This latter one depends only on the abso-

lute temperature T and on the frequency ν. The spectral density uν � which is the fraction 

of the radiant energy in the frequency interval (ν, ν + dν) in a unit volume � may depend 

on the material constitution. However, on the basis of general considerations [4] Clausius 

has shown that by passing through the common interface of two bodies K and K� being in 

thermal equilibrium, there is an invariant c3uν = c�3u�ν , where c and c� are the  corre-

sponding velocities of propagation of the radiation. Hence, if a black body is in thermal 

equilibrium with a thermal radiation in vacuum closed in a cavity with perfectly reflecting 

walls, then uν must be an universal function uν = u(ν,T), because now c is a universal con-

stant, namely the velocity of light in vacuo. Moreover, it can be proved [4] that in a me-

dium being transparent for a given color, such a component of the radiation can be in 
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thermal equilibrium with its surroundings at an arbitrary intensity. Consequently, in a re-

gion of vacuum surrounded by perfectly reflecting boundaries (in a �Hohlraum�, i.e. in 

an empty cavity) the radiation can be in thermal equilibrium in any state, but these 
equilibria are not stable in general. When we place into the cavity a small piece of a pon-

derable matter (Planck�s �Kohlenstäubchen�, a small stick of carbon capable of absorb-

ing all the spectral components of the radiation), then, in the course of proceeding to the a 

newer equilibrium, the spectral distribution will be rearranged to the spectrum of the 

black-body radiation. During this rearrangement the total energy of the radiant heat will 

not change, the small carbon stick merely plays the role of initiating the process. This is 

similar, for example to the condensation of an overdense vapor which is initialized by a 

small liquid droplet, and the system gets to a stable state of maximum entropy with practi-

cally no net energy change. According to the above considerations, such a heat radiation 

closed in the cavity is a black-body radiation whose spectral density uν  = u(ν,T) is a uni-
versal function of the frequency and of the absolute temperature. In the general case there 

belongs a spectral entropy density sν  , and consequently  an absolute temperature  (∂ sν / 

∂ uν)
−1 = Tν  to each component of the cavity radiation [4]. The black-body radiation is 

just characterized by that each spectral components are at that same temperature. The 

last two results of classical physics being in quantitative agreement with the experiments 

are the Stefan-Boltzmann law (1879, 1884) and Wien�s displacement law (1893), each of 

which can be deduced by  using thermodynamic considerations and results of classical 

electrodynamics concerning radiation pressure and the Doppler effect [4]. It is interesting 

to mention that the displacement law had already been published eight years earlier in 

1885 by R. von Kövesligethy [5] who used the mechanical concept of aether in the 

derivation of his spectral formula.  

The temperature dependence of the total energy density u(T) = ∫ u(ν,T)dν ~ T4
 was 

first found by Joseph Stefan in 1879 as an empirical formula on the basis of quite 

inaccurate measurements. Then in 1884 Ludwig Boltzmann confirmed this formula by an 

exact derivation based on phenomenological thermodynamics. Now we are going to 

summarize the basic steps of this simple derivation. If the radiation, being enclosed in a 

cavity of volume V and of perfectly reflecting walls, undergoes an isoterm expansion by 

pushing slowly outwards a piston, then, according to the first law of thermodynamics, the 

surroundings gives the amount of heat Q = d(uV) + (u/3)dV to the cavity. Here we have 

taken into account that, according to the Maxwell equations, the radiation pressure is one 

third of the energy density in this case. The entropy change during this process becomes 

dS(V,T) = Q/T = (V/T)(du/dT)dT + (4u/3T)dV = (∂S/∂T)VdT + (∂S/∂V)TdV. From the 

equality of the second order partial differentials, (∂2S/∂V∂T) = (∂2S/∂T∂V), we obtain the 

differential equation du/dT=4u/T, whose solution reads u = σT4
, where σ is called the 

Stefan-Boltzmann constant.  

Wilhelm Wien used the following line of thought in deriving his displacement law [6]. 

If we assume that the heat radiation fills a slowly shrinking sphere of instantaneous  

radius r, then the wavelengths of every spectral components undergo a Doppler shift and 

they follow linearly the change in r, that is c/ν =λ = const × r. The energy density 

E(λ,T)dλ = u(ν,T)dν falling in the spectral range (λ, λ + dλ) will then be inversely 

proportional with the fourth power of the radius E(λ,T)dλ  = const/r4
 . On the other hand, 

according to the Stefan-Boltmann law, we have for the integrated energy density 

∫ E(λ,T)dλ = const/r4 = σT4
, which means that  the absolut temperature is inversely propor-

tional with the slowly varying radius, i.e. T = const/r. We note that expression �slowly vary-

ing� here means that we neglect terms of order υ2/c2
 in calculating the Doppler shift. On the 
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basis of these results if we compare two arbitrary states of the system, we have 

[E(λ1,T1)dλ1]/[E(λ2,T2)dλ2] = r2
4/r1

4 ≡ q4, that is E(λ,T)dλ = q4E(qλ,q-1T)d(qλ). The solution 

of the latter functional equation can be expressed as E(λ,T) = λ−5Φ(λT). The dependence on 

the frequency reads u(ν,T) = ν3F(ν/T), where Φ and F are universal functions. From the 

condition [∂E/∂λ]max  = 0 we obtain that λmaxT = [5Φ/Φ�]max = const is a universal constant 

whose experimental value is 0.2899cm × grad. According to Wien�s displacement law, by 

increasing the temperature of the black-body radiation the position of the maximum energy 

density is shifted towards the shorter wavelengths (larger frequencies). 

2.2. The introduction of Planck�s elementary quantum of action 

In spite of very much effort using classical physics, no correct formula had been found by 

the year 1900 for the frequency dependence of the spectral energy density uν which would 

have had given back the dependence in the whole frequency range measured with a very 

high precision by O. Lummer and E. Pringsheim [7] and H. Rubens and F. Kurlbaum [8]. 

In 1896 Wien published a formula [9] for uν which worked quite well over the large 

frequency wing of the spectrum, but for long wavelengths it failed to give back the 

experimental results by Rubens and Kurlbaum. This was just the formula which was 

remedied by Planck with the help of a �fortunate interpolation� and led to the correct 

spectral equation [10]. The spectral formula derived by Lord Rayleigh in 1900, and 

recovered later on a different basis by James Jeans [11] fits well to the experimental data 

for long wavelengths, but gives infinite total energy after integrating with respect to the 

frequencies from zero to infinity. This artifact is called the �ultraviolet catastrophe�. 

Because the spectrum of a black-body radiation does not depend on the material con-

stitution of the body with which it is in thermal equilibrium, we are allowed to model the 

material system at will. Planck has chosen an assembly of linear oscillators whose eigen-

frequencies covered the whole spectrum, such that they could get into resonance with all 

the components of the radiation. By applying classical electrodynamics he proved first 

[12] that the spectral density of the radiation being in equilibrium with the resonators is 

given by uν(ν,T) = (8πν2/c3
)U1(ν,T), where U1(ν,T) denotes the average energy of one 

oscillator. It is interesting to note that (8πν2/c3
) = Zν is just the spectral mode density of 

the radiation when the linear extensions of the cavity are much larger than the wavelengths 

considered. Planck got the correct determination of the quantity U1 through the study of 

the entropy of the oscillator manyfold [2] in the following way. It is clear that the average 

energy of N oscillators is UN = NU1, and a similar relation holds for the corresponding 

entropy, SN = NS1. According to Boltzmann�s principle the entropy corresponding to a 

�macrostate� of the ensemble of the oscillators can be expressed as SN = klogWN, where 

WN denotes the number of  all those �microstates� or �complexions�  which belong to the 

same total energy UN . Planck�s revolutionary new idea was that he did not consider the 

total energy as an infinitely divisible continuous quantity, but he assumed that it consists 

of energy quanta of finite size ε and of finite number P, that is NU1 = Pε. As he wrote on 

page 556 of Ref. [2]
1
: �It comes about to find the probability W of that the N resonators 

                                                           
1The original German text on page 556 of Ref. [2] : �Es kommt nun darauf an, die Wahrscheinlichkeit W dafür zu 
finden, dass die N Resonatoren insgesamt die Schwingungsenergie UN besitzen. Hierzu ist es notwendig, UN 

nicht als eine stetige, unbeschränkt teilbare, sondern als eine discrete, aus einen ganzen Zahl von endlichen 

gleichen Teilen zusammengesetzte Grösse aufzufassen. Nennen wir einen solchen Teil ein Energieelement ε, so 

ist mithin zu setzen : UN= Pε, wobei P eine ganze, im allgemein grosse Zahl bedeutet, während wir den Wert von 

ε  noch dahingestellt sein lassen.�   
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altogether possess the oscillation energy UN. To this end it is necessary to think of UN as 

not being a continuous, unlimitedly divisible quantity, but rather a discrete quantity built 

up of a finite number of identical parts. When we call such a part an energy element ε, 

then we have to set : UN = Pε, where P means an integer, generally a large number, and 

the value of ε  is still to be determined.� The energy elements are exactly equal and cannot 

be distinguished from each other, so the number of ways they can be distributed among 

the N oscillators is given by the number of combinations with repetitions WN,P = N(N + 1) 

... (N + P − 1)/P!, or WN,P  = (N + P − 1)!/(N − 1)!P!. By using Stirling�s formula, 

N!º(N/e)
N
, we obtain the expression for the entropy of one oscillator   

                  1 1 1 1 1[(1 / )log(1 / ) ( / )log( / )]S k U U U U! ! ! !" # # $ ,   (1) 

where we have used P/N = U1/ε. On the basis of Wien�s displacement law it can be proved 

[4] that S1 must be of the form S1 = f(U1/ν), where f is an universal function, so, according 

to Eq. (1) ε has to be proportional to the frequency, ε = hν. The constant of proportionality 

is just Planck�s elementary quantum of action h [2]. By using the fundamental relation 

dS1/dU1 = 1/T of thermodynamics we can express the average energy U1 from Eq. (1) as a 

function of the frequency and of the absolute temperature, and then through the equation 

uν(ν,T) = (8πν2/c3
)U1(ν,T) the spectral formula reads 
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where n  denotes the mean number of quanta of an oscillator. By integrating the spectral 

density uν with respect to the frequency we obtain the Stefan-Boltzmann law u = σT4
, 

where σ =8π5k4/15c3h3
. When we compute the wavelength λm at which the density 

E(λ,T) = (c/λ2
)u(ν  = c/λ,T) takes its maximum we get the transcendental equation  

e-b+b/5-1 = 0 with the numerical solution b ≡ ch/kλmT = 4.965... . From the experimental 

values of the parameter σ of the Stefan-Boltzmann law and of the constant λmT = 

0.2899cm × grad of the Wien�s displacement law one can calculate the Boltzmann  

constant k = 1.381 × 10-16 erg/grad and the Planck constant h = 6.626 × 10-27 erg.sec.  

The results embodied in Eqs. (1), (2) and (3) secure that the temperatures (∂ sν / 

∂ uν)
−1 =Tν  are the same for all spectral components, hence Tν  does not depend on the 

frequency. This means that here we are really dealing with the black-body radiation in a 

stable equilibrium with maximum entropy. 

In Planck�s original line of thought the energies of the resonators were quantized,  

no word had been said about the quantization of the heat radiation itself, which was  

the essence of Einstein�s hypotesis on light quanta five years later. This is partly why the 

nowadays widespread view has been accepted that, though it is confirmed 100% by the 

experience, Planck�s derivation is conceptually incorrect. On the other hand, it is remark-

able, that when we replace the number of oscillators by the number of modes M = 

V(8πν2/c3
)dν  (the number of degrees of freedom in the frequency range (ν, ν+dν)) in the 

Hohlraum and, moreover, we reinterpret the average energy of one oscillator U1 as the 

average energy of a particular mode, then we can repeat the derivation without any 

changes � as was done by Debye in 1910 � and arrive at the correct results expressed by 
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Eqs. (1), (2) and (3). This way we receive an elegant and conceptionally correct procedure, 

which is very simple at the same time.   

Let us conclude the present section by deriving the Planck-Bose distribution  with the 

help of Planck�s original method. We are interested in the probability of the event when 

one particular mode is excited exactly to the n-th energy level. The other M − 1 modes 

have then P-n quanta which can be arranged in WN-1,P-n = (N − 2 + P − n)!/(N − 2)!(P − n)! 
number of possible combinations. It is then natural to associate the probability  

pn = WN-1,P-n / WN,P to the n-th excitation of a mode. After a straightforward calculation we 

obtain 
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where n  denotes the same mean occupation number which have already been introduced 

in Eq. (2). We call the discrete distribution {pn ; n = 0, 1, 2, ...} given in Eq. (4) Planck-

Bose distribution. It is the probability distribution of the energy quanta (excitations) 

belonging to one particular mode being in thermal equilibrium. One can check by direct 

computation that the Boltzmann entropy defined in the last equation of Eq. (4) coincides 

with the thermodynamical expression Eq. (1) due to Planck.  

3. Einstein�s Hypothesis of Light Quanta and the Fluctuation Formula 

3.1. Einstein�s hypothesis on light quanta 

Surely Einstein was the first among those who really took Planck�s quantum hypothesis 

serious, and, at the same time, he used it to find the laws of the new physics at the 

beginning of the last century. In his first paper [3] appeared in 1905 on this subject he 

started the analysis of the black-body radiation with the following thoughts. According to 

Planck [2] the average energy of one resonator U1 can be expressed by the spectral energy 

density of the radiation, U1(ν,T) = uν(ν,T)(8πν2/c3
)

-1
 , as was already mentioned above. If 

now we applied the energy equipartition theorem of classical statistics, we would obtain 

U1 = 2 × (1/2)kT, because the amount (1/2)kT goes to both the kinetic and the potential 

energies of a linear oscillator. This way we would end up with the Rayleigh-Jeans law, uR-J 

= (8πν2/c3
)kT, which is a good approximation if hν/kT << 1. For large frequencies, or for 

small radiation densities when hν/kT >> 1, the Planck distribution goes over to the Wien 

limit ρ (Einstein used the notation ρ for the spectral density), and we can write   

               3 /Wien Tu e /%0 1% $" " ,  that is 31/ (1/ )log( / )T /% 0 1%" $ , (5) 

where α = 8πh/c3
 and β  =h/k. By taking into account the general relation of 

thermodynamics ∂s/∂ρ = 1/T  and integrating the second equation of Eq. (5) we obtain the 

expression for the spectral entropy density s = −(ρ/βν)[log(ρ/αν3) − 1]. Let us now 

consider the heat radiation of total energy E in the spectral range (ν, ν +  dν) distributed 

homogeneously over a volume V. Then E = Vρdν and the total entropy S=Vsdν  equals  

                          3( / )[log( / ) 1]S Vsd E E V d% /% 1% %" " $ $ .    (6) 

When this same radiation of energy E is distributed in a larger volume V0, then the entropy 

difference of these two states is expressed from Eq. (6) by the following formula  

                       2 3 2 30 0 0( / ) log / log /
E

kS S E V V k V V /%/% 4 5$ " " 6 78 9
.  (7)                      
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Now let us consider an ideal gas consisting of n point-like particles which move independ-

ently from each other and occupy uniformly the volume V0, and let them have the total 

entropy S0. The probability that a particle at some intsant of time can be found in a part of 

volume V is, of course V/V0. The probability of the event that all the n particles occupy the 

volume V is then w = (V/V0)
n
, because the particles are assumed to be independent. Ac-

cording to Boltzmann�s principle, the difference of the entropies belonging to these two 

states of the particle system equals S-S0=klogw,  

                                     0 0log log[( / ) ]n
S S k w k V V$ " " .  (8) 

By comparing Eqs. (7) and (8) we can conclude that if the ideal gas of total energy E con-

sist of n identical and independent particles of energy kβν = Rβν/N = hν, that is 

E=nhν, then the entropy difference calculated on the basis of Wien�s formula coincides 

with the entropy difference coming out from the Boltzmann principle. (Here R and N de-

note the universal gas constant and the Avogadro number, respectively, and  R/N = k.) 

With Einstein�s words on page 143 [3]
2
 : �Monochromatic radiation of small density (in 

the range of  the validity of Wien�s radiation formula) behaves so from the point of view of 

heat theory as if it consisted of independent energy quanta of size Rβν/N.� Already in the 

introduction of the paper Einstein makes even a more �revolutionary� statement on page 

133 [3]
3
 : �According to the assumption to be kept in eye here, by spreading from a point 

in the outgoing light rays the energy is not distributed  continuously to larger and larger 

spatial regions, but these rays consist of a finite number of energy quanta localized in 
spatial points which move without falling apart, and they can be absorbed or created only 

as a whole.�  We emphasize, however, that this more general statement, on the other 

hand, is not supported by a mathematical derivation. It is interesting to note that in fact 

we encounter first here with the ideal light signals propagating in absolutely empty space, 

as was used by Einstein in his paper on the foundation of special relativity appeared four 

months later [13]. The word �photon� was introduced later, in 1926 [14], and then on its 

usage has gradually been widely spread. As an application of his hypothesis of light 

quanta, Einstein gave a natural explanation of the Stokes phenomena appearing in photo-

luminescence, the accurate results of Lenard�s experiments on the photoelectric effect 

[15], and on Stark�s observations on photoionization of gases. Though in the meantime the 

photoelectric effect has become the almost exclusive tool in photon counting and correla-

tion experiments, we shall not discusse it any more, because it is out of the scope of the 

present paper.  

3.2. Einstein�s fluctuation formula 

In 1909, by using  Planck�s formula Eq. (3) for the average energy of a mode of the  

radiation and the connection between entropy and thermodynamic probability, Einstein 

derived an expression for the fluctuation, the mean square deviation of the energy of  

the black-body radiation occupying a certain sub-volume in the Hohlraum [1]. This  

formula delivers a new support for his concept of light quanta. He writes on page 191 of 

                                                           
2 The original German text on page 143 of Ref. [3] :  �Monochromatische Strahlung von geringer Dichte 
(innerhalb des Gültigkeitsbereichs der Wienschen Strahlungsformel) verhält sich in wärmetheoretischer 

Beziehung so, wie wenn sie aus voneinander unabhängigen Energiequanten von der Größe Rβν/N bestünde.� 
3 The original German text on page 133 of Ref. [3] :  �Nach der hier ins Auge zu fassenden Annahme ist bei 
Ausbreitung eines von einem Punkte ausgehenden Lichtstrahles die Energie nicht kontinuierlich auf größer und 

größer werdende Räume verteilt, sondern es besteht dieselbe aus einer endlichen Zahl von in Raumpunkten 

lokalisierten Energiequanten, welche sich bewegen, ohne sich zu teilen und nur als Ganze absorbiert und erzeugt 
werden können.� 
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Ref. [1]
4
: �We have seen that Planck�s law of radiation can be derived on introducing the 

assumption that the energy of an oscillator of  frequency ν  can be built up only of quanta 

of magnitude hν. From this it is not necessary to take the assumption that the radiation, 
too, could be emitted and absorbed in quanta of such magnitude, because then here we 

would speak of a property of the emitting or absorbing material, respectively; however, 

the considerations 6 and 7 show that for the fluctuation of the spatial distribution of the 
radiation and of the radiation pressure, that kind of a formula comes out, as if the radia-

tion consisted of quanta of the given magnitude. That could not be asserted that the quan-

tum theory would derive as a consequence of Planck�s law of radiation and other inter-

pretations could be excluded. However, one can safely state that the simplest interpreta-

tion of Planck�s formula is given by the quantum theory.�  

Let us first summarize Einstein�s original derivation. Take two thermodynamically 

communicating spatial regions of volumes V and υ  enclosed by reflecting walls and filled 

out with thermal radiation in the frequency range (ν, ν + dν). When H and η are the 

instantaneous energies of the radiation in volume V and υ, respectively, then after a while 

the proportionality H0 : η0  = V : υ   must hold within a good approximation, where H0 and 

η0  average values. At an arbitrary time η will deviate from η0  according to a statistical 

law determined by the Planck-Boltzmann relation S = klogW, that is dW = const × 

exp(S/k)dη. Now let us expand the entropy S = Σ +σ into powers of the random deviation 

ε  which is defined by the equation η = η0 + ε . By assuming that the deviations are small 

we keep terms only up to the second power, hence  
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In deriving Eq. (9) we have tacitly assumed that to the mean value η0 of the energy in  

the smaller volume υ belongs the  maximum value of the entropy Σ0 + σ0, so the first de-

rivative [d(Σ + σ )/dη]0 = 0 vanishes, and the second derivative is negative. According to 

Eq. (9) the probability density dW/dε  of the deviation is a gaussian distribution, hence 
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The last equation of Eq. (10) has been obtained  by expressing from Planck�s formula 

Eq. (3)  1/T = (k/hν)log(1 + hνmν/η) = dσ/dη, where η = mνU1  with mν = υ·(8πν
2
/c3

)·dν 

being the number of modes in the frequency interval (ν, ν + dν) in volume υ. The second 

derivative of σ is expressed as d2
σ/dη

2
 = − k mν /(hν η mν + η

2
). Equation (10) is Ein-

stein�s famous fluctuation formula in its original form, which is the first mathematically 

correct quantum formula showing the �wave-particle duality� in case of the black-body 

radiation. We shall discuss its physical content soon. At the moment it is enough to state 

                                                           
4 The original German text on page 191 of Ref. [1] : �Wir haben gesehen, daß das Plancksche Strahlungsgesetz 

sich begreifen läßt unter Heranziehung der Annahme, das Oscillatorenergie von der frequenz ν  nur auftreten 

kann in Quanten von der Größe hν. Es genügt nach dem Vorigen nicht die Annahme, daß Strahlung nur in 
Quanten von dieser Größe emittiert und absorbiert werden könne, das es sich also lediglich um eine Eigenschaft 

der emittierenden bzw. absorbierenden Materie handle; die Betrachtubgen 6 und 7 zeigen, daß auch die 

Schwankungen in der räumlichen Verteilung der Strahlung und diejenigen des Strahlungsdruckes derart erfolgen, 
wie wenn die Strahlung aus Quanten von der angegebenen Größe bestünden. Es kann nun zwar nicht behauptet 

werden, daß die Quantentheorie aus dem Planckschen Strahlungsgesetz als Konsequenz folge, und daß andere 

Interpretationen ausgeschlossen seien. Man kann aber wohl behaupten, daß die Quantentheorie die einfachste 
Interpretation der Plancksche Formel liefert.� 
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that the first term in Eq. (10) describes �particle-like fluctuations�  and the second term 

describes �wave-like fluctuations� coming from random interferences of the Maxwell 

field. It is interesting to note that the latter equation for the second derivative of σ  is  

completely equivalent to Planck�s original interpolation formula [10] d2σ/dη2 =  
(1/ mν )·d

2S1/dU1
2  = (1/ mν )·a/U1(b + U1) which was the first to lead to the correct spectral 

distribution presented by Planck on 19 October 1900. By leaving out the second term in 

the denominator we arrive at Wien�s formula for η/ υdν  =  uν  ≡ ρ of Eq. (5), which was 

used by Einstein for the introduction of the photon concept. Planck�s �fortunate interpola-

tion� ment just  to introduce the second, quadratic term U1
2
 in the denominator. Without 

this term the wave-like fluctuation would be missing on the right hand side of  

Eq. (10). It is well possible that Einstein had got the idea of this derivation by noticing the 

impotance of the quadratic term in Planck�s interpolation formula, because he introduced 

his above analysis on page 188 of Ref. [1] with the words
5
 : �I have already completed a 

consideration of similar sort in an earlier work in which I first presented the theory of 

light quanta, in order to obtain certain statistical properties of heat radiation closed in a 

Hohlraum. That time I started in the limiting range (for small values of ν/T) where Wien�s 
radiation formula is valid,but here I will give a similar consideration which delivers a 

simple meaning of Planck�s radiation formula.� We note that in this quotation in the pa-

renthesis the word �small� should be replaced by �large�, as is already displayed correctly 

a couple of pages later in Einstein�s paper. 

The fluctuation formula for a system of oscillators was derived by Laue [16] by using 

the Planck-Bose distribution Eq. (4). By a simple calculation we obtain  

                             22 2n n n" #  ,    hence   2 22 2
n n n n nE " $ " #  , 
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If we identify Mν  with the degrees of freedom of the radiation field (with the number of 

modes) then the physical content of Eq. (11) is the same as that of Einstein�s formula.  

We can choose still another shorter way for the derivation of Eq. (10) based on a  

general relation of statistical mechanics [17]. Let Z(β), with β ≡1/kT, be the canonical  

partition function (sum of states) of a system being in thermal equilibrium, Z(β) = 

∫ dEΩ(E)e-βΕ
, then 〈E〉 = (1/Z)∫ dEΩ(E)Ee-βΕ = (1/Z)(�∂Z/∂β) = Z�/Z, where the prime de-

notes derivative with respect to β. Here Ω(E) is the density of states, that is  Ω(E)dE gives 

the number of states belonging to the interval (E, E + dE). Elementary calculation shows 

that ∂〈E〉/∂β  = −(Z��/Z) + (Z�/Z)
2
, so if we know the the functional dependence of the av-

erage energy on the absolute temperature, then the squared deviation (variance or fluctua-

tion) of the energy can be calculated in complete generality with the help of the simple 

formula (we use throughout both the bracket 〈 〉 in the text and the upper dash in numbered 

formulae to denote mean values) 
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H
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Now let us apply this result for one mode with the average energy U1  given by 

Planck�s formula (2). We obtain 

                                                           
5 The original German text on page 188 of Ref. [1] : �Eine Betrachtung der angedeuteten Art zur Ermittlung 
gewisser statistischer Eigenschaften von in einen Hohlraum eingeschlossener Wärmestrahlung habe ich bereits in 

einer früheren Arbeit1) durchgeführt, in der ich die Teorie der Lichtquanten zuerst darlegte. Da ich aber damals 

von der nur in der Grenze (für kleine Werte von ν/T) gültigen Wienschen Strahlungsformel ausging, will ich hier 
eine ähnliche Betrachtung angeben, welche eine einfache Deutung der Planckschen Strahlungsformel liefert.� 
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If we multiply this with the number of modes Mν = V·(8πν2/c3)·dν  in volume V in the 

frequency interval of width dν, then we arrive at the fluctuation formula equivalent to that 

of Einstein�s, Eq. (11). Had we used Wien�s limit formula, we would have only got the 

first term. On the other hand, in the Rayleigh-Jeans limit only the second term comes out. 

3.3. The wave-particle duality in the black-body radiation 

The two terms in Einstein�s fluctuation formula, Eq. (11), or equivalently in Eqs. (13) and 

(14), have a very clear physical meaning as we show in the followings.  

In order to give a physical interpretation of the first term in Eq. (11) let us consider a 

part V of a Hohlraum of volume V0 and assume that the average number of photons in V is 

given by 〈N〉 = (N0/V0)V  in a certain frequency interval  (ν, ν + dν), where N0 is the total 

number of photons (assumed now to be point-like particles) in this spectral range. The 

actual number N of the photons in V varies by chance from one instant to the other, and to 

a good approximation this random variable satisfies a Poisson distribution, as can be  

shown in the following way. Due to the assumed average homogenity and independence 

of the individual photons, the probability of finding exactly N photons in V is given by the 

binomial distrtibution w(N) = [N0!/N!(N0−N)!](V/V0)
N
[1-(V/V0)]

N0-N
, because N  photons 

can be selected from the total number of N0 in a number of N0!/N!(N0-N)! different ways, 

each with the geometrical probability V/V0. The probability that the remaining others of 

number  N0 − N  do not get into V  is just [1−(V/V0)]
N0-N

, because of the assumed independ-

ence of the particles. If we take the limits N0 ! ∞ and V0 ! ∞, in such a way that  

N0(V/V0) ≡ ρ·V ≡ 〈N〉 remain finite, where ρ denotes the photon density, then the above 

binomial distribution goes over to a Poisson distribution [18], [19]. This can be checked 

by using Stirling�s formula N!!(N/e)
N
, hence 
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In Eq. (15) we have displayed the mean square deviation ∆N2
 of the number of parti-

cles in volume V, and in Eq. (16) we have given the mean square deviation ∆E2
 of the cor-

responding energy, in the case when all the particles have the energy hν  (within the spec-

tral range (ν, ν+dν)). The term on the right hand side of the latter equation looks exactly 

like the first term in the formula given by Eq. (11). So, according to the above considera-

tion we may state that the first term in Einstein�s fluctuation formula Eq. (10) accounts for 

particle-like fluctuations . For visible light (hν ~ 1eV) at room temperature (kT  ~ 0.025eV ) 

we have hν/kT ~ 40 >>1, that is Wien�s formula is a good approximation, and particle-like 

fluctuations dominate. At the surface of the Sun at ~ 6000 K  the ratio hν/kT ~ 2, so the 

wave-like fluctuations still do not overtake, which can only happen in the visible well 

above ~ 12000 K. Of course, the relative fluctuations depend on the number of modes in 

the sub-volume under discussion. It is interesting to note that the particle-like fluctuations 

of light can also be observed by human eye as was shown for instance by Wawilow [20] in 

a series of experiments starting in the thirties of the last century. 
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We also mention here de Broglie�s remark [6] made in 1922 concerning Eqs. (13) and 

(14). The sum of the two terms (13) describing the fluctuation of a particular mode can be 

expanded into an infinite sum,   
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where the last definition refers to the kind of Wien�s distributions corresponding to inde-

pendent classical ideal gases consisting of  �photo-molecules� or �photo-multiplets� of 

energies mhν  with m = 1, 2, 3, ... . As a consequence, a component of the heat radiation in 

a mode can be considered � at least from the point of view of its energy and statistics � as 

a mixture of infinitely many noninteracting ideal gases following the Boltzmann statistics. 

In this way the complete fluctuation has been decomposed into a sum of purely particle-

like fluctuations. If one keeps only the first term in Eq. (17) then one gets back to Ein-

stein�s original �single photons� corresponding to Wien�s approximate radiation formula. 

In order to get the wave-term, one has to include all the higher terms.We shall see in 

Sec. 6. that this completely corpuscular interpretation of the Planck formula can be exactly 

founded in all details by using classical statistics, thermodynamics and probability theory. 

Concerning the wave nature of the heat radiation, an analogous expression to the 

second term in Einstein�s fluctuation formula, Eq. (10), can be derived from the stochastic 

wave character of the radiation in the following sense. Let the electric field of a 

component of the radiation be expressed as aν(t) = accosωt + assinωt = aνcos(ωt−θν), 

where ω ≡ 2πν is the circular frequency, and aν ≡ √(ac
2 + as

2
) and θν ≡ arcsin(as / aν) are 

the amplitude and phase of the oscillation, respectively. We can imagine the field of the 

chaotic radiation as a superposition of a very large number of  small independent  

contributions, for example ac = ac1 + ac2 + ac3 + ..., where the summands are random 

amplitudes of arbitrary distributions stemming from a large number of radiators of the 

surroundings. Let acn / aν1= (1/aν1 √n)(ac1,n + ac2,n + ... + acn,n), where aν1 > 0 denotes the 

square root of the arithmetic mean of the (finite) variances of the components. The 

building up of the part of the field proportional with ac can be imagined in such a way that, 

departing from 0, it undergoes a random walk on the real axis. It it is clear that the 

expectation value of ac is zero, if the small components do not have a drift. By assuming 

the same for the sine component, we see that the formation of the complete complex 

amplitude an = acn + iasn = | an | e
iθn can be imagined as a result of a random walk on the 

complex plane starting from the origin, whose real and imaginary displacements are 

independent. In the limit n!∞, according to the Central Limit Theorem [18] [19], the 

distribution functions of acn and asn go over into  the normal distribution, P(acn /aν1 < 

x)!Φ(x) and P(asn /aν1 < x)!Φ(x), where Φ denotes the Gauss error function, hence the 

probability densities are Gauss functions,        

                                2 3 2 2
1 1( ) 1/ 2 exp( / 2 )c c cf a a a a% %&" $ ,    (18a) 

                                2 3 2 2
1 1( ) 1/ 2 exp( / 2 )s s sf a a a a% %&" $ .      (18b) 

The stochastic average of the energy density of the mode, [< aν
2(t) >/8π]dν = [aν1

2/8π]dν 

has to be equal to the product of the mode density (8πν2/c3)·dν  and the mean energy  

<Eν1> of the mode considered. From this requirement we obtain [aν1
2/8π] = 

(8πν2/c3)<Eν1> = Zν<Eν1>.  According to the statistical definition of the entropy we have  
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where the factor α  in Eq. (19a) has been introduced merely to make the arguments of the 

logarithms dimensionless. By using the result Eq. (19b), from the basic thermodynamical 

equation ∂Sν1/∂Eν1 = 1/Τ we obtain 
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which is just expressing the equipartition of energy for the radiation modes, from which 

the Rayleigh-Jeans law follows, uν = Ζν·kT. Because the joint distribution fc· fs does not 

depend on the phase θ, the energy distribution of a mode is a simple exponential 

distribution of the random variable E1 = ( ac
2
 + as

2
 ) / 8πZν , 
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From Eq. (20) we can obtain an expression for the wave fluctuation, completely analo-

gous to the second term in Einstein�s fluctuation formula, Eqs. (11) or (10), 

                          
22 2 2

1 1( ) / ,E Z d E m E E m%% % % %D %E " G GE " GE "                    (21) 

where Eν  = mν·Ε1  is the total energy in the spectral range  (ν, ν+dν).  

We would like to emphasize here that, although both the purely particle-like fluctuation, 

Eq. (16), and the purely wave-like fluctuation, Eq. (21), have the same form as the 

corresponding terms in Einstein�s fluctuation formula, Eqs. (11) or (10), nevertheless 

neither of them coincides numerically with the corresponding terms. The numerical 

agreement can be secured only in the corresponding limiting cases, namely in the Wien 

limit (hν/kT >>1), and in the Rayleigh-Jeans limit (hν/kT) <<1, respectively. This is 

because the average energies differ from the approximate values in the general case. The 

same is also true for the fluctuation expression, Eq. (17) coming from the statistically 

independent photo-multiplets. Similarly, we cannot state that for the wave-like 

fluctuations only the higher terms are responsible in general. 

In addition, we note that the Planck-Bose distribution, Eq. (4) has first been written 

down by Planck [22], and used later by him [26] and by von Laue [16] after the 

introduction of his �second theory� [21�24] and his �third theory� [25], in which he 

derived the zero-point energy hν/2 for the oscillator. A very clear presentation of  the 

wave-like fluctuations can be found in Planck [27�28]. He was the first to derive in [27] 

the exponential distribution given in Eq. (20) from the wave theory by using an alternative 

method to ours presented here. We also mention that von Laue [16] used the Planck-Bose 

distribution in 1915 to calculate the energy fluctuations of a solid body consisting of 

harmonic oscillators, which was first discussed by Einstein [29] at the Solvay Meeting in 

1911. 

3.4. Fluctuations  of the radiation pressure experienced on  a mirror in a Hohlraum 

In his first paper on the fluctuations of the black-body radiation [1] Einstein devoted a 

section to the analysis of the brownian motion of a plane mirror moving along a straight 

line parallel to its normal in a Hohlraum surrounded completely by matter of absolute 

temperature T. He argues that if the mirror is being in motion, then its front side reflects 

more radiation than the rare side, so there will appear a friction-like force acting on the 



R24 S. Varró

mirror. Consequently, the momentum of the mirror will again and again change resulting 

in a fluctuation of the radiation pressure. By determining these fluctuations one can draw 

conclusions on the constitution of the radiation and, moreover, on the nature of the ele-

mentary processes of reflections taking place at the mirror. 

 Let us assume that the mirror has a velocity u at some instant of time t , and during a 

small time interval τ  this velocity is decreased by Puτ /m, where P represent the retarding 

force per unit velocity of the mirror of mass m. The velocity of the mirror at the time 

instant t + τ  is u− Puτ /m + δ, where δ  denotes the change in the velocity during τ caused 

by the random fluctuations of the radiation pressure. We require that u does not change � 

at least on average �  during the small time interval τ , i.e. 

 
2 2( / )u Pu m uL M$ # " , consequently 

2 2(2 / )P m uM L" ,     (22) 

where we have assumed that <uδ>=0, and canceled the term quadratic in τ . (The 

stochastic average is denoted by either the bracket < > or with the upper dash in the 

numbered formulae.) The average kinetic energy of the mirror follows from the 

equipartition theorem, m < u2 > = kT, so the mean square of the random momentum mδ  = 

∆ satifies the equation 
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where ρ is the spectral density of the radiation and  f  is the area of the mirror. In obtaining 

Eq. (23) Einstein assumed that the mirror is reflecting in the spectral range between ν and 

ν + dν , and for other colors it is completely transparent. The expression for the friction 

coefficient P given in the second equation in Eq. (23) was calculated by Einstein and Hopf 

[30], [31]. Later a similar expression was used by Einstein and Stern [32] in their 

derivation of  Planck�s formula without assuming any discontinuity, but a zero-point 

oscillation. By using Planck�s law, Eq. (3), for the spectral density ρ = u we obtain from 

Eq. (23) the formula for the momentum fluctuation, 
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The similarity of the two fluctuation formulae for the energy (10) and for the momentum 

(24) is immediately seen, in particular when we use an alternative form of (10) 
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If we identify the volume υ with f cτ , then we conclude < ε2 > = c2 < ∆2
 > , which 

shows the well known relation between the photon energy and momentum p = ε / c = 

hν / c. It should be noticed that in each formulae given by Eqs. (24) and (25) the particle-

like and the wave-like fluctuations simply add, as if they had two independent causes [33]. 

The first term for visible light can be much larger than the second one. Take, for instance, 

Einstein�s numerical example, namely λ ~ 0.5µ and T ~ 1700 K, then the particle-term is 

about 7×10
7
 times larger than the wave-term. The other remarkable result is that the mo-

mentum fluctuation, Eq. (24) is proportional to the area f  of the mirror. From this circum-

stance it follows that the pressure fluctuations coming from neighbouring parts of the plate 

(whose linear dimensions are large in comparison with the wavelength of the reflected 



Einstein’s Fluctuation Formula R25

radiation) are independent from each other. This suggests the picture again that in the 

Wien limit the radiation consists of  spatially localized complexes of energy hν .  

We close the present subsection with Einstein�s words summarizing his view on the 

structure of the radiation based on the above analysis
6
 : � Nevertheless, for the time being, 

the most natural notion seems to me, that the appearance of the electromagnetic fields of 

light would also be attached to singular points, like in the case of electrostatic fields ac-

cording to the electron theory. It is not excluded that in such a theory the energy of the 

electromagnetic field could be viewed as localized in these singularities, like in the old 

action-at-a-distance theory. I think of such singular points surrounded by force fields, 

which, in essence are of a character of plane waves, whose amplitudes decrease by the 
distance from the singular points. If there are many such singularities in a region, then 

their force fields will be on top of each other, and this assembly will form an undulatory 

force field, which, perhaps could hardly be distinguished from an undulatory field in the 

sense of the present theory of light. Needless to say, such a picture is of no value until it 

leads to an exact theory. With the help of it I merely wanted to illustrate in short that each 

of the structural properties (the undulatory structure and the quantal structure) which 
both show up according to Planck�s formula, should not be viewed as incompatible to 

each other.� 

4. Bose Distribution from Combinatorial Analysis and Fluctuations from Wave 

Interference 

4.1. Photon distributions from combinatorial analysis 

The Planck-Bose distribution Eq. (4) has already been presented by Hendrik Antoon Lor-

entz in 1910 during the famous Göttingen Lorentzwoche in his sixth lecture [34]. A couple 

of months later L. Natanson  published a very clear combinatorial analysis of the the 

possible distributions of �energy elements� among �receptacles of energy� [35]. He used 

essentially Boltzmann�s method of energy discretization, which had already been publised 

in 1877. We shall mostly follow his line of thought in the present subsection because one 

of his important results was rediscovered thirteen years later by S. N. Bose in his famous 

derivation of Planck�s law of black-body radiation [36].  The energy elements ε  may rep-

resent both Planck�s energy quanta or Einstein�s photons and, accordingly, the receptacles 

can be imagined as material resonators, Bose�s phase-space cells, or � which is the same � 

the normal modes of the radiation field in a Hohlraum, or even Laues�s �Strahlenbündel� 

(bundles of rays of radiation). The N independent receptacles can contain 

0·ε, 1·ε, 2·ε, ... , p·ε  energy elements (where p can be very large, in effect, it may go to 

                                                           
6 The original German text on pages 824-825 of Ref. [33] : �Immerhin erscheint mir vorderhand die Auffassung 
die natürlichste, daß das Auftreten der elektromagnetischen Felder des Lichtes ebenso an singulären Punkte 

gebunden sei wie das Auftreten elektrostatischer Felder nach der Elektronentheorie. Es ist nicht ausgeschlossen, 

daß in einer solchen Theorie die ganze Energie des elektromagnetischen Feldes als in diesen Singularitäten 
lokalisiert angesehen werden könnte, ganz wie bei der alten Fernwirkungstheorie. Ich denke mir etwa jeden 

solchen singulären Punkt von einem Kraftfeld umgeben, das im wesentlichen den Charakter einer ebenen Welle 

besitzt, und dessen Amplitude mit der Entfernung vom singulären Punkte abnimmt. Sind solcher Singularitäten 
viele in Abständen vorhanden, so werden die Kraftfelder sich übereinanderlagern und in ihrer Gesamtheit ein 

undulatorisches Kraftfeld ergeben, das sich von einem undulatorischen Felde im Sinne der gegenwärtigen 

Lichttheorie vielleicht nur wenig unterscheidet. Daß einem derartigen Bilde , solange dasselbe nicht zu einer 
exakten Theorie führt, kein Wert beizumessen ist, braucht wohl nicht besonders hervorgehoben zu werden. Ich 

wollte durch dasselbe nur kurz veranschaulichen, das die beiden Struktureigenschaften (Undulationsstruktur und 

Quantenstruktur), welche gemäß der Planckschen Formel beide der Strahlung zukommen sollen, nicht als 
miteinander unvereinbar anzusehen sind. � 
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infinity), and we denote by N0, N1, N2, �, Ni, � the number of receptacles which contain 

no quanta, one quantum, two quanta, etc. If E is the total energy contained in the system, 

than there are altogether n = E/ε  elements or quanta at disposal. It is clear that the follow-

ing constraint relations have to be satisfied 
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We call a distribution in which the above constraint relations are satisfied a mode of 

distribution (�Verteilungsart�), and we will symbolize it by the scheme 
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In order to specify a mode of distribution we merely have to know how many recepta-

cles contain zero, one, two, etc. elements, but we do not keep track of neither the individ-

ual elements nor the individual receptacles.  

The conditions are considerably different when we suppose that each receptacle can be 

identified, in other word denumerated. This is the case for instance with the normal modes 

of a Hohlraum. When the �first� receptacle contains n1 elements, the second n2 elements, 

and so on, then we have a mode of collocation  (�Anordnungsart�), which is symbolized 

this way 
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The numbers n1, n2, n3, � can take on the values 0, 1, 2, � , and we know that in the 

sequence n1, n2, n3, � , nN  the number 0  N0 � times, the number 1  N1 � times etc. will 

appear. The number of collocations Eq. (28), A(N0, N1,  N2,  � , Np), which can be 

obtained from the mode of distribution Eq. (27), satisfy the relation 
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In the case of collocations we distinguish the receptacles but the quanta are considered 

indistinguishable. This is just the essence of the Bose statistics. 

The situation fundamentally changes if we keep track of the individual quanta. Let us 

name the n1 quanta a, b, c,� , the n2 quanta f, g, h,�, and so on. This way we obtain a 

mode of association ( �Zuordnungsart� ) 
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The number of associations Eq. (30), B(N0, N1,  N2,  � , Np), which can be obtained from 

the mode of distribution Eq. (27), satisfiy the relation 
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Since B depends only on the numbers N0, N1, N2, �, Np , the number of associations 

are the same for any collocations belonging to the distribution Eq. (27). Thus, all the dis-

tribution for which A collocations of the energy are possible, will correspond to A·B asso-
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ciations. Since the quanta are distinguishable in this case, we are dealing with the Max-

well-Boltzmann statistics. 

It can be shown that the sum of the number of all collocations Eq. (29) compatible 

with the subsidiary conditions Eq. (26) are given as 
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and the sum of the number of associations belonging to all the allocation 
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The corresponding probabilities P and Q  of the allocations and of the associations are 

     0 1( , ,..., ) /pP N N N A A" .  and  0 1( , ,..., ) /pQ N N N AB AB" . .        (34) 

The equilibrium distributions of the collocations (undistinguishable quanta) and of the 

associations (distinguishable quanta) can be obtained by the well-known Lagrange 

multiplier technique by varying the entropies Sc = klogP and  Sa = klogQ, respectively [35] 

             2 3/ /1Bose kT i kT
iN N e e! !$ $" $ ,  and 
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The first expression of Eq. (35) is equivalent to the Planck-Bose distribution Eq. (4) of 

Subsec. 2.2, which leads in the case of the black-body radiation to the form of  

Einstein�s fluctuation formula (11), obtained by Laue in 1915 [16]. In the continuum limit 

(ε ! 0) the second expression in Eq. (35) goes over to the first formula of Eq. (20) of 

Subsec. 3, which leads to the wave-like fluctuation.  

By closing the present subsection, we wish to emphasize that the very Bose distribution 

given in the first equation of Eq. (35) � where N, the number of energy receptacles, should 

be identified with the number of cells or modes N=M≡V(8πν
2
/c3)dν  in a Hohlraum � was 

found by Natanson by applying in fact Bose�s statistics in 1911, that is, thirteen years 

earlier than Bose�s well-known article appeared in 1924 [36]. Moreover, if we choose p = 

1 in Eq. (27), so we take the largest possible number of elements occupying the 

receptacles to unity, then from Natanson�s analysis we can deduce the Fermi distribution, 
too.  

4.2. Fluctuations from wave interference 

Concerning the wave nature of the heat radiation we have already derived in Subsec. 3.3 

an expression for the fluctuation, Eq. (21), which is an analogon of the second term in 

Einsteins fluctuation formula, Eq. (10) or Eq. (11). However, in that analysis we used sto-

chastic ensembles to describe the Fourier components of the field amplitudes, and the in-

terferences of the components have not been shown up explicitly. The wave-like fluctua-

tion can also be viewed as a result of an irregular �breeding� of the beat waves formed 

from the interfering Fourier components. This point is quite important here, because Ein-

stein�s two-term fluctuation formula, Eq. (11), appears to be inconsistent with the one 

computed from the interference of the wave trains. Eq. (11) has been held to indicate a 

fundamental inconsistency between the the electromagnetic theory on the one hand, and 

the Planck law on the other [37]. As Jacobson remarked in 1927: �This conclusion has not 

been accepted by Laue
5
 nor by Planck

6
. The fundamental point at issue is the statistical 

independence of the constituent wave trains in the fourier analysis of natural radiation. A 

proof of this independence was given by Einstein and Hopf
7
 on the hypothesis that the 
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radiation arose from an independent number of point sources: later in response to the ob-

jections of Laue a proof was given by Einstein
8
 on somewhat different hypotheses. More 

recently, the question has been taken up again by Planck
6
 who, starting from a simplified 

form of Eq. (1) applicable to a system of only one degree of freedom, which has been 

given by Laue (Eq. (14) in the present paper, S. V.) av[(E-Eav)
2
]=hν·Eav+(Eav)

2
 shows that 

the required condition is satisfied if there exist phase relations of a certain type between 

the various harmonics in the fourier analysis of the vibration.� [37]. In the followings we 

briefly summarize the basic points in Planck�s analysis [28].  

The Fourier series of the electric field of a stationary monochromatic natural radiation 

of one spatial degree of freedom in the time interval 0 < t < T  can be written in the form 
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where T is a very large time value and the central frequency  is given by ν = n0/T . The 

�slowly varying� energy E of the radiation can be obtained by averaging A
2
(t) on a time 

interval being much larger than an oscillation period, but it is much smaller then the time 

scale of the fluctuations 
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where m << n . According to the latter inequivality the characteristic times of the 

fluctuations are much smaller than the oscillation frequencies ~ 1/ν . In Eq. (37) we have 

introduced a suitably choosen constant K. The time average of E calculated over the time 

interval 0 < t < T  reads simply 
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and the fluctuation is given as 
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where we have split the fluctuation into two parts Q1 and Q2. The first term in Eq. (41) 

gives the purely wave-like fluctuation term 
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The second term in Eq. (41) 
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can be brought to a form hν< Ε > (i. e. to the form of the particle-term) if we require the 

following equality to hold 
2

, ,

cos( ) ( / 2)m q n m n q n n m q n m n q n n n
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In general it is assumed that there are no definite phase relations between the Fourier 

components, and then the triple sum averages out to zero, hence Q2 = 0 in Eq. (41), that is, 

according to Eq. (42) we have only the wave-like fluctuation Q1 = < E >
2
.  

Planck has constructed a classical field satisfying the requirements of natural radiation 

which produces the particle-like fluctuation too, for which Q2 = hν< Ε >, and this way the 

complete fluctuation formula is recovered, at least formally. In order to see this let us take 

a system of a large number of sine waves with considerably different orders n1, n2,�, nP  

schwitched on at time instants t1, t2,�, tP , and schwitched off after a common time 

interval of size τ . The n-s are independent of the t-s and each of them are distributed 

irregularly such that the quasi-monochromaticity condition in Eq. (36) is satisfied, and 0 < 

t1 <  t2 <�< tP < T . Moreover, we require that  

                                  0 0 0( / ) [( ) / ]iT n n n n T! !"" # "" ""  ,                              (45) 

which means that the duration τ of the individual pulses is much larger then the oscillation 

period, but it is much smaller than the complete duration T. Now take the field 
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where f[ti,ti+τ ] are envelop functions whose values are 1 inside the carrier interval [ti,ti+τ ], 

and outside they are zero. After carrying out the time averaging, we have 
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If we choose KC2/2 = hν  in Eq. (47), then we recover (formally) the complete 

fluctuation expresssion which looks like Laue�s expression Eq. (14). This way, besides the 

wave-like fluctuation, we were able to derive the particle-like fluctuation from mere wave 

interference. In order to obtain this result, we had to prescribe a definite phase relation 

given in Eq. (46) between the Fourier components of the wave train. At the end of his 

paper Planck emphasized that, though interesting, this was far not a satisfactory result, 

since the correspondence had been proved only up to the second moments and only for 

one degree of freedom.  

5. Fluctuations from Classical Randomness, Spontaneous Emission and Field 

Quantization 

5.1. The contributions  by Ehrenfest and Smekal to the theory of fluctuations  

In 1925 Paul Ehrenfest [39] gave a detailed analysis concerning the energy fluctuations 

due to the superposition of eigenmodes of a Hohlraum whose energies were assumed  

to be classical random variables following the Planck-Bose distribution given in Eq. (4). 

According to his results the energy fluctuation is reduced when we take into account the 

superposition of such �quantized eigenmodes�. He started his discussion by drawing atten-

tion to the following appearent contradiction: Einstein derived his formula for the fluctua-

tion of the energy of black-body radiation in a sub-volume of the Hohlraum by using 

Planck� formula, and arrived at the result which cannot be reproduced by assuming pure 

wave interference (see the first term on the right hand side of Eq. (10)). On the other hand, 

the Planck formula itself can be derived by introducing the energy level statistics of waves 

in a Jeans cube (as was shown much earlier by Debye [40]). So, how is it? We start with 

the wave description, and through the Planck formula we derive a fluctuation term which 

does not match to the wave picture? As Ehrenfest stated, the answer had already been 

given by Ornstein and Zernike [41] in 1919, who � according to Ehrenfest � claimed that 
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in case of wave interference the additivity of the entropies of the sub-volume elements in a 

Hohlraum is not satisfied, in contrast to the spirit of Einstein�s original derivation. In fact, 

these authors had not used such an argument in their publication, as is clearly stated in 

[42].  

Ehrenfest derived two new formulas for the relative fluctuations which may be 

considerably different from that of Einstein, Eq. (11), in particular when the sub-volume 

υ, in which the fluctuation is considered, is much smaller than the whole volume V of the 

Hohlraum. Since he discussed relative fluctuations, let us first give an alternative form of 

Einstein�s original fluctuation formula, Eq. (11). 
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In Eq. (48b) we have introduced the number of modes mν in the frequency range (ν, ν+dν) 

in the sub-volume υ. It is interesting to note that the two terms in Eq. (48a) are equal if the 

average photon occupation number is unity. In this case the photon energy hν=kTlog2 just 

equals to the minimum energy amount necessary to transmit one bit of information 

according to Shannon.  

In order to make the calculations simpler, Ehrenfest considered a simplified model, 

namely the transverse oscillations of a string with fixed end points in a plane. A very 

thorough discussion of this problem can be found for instance in the excellent book by 

Fetter and Walecka [43]. The wave equation of the perpendicular elongation u(x,t) of the 

string of length L satisfies the following wave equation and boundary conditions  
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In Eq. (49a) τ and σ are the (constant) tension and the linear mass density of the string, 

respectively, and c is the propagation velocity of the transverse waves. The Bernoulli solu-

tions of Eqs. (49a-b) are given by the Fourier series of the normal modes 
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where                                                 / ,k L ck& R" " .                                       (50b) 

In Eq. (50a) Cn and nS  are the by now arbitrary amplitudes and phases of the oscillations 

of the spectral components. The total energy H of the string is a constant of motion, 
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where ωn=nω. The energy E(t) of a piece of length l of the string is given by the 

expression 
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Now let us consider the contributions to the energy E(t)  from a narrow spectral range 

corresponding to high harmonic indeces. This part of the energy will be denoted by e(t). It 

can be shown by a straightforward calculation that this equals 
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According to Ehrenfest, in the double sum in Eq. (52a) only those terms are taken into 

account for which the following inequalities hold 
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The physical meaning of the first condition is that we are dealing with oscillations whose 

wavelenths λn = 2L/n are much smaller that the length of the string. The second and third 

inequality mean that we consider a narrow spectral range around a central frequency. In 

obtaining Eq. (52a) it has also been assumed that the size l of the �sub-volume�  is much 

larger than the wavelengths λn . Ehrenfest considered the amplitudes and phases in the 

double sum in Eq. (52a) as independent classical random variables, such that 
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By taking the above two equations into account, the ensemble average of the energy e(t) in 

Eq. (52a) becomes 
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where Z denotes the total number of the modes of the complete string in the frequency 

interval specified by the last formula in Eq. (52c). In obtaining Eq. (54) we have taken into 

account the elementary relation In,n = l/2. It is clear that in the present case � under the 

conditions listed in Eqs. (53a-b) � the ensemble average, Eq. (54), of the the energy e(t) 

just obtained coincides with the time average, that is  

                                                         0{ ( )}e t e- , # ,                                                   (55) 

where the curly bracket { } denotes time averaging. However, this is not true for the 

fluctuations, as Ehrenfest has shown. After a lengthy but straightforward calculation he 

obtained the following results using pure ensemble averaging 
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Notice that in the above equation we have introduced the number of modes in the  

�sub-volume� denoted by z, which is only a fraction of the total number of modes Z in  

the spectral range (ω�,ω�+dω�). Now, if we consider in Eq. (56a) the factor coming from 

the statistics as the ratio of the expectation value of the energy squared to the squared  

of the expectation value of the energy, 

                                                              

4 2

2 2
2

B

B

4

4
# ,                                                    (56b) 

then, by using the Planck-Bose distribution, Eq. (4),  we obtain 
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From the definition of z given in Eq. (56a) it is clear that if the length of the string goes to 

infinity, i.e. l / L ! 0, then in Eq. (57) the second term � which describes the wave-like 

fluctuations � dominates over the quantum term. On the other hand in Einstein�s fluctua-

tion formula, Eq. (48a) � where the mν corresponds to a fixed z value �  neither of the 

terms are sensitive to the size of the Hohlraum.  

The relative energy fluctuations have a completely different form when we calculate 

them by first time-averaging and then taking the ensemble averages. Ehrenfest obtained 
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where η is given in Eq. (55). It is remarkable that this quantity does not depend on the 

statistics of the ensemble. Equation (58) can also be obtained formally from Eq. (56a) by 

using the factorization <B4
> = <B2

>
2
 (the bracket < > replaces in the text the upper dash in 

the numbered formulas). It is seen from Eqs. (48a-b) that if we incease the size of the sub-

volume υ  n-times � by keeping the total mode number Mν and the energy of the 

Hohlraum fixed �  the variance of the energy in υ increases by a factor of n. This is not 

true in neither of the cases considered by Ehrenfest, as one can conclude from Eqs. (57) 

and (58). This means that, due to wave interference, the fluctuations in the sub-volumes 

are not independent. One should keep in mind that the sub-volume υ  may consist of 

spatially separated parts! The question naturally emerges: which of these two hypotheses 

fit better to the reality? The additivity of the entropy, or the present approach, which is 

based on interference of �quantized waves�? Ehrenfest concludes that the latter one should 

not be kept agains the former one. 

According to Adolf Smekal [44], if one uses a statistics for the energy distribution of 

the spectral components of the normal modes of the Hohlraum, then one implicitely 

assumes the presence of �Planck�s Kohlenstäubchen� (a small carbon particle) in the sub-

volume, which not only transforms the original radiation into a true black-body radiation, 

but also continuously rearranges it in case of any changes of the boundaries. An ideal 

Hohlraum with perfectly reflecting walls is a completely deterministic system which is not 

able to rearrange itself according to classical electrodynamics, except for the case when 

we assume, in addition, that the eigenmodes themselves are autonomous objects � like the 

material particles � which function like the atoms, and are able to give each other energy 

spontaneously. So, if we refuse the latter additional assumption, then we have to accept 

that the radiation processes cannot take place without the assistance of material agents 

which are capable of absorbing, emitting and rearranging the energies of the different 

spectral components of the radiation.  

If we write Ehrenfest�s formula, Eq. (57), in the form 
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we nicely see that if the boundaries of the Hohlraum are going to infinity (V ! 0), then 

the quantum term goes to zero, and only the wave-like fluctuations survive. On the other 

hand, if  we have a look at Einstein�s fluctuation formula, Eq. (10), in this notation 
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then we see that in the limit V ! 0 each term survives. Smekal argued that the difference 

of the two results, Eqs. (59) and (60), is quite understandable, because the two formulas 

refer to two different boundary conditions. Namely, in the case considered by Ehrenfest 

the sub-volume υ is completely free from any material agents, on the other hand Einstein 
� since he used Planck�s low for the spectral density � in fact, implicitely assumed the 

presence of a carbon particle in υ . In the first case, if one lets the walls of the cavity go-
ing to infinity, then only the wave type fluctuations � stemming from beats due to interfer-

ence � survive. In this context one should keep in mind that the wave-like fluctuation (the 

second term on the rhs of Eqs. (59) or (60)) has always such a form for any (not only 

black-body) radiations, as was originally shown by Lorentz [45]. In the second case the 

quantum term survives the limit, since the presence of the carbon particles secures the 

continuous rearrangement of the energies of the spectral components by spontaneous and 

induced radiative transitions. In general, the exchange of the amount of energy hν  be-

tween  two particular mode in the spectral range (ν, ν+dν) is possible only through the 

mediation of a material system capable of absorbing and emitting radiation at this fre-

quency. Having absorbed the energy from one mode, the material system goes from state 1 

to state 2, and can emit the energy to the same or to another mode after a shorter or longer 

time. The probability of absorption is proportional with the product of the spectral density 

u(ν,T), Eq. (3), and the Einstein B21 coefficient. The emission can take place, on one hand, 

spontaneously, characterized by the A12 coefficent, and, on the other hand, by stimulated 

emission whose probability is proportional to the product of u(ν,T) and the second Ein-

stein coefficient B12 [46]. Smekal argues that the joint probability of this compound proc-

ess is the product of the probabilities of absorption and of emission if we neglect the life-

time of the upper state 2 of the material system. The probability of such a double process 

is proportional to the expression 
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In deriving Eq. (61) we have taken into account the following relations between the 

Einstein coefficients [46] 

 

3

12 123

8 h
A B

c

& %
"  ,  and  21 12B B B" F   (62) 

We note that, for simplicity, we have assumed the statistical weights (a priori prob-

abilities) of the states 1 and 2 to be the same. By multiplying the expression in the curly 

bracket in Eq. (61) with the product of a sub-volume and the width of the spectral 

range,υdν, we exactly recover Einstein�s fluctuation formula given by Eq. (60). According 

to Smekal, now the physical meaning of the two terms in the fluctuation formula is at 

hand. The first term describing the particle-like fluctuations comes from the spontaneous 

processes of the radiation-matter interaction. The wave-like fluctuations (the so called 
interference term) are  stemming from the induced processes (absorption and �negative 

absorption� or, in the usual terminology; induced emission) of the material system taking 

part in the interaction. In an empty Hohlraum the stationary energy content of the radia-
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tion in a particular direction clearly means that this component is generated by pairwise 

counterpropagating waves. When we consider standing waves in a Hohlraum with reflect-

ing walls facing opposite to each other � as was done first by Lorentz �  then this pair of 

waves are coupled to each other in such a way, at least on average, that the same amount 

of radiation is being absorbed and reemitted in that particular direction. Thus each of the 

interacting agents (the material system and the radiation mode) change their energies by 

hν periodically in an opposite manner, so that the energy of the mode does not change on 

average. Smekal characterized this situation with the word �Lichtquanten-

Paternosterwerk�. This means that the material of Lorentz�s mirrors behave quasi-

classically: the material constituents of real mirrors, of course, undergo spontaneous tran-

sitions, too, so the particle-like fluctuations are also present in the cavity. If the mode of 

the radiation stays on average on the energy ladder characterized by a very high excitation 

n, then the contribution from the spontaneous process can be neglected, and then in the 

fluctuation the interference term dominates. It is easy to realize that Smekal�s �Lichtquan-

ten-Paternosterwerk� is nothing else but a preliminary picture for the Rabi oscillations, 

whose detailed analysis can be found in any textbook on quantum electronics. We also 

note that � according to Smekal � the �communication� (energy exchange) of two modes 

with different propagation directions and polarization is possible only through the spon-

taneous transitions of the material system. 

5.2. Fluctuation from field quantizations  

In their famous �Drei Männer Arbeit� (three men�s work) Max Born, Werner Heisenberg 

and Pascual Jordan in 1925 � besides giving solutions to several fundamental problems, 

which constitute today basic parts of any standard texts on quantum mechanics �  pub-

lished a first preliminary version of field quantization [47], or in other words, the quantiza-

tion of a continuous dynamical system. For simplicity, like Ehrenfest, they studied the 

small transverse oscillations of a string characterized by Eqs. (49a�b) given in the former 

subsection, and they quantized the amplitudes of the normal modes. In modern notation, 

they used the following expression for the quantized field u(x,t) 
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1
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". ! ,  where  
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where we have introduced the creation and annihilation operators (matrices) an and an
+
 of 

the excitations of normal modes of the string. For later convenience we introduce the 

dimensionless conjugate momenta 

 
1/ 2( ) ( ) / 2n ni t i t

n n np t a e a e iR R$ ##" $ , (63c) 

and summarize the Heisenberg commutation rules in dimensionless form 

 [ , ] , [ ( ), ( )]n m nm n m nma a q t p t iM M# " " . (63d) 

The total energy of the string is calculated analogously to the classical case, Eq. (50c) 
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We see that there is an infinite contribution coming from the zero-point energy / 2nR!  of 

each mode. We mention here that the zero-point energy hν/2 of the material oscillators 

was first found by Planck [21-24] already in 1911. With the following replacements of the 

matrices by c-numbers  

                  
1/ 2 1/ 2( / 2 ) , ( / 2 )n ni i

n n n n n na C e a C eS SR R$ ##K K! ! ,                (65a) 

we recover the classical expression Eq. (50c) for the total energy of the string. The real 

classical dynamical variables take then the form, 

                        
1/ 2( / ) ( ) ( ) cos( )cl
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As is well known, the matrices an
+
an  in Eq. (64) are diagonal possessing non-negative  

integer eigenvalues Nn = 0,1,2,� . Now let us calculate � similarly to Eq. (51) � the 

energy matrix of a segment (0, l) of the string. We obtain 
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Since we are interested in the fluctuations in a narrow spectral range whose 

wavelengths λn = 2L/n  are much smaller than both L and l, the third term in Eq. (66a) can 

be supressed due to fast oscillations, so the matrix of the deviation of the energy from the 

diagonal part (l/L)H  (the first term on the rhs of Eq. (66a)) is given as 

                        U V / 2n m n m nm n m nm
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hence 
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According to Born, Heisenberg and Jordan, under the phase average of a matrix we 

will mean that diagonal matrix whose diagonals coincide with that of the original matrix. 

This �phase-averaging� is certainly justified in the case of thermal radiation.  

For a comparison, first we study the classical case, and the variables q and p are con-

sidered to be c-numbers. By assuming uniform independent distributions for the phases in 

Eq. (65b-c), it can be shown from Eq. (68) that 
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Now we suppose that the length L of the string is so large that the eigenfrequencies are 

spaced such densely that the sums in Eq. (69b) can be well approximated by integrals, 

          

X Y

2 2
1 2

2
2 2 2 2 2 2

2 2
0 0

( ) ( )

1 sin [( ) / ]

2 ( )

cl cl

l c
d d q q p pR R R R

R R
R R R R

& R R

- -

T T

E # E

T$
T T" #

T$J J
,              (69c) 

where we have taken into account that in both Knm and K�nm in Eqs. (66b-c) the 

contribution of second, �non-resonant� term can be neglected. Because for very large l the 

kernel in Eq. (69c) approximates the delta function, 
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finally we obtain 
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As can be seen from Eq.(66a), the average energy E of the segment (0, l) of the string 

equals (l/L) times the total energy, Eq. (50c). Going over from the summation to 

integration in Eq. (50c) we have 
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By comparing Eqs. (70) and (71) we can easily express the fluctuation in a narrow 

spectral range (ω, ω+dω),  
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where we have introduced the average energy in that spectral range, and we have taken 

into account that ω = 2πν. Eq. (72) is in complete analogy with the second term in  

Eq. (60) accounting for the �interference fluctuation�. We note that the spectral mode 

density for the one-dimensional case under discussion is equal to 2/c, hence the quantity 

(2/c)ldν on the right hand side of Eq. (72) is just the number of modes in the segment (0,l) 

in the spectral range (ν,ν+dν). 

Now we come back to the analysis of the original quantum expression given by  

Eq. (68). In complete analogy with Eq. (70) we obtain  
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but now qω , pω   and aω , aω

+ denote the dimensionless quantum variables defined in  

Eqs. (63b-c), and the upper dash means quantum averages, i. e. diagonalization, as was 

already mentioned after Eq. (68). Similarly, for the last two sums in Eq. (68) we obtain 
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We see that when we add Eqs. (73) and (74) then the last term on the rhs of Eq. (73) � 

coming from the zero-point energy � cancels, on the other hand, the second term survives. 

This latter term represents the particle-like fluctuations. If we calculate from thefirst term 

of Eq. (66a) the average energy matrix of the segment (0, l) of the string we have 
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After this point Born, Heisenberg and Jordan implicitely uses a semiclassical assumption 

in order to obtain the fluctuation formula. They make the correspondence 
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where, according to Eq. (76), they have introduced the average energy of the segment  

of the string in a spectral range (ν, ν+dν). Then from the first two terms on the rhs of  

Eq. (73) they obtain  
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in complete analogy with Einstein�s fluctuation formula Eq. (60). As we see from  

Eq. (73), the origin of the particle-like fluctuation is the presence of the zero-point energy 
term due to the non-commutativity of the quantized amplitudes. Hence, according to Born, 

Heisenberg and Jordan, the appearance of the particle-like fluctuation is a kinematic 

 effect, inherently contained in the quantized nature of the field. The results embodied in 

Eqs. (73) and (74) can symbolically be sketched for two nearly spaced modes as 

            
22 2 2~ ( ) ( 1/ 2)( 1/ 2) ( ) / 4h a a a a h h E E% %% % % %% % %# #

T TE # # $ K G # . 

It is remarkable that Born, Heisenberg and Jordan considered the derivation of Einsein�s 

fluctuation formula as one of the crutial test of quantum mechanics, and they viewed the 

result expressed by Eq. (77) as an important support for their new theory.  

6. Derivation of Einstein�s Fluctuation Formula from Pure Particle-Like 

Fluctuations and from Fermion Type Fluctuations 

As we have already mentioned in Subsec. 3.3, the sum of the two terms in Eq. (13), de-

scribing the complete fluctuation of a particular mode, can be expanded into an infinite 

sum, in which each term represents  purely particle-like fluctuations, as is shown in  

Eq. (17). The root of this property is that a component of the heat radiation in a mode can 

be considered � at least from the point of view of its energy and statistics � as a mixture of 

infinitely many noninteracting ideal gases consisting of  �photo-molecules� or �photo-

multiplets� of energies mhν  with m = 1, 2, 3, ... which follow the Boltzmann statistics.  
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The thermodynamical independence of these ideal gases was shown by  Wolfke [48] in 

1921, and the corresponding fluctuation formula was derived by Bothe [49] in 1923. 

However neither of these works presents a systematic discussion of the complete statistics 

of the photo-molecules. In the followings we shall give an analysis of the Bose distribu-

tion on the basis of classical probability theory [52]. On one hand, we shall derive the 

complete statistics of the photo-molecules, proposed by de Broglie, Wolfke and Bothe. On 

the other hand we shall derive a new division  of the Bose distribution into an infinite sum 

of Fermi distributions of �binary photo-molecules� of energies 2
s
hν, with  s= 0, 1, 2, �.  

6.1. The infinite divisibility of the Bose distribution: Poisson photo-molecules  

Let us consider the mode energy ξ as a classical random variable of the discrete 

distribution fξ(n) given by Eq. (4) 
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Now we show that the Bose distribution is infinitely divisible. A random variable η is said 

to be infinitely divisible if for any natural number n, it can be written down as a sum  

of completely independent random variables having the same distributions: η = η1  + 
η2 + ...+ ηn [50]. The infinite divisibility of a distribution can be conveniently studied with 

the help of its characteristic function [51], because in this case the characteristic function 

of the sum variable equals to the product of the characteristic functions of the summands. 

The Fourier transform of the distribution Eq. (78) reads 
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The logarithm of this characteristic function can be expanded into the power series 
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where each term is a logarithm of the characteristic function of Poisson distributions with 

parameters b
m
/m, where m = 1,2, � are the multiplet indeces (the number of energy 

quanta hν in the photo-molecules). This means that the characteristic function can be 

properly factorized, and the random variable Z  itself is represented by an infinite sum,  
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The independent random variables xm have the Poisson distributions 
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The average energy of the m-th multiplet is given by 
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Because the variance of the Poisson distribution is equal to its parameter, the fluctuation 

of the energies of the multiplets read 

                              
2 2 2 2 2

( ) ( ) mm m mE h x h m mh E% % I %E " E " "  .                       (85) 

According to Eq. (85) the energies of  the photo-molecules have only particle-like 

fluctuations. As can be easily seen, the sum of the contributions, Eq. (85), gives back the 

complete fluctuation, Eq. (13), as has already been written down in Eq. (17)                      
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The entropy mS  of the m -th photo-multiplet gas is obtained by integrating the 

thermodynamic relation 
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According to Eqs. (1) and (2), the entropy of a mode of the black-body radiation can be 

recovered as a sum of the entropies, Eq. (88),  of the photo-multiplet gas components [48] 
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This means that the photo-multiplet gas components are thermodynamically independent. 

Let us now introduce the total energy E(m) of the m-th multiplet gas in the frequency 

range (ν,ν+dν) in a volume V, 
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The corresponding entropy is obtained by using Eq. (88), 
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Following Einstein�s argumentation [3] � as was presented in Subsec. 3.1 �  we calcu-

late from Eq. (91) the entropy difference of two states of the m-th multiplet gas having the 

same energy but occupying the different volumes V and  V0>V: 
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where the last equation in Eq. (92) contains the geometrical probability wl
 = (V/V0)

l
 for l 

independent particles occupying the part V of a larger volume V0. According to Eq. (92) 

we may say � in complete analogy with Einstein�s original statement � that a monochro-

matic multiplet component (in the frequency range (ν,ν+dν )) of a black-body radiation � 
from the point of view of thermodynamics � behaves like a classical gas, as if it consisted 

of  independent energy quanta mhν [48]. This is a generalization of Einstein�s introduction 

of light quanta of energy hν (which is a special case with m = 1). His analysis was re-

stricted to the Wien limit, hν/kT>>1, which is an approximation to Planck�s exact formula 
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for small radiation densities. The above generalization is valid for any values 0 < hν/kT 

<" . Einstein�s argumentation cannot be applied by a direct use of Planck�s entropy ex-

pression Eq. (1). However, by introducing the photo-multiplets, Einstein�s reasoning can 

be generalized, as is shown by Eq. (92). For small radiation densities the first order �mu-

liplet� component dominates (these are Einstein�s original light quanta), but for large den-

sities the higher order multiplets become more and more important. We note that this is 

one possible way to recover the Rayleigh-Jeans formula (in the limit hν/kT<<1) from the 

photon concept (i.e. from the particle description). We note that Bothe has shown [49] that 

the Planck formula can be deduced from the separate conservation of the number of photo-

multiplets when they interact with a two level material system. The higher order multiplets 

take part only in the induced processes; when we leave out their contributions we arrive at 

the Wien formula. According to the above analysis, the black-body radiation in any nar-
row spectral range can be considered as a mixture of  infinitely many statistically and 

thermodynamically independent classical photon gases consisting of �photo-molecules� 

or �photo-multiplets� of energies hν, 2hν, 3hν,..., mhν,.... We note that each Poisson 

component can be divided further to Poisson variables again � that is, the Poisson distribu-

tion is not an irreducible distribution � but, as far as we know, no physical interpretation 

can be attached to these variables.  

6.2. The infinite divisibility of the Bose distribution: Binary photo-molecules  

In the present sub-section we prove that the Bose variable whose distribution is given by 

Eq. (78), can be decomposed into an infinite sum of binary random variables, which 

correspond to �binary photo-molecules� (we may also call them �fermion photo-

multiplets�, or simply �binary photons�) containing 2
s
 = 1, 2, 4, 8, � single photon 

energies, where s = 0, 1, 2, �[52]. 

By using the algebraic identity 
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we have the following absolutely convergent infinite product representation of  1/(1-z) 
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With the help of Eq. (93b) the characteristic function of the Bose distribution of the 

random variable Z , Eq. (79), can be expanded into the infinite product of characteristic 

functions having similar functional forms [51]: 
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Hence, the random variable Z  can be decomposed into an infinite sum of independent 

variables {us , s = 0, 1, 2, �}, 

                                              0 1 2 ... ...su u u uZ " # # # # # ,                                    (95) 
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which have the binary distributions 
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(s = 0, 1, 2, �).                                                                                                          

The multiplets just obtained have occupation numbers 0 or 1, hence they formally follow 

the exclusion principle, which means that they behave like fermions. One can easily check 

that the characteristic function of these variables are really the factors of the infinite 

product Eq. (94) 
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The decomposition Eq. (95) is an irreducible decomposition, i. e. the variables us cannot 

be divided further. The expectation value of the energy of the s-th fermion multiplet 

becomes 
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denotes the mean occupation number. The expression in Eq. (98a) is a Fermi distribution 

with zero chemical potential. The fluctuation of the s-th multiplet reads 
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Eq. (99) shows that the energy fluctuation of the �binary photons� contain both particle-

like and wave-like fluctuations, but the wave-term has a negative sign (which is a 

characteristics of fermion fluctuations) in contrast to the case of bosons. It can also be 

checked by direct calculation, that the sum of the contributions, Eq. (99), gives back the 

complete fluctuation, Eq. (13),  
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The entropies of the binary photon gas components can be obtained in several different 

ways. Here we use the usual Boltzmann definition: 
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From Eqs. (101) and (98b) it can be proved that the usual thermodynamic relation 

                                                  / 1/s sdS dE T"                                                         (102) 

is satisfied for any s values as an identity, so the binary photon gas components have  

the same temperature. The sum of the entropies of the binary photon gas components,  
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Eq. (101), give back the Planck entropy of a mode of the black-body radiation, Eq. (1) 

(here Eq. (2) should also be taken into account):  
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" # # $ ". .        (103) 

Eq. (103) shows that the binary photon gas components are thermodynamically 

independent.  

We see from the above analysis, that the black-body radiation in any narrow spectral 
range can be considered as a mixture of infinitely many statistically and thermodynami-

cally independent fermion �binary photon gases� consisting of �binary photo-molecules� 

or �fermion photo-multiplets� of energies hν, 2hν, 4hν,...2
shν,... . According to Eq. (100) 

and (99), Einstein�s formula for the fluctuation of the energy of black-body radiation in a 

sub-volume of a Hohlraum can be expressed as a sum of fermion type fluctuations of the 

energies of the binay photon gas components. For small radiation densities (i.e. when 

hν/kT >> 1) the zeroth order multiplet dominates, and we get back the Wien formula for 

the spectral density. In the opposite case �  in the Rayleigh-Jeans limit �  all the higher 

terms have to be taken into account in order to get back the correct asymptotic behaviour 

of the black-body spectrum.  It is an open question whether the above decompositions 

have any physical significance at all. Nevertheless, the binary photons provide us with a 

natural basis for the dyadic expansion of an arbitrary incoherent excitation of  a mode of 

the black-body radiation. For instance, for the 9-th excitation we have 9 = 1001 in the bi-

nary system, which means that the zeroth (2
0 

= 1) and the third (2
3 

= 8) binary photons 

have occupation number 1, and all the others have occupation number 0. 

7. Summary 

In the preceding sections we gave an overview on the early results related to Einstein�s 

fluctuation formula and wave-particle duality. Our motivation has been to follow � on the 

basis of original publications � the development of the concept of light quanta, mostly in 

the context of black-body radiation, from its birth up to the work by Born, Heisenberg and 

Jordan. The latter contained the first example of field quantization. Having discussed the 

universal character of black-body radiation and Planck�s discovery of the elementary 

quantum of action, in Sec. 2, we presented Einstein�s arguments leading to the 

introduction of light quanta in Sec. 3. Then, following Einstein, we derived the fluctuation 

formula which contains both the �particle-term� and the �wave-term�, and gave a first 

approach to the physical interpretation of these terms. The particle-term comes from the 

Poisson distribution of spatially localized light-quanta, and the wave term represents the 

random amplitude and phase fluctuations of the classical chaotic field. Since Einstein�s 

fluctuation formula contains both terms, it can be considered as the first precise 

mathematical formulation of the wave-particle duality of light.  

In Sec. 4 we presented the combinatorial analysis published by Natanson in 1911 

which directly led to the Bose distribution of photon occupation numbers. We pointed out 

that from this analysis not only Bose�s result � which was published 13 years later in 1924 

�  but also the Fermi distribution comes out quite naturally. In this context we also have to 

remark that the idea of quantization of energy dates back to the works of Boltzmann [53], 

[54] appeared in 1872 and 1877, respectively. Though Boltzmann considered the concept 

of discrete energy elements as a mere mathematical device, nevertheless in his second 

paper �  on the basis of combinatorial analysis and maximization of the probability � he 

calculated the (Bose) distribution of the energy elements among the molecules of a gas. As 
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Planck remarked on the Solvay Meeting in 1911 [23], the maximum number of combina-

tions determined by Boltzmann gives the same entropy as the total number of them, be-

cause the relative difference of these two numbers are negligible. In fact Boltzmann�s 

method was adapted by Natanson to derive the spectrum of black-body radiation, and this 

method was later rediscovered by Bose. In the second part of Sec. 4 we have briefly dis-

cussed a work by Planck on the fluctuations of classical fields. In this description the 

wave-like fluctuation can also be viewed as a result of an irregular breeding of the beat 

waves formed from the interfering Fourier components. We have seen there that, interest-

ingly, a particle-like term can also be derived if we assume certain definite phase relations 

among the Fourier components of the field.  

In Sec. 5 first we dealt with the results of Ehrenfest and Smekal who brought a new 

element into the discussion, namely the clear distinction of the following two cases: the 

study of the fluctuations in the absence of a material body in the sub-volume of the cavity, 

on one hand, and the the study of the fluctuation in the presence of a ponderable piece of 

matter (Planck�s �Kohlenstäubchen�, a small carbon particle), on the other hand. In the 

first case only the wave term survives in the large cavity limit. In the second case both 

terms survive, as in Einstein�s original fluctuation formula. Ehrenfest and Smekal claimed 

that in Einstein�s derivation the presence of a material body in the sub-volume had been 

implicitely taken into account. The black-body radiation and a material gas in thermal 

equilibrium differ fundamentally in that respect that the �molecular chaos� in the gas is 

caused by the continuous random collisions of the molecules. On the other hand, the 

modes of the radiation (or the photons, or von Laue�s bundles of rays) do not interact di-

rectly (here we can safely leave out of consideration the �exotic� process of photon-

photon scattering of high energy quantum electrodynamics), they cannot collide and pro-

ceed by themselves to an equilibrium with a maximum entropy. The energy transfer from 

one mode to another can take place only through the mediation of a piece of ponderable 

matter, which absorbs and emits radiation, and from time to time rearranges the energy 

distribution in such a way that a stable thermal equilibrium is reached. According to 

Smekal the particle-term comes from the spontaneous transitions of the material system 

(which makes the �communication� of modes, having different propagating direction and 

polarization, possible), and the appearance of the wave term is a result of induced proc-

esses (which do not change the propagation direction). In the second part of Sec. 5 we 

presented the classic work of Born, Heisenberg and Jordan on energy fluctuations, which 

contains the first example of the quantization of a continuum, where they represented the 

field amplitudes by matrices (operators) at each  points of a string with fixed end-points. 

According to their analysis, the appearance of the particle-term in the fluctuation formula 

is a kinematic effect and it has an intimate connection with the zero-point energy due to 

the non-commutativity of the quantized amplitudes. The thermal character of the contin-

uum was taken into accont by phase-averaging the matrices, a procedure on which they 

ment the supression of the off-diagonal elements in the fluctuation matrix.  

In Sec. 6 we presented our recent results on the Bose distribution. On the basis of  

classical probability theory, we have shown that the Bose distribution is infinitely divisible 

in two ways. It can be decomposed into Poisson distributions of classical photo-molecules, 

and also into irreducible binary distributions corresponding to fermion type photo-

molecules. According to these results, the black-body radiation in any narrow spectral 

range can be considered as a mixture of infinitely many statistically and thermodynami-

cally independent classical photon gases consisting of �photo-molecules� or photo-multi-

plets� of energies hν, 2hν, 3hν,..., mhν,.... Within the framework of this interpretation 
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Einstein�s original arguments on the photon concept (Subsec. 3.1) can be generalized as 
has been shown first by Wolfke in 1921. This way the limitation to Wien�s approximate 
formula is not needed. Ιn the second part of Sec. 6 we have seen that the black-body radia-
tion in any narrow spectral range can also be considered as a mixture of  infinitely many 
statistically and thermodynamically independent fermion �binary photon gases� consisting 
of �binary photo-molecules� or �fermion photo-multiplets� of energies hν, 2hν, 4hν,... 

2shν,... . In this way the boson fluctuations are split into a sum of irreducible fermion  
fluctuations.  

Concerning fluctuations in general, we have to mention that Einstein in 1924 � being 
the first who have applied Bose�s statistics to material particles [55], [56] � derived a fluc-
tuation formula for the number of particles of an ideal gas in a sub-volume of a container 
which communicates with the rest of the container through a narrow �energy window�. 
The two-term expression so obtained is completely analogous to his original formula for 
the black-body radiation, thus the wave-particle duality has been shown to be a character-
istics of the material particles, too. He explained the appearance of the interference term 
on the basis of de Broglie�s theory on matter waves, which appeared just in 1924. The 
complete theory of an ideal gas based exlusively on de Broglie waves was worked out by 
E. Schrödinger [57] one year later. Finally, it is interesting to note that the general formula 
for the fluctuation of the energy (Eq. (12) of Subsec. 3.2), ∆Ε2 = kT2dE/dT � which is 
widely believed to be derivable only from statistical physics � can also be obtained on the 
basis of the Second Law of phenomenological thermodynamics, as was shown by Szilard 
[58] in 1925.  
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