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A brief history of the cosmological constant in the equations of general relativity is presented.
Particular attention is paid to~a! a misunderstanding by Einstein of both its function as a repulsive
force and new vacuum state rather than the relativistic analog of an exponential potential cutoff he
thought he had introduced and to~b! a common misunderstanding of the function of the
cosmological constant. ©2000 American Association of Physics Teachers.
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I. INTRODUCTION

In late 1915 Albert Einstein submitted his complet
theory of general relativity to the Prussian Academy
Sciences.1 Following this it was as natural for him as it ha
been for Newton to apply it to the structure of the cosmos
the large. In this endeavor he was guided by the efforts
Newton and his successors. Newton, having constructe
law of gravitation and a viable mechanics, had the tools
needed. His considerations were based on a uniform, s
mass density distributed over an infinite Euclidean thr
dimensional space. He soon realized that such an infi
uniform distribution of mass was unstable and would c
lapse. He never resolved the difficulty and it remained
troublesome problem.

It received continuing attention. Laplace2 suggested a rem
edy in the form of an exponential damping factor for t
force law viz.,

FW 52
m1m2e2mr

r 3 rW . ~1!

This, unfortunately, does not integrate readily to yield a m
ageable expression for the potential.

This problem was neatly outflanked by the Ko¨nigsberg
theoretician Carl Neumann,3 who ignored the force law and
applied an exponential cutoff directly to the gravitational p
tential:

f5 È re2rAl

r
dv. ~2!

This had a number of advantages. The kernel of this inte
is a solution of the modified Laplace equation:

¹2f2lf50. ~3!

This both anticipated and pointed in the direction of
supposed resolution to Einstein’s concern about the di
trous influence of distant stars on the local potential.~The
problems of constructing viable cosmological models with
the context of Newtonian mechanics have long since b
successfully addressed. Milne and McCrea4 in 1934 con-
structed satisfactory dynamical cosmological models.
search in Newtonian cosmology is a continuing enterpris5!

II. EINSTEIN’S COSMOLOGY

Einstein addressed the problem head-on in his pa
Kosmologische Betrachtungen zur allgemein
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Relativitätstheorie.6 In reviewing the difficulties besetting
the Newtonian model he noted that the problem of obtain
a homogeneous static universe could be solved by repla
the Poisson equation

¹2f54pkr ~4!

by the modified equation~3!

¹2f2lf54pkr, ~5!

with the solution

f52
4pkr

l
. ~6!

The fourth section of Einstein’s cosmology paper titledOn
an Additional Term for the Field Equations of Gravitatio
introduced the cosmological constantl. Instead of his field
equation~13! ~see the Appendix for the conventions we us!

Rmn52k~Tmn2 1
2gmnT! ~7!

~wherek58pG/c4) he suggested now the modified equ
tion ~13a!,

Rmn2lgmn52k~Tmn2 1
2gmnT!, ~7a!

thus introducing the cosmological constant. In the seco
section of the paper he states thatThis modification corre-
sponds perfectly to the transition from Poisson’s equat
(1) to equation (2) of Sec. 1.

When Einstein stated that adding the cosmological te
corresponded perfectly to the transition from Poisson’s eq
tion, Eq. ~4!, to Eq. ~5! he was wrong. Nonetheless, gener
tions of physicists have parroted this nonsense. Wolfg
Pauli,7 that most penetrating of critics, failed to see the err
Abraham Pais8 writes in his magisterial Einstein biograph
about the analogy between thel terms in Poisson’s and Ein
stein’s equations: ‘‘he~Einstein! performs the very same
transition in general relativity.’’ It seemed so deceptive
obvious: In Newtonian approximation9 ~with c51) Eq. ~7!
yields

g0052~112f!. ~8!

Thus, adding the term2lf to the Poisson equation to obta
Eq. ~5! should correspond to adding the termlgmn to the
Einstein equations.

As a sidelight we mention an incident. Many years a
Otto Heckmann commented to one of us~ES!: ‘‘Einstein’s
Argument ist natu¨rlich Quatsch.’’10 And the late Hamburg
cosmologist was right. Ifc is not set equal to 1 thenf should
723© 2000 American Association of Physics Teachers
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be written asf/c2 and can be neglected compared to 1
first approximation. The Newtonian limit of Einstein’s equ
tion ~7a! with thel term is not the modified Poisson equatio
~5! but

¹2f1lc254pkr. ~9!

With Eq. ~7a! Einstein had not introduced an exponent
cutoff for the range of gravitation but a new repulsive for
(l.0), proportional to mass, that repelled every particle
massm with a force

FW 5mc2
l

3
xW . ~10!

It is this repulsive force which is the basis for the old sa
that in the Einstein cosmos there was ‘‘matter without m
tion’’ whereas in the de Sitter cosmos there was ‘‘moti
without matter.’’ In both cases the cosmological const
provides a repulsive force. In the Einstein cosmos this fo
balances the attractive force of the distribution of mass
the de Sitter case the absence of this mass distribution al
a particle placed at any point away from the origin of co
dinates to fly off. This was clearly stated by Arthu
Eddington.11

Instead of getting a shielded gravitational force one h
now at large distances almost naked repulsion. This
quite different from the expected bargain. But, it did provi
precisely the cosmological model Einstein desired. It p
vided inter alia a static, closed universe.

One cannot know with certainty how Einstein arrived
the modified field equations~7a!. Much of the history of its
introduction has been treated in detail in the recent book
Kerszberg.12 What Kerszberg, in company with many phys
cists, does not realize is that Einstein made a remark
mistake ininterpretationwhen he introduced the cosmolog
cal constant. Based on our experience it seems that a co
ent, concise version of the background to its introduction
Einstein and its proper significance might be useful.

III. THE EINSTEIN TENSOR

It is convenient to rewite Eq.~7a! in the more common
form

Rmn2 1
2gmnR1lgmn52kTmn . ~11!

For obvious reasons the structure of the left-hand side c
under close scrutiny by his colleagues. Einstein had sp
almost a decade to find the first two terms. Now a third te
was added. What should be the defining characteristic
this gravitational field tensor? Are there other terms wh
might be added or other modifications?

The left-hand side of Einstein’s field equations has
following properties:

• It is a second rank tensor constructed solely from
metric tensor and its first and second derivatives.

• It is linear in terms of the second differential order.
• It has a vanishing covariant divergence.

It was first discussed by Vermeil13 in 1917 and somewha
later by Weyl14 in 1922.

In his article surveying relativity theory Pauli15 stated that
the field equations for the metric tensor in the presence
matter must have the general form

c1Rmn1c2Rgmn1c3gmn52kTmn ~12!
724 Am. J. Phys., Vol. 68, No. 8, August 2000
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and that, necessarily,c151, c2521/2, andc3 is just the
cosmological constant.

The most recent examination resides in a searching th
rem constructed by Lovelock16 which severely delimits the
form of this tensor. He has shown that if the field equatio
are to be derived from a variational principle then:In a four-
dimensional space the only type (2,0) tensor density wh
components satisfy

Ai j 5Ai j ~gab ,gab,c ,gab,cd!, Ai j
; j50

is given by

Ai j 5aAg@Ri j 2 1
2g

i j R#1lAggi j .

IV. THE COSMOLOGICAL TERM

It is clear that the most general form of the Einstein ten
subject to the various constraints is

Rmn2 1
2gmnR1lgmn .

The inclusion of the termlgmn is not at all arbitrary. It is not
an adjustable parameter if one does not take offense a
fact that the constantl is not dimensionless. Indeed, it
omission requires justification. Its presence changes
characterof the field equations and delimits the kind of s
lutions available. One has for the field equations of t
vacuum

Rmn5lgmn , ~13!

the ‘‘flattest’’ solution for which is a space of constant cu
vature. Given that no general criteria exist for deciding i
solution to the field equations has a physical relevance,
inclusion of l should be resolved on the basis of observ
tional data, a point ultimately advocated by Einste
himself.17

Adding the termlgmn to the left-hand side of the field
equations for positivel is equivalent to adding to the
vacuum a positive constant pressurel and a negative energ
density l. This is made immediately manifest by the fie
equations with stress energy tensor for a perfect fluid w
pressure,

Rmn2 1
2Rgmn1lgmn52k@~r1p!umun1pgmn#. ~14!

V. GENERAL EFFECT OF THE COSMOLOGICAL
CONSTANT

To see the effect of a cosmological term on the motion
particles, it is convenient to consider the equation of geo
sic deviation. We give a brief derivation. Letum(xl) be the
unit tangent vector of a congruence of timelike geodesic

umum521, um
;nun50. ~15!

Further, lethm(xl) be a vector field orthogonal to the con
gruence such thatehm(xl) is an infinitesimal vector connect
ing a geodesic with a neighboring one. We have then

umhm50

with vanishing Lie derivative ofum with respect tohn,

Lhum5um
;nhn2hm

;nun50. ~16!

We write ḣm for the directional derivative of the vectorhm

along a timelike geodesic with respect to arclengths and by
virtue of Eq.~16! the result is
724A. Harvey and E. Schucking



q

o

f

th
T

e
ic
fo
ta
e
t
o

n
fu
-

a

sed

e
-

al
e

l-
nd

he

id

nal
-
of
e
on-
v-
ld
’s
tial
and
for

f
ons

a
for
ḣm5hm
;nun5um

;nhn. ~17!

For the second derivativeḧm we obtain

ḧm5~um
;nhn! ;rur5~um

;n;rhn!ur1um
;nhn

;rur, ~18!

the second term of which may be converted by virtue of E
~17! so that

ḧ5~um
;n;rhn!ur1um

;nun
;rhr. ~18a!

Interchange the summation indices in the first term and n
that

um
;nun

;r5~um
;nun! ;r2um

;n;run.

The first term on the right-hand side vanishes so that

ḧm5~um
;r;n2um

;n;r!hrun5Rm
lnrulunhr. ~19!

Define

EmrªRmlnrulun5Erm ~20!

so that

ḧm5Em
rhr. ~21!

The tensorEmr is a symmetric, purely spatial tensor, i.e.,

umEmr50, ~22!

and we know that

Em
m52Rlnulun. ~23!

For reasons indicated below we shall refer to it as thePirani
tensor.

The equations of motion provided by the divergence o
stress-energy tensor for a perfect fluid with four-velocityum,
densityr, and pressurep @see Eq.~14!# are

~r1p!u̇m52p,n~dn
m1umun!.

For vanishing spatial pressure gradient the motion of
fluid becomes geodesic and the left-hand side vanishes.
field equations~14! give

Rmn51k@ 1
2~r2p!gmn2~r1p!umun#1lgmn . ~24!

We thus have

Em
m51

k

2
~r13p!2l51

4pG

c4 ~rc213p!2l. ~25!

The interpretation of these formulas and their relevanc
a more precise understanding of the role of the cosmolog
constant should be placed in historical perspective. The
mula for geodesic deviation was introduced by Carl Gus
Jacobi in his study of geodesics on ellipsoids. Given a g
desicG(s) with arclengths measured from an arbitrary poin
P, consider now a neighboring geodesic on their comm
surface and leth(s) as defined above be the~infinitesimal!
distance of an immediately adjacent geodesicG8 from G.
Jacobi found that

d2h

ds2 1K~s!h50, ~26!

whereK(s) is the Gaussian curvature of the surface alo
the geodesic. Tullio Levi-Civita generalized this beauti
intrinsic formula to geodesics on ann-dimensional Riemann
ian manifold.18 Another derivation can be found in theTen-
sor Calculusof Synge and Schild.19 But, it was Pirani20 who
recognized the fundamental importance of this tensor for
725 Am. J. Phys., Vol. 68, No. 8, August 2000
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understanding of Einstein’s theory of gravitation and he u
it to derive Einstein’s field equations.21

To establish now a connection with Newtonian gravity, w
pick a time-like geodesicG t and attach to it by parallel trans
port a set of four orthonormal vectors@e0,ej #, ( j 51,2,3)
with

em
05um~s! ~27!

on G t . We put

yj5hmem
j . ~28!

Because

ėm
j50 ~29!

alongG t theyj are spatial coordinates in a freely falling loc
inertial system and Eq.~21! of geodesic deviation takes th
form

ÿ j5Ej
ky

k, Ej
k5Em

nem
jen

k . ~30!

In the origin of a freely falling system, i.e., an Einstein e
evator, the gravitational potential and its gradient vanish a
the equation of motion of a particle at the positionyj is, in
first approximation,

ÿ j52f , j ,ky
k ~31!

at yk50. BecauseE0
0 vanishes according to Eq.~22! we

have

Em
m5Ej

j51¹2f. ~32!

The trace of Pirani’s tensor has to be identified with t
negative Laplacean of the gravitational potential.

We can now establish the Newtonian equivalent of theR00
component of Einstein’s field equations for a perfect flu
without a pressure gradient. We get from Eq.~23!

¹2f1l54pG~r13p/c2!. ~33!

In contrast to Poisson’s equation there are two additio
terms. If thel term is brought to the right-hand side it ap
pears for positivel as a negative density of active mass
l/4pG which should give rise to general repulsion. Th
other term is the surprising appearance of the additional c
tribution of 3p/c2 to the active mass density. For a relati
istic fluid this would mean that its active mass density wou
be larger than the inertial. This is known as Tolman
paradox22 because for closed systems active and iner
masses are equal. The paradox was resolved by Misner
Putnam,23 who showed that the stresses in the container
the fluid cancel the mass contribution of the 3p/c2 term.

The influence of thel term on Newton’s local equation o
motion can also be easily seen. Einstein’s field equati
with cosmological constant and absence of matter are

Rmn5lgmn . ~34!

As noted earlier, the simplest solution for the vacuum is
space–time of constant curvature the Riemann tensor
which is just

Rmlnr52
l

3
~gmrgln2gmnglr!. ~35!

The corresponding Pirani tensor is

Emr5
l

3
~gmr1umur!. ~36!
725A. Harvey and E. Schucking
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This leads to the equation of motion for free particles

ÿ j5
l

3
yj . ~37!

For l.0 this is a uniformly repulsive force proportional t
mass.

The intrinsic existence of such a force in the de Sit
vacuum was pointed out by Eddington11 and used to explain
the redshifts of distant galaxies measured by Slipher.24

Otto Heckmann25 was, as far as we know, the first to poi
out Einstein’s mistake. In a footote on p. 15 of his Theor
der Kosmologie he remarks,

The equationD1lf54pGr which is different
from D1L0(t)54pGr is used by Einstein in his
paper S.-B. Preuss. Acad. Wiss.1917, 142 to explain
the introduction of the termlgmn into his field equa-
tions. This suggestion for a change of Newton’s law
~C. Neumann: ‘‘About the Newtonian Principle of
Action at a Distance,’’ p. 1 and 2, Leipzig 1896—see
also Leipziger Ber. Math.-Phys, Kl. 1874, 149! does
not result as an approximation of the field equations
of relativity theory. Thus, the argument which Heck-
mann and Siedentopf26 gave for their Eq.~5.18! is
void.

From the last sentence it is clear that Heckmann also
once been fooled by Einstein’s erroneous argument. He
mann’s book published during WWII never did find a wid
readership nor did its re-publication in 1968. That it w
written in German didn’t help. In this later edition he add
the remark:

The L-term is kept in the whole book. The disdain
towards this term seen again and again is Einstein’s
own fault. It neglects the only rigorous way that we
know for the derivation which gives alsoL. Who
trusts the Einstein theory should also trustL and
should not carelessly put it equal to zero. Comp.
McVittie in ‘‘H. P. Robertson in Memoriam,’’ p.
18ff, Philadelphia 1963.

This was also Albert Einstein’s original feeling. On 1
April 1917 he wrote to Willem de Sitter,17

In any case, one thing stands. The general theory o
relativity allows the addition of the termlgmn in the
field equations. One day, our actual knowledge of the
composition of the fixed star sky, the apparent mo-
tions of fixed stars, and the position of spectral lines
as a function of distance, will probably have come
far enough for us to be able to decide empirically the
question of whether or notl vanishes. Conviction is
a good motive, but a bad judge.

VI. FINAL COMMENTS

The cosmological constant has been a fruitful source
controversy ever since Einstein added it to his original fi
equations. Now it returns once again from limbo meriti
serious consideration. Perhaps it should be called thePhoe-
nix Constant.

In addition to being controversial among specialists
cosmology it has attracted the obsessive attention of pop
science writers who uniformly object to its usage. Their m
common characterization is ‘‘fudge factor.’’ This species
scientific illiteracy is well-exemplified by a recent popul
726 Am. J. Phys., Vol. 68, No. 8, August 2000
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article by the well-known science writer Nicholas Wad
titled Star Spangled Scandal27 in which it is suggested tha
usage of the cosmological constant by astrophysicists
resolve a problem concerning the age of the universe
‘‘... a scandal of the intellectual kind. You know like iatro
genic disease or the Constitution’s provisions for slavery
A similar presentation of nonsense was given by Don
Goldsmith.28 In the first paragraph on p. 7 he states, ‘‘
1917 ... Einstein realized to his dismay that the equation
his theory of general relativity implied either an expandi
or contracting universe.’’ This is simply not true. That th
equations contained such solutions was not made known
til the work of Friedmann29 in 1922. What neither Wade no
Goldsmith nor others of their ilk understand is that the c
mological constant is not a mere adjustable parameter an
worse lack any understanding of the structure of Einste
argument for its inclusion; its presence or absence chan
the characterof the field equations.

Though Einstein ultimately rejected the inclusion of t
cosmological constant in his equations, it was not on
basis that it was a pressure rather than an exponential cu
but rather that he deemed it unnecessary. It is doubtful
Einstein ever said it was the ‘‘biggest blunder’’ of his life
The source of this is George Gamow,30 who had a well-
established reputation as a jokester and given to hyperb
The comment doesn’t appear in Einstein’s writings.31 It is
possible that Einstein made some mild comment in Germ
to Gamow at his having persuaded himself that the term
necessary.

With keen hindsight we observe now that the introducti
of the cosmological constant amounted to a redefinition
the vacuum state for the universe—the replacement
Minkowski space–time by de Sitter space–time.

APPENDIX: CONVENTIONS AND UNITS

Einstein and Eddington both usedGmn to denote the Ricci
tensor. We conform to current practice and useRmn . We
~usually! follow the source in presenting the various equ
tions and expressions. The velocity of light is variously tak
to be 1 orc depending on the context. Greek and Rom
summation indices have, respectively, the ranges@0, 1, 2, 3#
and @1, 2, 3#.
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COMPULSORY FOOTBALL

If science ceases to be a rebellion against authority, then it does not deserve the talents of our
brightest children. I was lucky to be introduced to science at school as a subversive activity of the
younger boys. We organized a Science Society as an act of rebellion against compulsory Latin and
compulsory football. We should try to introduce our children to science today as a rebellion
against poverty and ugliness and militarism and economic injustice.

Freeman Dyson, ‘‘The Scientist as Rebel,’’ inNature’s Imagination—The Frontiers of Scientific Vision, edited by John
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