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EINSTEIN SOLVMANIFOLDS

AND THE PRE-EINSTEIN DERIVATION

Y. NIKOLAYEVSKY

Abstract. An Einstein nilradical is a nilpotent Lie algebra which can be
the nilradical of a metric Einstein solvable Lie algebra. The classification of
Riemannian Einstein solvmanifolds (possibly, of all noncompact homogeneous
Einstein spaces) can be reduced to determining which nilpotent Lie algebras
are Einstein nilradicals and to finding, for every Einstein nilradical, its Ein-
stein metric solvable extension. For every nilpotent Lie algebra, we construct
an (essentially unique) derivation, the pre-Einstein derivation, the solvable ex-
tension by which may carry an Einstein inner product. Using the pre-Einstein
derivation, we then give a variational characterization of Einstein nilradicals.
As an application, we prove an easy-to-check convex geometry condition for
a nilpotent Lie algebra with a nice basis to be an Einstein nilradical and also
show that a typical two-step nilpotent Lie algebra is an Einstein nilradical.

1. Introduction

The theory of Riemannian homogeneous spaces with an Einstein metric splits
into three very different cases depending on the sign of the Einstein constant, the
scalar curvature. Among them, the picture is complete only in the Ricci-flat case:
by the result of [AK], every Ricci-flat homogeneous space is flat.

The major open conjecture in the case of negative scalar curvature is the Alek-
seevski Conjecture [Al1] asserting that a noncompact Einstein homogeneous space
admits a simply transitive solvable isometry group. This is equivalent to saying
that any such space is a solvmanifold, a solvable Lie group with a left-invariant
Riemannian metric satisfying the Einstein condition.

By a deep result of J. Lauret [La5], any Einstein solvmanifold is standard. This
means that the metric solvable Lie algebra s of such a solvmanifold has the following
property: the orthogonal complement to the derived algebra of s is abelian. The
systematic study of standard Einstein solvmanifolds (and the term “standard”)
originated from the paper of J. Heber [Heb].

On the Lie algebra level, all the metric Einstein solvable Lie algebras can be
obtained as the result of the following construction [Heb, La1, La5, LW]. One starts
with the three pieces of data: a nilpotent Lie algebra n, a semisimple derivation
Φ of n, and an inner product 〈·, ·〉n on n, with respect to which Φ is symmetric.
An extension of n by Φ is a solvable Lie algebra s = RH ⊕ n (as a linear space)
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with (adH)|n := Φ. The inner product on s is defined by 〈H, n〉 = 0 and ‖H‖2 =
Tr Φ (and coincides with the existing one on n). The resulting metric solvable Lie
algebra (s, 〈·, ·〉) is Einstein provided n is “nice” and the derivation Φ and the inner
product 〈·, ·〉n are chosen “in the correct way” (note, however, that these conditions
are expressed by a system of algebraic equations, which could hardly be analyzed
directly; see Section 2). Metric Einstein solvable Lie algebras of higher rank (with
the codimension of the nilradical greater than one) having the same nilradical n can
be obtained from s via a known procedure, by further adjoining to n a semisimple
derivation commuting with Φ.

It turns out that the structure of an Einstein metric solvable Lie algebra is
completely encoded in its nilradical in the following sense: given a nilpotent Lie
algebra n, there is no more than one (possibly none) choice of Φ and of 〈·, ·〉n, up to
conjugation by Aut(n) and scaling, which may result in an Einstein metric solvable
Lie algebra (s, 〈·, ·〉).

Definition 1. A nilpotent Lie algebra is called an Einstein nilradical if it is the
nilradical of an Einstein metric solvable Lie algebra. A derivation Φ of an Einstein
nilradical n and an inner product 〈·, ·〉n, for which the metric solvable Lie algebra
(s, 〈·, ·〉) is Einstein, are called an Einstein derivation and a nilsoliton inner product,
respectively.

In this paper, we address the following two questions:

(A) How do we determine whether a given nilpotent Lie algebra n is an Einstein
nilradical?

(B) If n is an Einstein nilradical, how do we construct an Einstein solvmanifold
whose Lie algebra has n as its nilradical?

To answer question (B), we have to produce an Einstein derivation and a nil-
soliton inner product for n. For an Einstein derivation, the answer is given by
Theorem 1 below: any Einstein derivation is a positive multiple of a pre-Einstein
derivation (which in practice can be found by solving a system of linear equations).
The nilsoliton inner product could rarely be found explicitly, unless n has a very
simple structure. Implicitly it is characterized by (iii) of Theorem 2 and Remark 1
below (see also Theorem 5 in Section 3).

Question (A) is much more delicate. A necessary condition for a nilpotent Lie
algebra to be an Einstein nilradical is that it admits an N-gradation (which is
defined by the Einstein derivation [Heb]). However, not every N-graded nilpotent
Lie algebra is an Einstein nilradical.

It is known, for instance, that the following nilpotent Lie algebras n are Einstein
nilradicals: n is abelian [Al2], n has a codimension one abelian ideal [La2], dim n ≤ 6
[Wil, La2], and n is the algebra of strictly upper-triangular matrices [Pay]. Free
Einstein nilradicals are classified in [Ni2]: apart from the abelian and the two-step
ones, there are only six others. A characterization of the Einstein nilradical with
a simple Einstein derivation and the classification of filiform Einstein nilradicals
(modulo known classification of filiform N-graded Lie algebras) is given in [Ni1].

Our starting point is the following fact: if Φ is an Einstein derivation of an
Einstein nilradical n, then for some constant c < 0, Tr (Φψ) = −c Tr ψ, for any
derivation ψ of n (see Section 2 for details). This motivates the following definition.
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Definition 2. A derivation φ of a Lie algebra n is called pre-Einstein if it is
semisimple, with all the eigenvalues real, and

(1) Tr (φψ) = Tr ψ, for any ψ ∈ Der(n).

Here Der(n) is the algebra of derivations of n. We call an endomorphism A of a
linear space real (nonnegative, positive) if all its eigenvalues are real (respectively,
nonnegative, positive). In the latter cases, we write A ≥ 0 (respectively, A > 0).
For any ψ ∈ Der(n) we denote by adψ the corresponding inner derivation of Der(n).
If ψ is semisimple and real, the same is true for adψ.

Our main result is contained in Theorems 1 and 2.

Theorem 1.

1. (a) Any Lie algebra g admits a pre-Einstein derivation φg.
(b) The derivation φg is determined uniquely up to automorphism of g.
(c) All the eigenvalues of φg are rational numbers.

2. Let n be a nilpotent Lie algebra with φ a pre-Einstein derivation. If n is an
Einstein nilradical, then its Einstein derivation is positively proportional to
φ, up to conjugation by Aut(n), and

(2) φ > 0 and adφ ≥ 0.

The inequalities (2) are necessary, but not sufficient to guarantee that a nilpo-
tent Lie algebra is an Einstein nilradical. Combining the idea of the pre-Einstein
derivation with [Heb, Theorem 6.15], we give a variational characterization of Ein-

stein nilradicals, which answers question (A). Denote by V =
∧2(Rn)∗ ⊗ Rn the

space of skew-symmetric bilinear maps on Rn. Let μ be an element of V defining a
nilpotent Lie algebra n = (Rn, μ). Choose and fix a pre-Einstein derivation φ of n,
and define the subalgebra gφ ⊂ sl(n) by

(3) gφ = z(φ) ∩Ker (t),

where z(φ) is the centralizer of φ in sl(n) and t is a linear functional on sl(n)
defined by t(A) = Tr (Aφ). Let Gφ ⊂ SL(n) be the connected Lie group with the
Lie algebra gφ (explicitly given by (9)). Define the action of Gφ on the linear space
V by g.ν(X,Y ) = gν(g−1X, g−1Y ) for ν ∈ V , g ∈ Gφ.

Choose an arbitrary inner product 〈·, ·〉 on R
n, with respect to which φ is sym-

metric, and define ‖ν‖2 =
∑

i,j ‖ν(Ei, Ej)‖2, where {Ei} is an orthonormal basis
for Rn and ν ∈ V .

Theorem 2. For a nilpotent Lie algebra n = (Rn, μ) with a pre-Einstein derivation
φ, the following conditions are equivalent:

(i) n is an Einstein nilradical;
(ii) the orbit Gφ.μ ⊂ V is closed;
(iii) the function f : Gφ → Rn defined by f(g) = ‖g.μ‖2 has a critical point.

Remark 1. Note that the equivalence of (i) and (ii) gives the characterization of
Einstein nilradicals completely in terms of the Lie algebra structure of n, with no
inner product involved.

The equivalence of (i) and (iii) is similar to the well-known criterion for a ho-
mogeneous space of a unimodular Lie group to be Einstein: as it follows from (4)
of Section 2, the scalar curvature of a metric nilpotent Lie algebra is the squared
norm of the Lie bracket times a constant.
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In (iii), one can replace “has a critical point” by “attains the minimum”. More-
over, if f attains the minimum at g ∈ Gφ and μ0 = g.μ, then the metric Lie algebra
(Rn, μ0, 〈·, ·〉) is isometrically isomorphic to the nilradical of an Einstein metric
solvable Lie algebra (see Theorem 5 in Section 3).

Note in conjunction with (ii) that the SL(n)-orbit of a nonabelian nilpotent Lie
algebra is never closed [La3, Theorem 8.2]. One can therefore either work with a
smaller group (as in Theorem 2) or consider a different function. One such function
naturally related to the group action is the squared norm of the moment map. As
shown in [La4, LW], a nilpotent Lie algebra n = (Rn, μ) is an Einstein nilradical
if and only if the squared norm of the moment map (with respect to some inner
product on Rn) of the SL(n)-action on V attains its minimum on the orbit of μ.

As an application of Theorems 1 and 2, we consider nilpotent Lie algebras having
a nice basis.

Definition 3. Let {X1, . . . , Xn} be a basis for a nilpotent Lie algebra n, with
[Xi, Xj ] =

∑
k c

k
ijXk. The basis {Xi} is called nice if for every i, j, #{k : ckij = 0}

≤ 1, and for every i, k, #{j : ckij = 0} ≤ 1.

Although the condition of having a nice basis looks rather restrictive (some
examples of nilpotent Lie algebras having no nice basis are given in Section 4), the
nilpotent Lie algebras with a nice basis are not uncommon. Such algebras often
appear in the classification lists, especially in the low-dimensional cases. Every Lie
algebra admitting a derivation with all the eigenvalues of multiplicity one has a nice
basis (recall that to be an Einstein nilradical, a nilpotent Lie algebra must admit
a positive real semisimple derivation). In particular, filiform algebras admitting an
N-gradation have a nice basis [Ni1]. Every two-step nilpotent algebra attached to
a graph has a nice basis [LW].

Given a nilpotent algebra n of dimension n with a nice basis, introduce the
following objects. In a Euclidean space R

n with the inner product (·, ·) and an
orthonormal basis f1, . . . , fn, define the finite subset F = {(Y )kij = fi + fj − fk :

ckij = 0, i < j}. Denote by L the affine span of F, the smallest affine subspace of Rn

containing F, and Conv(F) the convex hull of F. Let m = #F. Fix an arbitrary
ordering of the set F and define an m× n matrix Y with the rows (Y )kij . Namely,
if for 1 ≤ a ≤ m the a-th element of F is fi + fj − fk, then the a-th row of Y has
1 in the columns i and j, −1 in the column k, and zero elsewhere. Denote by [1]m
an m-dimensional vector all of whose coordinates are ones.

We have the following theorem:

Theorem 3. A nonabelian nilpotent Lie algebra n with a nice basis is an Einstein
nilradical if and only if any of the following two equivalent conditions hold:

(i) The projection of the origin of Rn to L lies in the interior of Conv(F).
(ii) There exists a vector α ∈ Rm with positive coordinates satisfying Y Y tα =

[1]m.

Note that by [Pay, Theorem 1], a metric nilpotent Lie algebra is nilsoliton if and
only if the equation Y Y tα = −2c [1]m holds with respect to the basis of Ricci eigen-
vectors (where the components of α are the squares of the structural constants).

As another application of Theorems 1 and 2, we prove Theorem 6, which says
that a nilpotent Lie algebra, which is complex isomorphic to an Einstein nilradical,
is an Einstein nilradical by itself, and Theorem 7, which shows that the direct sum
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of nilpotent Lie algebras is an Einstein nilradical if and only if all the summands
are Einstein nilradicals (see Section 4).

In Section 5, we consider two-step nilpotent Einstein nilradicals. Informally, we
prove that

a typical two-step nilpotent Lie algebra is an Einstein nilradical of
eigenvalue type (1, 2; q, p).

There seems to be no commonly accepted notion as to what is a “typical” nilpo-
tent Lie algebra [Luk]. We mean the following. A two-step nilpotent Lie algebra n is
said to be of type (p, q) if dim n = p+q and dim[n, n] = p (clearly, 1 ≤ p ≤ 1

2q(q−1)).

Any such algebra is determined by a point in the linear space V(p, q) = (
∧2

Rq)p,
with two points giving isomorphic algebras if and only if they lie on the same orbit
of the action of GL(q)×GL(p) on V(p, q). The space of isomorphism classes of the
algebras of type (p, q) is a compact non-Hausdorff space, the quotient of an open
and dense subset of V(p, q) by the action of GL(q)×GL(p).

Theorem 4. Suppose q ≥ 6 and 2 < p < 1
2q(q − 1)− 2, or (p, q) = (5, 5). Then:

(i) there are continuum isomorphism classes of two-step nilpotent Lie algebras
of type (p, q); each of them has an empty interior in the space V(p, q) [Eb1];

(ii) the space V(p, q) contains an open and dense subset corresponding to two-
step nilpotent Einstein nilradicals of eigenvalue type (1, 2; q, p).1

Two-step nilpotent Lie algebras of the types excluded by Theorem 4 can be
completely classified [GT]. Using Theorem 3 we find all the two-step nilpotent
Einstein nilradicals with q ≤ 5, (p, q) = (5, 5) (up to complexification).

The paper is organized as follows. Section 2 gives the background on Einstein
solvmanifolds. In Section 3, we prove Theorem 1 and Theorem 5, which implies
Theorem 2, and also give a possible general strategy of determining whether a given
nilpotent Lie algebra is an Einstein nilradical. Section 4 contains three applications
of Theorem 1 and Theorem 2: Theorem 3 on Einstein nilradicals with a nice basis,
Theorem 6, which shows that the property of being an Einstein nilradical is a
property of the complexification of a real nilpotent Lie algebra, and Theorem 7
on the direct sum of Einstein nilradicals. In Section 5, we prove Theorem 4 and
classify low-dimensional two-step Einstein nilradicals (Proposition 2).

The author would like to thank the referee for useful comments and suggestions.

2. Einstein solvmanifolds

Let G be a Lie group with a left-invariant metric Q obtained by the left trans-
lations from an inner product 〈·, ·〉 on the Lie algebra g of G. Let B be the Killing
form of g, and let H ∈ g be the mean curvature vector defined by 〈H,X〉 = Tr adX .

The Ricci curvature ric of the metric Lie group (G,Q) at the identity is given by

ric(X) = −〈[H,X], X〉 − 1

2
B(X,X)− 1

2

∑
i
‖[X,Ei]‖2 +

1

4

∑
i,j
〈[Ei, Ej ], X〉2,

for X ∈ g, where {Ei} is an orthonormal basis for (g, 〈·, ·〉) [Heb, Eq. (2.3)].

1After this paper was written, the author became aware that the result equivalent to Theorem 4
is independently proved in [Eb3].
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Equivalently, one can define the Ricci operator Ric of the metric Lie algebra
(g, 〈·, ·〉) (the symmetric operator associated to ric) by

Tr
(
(Ric+

1

2
(adH +ad∗H)+

1

2
B)A

)
=

1

4

∑
i,j

〈A[Ei, Ej ]−[AEi, Ej ]−[Ei, AEj], [Ei, Ej ]〉,

for any A ∈ End(g) (where ad∗H is the metric adjoint of adH).
If (n, 〈·, ·〉) is a nilpotent metric Lie algebra, then H = 0 and B = 0, so

(4) Tr (Ricn A) =
1

4

∑
i,j
〈A[Ei, Ej ]− [AEi, Ej ]− [Ei, AEj ], [Ei, Ej ]〉,

for any A ∈ End(n). Explicitly, for X,Y ∈ n,

(5) 〈Ricn X,Y 〉 = 1

4

∑
i,j

〈X, [Ei, Ej ]〉〈Y, [Ei, Ej ]〉 −
1

2

∑
i,j

〈[X,Ei], Ej〉〈[Y,Ei], Ej ]〉.

By the result of [La5], any Einstein metric solvable Lie algebra is standard, which
means that the orthogonal complement to the derived algebra [g, g] is abelian.

It is proved in [AK] that any Ricci-flat metric solvable Lie algebra is flat. By
[DM], any Einstein metric solvable unimodular Lie algebra is also flat. We will
therefore always assume g to be nonunimodular (H = 0), with an inner product of
strictly negative scalar curvature c dim g.

Any Einstein metric solvable Lie algebra admits a rank-one reduction [Heb, The-
orem 4.18]. This means that if (g, 〈·, ·〉) is such an algebra, with the nilradical n and
the mean curvature vector H, then the subalgebra g1 = RH ⊕ n, with the induced
inner product, is also Einstein. What is more, the derivation Φ = adH|n : n → n

can be assumed symmetric up to isometry, and all its eigenvalues belong to γN
for some γ > 0. This implies, in particular, that the nilradical n of an Einstein
metric solvable Lie algebra admits an N-gradation defined by the eigenspaces of Φ.
By [La1, Theorem 3.7], a necessary and sufficient condition for a metric nilpotent
algebra (n, 〈·, ·〉) to be the nilradical of an Einstein metric solvable Lie algebra is

(6) Ricn = c idn +Φ, for some Φ ∈ Der(n),

where c dim g < 0 is the scalar curvature of (g, 〈·, ·〉). This equation, in fact, defines
(g, 〈·, ·〉) in the following sense: given a metric nilpotent Lie algebra whose Ricci
operator satisfies (6), with some constant c < 0 and some Φ ∈ Der(n), one can
define g as a one-dimensional extension of n by Φ. For such an extension g =
RH ⊕ n, adH|n = Φ, and the inner product defined by 〈H, n〉 = 0, ‖H‖2 = Tr Φ
(and coinciding with the existing one on n) is Einstein, with scalar curvature c dim g.
A nilpotent Lie algebra n which admits an inner product 〈·, ·〉 and a derivation Φ
satisfying (6) is called an Einstein nilradical, the corresponding derivation Φ is
called an Einstein derivation, and the inner product 〈·, ·〉 the nilsoliton metric.

As proved in [La1, Theorem 3.5], a nilpotent Lie algebra admits no more than one
nilsoliton metric, up to conjugation by Aut(n) and scaling (and hence, an Einstein
derivation, if it exists, is unique, up to conjugation and scaling). Equation (6),
together with (4), implies that if n is an Einstein nilradical, with Φ the Einstein
derivation, then for some c < 0

(7) Tr (Φψ) = −c Tr ψ, for any ψ ∈ Der(n).

The set of eigenvalues λi and their multiplicities di of the Einstein derivation Φ of
an Einstein nilradical n is called the eigenvalue type of n (and of Φ). The eigenvalue
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type is usually written as (λ1, . . . , λp ; d1, . . . , dp) (note that the λi’s are defined up
to positive multiple).

Throughout the paper, ⊕ means the direct sum of linear spaces (even when the
summands are Lie algebras). Any semisimple endomorphism A of a linear space V
admits a decomposition into the real and the imaginary part: A = AR +AiR. The
operator AR is defined as follows: if V1, . . . , Vm are the eigenspaces of A acting on
V C, with eigenvalues a1, . . . , am ∈ C, respectively, then AR acts by multiplication
by b ∈ R on every subspace (

⊕
k:Reak=b Vk) ∩ V . For any semisimple A ∈ End(V ),

the operators A,AR, and AiR commute. If ψ is a semisimple derivation of a Lie
algebra g, then both ψR and ψiR are also derivations.

3. Pre-Einstein derivation. Proof of Theorems 1 and 2

In this section, we prove Theorem 1 and Theorem 5, which contains Theorem 2,
and describe a possible general approach to questions (A) and (B) from Section 1.

Proof of Theorem 1. 1. (a) The algebra Der(g) is algebraic. Let Der(g) = s⊕t⊕n be
its Levi-Mal’cev decomposition, where t⊕n is the radical of Der(g), s is semisimple,
n is the set of all nilpotent elements in t ⊕ n (and is the nilradical of t ⊕ n), t is
a torus, an abelian subalgebra consisting of semisimple elements, and [t, s] = 0.
With any ψ ∈ t, ψR and ψiR are also in t. The subspaces tc = {ψiR : ψ ∈ t} and
ts = {ψR : ψ ∈ t} are the compact and the fully R-reducible tori (the elements of
ts are diagonal matrices in some basis for g), ts ⊕ tc = t.

The quadratic form b defined on Der(g) by b(ψ1, ψ2) = Tr (ψ1ψ2) is invariant
(b(ψ1, [ψ2, ψ3]) = b([ψ1, ψ3], ψ2)). In general, b is degenerate, with Ker b = n, so
for any ψ ∈ n, b(t, ψ) = Tr ψ = 0. As s is semisimple and [t, s] = 0, we also have
b(t, ψ) = Tr ψ = 0, for any ψ ∈ s. Moreover, for any ψ ∈ tc, b(ts, ψ) = Tr ψ = 0.

Hence to find a pre-Einstein derivation for g it suffices to find an element φ ∈ ts

which satisfies (1), for all ψ ∈ ts. Such a φ indeed exists, as the restriction of b to ts

is nondegenerate (even definite) and is unique, when a particular torus t is chosen.
(b) The subalgebra s⊕t is a maximal fully reducible subalgebra of Der(g). As by

[Mos, Theorem 4.1], the maximal fully reducible subalgebras of Der(g) are conjugate
by an inner automorphism of Der(g) (which corresponds to an automorphism of g),
and then t, the center of s ⊕ t, is defined uniquely, and the uniqueness of φ, up to
automorphism, follows.

(c) The proof is similar to that of [Heb, Theorem 4.14]. Suppose φ has eigenvalues
λi, with multiplicities di, respectively, i = 1, . . . , p. In a Euclidean space Rp with a
fixed orthonormal basis fi, consider all the vectors of the form fi+fj−fk such that
λi +λj −λk = 0. In their linear span choose a basis vk, k = 1, . . . ,m, consisting of
vectors of the above form and introduce a p × m matrix F whose vector-columns
are the vk’s. Then any vector ν = (ν1, . . . , νp)

t ∈ Rp satisfying F tν = 0 defines a
derivation ψ = ψ(ν) having the same eigenspaces as φ, but with the corresponding
eigenvalues νi. From (1) we must have

∑
di(λi − 1)νi = 0, for any such ν, which

implies that the vector (d1(λ1−1), . . . , dp(λp−1))t belongs to the column space of F .
So there exists x ∈ Rm such that λ = [1]p+D−1Fx, where λ = (λ1, . . . , λp)

t, [1]p =
(1, . . . , 1)t ∈ Rp, and D = diag(d1, . . . , dp). As φ by itself is a derivation, we have
F tλ = 0, which implies F t[1]p + F tD−1Fx = 0, so that x = −(F tD−1F )−1[1]m,
as F t[1]p = [1]m and rk F = m. Then λ = [1]p −D−1F (F tD−1F )−1[1]m and the
claim follows, as all the entries of D and of F are integers.
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2. Suppose that n is an Einstein nilradical, with an Einstein derivation Φ and a
nilsoliton inner product 〈·, ·〉. Then Φ is semisimple, real and satisfies (7), with some
c < 0, so φ = (−c)−1Φ is a pre-Einstein derivation. Moreover, Φ > 0 (as follows
from [Heb, Theorem 4.14]) and adΦ ≥ 0. To prove the latter inequality, we use the
fact that for any ψ ∈ Der(n), Tr (Φ [ψ, ψ∗]) ≥ 0 by [Nik, Corollary 5] and (6). If
adΦ ψ = λψ for some λ ∈ R, then λ Tr (ψψ∗) = Tr ([Φ, ψ]ψ∗) = Tr (Φ [ψ, ψ∗]) ≥
0. �

Note that the pre-Einstein derivation of a semisimple Lie algebra is trivial (zero),
and it may well happen that the pre-Einstein derivation of a nilpotent Lie algebra
is zero (for instance, for a characteristically nilpotent algebra).

Inequalities (2) from assertion 2 of Theorem 1 can be used to prove that certain
nilpotent Lie algebras are not Einstein nilradicals. Of course, if n has no positive
derivations at all, it is not an Einstein nilradical. Nilpotent algebras whose pre-
Einstein derivation is positive, but the inequality adφ ≥ 0 is violated, are more
common. One example is given below.

Example 1. Let n be a two-step nilpotent 12-dimensional algebra of type (2, 10)
(see Section 5) defined by the relations [X1, X3] = [X2, X4] = [X5, X9] = [X6, X10]
= Z1 and [X1, X4] = [X5, X8] = [X6, X9] = [X7, X10] = Z2. A direct computation
(based, for instance, on [Luk, Proposition 3.1]) shows that the derivation φ given by
the diagonal matrix 1

55 diag(43, 42, 42, 43, 42, 43, 44, 44, 43, 42, 85, 86) with respect to
the basis {Xi, Zα} is pre-Einstein. An endomorphism ψ sending X4 to X2 and all
the other basis vectors to zero is a derivation satisfying adφ ψ = − 1

55ψ.

In the proof of Theorem 2, we combine the idea of the pre-Einstein derivation
with [Heb, Theorem 6.15], which in turn uses the results of [RS] (see also [La4,
Section 6]). The group Gφ is explicitly constructed as follows. Given a nilpotent
algebra n, fix a pre-Einstein derivation φ. Let nj be the eigenspaces of φ, with
the corresponding eigenvalues λj , j = 1, . . . , p. Denote aj = Nλj , where N is the
least common multiple of the denominators of the λj ’s. Then Gφ is the identity

component of the subgroup G̃φ ⊂
∏p

j=1 GL(nj) ⊂ GL(n) defined by

(8) G̃φ = {(g1, . . . , gp) : gj ∈ GL(nj),
∏p

j=1
det gj =

∏p

j=1
(det gj)

aj = 1}.

As all the aj are integers (although some could be zero or negative), the group G̃φ

is real algebraic. The group Gφ is reductive, with the Lie algebra gφ, and is given
explicitly by

(9) Gφ = G̃φ ∩
∏p

j=1
GL+(nj), where GL+(V ) = {g ∈ GL(V ) : det g > 0}.

We start with the following technical lemma (cf. [Heb, Section 6.4]).

Lemma 1. 1. Let n = (Rn, μ) be a nilpotent Lie algebra with a pre-Einstein
derivation φ. Then φ is a pre-Einstein derivation for every algebra (Rn, g.μ),
g ∈ Gφ. The group Gφ and the orbit Gφ.(g.μ) are the same, for all g ∈ Gφ.

2. Let n = (Rn, μ) be a nilpotent Lie algebra and let ψ be a semisimple deriva-
tion of n with rational eigenvalues (not necessarily a pre-Einstein). Let 〈·, ·〉
be an inner product on n, with respect to which ψ is symmetric. Define the
algebra gψ and the group Gψ for ψ by (3) and (9), respectively, and the
function f : Gψ → R by f(g) = ‖g.μ‖2. Then:

(a) For every g∈Gψ and A ∈ End(n), Tr (Ricg.μ A)= 1
8

d
dt |t=0

f(exp(tA)g).
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(b) Let Q be an inner product on End(n) defined by Q(A1, A2)=Tr (A1A
∗
2)

(adjoint with respect to 〈·, ·〉), and Z(ψ) be the centralizer of ψ in
End(n). Then for every g ∈ Gψ and A ⊥ Z(ψ), d

dt |t=0
f(exp(tA)g) = 0.

3. In the settings of 1, suppose that the function f has a critical point g0 ∈ Gψ.
Then:
(a) n is an Einstein nilradical, with 〈·, ·〉 a nilsoliton metric for (Rn, g0.μ).
(b) If n is nonabelian, then ψ is proportional to a pre-Einstein derivation

of n.

Proof. 1. It is easy to see that Der(g.μ) = gDer(μ)g−1, for any g ∈ GL(n). In
particular, if g ∈ Gφ (and hence commutes with φ), the endomorphism φ is a real
semisimple derivation of (Rn, g.μ) satisfying (1) with any ψ ∈ Der(g.μ).

2. Assertion (a) follows from (4) (with the Lie bracket [·, ·] = g.μ). Assertion (b)
follows from (a) and the fact that the Ricci tensor commutes with every symmetric
derivation [Heb, Lemma 2.2], in particular, with ψ.

3. From the assumption and assertion 1 we obtain that Tr (Ricg0.μ A) = 0, for all
A ∈ gψ ⊕ (Z(ψ))⊥. It follows from (3) that Ricg0.μ ∈ Span(id, ψ); that is, equation
(6) holds, with some c ∈ R and some ψ ∈ Der(g0.μ). Then 〈·, ·〉 is a nilsoliton metric
for (Rn, g0.μ) by [La1, Theorem 3.7]. The nilsoliton inner product for n = (Rn, μ)
can then be taken as 〈X,Y 〉′ = 〈g−1

0 X, g−1
0 Y 〉, for X,Y ∈ Rn. This proves (a).

To prove (b), note that Ricg0.μ = c id+aψ for some c, a ∈ R, as shown above,
and Ricg0.μ = c1 id+Φ, for some c1 ∈ R, where Φ is the Einstein derivation of the
metric Lie algebra (Rn, g0.μ, 〈·, ·〉). As by (4), Tr (Ricg0.μ ψ) = Tr (Ricg0.μ Φ) = 0

and Tr Ricg0.μ < 0 when n is nonabelian, and c = c1 = Tr (Ric2g0.μ)/Tr (Ricg0.μ),
so Φ = aψ. By assertion 2 of Theorem 1, Φ = a1φ for some a1 ∈ R, where φ is a
pre-Einstein derivation for (Rn, g0.μ), and hence for n by assertion 1. If a = 0, then
Ricg0.μ = c id, and n is again abelian by [Mil, Theorem 2.4], so ψ = a−1a1φ. �

Using the results of [RS] and Lemma 1 we prove the following theorem, which
contains Theorem 2.

Theorem 5. Let n = (Rn, μ) be a nilpotent Lie algebra with a pre-Einstein deriva-
tion φ. Let 〈·, ·〉 be an inner product on n, with respect to which φ is symmetric.
Define the algebra gφ and the group Gφ by (3) and (9), respectively, and the function
f : Gφ → R by f(g) = ‖g.μ‖2.

1. The following conditions are equivalent:
(i) n is an Einstein nilradical;
(ii) the orbit Gφ.μ ⊂ V is closed;
(iii) the function f : Gφ → R

n has a critical point;
(iv) the function f : Gφ → Rn attains its minimum.
If g0 ∈ Gφ is a critical point for f , then 〈g0·, g0·〉 is a nilsoliton inner
product for n.

2. Suppose the orbit Gφ.μ is not closed. Then there exists a unique closed

orbit Gφ.μ0 ⊂ Gφ.μ. The following holds:
(a) the algebra n0 = (Rn, μ0) is an Einstein nilradical not isomorphic to

n;
(b) either φ is a pre-Einstein derivation for n0 or n0 is abelian;
(c) there exists A ∈ gφ such that μ0 = limt→∞ exp(tA).μ;
(d) such an A can be chosen symmetric, with integer eigenvalues.
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Proof. 1. The group Gφ is a real reductive algebraic group with the Lie algebra
gφ, which has a Cartan decomposition compatible with 〈·, ·〉 (on the symmetric
and the skew-symmetric endomorphisms). The equivalence of (ii) and (iv) follows
directly from [RS, Theorem 4.4]. The equivalence of (ii) and (iii) follows from [RS,
Theorem 4.3] and the fact that the group Gφ is the same for all the points of the
orbit Gφ.μ (assertion 1 of Lemma 1). The implication (iii)⇒(i) and the fact that the
nilsoliton inner product has the required form follow from assertion 3 of Lemma 1.

To prove the converse implication (i)⇒(iii), suppose that n is an Einstein nilrad-
ical. Then for some g ∈ GL(n), the inner product 〈·, ·〉 is nilsoliton on (Rn, g.μ).
We want to show that g can be chosen from the group Gφ. By (6) and assertion 2 of
Theorem 1, for any nilsoliton inner product there exists a symmetric pre-Einstein
derivation, so by conjugation by an element of Aut(n) we can assume that there ex-
ists a nilsoliton inner product 〈·, ·〉′, with respect to which φ is symmetric. It follows
that for all X,Y ∈ Rn, 〈X,Y 〉′ = 〈hX, Y 〉 for some positive definite h symmetric
with respect to 〈·, ·〉 and belonging to H, the centralizer of expφ in GL+(n). Then
there exists h1 ∈ H, with all the eigenvalues positive, such that h∗

1h1 = h (h∗
1 is the

adjoint with respect to 〈·, ·〉). Hence 〈·, ·〉 is a nilsoliton inner product on the Lie
algebra (Rn, h1.μ). The two-dimensional abelian Lie group H0 = exp(Span(id, φ))
lies in the center of H, and H = GφH0, so h1 = gg0 for some g ∈ Gφ and g0 ∈ H0

(in fact, g even belongs to exp(gφ)). Moreover, g0 = et exp(sφ) for some t, s ∈ R.
As exp(sφ) is an automorphism of μ and et is a scaling, the inner product 〈·, ·〉 is
nilsoliton on (Rn, g.μ), with g ∈ Gφ, which implies that g is a critical point of f .

2. The fact that the closure of Gφ.μ contains a unique closed orbit Gφ.μ0

follows from [RS, 9.3]. By [RS, Lemma 3.3], there exists A ∈ gφ such that
μ0 = limt→∞ exp(tA).μ. Such an A can be chosen symmetric with respect to
〈·, ·〉 and also such that the subgroup exp(tA) ∈ Gφ is algebraic, which implies that
the eigenvalues of some nonzero multiple of A are integers. This proves (c) and (d).

To prove (a) and (b), note that μ0, being a limit of nilpotent Lie brackets, is
a nilpotent Lie bracket itself. Regardless of whether φ is or is not a pre-Einstein
derivation for the nilpotent Lie algebra n0 = (Rn, μ0), it follows from [RS, Theo-

rems 4.3, 4.4] that the function f̃ : Gφ → R defined by f̃(g) = ‖g.μ0‖2 has a critical
point. Then by assertion 3(a) of Lemma 1, the algebra n0 is an Einstein nilradical.
It is not isomorphic to n, as otherwise n would be an Einstein nilradical and its
Gφ-orbit would be closed by Theorem 5, 1(ii) above. This proves (a).

By assertion 3(b) of Lemma 1, either n0 is abelian or φ = aφ0, where φ0 is a
pre-Einstein derivation for n0. As Tr φ2 = Tr φ and Tr φ2

0 = Tr φ0 by (1), it follows
that either φ = φ0, Tr φ0 = 0, or φ = 0. The equation Tr φ0 = 0 is not possible,
as n0 is an Einstein nilradical, so φ0 > 0 (by 2 of Theorem 1). If φ = 0, then
Gφ = SL(n), so n0 is abelian by [La3, Theorem 8.2] and the uniqueness of μ0. �

Remark 2. One possible reason why in assertion 2(a) of Theorem 5 the limiting
algebra n0 can be abelian is that there is no Einstein nilradical whose pre-Einstein
derivation is φ. This could happen, for instance, when φ is nonpositive (assertion
2 of Theorem 1) or when φ > 0 but the condition of [Ni2, Lemma 1] is violated.
The latter case is illustrated by the majority of free nilpotent Lie algebras. The
pre-Einstein derivation φ of the p-step nilpotent free Lie algebra f(m, p) on m gen-
erators is a positive multiple of the derivation having eigenvalues 1, 2, . . . , p whose
eigenspaces are the homogeneous components of f(m, p). Although both inequali-
ties (2) are satisfied, f(m, p) is not an Einstein nilradical when say m > 2 and p > 3,
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as no Einstein nilradical can have such pre-Einstein derivation [Ni2, Lemma 2]. So
for all n = f(m, p), which are not Einstein nilradicals, the algebra n0 is abelian.

We emphasize that the property of a nilpotent algebra n = (Rn, μ) to be an
Einstein nilradical depends on the closedness of the orbit of μ by the action of the
group Gφ depending on n. As the result, the closure of a nonclosed orbit Gφ.μ ⊂ V
may contain more than one Einstein nilradical. For each of them, the orbit of the
Lie bracket under the action of its own group is closed, but the Gφ-orbit is closed
only for one of them (assertion 2 of Theorem 5).

Example 2. Let n′ = (Rm, μ′) be a characteristically nilpotent Lie algebra. Its pre-
Einstein derivation φ′ is zero, Gφ′ = SL(m), and the closure of the orbit Gφ′ .μ′ con-
tains the abelian algebra Rm. Let a nilpotent algebra n = (Rm+3, μ) be the direct
sum of n′ and the three-dimensional Heisenberg algebra h3 given by [X1, X2] = X3.
The pre-Einstein derivation for h3 is φ2 = 2

3 diag(1, 1, 2). By assertion a of Theo-
rem 7 below, the derivation φ = 0n′ ⊕ φ2 is a pre-Einstein derivation for n. As φ is
not positive, the closure of Gφ.μ contains the abelian algebra Rm+3. On the other
hand, that closure also contains a nonabelian Einstein nilradical n̂ = (Rm+3, μ̂),

the direct sum of Rm and h3. The derivation φ̂ = idn′ ⊕φ2 is pre-Einstein for n̂, the
Gφ̂-orbit of μ̂ is closed, but the Gφ-orbit is not.

Remark 3. As follows from [RS, Theorem 4.3], if g0 ∈ Gφ is a critical point of the
function f , then the set of minimal brackets (the brackets with the smallest norm)
in the orbit Gφ.μ is Uφ.g0.μ, where Uφ = Gφ ∩ SO(n). This implies that the set of
critical points of f is Uφg0(Aut(n) ∩Gφ).

Theorems 1 and 2 suggest the following strategy for deciding whether a given
nilpotent Lie algebra n is an Einstein nilradical:

(a) Find a pre-Einstein derivation φ for n. In practice, this can be done just by
solving a system of linear equations. As it follows from the proof of assertion
1(a) of Theorem 1, every maximal torus of Der(n) contains a pre-Einstein
derivation, so one can choose a particular maximal torus to reduce the
amount of calculations. Also note that if φ is a (real, semisimple) candidate
for being a pre-Einstein derivation, it suffices to check the validity of (1)
only for semisimple derivations ψ commuting with φ. Indeed, adφ is a real,
semisimple endomorphism of Der(n). If adφ ψ = λψ, with λ = 0, then both
sides of (1) vanish, so it suffices to consider only those ψ which commute
with φ. The nilpotent part ψN of such a ψ is a derivation commuting with
φ, so the eigenspaces of φ are invariant subspaces of ψN and the restriction
of ψN to each of them is nilpotent, so for ψ = ψN , both sides of (1) again
vanish.

(b) If the inequalities of (2) are not satisfied, then n is not an Einstein nilradical.
Otherwise, compute the algebra gφ and use Theorem 2 or Theorem 5.

(c) Sometimes instead of (3) it is easier to prove that n is an Einstein nilradical
by explicitly producing a nilsoliton inner product. The pre-Einstein deriva-
tion gives a substantial amount of information for finding it. First of all, by
assertion 2 of Theorem 1, if a nilsoliton inner product exists, it can be cho-
sen in such a way that the eigenspaces of φ are orthogonal. Secondly, the
pre-Einstein derivation completely determines the eigenvalue type. Also,
as by (4) Tr (Ricn φ) = 0, it follows from (6) and Theorem 1 that an inner
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product on n is nilsoliton if and only if Ricn = c (id−φ) for some c < 0,
where the expression for Ricn is given by the right-hand side of (5).

4. Applications of Theorems 1 and 2

In this section, we use Theorem 1 and Theorem 2 to prove the following three
facts: Theorem 3, which gives an easy-to-check condition for a nilpotent Lie algebra
with a nice basis to be an Einstein nilradical, Theorem 6, which says that the
property of being an Einstein nilradical is, in fact, a property of the complexification
of a real nilpotent Lie algebra, and Theorem 7, which says that the direct sum of
nilpotent Lie algebras is an Einstein nilradical if and only if the summands are
Einstein nilradicals.

Proof of Theorem 3. In brief, the proof proceeds as follows. We fix a nice basis
and compute the pre-Einstein derivation and the group Gφ. Then we show that
the closedness of the orbit of the diagonal subgroup of Gφ is completely controlled
by the convexity condition (i) and that if there is a critical point somewhere on Gφ,
then there is one on the diagonal.

Let B = (X1, . . . , Xn) be a nice basis for a nonabelian nilpotent Lie algebra
n = (Rn, μ). Let Λ = {(i, j, k) : i < j, ckij = 0}, #Λ = m > 0. In a Euclidean
space Rn with the inner product (·, ·) and an orthonormal basis f1, . . . , fn, define
the finite subset F = {Ya = fi + fj − fk : a = (i, j, k) ∈ Λ} and denote by L the
affine span of F, the smallest affine subspace of Rn containing F. Fix an arbitrary
ordering of the set Λ and define an m × n matrix Y whose a-th row has 1 in the
columns i and j, −1 in the column k, and zero elsewhere, where a = (i, j, k) ∈ Λ.

The proof follows the steps at the end of Section 3.
Fix the nice basis B and an inner product 〈·, ·〉 on n, with respect to which the

nice basis is orthonormal. We say that an operator (an inner product) is diagonal if
its matrix with respect to B is diagonal. For a vector v = (v1, . . . , vn)

t ∈ Rn, denote
by vD the diagonal operator defined by vDXi := viXi. Note that vD ∈ Der(n) if
and only if v ∈ Ker Y . Similarly, for a vector r = (r1, . . . , rn)

t ∈ R
n with ri = 0,

denote by 〈·, ·〉r the diagonal inner product defined by 〈Xi, Xj〉r := r2i δij .
The Ricci operator Ricr of the metric algebra (n, 〈·, ·〉r) is diagonal and

(10) Ricr = (− 1
2Y

tβ)D

for a vector β ∈ R
m with βa = (ckijr

−1
i r−1

j rk)
2, where a = (i, j, k) ∈ Λ. To

see that, choose the 〈·, ·〉r-orthonormal basis Ei = r−1
i Xi. Then by (5) and

Definition 3, 〈Ricr Ek, El〉r = 0 when k = l, and the diagonal elements of Ricr
are 〈Ricr Ek, Ek〉r = 1

2

∑
i,j:(i,j,k)∈Λ〈[Ei, Ej ], Ek〉2r − 1

2

∑
i,j:(k,i,j)∈Λ〈[Ek, Ei], Ej〉2r −

1
2

∑
i,j:(i,k,j)∈Λ〈[Ek, Ei], Ej〉2r = − 1

2 (Y
tβ)k, as 〈[Ei, Ej ], Ek〉r = ckijr

−1
i r−1

j rk and

the k-th row of Y t has −1 in the columns a = (i, j, k) ∈ Λ and 1 in the columns
a = (i, k, j) ∈ Λ and a = (k, i, j) ∈ Λ (and 0 elsewhere).

We want to show that n admits a diagonal pre-Einstein derivation (note that n
may have more than one nice basis). Let φ be a diagonal derivation satisfying (1)
for all diagonal derivations ψ (such a φ exists and is unique, as the left-hand side of
(1) is a positive definite bilinear form on the space of diagonal derivations). Then
φ = vD, with v ∈ Ker Y , and (v, u) = ([1]n, u), for all u ∈ Ker Y . It follows that
v = [1]n+Y tγ for some γ ∈ Rm and that 0 = Y v = [1]m+Y Y tγ, so γ = −α, where
α is an arbitrary solution of the equation Y Y tα = [1]m from (ii) of the theorem (at
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this point we make no assumptions on the positivity of α). The fact that such an α
exists follows from the existence of φ. As the symmetric matrix Y Y t is nonnegative,
two solutions of the equation Y Y tα = [1]m may differ only by a vector from Ker Y t,
so, although α may be not unique, the vector v = [1]n + Y tγ = [1]n − Y tα is well-
defined. Hence

(11) φ = id−(Y tα)D.

To show that such a φ is indeed a pre-Einstein derivation, consider an arbitrary
ψ ∈ Der(n). By (4), Tr (Ric ψ) = 0, for any inner product on n. In particular,
for any diagonal inner product 〈·, ·〉r, equation (10) implies that Tr ((Y tβ)Dψ) = 0.
Choose v ∈ R

n in such a way that vD and ψ have the same diagonal entries.
Then 0 = Tr ((Y tβ)DvD) = (β, Y v). This holds for any vector β ∈ Rm with
the components βa = (ckijr

−1
i r−1

j rk)
2, where a = (i, j, k) ∈ Λ. Choose one such

a = (i, j, k) and take ri = rj = e−t, and rl = 1 for l = i, j. Substituting this to
(β, Y v) = 0, dividing by e4t and taking the limit when t → ∞, we obtain (Y v)a = 0.
It follows that Y v = 0, so that vD, the projection of ψ to the diagonal, is also a
derivation. Then Tr (φψ) = Tr (φvD) = Tr vD = Tr ψ, so the derivation φ given
by (11) (which is clearly semisimple and real) is indeed a pre-Einstein derivation.

As in Theorem 2, let gφ be the Lie algebra defined by (3), Gφ be the Lie group
defined by (9), and f : Gφ → R be the function defined by f(g) = ‖g.μ‖2, where μ
is the Lie bracket of n.

We first consider the behavior of f restricted to the diagonal subgroup of Gφ.
Let gD be the abelian subalgebra consisting of all the diagonal elements of gφ.

Lemma 2. 1. The following three conditions are equivalent:

(i) The projection of the origin of Rn to L lies in the interior of Conv(F).
(ii) There exists a vector α ∈ Rm with positive coordinates satisfying Y Y tα =

[1]m.
(iii) The function fD : gD → R defined by fD(A) = f(exp(A)) for A ∈ gD has

a critical point.

2. If A ∈ gD is a critical point of fD : gD → R, then exp(A) is a critical point
of f : Gφ → R, so n is an Einstein nilradical by Theorem 2.

Proof. 1. The equivalence of the geometric condition (i) and the algebraic condition
(ii) is an easy linear algebraic argument (see the proof of Corollary 1 in [Ni2]).

To show that (i) and (ii) are equivalent to (iii), we start with the following
observation: let {wa} be a finite set of vectors in a Euclidean space V with
Span(wa) = V ′ ⊂ V , and let ba be positive numbers. Then the function e : V → R

defined by e(x) =
∑

a bae
(wa,x) has a critical point if and only if it attains its mini-

mum if and only if the origin of V lies in the interior (relative to V ′) of the convex
hull of the vectors wa. Since e(x + y) = e(x) for y ⊥ V ′, we lose no generality
by replacing V by V ′ and e by e|V ′ . The fact that a critical point, if it exists,
is a minimum, is clear, as e(x) is positive and convex. Next, at a critical point
x, de(x) =

∑
a bae

(wa,x)wa = 0, so 0 lies in the interior of the convex hull of the
wa’s. Conversely, if M is a large positive number, the preimage e−1(0,M ] is closed,
nonempty, and is contained in the convex polyhedron

⋂
a{x : (wa, x) ≤ ln(Mb−1

a )}.
If the origin lies in the interior of the convex hull of the wa’s, that polyhedron is
bounded, so e−1(0,M ] is compact, which proves the claim.
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By (11), gD = {vD : (v, [1]n) = (v, Y tα) = 0}. Then fD(vD) = ‖ exp(vD).μ‖2 =∑
a=(i,j,k)∈Λ(c

k
ij)

2 exp(2(vk − vi − vj)) =
∑

a=(i,j,k)∈Λ(c
k
ij)

2 exp(−2(Y v)a). By the

observation from the previous paragraph, with V = {v : (v, [1]n) = (v, Y tα) = 0}
and wa = Ya − P , the projections of the vectors Ya to V , we find that fD has a
critical point if and only if the origin lies in the interior of the convex hull of the
vectors Ya − P ; that is, if and only if P lies in the interior of Conv(F).

2. Let vD ∈ gD be a critical point of fD and let μ′ = exp(vD).μ. The ba-
sis B is still nice for the Lie algebra n′ = (Rn, μ′), so by (10) the Ricci opera-
tor Ricn′ of the metric Lie algebra (n′, 〈·, ·〉) is diagonal. By 2(a) of Lemma 1,
d
dt |t=0

f(exp(tA). exp(vD)) = 8Tr (Ricn′ A), for any A ∈ End(n). The expression

on the right-hand side vanishes for all the A’s with the zero diagonal, as Ricn′ is
diagonal, and for all A ∈ gD, as vD is critical for fD. Hence exp(vD) is a critical
point of f . �

Lemma 2 proves the “if” part of the theorem. To prove the “only if” part, we
will show that if the function f has a critical point somewhere on Gφ, then it has
a critical point on exp gD.

We will need the following lemma, which slightly refines the Cartan decompo-
sition of the reductive real algebraic group Gφ. On the Lie algebra level, we have
gφ = uφ ⊕ p = uφ ⊕ p0 ⊕ gD, where uφ is the subalgebra of all the skew-symmetric
matrices from gφ, p is the subspace of all the symmetric matrices from gφ, and p0

is the subspace of all the matrices with the zero diagonal from p. On the Lie group
level, let Uφ = O(n) ∩ Gφ, a maximal compact subgroup of Gφ, let GD = exp gD,
a maximal torus in Gφ, and let P0 = exp p0.

Lemma 3. The map Uφ × P0 × GD → Gφ defined by (u, p, gD) → upgD for
u ∈ Uφ, p ∈ P0 and gD ∈ GD is surjective.

Proof of Lemma 3. We follow the approach of [WZ]. Let π(g) = gtg for g ∈ Gφ,
and let M = π(Gφ). Clearly, π(g1) = π(g2) if and only if g2 = ug1 for some
u ∈ Uφ. The action of Gφ on itself from the right defines the action on the
homogeneous space M = Gφ/Uφ by x → gtxg for x ∈ M . An inner product
Q on gφ defined by Q(A1, A2) = Tr (A1A

t
2) is Ad(Uφ)-invariant and gives, by

right translations, a bi-invariant Riemannian metric on M . The space M with
that metric is a Hadamard symmetric space with the de Rham decomposition∏p

j=1 SL(dj)/ SO(dj) × Rp−2, where d1, . . . , dp are the multiplicities of the eigen-
values of the pre-Einstein derivation φ. The space gD is a maximal abelian sub-
algebra in p = u⊥φ , so MD = π(exp gD) ⊂ M is a complete flat totally geodesic

submanifold. For any g ∈ G, let γ = γ(s) be (the unique) geodesic realizing the
distance d(g) from π(g) to MD, with s ∈ [0, d(g)] an arclength parameter, such
that γ(0) = π(gD) ∈ MD, γ(d(g)) = π(g). Then g−1

D γ(s)g−1
D is a geodesic of M

passing through the basepoint o = π(id) ∈ M whose tangent vector is orthogonal
to the tangent space of MD at o. It follows that g−1

D γ(s)g−1
D = π(exp(sA)) for some

symmetric matrix A ∈ gφ such that Q(A, gD) = 0, that is, for some A ∈ p0. So
π(g) = gD exp(d(g)A)gD = π(exp( 12d(g)A)gD), as required. �

Assume that n is an Einstein nilradical and that g0 ∈ Gφ is a critical point of
the function f . By Lemma 3, g0 = upgD for some u ∈ Uφ, p ∈ P0 and gD ∈ GD.
As f(ug) = f(g) for any u ∈ Uφ and g ∈ Gφ, the point g1 = pgD is also critical.
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Denote μ′ = exp(gD).μ and n′ = (Rn, μ′). The basis B is still a nice basis for
n′. Moreover, by 1 of Lemma 1, φ is a pre-Einstein derivation of n′, the algebra
gφ and the group Gφ for n′ are the same as those for n, and fn′(g) = fn(ggD)
for g ∈ Gφ. We can therefore replace n by n′ and assume that the function f
has a critical point p ∈ P0. Then p = expA for some A ∈ p0. Consider a function
F (t) = f(exp(tA)) for t ∈ R. The function F has a critical point at t = 1, as exp(A)
is critical for f , and at t = 0, as by 2(a) of Lemma 1, F ′(0) = d

dt |t=0
f(exp(tA)) =

8Tr (Ricn A) = 0, since Ricn is diagonal by (10). Let {Ei} be an orthonormal basis
of the eigenvectors of the symmetric matrix A, with the corresponding eigenvalues
νi, and let Ck

ij = 〈[Ei, Ej ], Ek〉 be the structural constants with respect to the basis

{Ei}. Then F (t) = f(exp(tA)) =
∑

i,j,k(C
k
ij)

2 exp(2t(νi + νj − νk)), so F ′′(t) ≥ 0.

Since the convex function F (t) has two critical points, it must be a constant, which
implies that νi + νj = νk for all the triples (i, j, k) with Ck

ij = 0, so A ∈ Der(n) and

p ∈ Aut(n). As f(g) = f(gp−1) for any p ∈ Aut(n) and g ∈ Gφ, the identity is also
a critical point for f .

Thus if n is an Einstein nilradical, then the function f has a critical point on
exp gD, which proves the “only if” part of the theorem by assertion 1 of Lemma 2.

�

The above proof shows that if a nilpotent Lie algebra with a nice basis is an
Einstein nilradical, then the nilsoliton inner product can be chosen to be diagonal.
This is by no means obvious, as a nilpotent Lie algebra can have two quite different
nice bases, the easiest example being a direct sum of two copies of the Heisenberg
algebra h3 given by [X1, X2] = X5, [X3, X4] = X6. The basis {X1 ± X3, X2 ±
X4, X5 ± X6} for this algebra is also nice, with a different number of nonzero
structural constants.

A nilsoliton inner product for a nilpotent Lie algebra with a nice basis can
sometimes be found explicitly. For instance, from (10, 11), if rk Y = m, the inner
product 〈·, ·〉r is nilsoliton if we choose r = (es1 , . . . , esn) ∈ R

n in such a way that
the si’s satisfy the linear system (Y s)a =

√
αa |ckij |−1 for a = (i, j, k) ∈ Λ.

There exist many nilpotent Lie algebras having no nice basis, as the following
two examples show.

Example 3. Let 1 ≤ p ≤ 1
2q(q−1) and letX1, . . . , Xq andXq+1, . . . , Xq+p be bases

for Rq and for Rp, respectively. Consider all the two-step nilpotent Lie algebras
nB = (Rq+p, μ) of type (p, q) (with [n, n] = Rp), for which the basis X1, . . . , Xq+p

is nice. Every such algebra is defined by a choice of the set Λ = {(i, j, k) : 1 ≤
i < j ≤ q ≤ k, ckij = 0} and then by a choice of #Λ nonzero numbers ckij . There
exists a finite number of the possible choices for Λ. Moreover, from Definition 3 it
follows that for any such Λ, #Λ ≤ m(p, q) = min( 12q(q − 1), 12pq). So every such
algebra nB is defined by a point in a finite union S of linear subspaces of the space
V(p, q) = (∧2

R
q)p (see Section 5), each of dimension at most m(p, q). The set of

points of V(p, q) defining the two-step nilpotent algebras of type (p, q) having a nice
basis is the GL(q) × GL(p)-orbit of S (if a nice basis exists for such an algebra,
then there exists a nice basis which is a subset of Rq ∪ Rp). From the dimension
count (as in [Eb1]), the orbit of S cannot cover the whole space V(p, q) (and its
subspace V0(p, q)), provided m(p, q)+ q2 + p2 − 1 < 1

2pq(q− 1). So for all the pairs
(p, q) satisfying the latter inequality, there exists a two-step nilpotent algebra of
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type (p, q) having no nice basis. There is an infinite set of such pairs (for instance,
the inequality holds for all q − 1 ≥ p ≥ 6).

Example 4. Consider the free three-step nilpotent Lie algebra n = f(3, 3) on three
generators (see [Ni2] for details). Suppose B = {Xi} is a nice basis for n. As it
follows from the definition, every bracket (and every multiple bracket) of the vectors
from B is proportional to an element of B (possibly zero). In particular, B∩ [n, n] is
a basis for [n, n]. Then the set B \ (B ∩ [n, n]) (of cardinality 3 = dim n− dim[n, n])
spans a linear complement to [n, n] in n, so its elementsX1, X2, X3 (up to relabeling)
can be taken as the generators for n. From the Jacobi identity and the fact that
every bracket [[Xi, Xj ], Xk], {i, j, k} = {1, 2, 3}, is proportional to an element of
the basis B, it follows that rk([[X1, X2], X3], [[X3, X1], X2], [[X2, X3], X1]) ≤ 1. This
contradicts the fact that the nine brackets [[Xi, Xj ], Xk], i, j, k ∈ {1, 2, 3}, i < j,
span the eight-dimensional space [[n, n], n].

Another application of Theorems 1 and 2 is the following theorem.

Theorem 6. Let n1 and n2 be two (real) nilpotent Lie algebras whose complexifi-
cations are isomorphic as the complex nilpotent Lie algebras. If n1 is an Einstein
nilradical, then so is n2, with the same eigenvalue type.

Note that two real nilpotent algebras with isomorphic complexifications might
be quite different. For instance, two-step nilpotent algebras n1 and n2 defined
by [X1, X2] = Z1, [X3, X4] = Z2, and by [X1, X3] = [X2, X4] = Z1, [X1, X4] =
[X3, X2] = Z2, respectively, are isomorphic over C. However, the algebra n1 is
decomposable: it is a direct sum of two copies of the Heisenberg algebra h3, while n2
is nonsingular (for any X ∈ n2 \ z, where z is the center of n2, the map adX : n2 → z

is surjective [Eb2]).
Theorem 6 can be useful when one knows the classification of a family of nilpotent

algebras only up to complex isomorphism (see e.g. [GT] or several lists of seven-
dimensional nilpotent Lie algebras available in the literature). Also, in the majority
of the results of the Geometric Invariant Theory (which seems to be strongly present
in the study of Einstein nilradicals), the ground field is C [VP].

Proof of Theorem 6. We start with constructing a pre-Einstein derivation in the
complex case, which we define as a semisimple derivation φ satisfying (1), and
showing that a pre-Einstein derivation always exists, is unique up to conjugation
by Aut(n), and has all its eigenvalues rational. The proof is almost identical to that
of assertion 1 of Theorem 1 (with the only difference being that we do not need to
split the torus t into the compact and the fully R-reducible parts), so we omit it.

Now let n = (Rn, μ) be a real nilpotent Lie algebra with the complexification
nC = (Cn, μ). Then Der(nC) = (Der(n))C, so the pre-Einstein derivation φ = φn

also serves as a pre-Einstein derivation for nC. It follows that the pre-Einstein
derivations of two real Lie algebras whose complexifications are isomorphic have
the same eigenvalues.

By Theorem 2, n is an Einstein nilradical if and only if the orbit Gφ.μ is closed
in V . Let gCφ be the complexification of the Lie algebra gφ defined by (3), and

let GC

φ ⊂ SL(n,C) be the Lie group with the Lie algebra gCφ (the group GC

φ is

defined by the right-hand side of (8), but over C). Consider the orbit of μ in the

space VC =
∧2

(Cn)∗ ⊗ Cn, the complexification of V , under the action of GC

φ. By
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the results of [BHC, Proposition 2.3] and [Bir, Corollary 5.3], the orbit Gφ.μ is
(Euclidean) closed in V if and only if GC

φ.μ is Zariski-closed in VC.
It follows that two real algebras having isomorphic complexifications either are

or are not Einstein nilradicals simultaneously. In the former case, the eigenvalue
types are the same, as the spectra of the pre-Einstein derivations are the same. �

Remark 4. The proof shows that the property of a real nilpotent Lie algebra n to
be an Einstein nilradical is, in fact, a property of its complexification nC. Namely,
call a complex nilpotent Lie algebra N = (Cn, ν) with a pre-Einstein derivation φ
stable, if the orbit GC

φ.ν is Zariski-closed in VC. Then n is an Einstein nilradical if

and only if nC is stable.

Yet another application of Theorem 1 and Theorem 2 is the following theorem.

Theorem 7. Let a nilpotent Lie algebra n be the direct sum of nilpotent Lie algebras
n1 and n2. Then:

(a) If φi are pre-Einstein derivations for ni, then φ = φ1⊕φ2 is a pre-Einstein
derivation for n.

(b) The algebra n is an Einstein nilradical if and only if both algebras n1 and
n2 are Einstein nilradical.

As it follows from [Pay, Theorem 4], if both algebras n1 and n2 are Einstein
nilradicals, a nilsoliton inner product on n can be taken as the orthogonal sum
of (appropriately scaled) nilsoliton inner products on the ni’s. Geometrically this
says that the Riemannian product of two Einstein solvmanifolds of the same Ricci
curvature is again an Einstein solvmanifold.

In the case when one of the summands is abelian, assertion (b) follows from [La2,
Proposition 3.3]. Note also that assertion (b) is very far from being true for the
semidirect sum: even when both summands are abelian, the resulting algebra n is
two-step nilpotent and can easily not be an Einstein nilradical (see Section 5).

Proof. In the proof, we use ⊕ in several different meanings: as a direct sum of linear
spaces (even when the spaces are Lie algebras), as the direct sum of operators, and
as the direct sum of Lie brackets (in the obvious sense). We use � for the direct
sum of Lie algebras.

(a) It is not difficult to see that the algebra Der(n) admits the following splitting

into four subspaces: Der(n) =
⊕2

i,j=1 dij , where dii, i = 1, 2, is the space of all

ψ ∈ End(n) such that ψ(ni) ⊂ ni, ψ|ni
∈ Der(ni), ψ|nj

= 0, for j = i, and where
dij , i = j, is the space of all ψ ∈ End(n) such that ψ|nj⊕[ni,ni] = 0 and ψ(ni) lies in
the center of nj .

Now let φ ∈ d11⊕d22 be the derivation of n such that φ|ni
= φi, i = 1, 2. Clearly,

φ is semisimple and real. Moreover, equation (1) holds for any ψ ∈ d11 ⊕ d22, as
each of the φi’s is pre-Einstein, and for any ψ ∈ d12 ⊕ d21, as both sides vanish.

(b) The “if” part follows directly from [Pay, Theorem 4]. To prove the “only
if” part, choose and fix the pre-Einstein derivations φ1, φ2, and φ = φ1 ⊕ φ2 for
n1, n2, and n, respectively, and consider the algebras gφi

⊂ sl(ni), i = 1, 2, and
gφ ⊂ sl(n), as in (3). Note that gφ ⊃ gφ1

⊕ gφ2
. Let ni = (Rni , μi), i = 1, 2; then

n = (Rn1+n2 , μ), with μ = μ1 ⊕ μ2.
Suppose that n is an Einstein nilradical but n1 is not. By assertion 2 of Theo-

rem 5, there exists A1 ∈ gφ1
⊂ sl(n1) such that the limit μ′

1 = limt→∞(exp(tA1).μ1)
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exists, and the algebra n′1 = (Rn1 , μ′
1) is not isomorphic to n1. Then for A =

A1 ⊕ 0|n2
∈ gφ, we have limt→∞(exp(tA).μ) = μ′

1 ⊕ μ2. As n is an Einstein nilradi-
cal, the algebra n′ = n′1 � n2 must be isomorphic to the algebra n = n1 � n2 by (ii)
of Theorem 2.

The claim now follows from the purely Lie-algebraic fact that if the algebras n1
and n′1 are not isomorphic, then so are n1 � n2 and n′1 � n2, for any n2, which in
turn follows from the uniqueness of a decomposition of a Lie algebra into the direct
sum of undecomposable ones, up to permutation and isomorphism. To decompose
an arbitrary (in particular, a nilpotent) Lie algebra n, one can use the following
approach. First, split off a direct abelian summand a, if it exists: n = n̂ � a,
where a is a linear complement to [n, n] in the center z(n) and n̂ ⊃ [n, n] is a linear
complement to a in n. This decomposition is not in general unique, but it is unique
up to a central automorphism of n, namely up to h ∈ Aut(n) such that (h− id)(n) ⊂
z(n) [RWZ, Theorem 2.4, Eq. (2.28)]. Next, when a particular n̂ is chosen (note
that z(n̂) ⊂ [n̂, n̂]), the further decomposition is unique up to permutation by [RWZ,
Theorem 2.8(e)]. It follows that a decomposition of a Lie algebra into the direct sum
of undecomposable Lie algebras is unique, up to isomorphism and permutation, so
the algebras n1 � n2 and n′1 � n2, with n1 � n′1, are nonisomorphic. �

5. Two-step Einstein nilradicals

In this section, the technique developed in the preceding sections is applied to
the two-step nilpotent Lie algebras. We prove Theorem 4 and also consider some
exceptional cases.

We start with some preliminary facts, mostly following [Eb2]. A two-step nilpo-
tent Lie algebra n of dimension p + q is said to be of type (p, q) if its derived
algebra m = [n, n] has dimension p. Clearly, m ⊂ z(n), the center of n, and
1 ≤ p ≤ D := 1

2q(q − 1).
Choose a subspace b complementary to m in n and two bases: {Xi} for b and

{Zk} for m. The Lie bracket on n defines (and is defined by) a p-tuple of skew-
symmetric q × q matrices J1, . . . , Jp such that [Xi, Xj ] =

∑p
α=1(Jα)ijZα. The

space of such p-tuples is V(p, q) = (
∧2

Rq)p. Note that the Jα’s must be linearly
independent, as m = [n, n], so the points of V(p, q) corresponding to the algebras
of type (p, q) form a subset V0(p, q) ⊂ V(p, q), which is the complement to a real
algebraic subset. The spaces V(p, q) and V0(p, q) are acted upon by the group
GL(q) × GL(p) (change of bases): for x = (J1, . . . , Jp) ∈ V(p, q) and (M,T ) ∈
GL(q) × GL(p), (M,T ).x = (J̃1, . . . , J̃p), with J̃α =

∑p
β=1(T

−1)βαMJβM
t (note

that instead of fixing the basis and deforming the Lie bracket, as in the action
g.μ(X,Y ) = gμ(g−1X, g−1Y ), we now keep the Lie bracket fixed and change the
basis). Clearly, two points of V0(p, q) lying on the same GL(q) × GL(p)-orbit
define isomorphic algebras. The converse is also true, so the space X (p, q) of the
isomorphism classes of two-step nilpotent Lie algebras of type (p, q) is the quotient
space V0(p, q)/(GL(q) × GL(p)). The space X (p, q) is compact but in general is
non-Hausdorff.

By Proposition A of [Eb1, Section 5.4d], when q ≥ 6 and 2 < p < D − 2, or
when (p, q) = (5, 5), the space V(p, q) contains no open GL(q)×GL(p)-orbits; that
is, no two-step nilpotent algebras of type (p, q) are locally rigid (an open orbit of

the action of SL(q) on the Grassmannian G(p,
∧2

Rq) considered in [Eb1] occurs
exactly when the action of GL(q)×GL(p) on V(p, q) has an open orbit).
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It will be more convenient to consider the action of SL(q) × SL(p) rather than
GL(q) × GL(p). The SL(q) × SL(p)-orbits distinguish the isomorphism classes up
to scaling, which is easy to control.

The splitting n = b⊕m of a two-step nilpotent Lie algebra n is a gradation, which
corresponds to the canonical derivation Ψ defined by Ψ(X +Z) = X +2Z, for any
X ∈ b, Z ∈ m. If a pre-Einstein derivation φ for n is proportional to Ψ, then the
group Gφ from Theorem 2 is precisely SL(q)× SL(p) (see (9)). If, in addition, n is
an Einstein nilradical, then it has the eigenvalue type (1, 2; q, p). Thus Theorem 2
implies the following:

Proposition 1 ([La3, Proposition 9.1]). A two-step nilpotent Lie algebra n of type
(p, q) corresponding to a point x ∈ V(p, q) is an Einstein nilradical of the eigenvalue
type (1, 2; q, p) if and only if the orbit (SL(q)× SL(p)).x ⊂ V(p, q) is closed.

Note that if a pre-Einstein derivation of a nilpotent Lie algebra n is proportional
to the one having only eigenvalues 1 and 2, then n is automatically two-step nilpo-
tent. Theorem 4 says that a typical algebra with such a pre-Einstein derivation is
an Einstein nilradical.

Let n be a two-step nilpotent Lie algebra of type (p, q), with 1 ≤ p < D, defined
by a point x = (J1, . . . , Jp) ∈ V0(p, q). Choose an arbitrary basis J ′

α, α = 1, . . . , D−
p, in the orthogonal complement to the subspace Span(J1, . . . , Jp) ⊂

∧2
Rq with

respect to the inner product Q(K1,K2) = −Tr (K1K2) on
∧2

Rq. The point x′ =
(J ′

1, . . . , J
′
D−p) ∈ V0(D − p, q) defines a two-step nilpotent Lie algebra n∗ of type

(D − p, q), which is called the dual to n. It is easy to check that the isomorphism
class of n∗ is well-defined (depends only on the isomorphism class of n).

Proof of Theorem 4. Let a pair (p, q) with 1 ≤ p ≤ q(q − 1)/2 be such that the
stabilizer in general position (the s.g.p.) of the group GC = SL(q,C) × SL(p,C)

acting on the space VC(p, q) = (
∧2

Cq)p is reductive. This means that there exists a
reductive complex Lie algebra h and a nonempty GC-invariant Zariski-open subset
U ′ ⊂ VC(p, q) such that for any point x ∈ U ′ the Lie algebra of the stabilizer GC

x is
isomorphic to h [VP, §7].

By [Ela], in most cases the s.g.p. of the action of GC on VC(p, q) is finite; that
is, h = 0 (as it is suggested by the dimension count). The cases when it is not are
listed in Table 6 of [Ela]. Examining that table we see that the s.g.p. is reductive
unless (p, q) = (2, 2k + 1).

By the Popov criterion [Pop], in all the cases when the s.g.p. is reductive, the
action is stable; that is, there exists a nonempty Zariski-open subset U ′′ ⊂ VC(p, q),
which is a union of closed GC-orbits. Let U be the set of real points of U ′′ ∩ U ′.
Then U is a SL(q)×SL(p)-invariant semialgebraic subset of V(p, q) = (

∧2
Rq)p and

is open and dense in the Euclidean topology in V(p, q).
It now follows from Remark 4 and Proposition 1 that for every point x ∈ U, x =

0, the two-step nilpotent Lie algebra corresponding to x is an Einstein nilradical.
Note that every such x lies in V0(p, q), hence defining a two-step nilpotent Lie
algebra n precisely of type (p, q) (for if x = (J1, . . . , Jp) ∈ U and the Jα’s are linearly
dependent, then the closure of the orbit (SL(q) × SL(p)).x contains the origin of
V(p, q)). Hence the eigenvalue type of the Einstein nilradical n is (1, 2; q, p). �

The proof shows that a generic point of V(p, q) defines an Einstein nilradical with
the eigenvalue type (1, 2; q, p) in all the cases except for (p, q) = (2, 2k+1) (in fact,
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there are no two-step Einstein nilradicals of type (1, 2; 2k + 1, 2) at all, as follows
from [GK, Proposition 2.9(v)]). In Theorem 4, we narrow the dimension range to
exclude those cases when some algebras of type (p, q) have open orbits in V(p, q)
(and additionally, the cases (p, q) = (2, 2k), k > 3). The remaining cases give a
reasonable notion of being typical, not only in the linear space V(p, q), but also in the
non-Hausdorff space X (p, q) of isomorphism classes of two-step nilpotent algebras
of type (p, q). Note that, in general, the condition of typicality of a nilpotent Lie
algebra could hardly be nicely defined (see [Luk]). On the other hand, taking the
categorical quotient V(p, q)//(SL(q) × SL(p)) is somewhat tautological in view of
the proof of Theorem 4.

Theorem 4 omits two-step nilpotent Lie algebras n with the following (p, q):

• p = 1. Any such n is the direct sum of a Heisenberg algebra and an abelian
ideal and is an Einstein nilradical (the corresponding solvmanifold can be
taken as the product of a real and a complex hyperbolic space).

• p = D, a free two-step nilpotent algebra; n is an Einstein nilradical by [GK,
Proposition 2.9].

• p = D−1. Any such algebra is an Einstein nilradical by [Ni3, Proposition 3].
• p = 2, p = D − 2. These algebras can be completely classified using the
Kronecker theory of matrix pencils. The approach suggested at the end of
Section 3 can be used to find Einstein nilradicals among them.

• q ≤ 5, (p, q) = (5, 5). Using Theorem 3 and the classification from [GT],
we find below all the Einstein nilradicals among these algebras.

First of all, by [Wil, Theorem 3.1] and [La2, Theorem 5.1], any nilpotent Lie
algebra of dimension six or lower is an Einstein nilradical (no longer true in di-
mension 7). Second, any two-step nilpotent algebra with p = 1, D, or D − 1 is an
Einstein nilradical. This leaves out the following list of pairs (p, q):

(p, q) = (3, 4), (4, 4), (2, 5), (3, 5), (4, 5), (6, 5), (7, 5), (8, 5).

According to the classification in [GT, Table 2], all the algebras with (p, q) =
(3, 4), (4, 4), (2, 5), (3, 5), and (4, 5) over C fall into a finite number of classes,
each of which is defined over R. The same is true for the remaining three cases
(p, q) = (6, 5), (7, 5), (8, 5), which give the algebras dual to the algebras of types
(p, q) = (4, 5), (3, 5), and (2, 5), respectively. Note that the dual to an Einstein
nilradical is not necessarily an Einstein nilradical.

By Theorem 6, it suffices to consider the algebras in [GT, Table 2] and their
duals as the real Lie algebras. The majority of them (all five of type (3, 4), all three
of type (4, 4), all five of type (2, 5), 15 out of 17 of type (3, 5), and 31 out of 38 of
type (4, 5)) have a nice basis, which is the basis given in the table. Moreover, as
q ≤ 5, the two-step nilpotent Lie algebra dual to one having a nice basis also has a
nice basis, which easily follows from Definition 3.

Therefore, for all but two algebras of type (3, 5), seven algebras of type (4, 5) and
their duals (two of type (7, 5) and seven of type (6, 5)), the question of whether the
algebra is an Einstein nilradical is completely answered by Theorem 3. It turns out
that in all these cases the matrix Y has the maximal rank m, so that the equation
Y Y tα = [1]m from (ii) of Theorem 3 has a unique solution α. A direct computation
shows that the only cases when the algebra fails to be an Einstein nilradical are
the following: three algebras of type (7, 5) dual to the algebras 75,87 and 102,
and six algebras of type (6, 5) dual to the algebras 21,36,41,50,52 and 59 from
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Table 1. Two-step nilpotent Lie algebras of types (3, 5) and (4, 5)
for which the basis {Xi, Zα} is not a nice basis

Relations Orthonormal basis

26 133, 152, 233, 244, 251, 341 −1√
3
(2X1 −X2),

√
2√
3
X2, X3, X4, X5,

Z3, Z4,
−
√
3√

10
(Z1 + 2Z2),

√
3√
2
Z2

28 134, 143, 152, 233, 242, 251, 342 2
√
3X1,−2X2+X3,

√
6X3,

√
6X4, X5,

Z4, Z3,
1√
2
Z2,

1√
30
Z1

44 124, 143, 152, 232, 242, 351
√
6X1,

√
6X2,−2X3 +X4,

√
6X4, X5,

Z4, Z3, Z2,
1√
15
Z1

45 123, 142, 151, 232, 243, 344 1√
6
(2X1 +X4), 2X2, X3, X4,

√
5√
2
X5,

Z4, 2Z3, 2Z2, Z1

55 124, 132, 142, 243, 351 X1, X2,
1√
6
(−2X3 +X4), X4, X5,

Z4, Z3, Z2,
√
2√
5
Z1

60 124, 132, 143, 232, 251, 341 1√
2
(−2X1 +X2),

√
3√
2
X2, X3, X4, X5,√

3Z4, Z3, Z2, Z1

66 124, 131, 153, 231, 242 −2X1 +X2,
√
3X2, X3, X4, X5,√

12Z4, Z3, Z2, Z1

72 132, 143, 232, 251, 341 X1 +X2,
√
3(X1 −X2), X3, X4, X5,

Z3, Z2, Z1

78 131, 153, 231, 242 X1 +X2,
√
3(X1 −X2), X3, X4, X5,

Z1, Z2, Z3

[GT, Table 2]. Perhaps the most interesting of them is algebra 102: viewed as an
algebra of type (3, 5), it is the direct sum of the free two-step nilpotent algebra on
three generators and a two-dimensional abelian ideal.

In the remaining cases, when the basis given in [GT] is not nice, we follow steps
(a) and (c) at the end of Section 3, first finding a pre-Einstein derivation and
then solving the system of equations for the nilsoliton metric. All nine algebras
26,28,44,45,55,60, 66,72,78 and their duals appear to be Einstein nilradicals.
An explicit form of the nilsoliton inner product is given in Tables 1 and 2, where we
use the following notation. The first column is the number of the algebra in the list
[GT, Table 2], and the asterisk means the dual algebra. The column “Relations”
lists the nonzero brackets with respect to the basis {Xi, Zα}. For instance, algebra
28∗ is defined by the relations [X1, X2] = Z1, [X1, X5] = −Z3 −Z4, [X2, X3] = Z2,
[X1, X4] = −Z2, [X2, X4] = Z3, [X3, X4] = Z4, [X3, X5] = Z5, and [X4, X5] = Z6.
The third column gives an orthonormal basis for a nilsoliton inner product (which
can be checked directly by (5) and (6)). Note that the algebras from Tables 1 and 2
exhibit quite exotic eigenvalue types.

Summarizing these results, we obtain the following proposition.

Proposition 2. A two-step nilpotent Lie algebra of type (p, q), with q ≤ 5 and
(p, q) = (5, 5), is an Einstein nilradical, unless it is isomorphic (over C) to an 11-
dimensional algebra of type (6, 5) dual to one of the algebras 21,36,41,50,52,59,
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or to a 12-dimensional algebra of type (7, 5) dual to one of the algebras 75,87, or
102 from [GT, Table 2].

Table 2. The algebras dual to the algebras from Table 1

Relations Orthonormal basis

26∗ −251, 341, 232,
−132, 123, 144,
355, 456

−
√
3√
91
(26X1 + 19X2),− 3

√
209√
91

X2,
12

√
19

7 X3,
11
6 X4,

√
22√
3
X5,

Z1,
6
√
6√

77
Z2, Z3,

√
627

16
√
14
Z4, Z5,

77
72

√
19
Z6

28∗ 121,−153−154,
232,−142, 243,
344, 355, 456

8
√
266√
5

X1,
12

√
57√

145
X2,

1√
29
(9X2+29X3), X4,

√
3

2
√
14
X5,

16
√
14

5 Z1,

4
√
2√
5
Z2,

4
√
6√

145
Z3,

1
19

√
29
(−9Z3 + 29Z4),

√
3

10
√
7
Z5,

√
3

16
√
266

Z6

44∗ 131,−152−153,
232, 243, 254,
345, 456

2
√
199

3
√
145

X1,
1√
29
X2,

√
2

3
√
2805

(X3 +
33
58X4),

1
29X4,

1√
5771

X5, Z6,

398
√
2

3
√
33

Z1,
10

√
34√

33
Z2,

−
√
65

78 (154Z2 + 199Z3),
5
√
17√
23

Z4,
2
√
995√

1353
Z5

45∗ −141, 231, 242,
−122, 133, 254,
355, 456

13X1 − 8X4,
2
5X2, 260X3, 12X4, X5,

√
130Z1,

1√
10
Z2,

65
√
10Z3,

1
10

√
13
Z4, 5

√
13Z5, Z6

55∗ −131, 141, 152,
233, 254, 345,
456

X1, X2,
1

2
√
6
(17X3 + 12X4),

√
11X4, X5,

√
34

2
√
3
Z1,

√
5√
7
Z2,

√
34

2
√
3
Z3,

√
5√
7
Z4,

17
√
55

2
√
39

Z5,
√
17Z6

60∗ −251, 341, 232,
−132, 153, 244,
355, 456

√
19(2X1 +X2), 3

√
3X2, 4X3,

√
33X4,

√
22X5, Z1,

4√
33
Z2,

√
19√
51
(−Z1 + 2Z3), Z4,

4√
33
Z5, Z6

66∗ −131, 231, 452,
143, 254, 345,
356

1√
2
(2X1 +X2),

√
3√
2
X2, X3, X4, X5, Z1, Z2, Z3, Z4, Z5, Z6

72∗ −131, 231, 342,
−252, 123, 154,
245, 356, 457

4X1 + 2X2,
√
19√
2
X2,

1
3X3,

√
11X4,

1√
57
X5, Z1, Z2,

12
√
19√

29
Z3,

2
√
6

5
√
19
(Z2 − 2Z4), 3

√
11Z5,

√
2√

1311
Z6,

√
66√
437

Z7

78∗ −131, 231, 122,
143, 254, 345,
356, 457

−2
√
3(X1 +X2), 2(X1 −X2),

√
14X3,

√
51X4,

√
51X5,√

14√
51
Z1,

4
√
2

3
√
17
Z2, Z3, Z4, Z5, Z6,

√
51√
14
Z7
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