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Abstract

Background: Developments in single photon emission tomography instrumentation

and reconstruction methods present a potential for decreasing acquisition times.

One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This

study was motivated by the inconsistency in the reported ejection fraction (EF) and

left ventricular (LV) volume results between IQ-SPECT and more conventional low-

energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative

results were compared while the equivalent number of iterations (EI) was varied. The

end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were

investigated.

A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs.

Phantom performance was verified by comparing the set EF values to those measured

from a gated multi-slice X-ray computed tomography (CT) scan (EFTrue). The phantom

with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR

protocols. The data were reconstructed with different EI, and two commonly used

clinical myocardium delineation software were used to evaluate the LV volumes.

Results: The CT verification showed that the phantom EF settings were repeatable and

accurate with the EFTrue being within 1% point from the manufacture’s nominal value.

Depending on EI both MPI protocols can be made to produce correct EF estimates, but

IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when

compared to the phantom’s volumes, while LEHR protocol underestimated volumes by

24 and 21%, respectively. The volume results were largely similar between the

delineation methods used.

Conclusions: The reconstruction parameters can greatly affect the volume estimates

obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes

than the conventional LEHR MPI protocol. The volume estimates are also software

dependent.
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Background

Myocardial perfusion imaging (MPI) using single photon emission computed tomog-

raphy (SPECT) has been shown to have good prognostic power for diagnosing coron-

ary artery disease [1, 2]. Gated MPI has shown to significantly reduce the number of

so-called borderline cases when interpreted simultaneously with stress and rest
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perfusion images [3]. In addition, post-stress left ventricle ejection fraction (LVEF) and

end-systolic volume (ESV) have incremental prognostic value over perfusion informa-

tion in predicting cardiac death [4].

In recent years, developments in both SPECT MPI reconstruction methods and hard-

ware have been in part affected by clinical desire of increased and more economical pa-

tient throughput. In addition to novel SPECT camera models dedicated to MPI [5],

introduction of collimator-detector response compensation and other advanced noise

reduction methods into the iterative reconstruction algorithms [6] have made faster or

‘low activity’ MPI imaging generally available [7].

IQ-SPECT is a cardiac imaging software and hardware option for Siemens general

purpose gamma cameras [8] (Siemens Healthineers, Erlangen, Germany). The three

main components of IQ-SPECT are variable-focus collimators (SmartZoom), a cardio-

centric acquisition orbit and an iterative reconstruction algorithm incorporating

collimator-detector response compensation for the SmartZoom collimators [9]. It has

been shown using static cardiac phantoms that IQ-SPECT preserves both image quality

and the results of quantitative measurements with a quarter of the acquisition time or

a quarter of administered activity used in conventional MPI [8, 10]. Caobelli et al. have

also compared the LEHR protocol with a one-fourth acquisition time IQ-SPECT proto-

col and found no significant differences in perfusion scores [11]. Recently, they have

shown with patient data that one-eighth time IQ-SPECT protocol produces statistically

comparable results with the one-fourth protocol and could provide significant improve-

ment in patient throughput of an MPI centre [12]. However, Havel et al. have shown

how IQ-SPECT produces significantly higher summed stress, rest and difference scores,

lower EF values and higher left ventricular (LV) volumes than the conventional LEHR

imaging protocol with filtered back projection reconstruction [13]. On the other hand,

Horiguchi et al. have shown that the number of projections in an IQ-SPECT study has

a significant effect on thallium-201 MPI results [14]. By increasing the number of pro-

jections per camera head from the recommended 17 to 36, they produced MPI images

equivalent to those using conventional SPECT. In addition to reconstruction methods

and imaging protocol, it has also been shown by Caobelli et al. that the positioning

process of the cardio-centric orbit at the beginning of the acquisition can have an effect

on diagnostic accuracy of the IQ-SPECT imaging [15]. As the published results remain

inconsistent, it is difficult to have a clear conclusion on the reliability of IQ-SPECT.

In a recent study, Joergensen and Hansson measured 28 patients’ EFs using IQ-

SPECT from two different reconstruction datasets and also with multi-gated planar

equilibrium radionuclide ventriculography (MUGA) [16]. The reconstruction parame-

ters for IQ-SPECT were 15 iterations, 2 subsets and 10-mm Gaussian post-filter (proto-

col A) and 12 iterations, 1 subset and 10-mm Gaussian post-filter (protocol B). They

concluded that none of the IQ-SPECT protocols evaluated in the study were compar-

able with MUGA, and they stated that ‘[IQ-SPECT protocol A or B] is not suitable for

evaluation of LVEF [(left ventricular ejection fraction)] in critical settings, e.g., in con-

trol of chemotherapy or evaluation of cardiac pumping efficiency’.

In this study, we validate a dynamic heart phantom using gated CT imaging. Then,

we evaluate the absolute LV volume quantification accuracy of IQ-SPECT and compare

the calculated LVEF to a conventional LEHR acquisition protocol (EFIQSPECT and

EFLEHR, respectively). Our study is motivated by the inconsistency in the EF and LV
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volume results between IQ-SPECT and LEHR protocols, as discussed above. In

addition, to our knowledge, the effect of reconstruction parameters on EF has not been

explicitly studied in any prior IQ-SPECT investigations. We investigate how the num-

ber of reconstruction iterations affects the EF estimation in a high signal, no back-

ground phantom setup.

Methods

EFIQSPECT and EFLEHR were measured using a dynamic heart phantom (PTW-Freiburg

GmbH, Freiburg, Germany) capable of varying EF and beats per minute (BPM). The

phantom can also give a trigger signal to a SPECT or computed tomography (CT) sys-

tem via an electrocardiography (ECG) connector.

The EF [%] was calculated from the measured volumes using the equation

EF ¼
EDV−ESVð Þ

EDV
� 100%

ð1Þ

where EDV and ESV are the largest and smallest phantom volumes corresponding to

the end-diastolic and end-systolic volumes, respectively. The heart phantom volumes

were validated using gated CT imaging (EDVTrue, ESVTrue and EFTrue) as a reference.

These were then compared with estimates from clinical IQ-SPECT and LEHR acquisi-

tion protocols.

Dynamic heart phantom

The phantom consists of two main parts: a pump unit and a membrane unit. The

membrane unit of the phantom was placed within a NEMA IEC PET body phantom

(Fig. 1). The EDV is varied by changing the amount of water pumped into the mem-

brane unit, while ESV remains constant. The nominal EF settings used in this study

were 45, 55, 65 and 70%. According to the manufacturer, the phantom pump unit pro-

duces highly accurate and repeatable volumes and thus possible error between cardiac

cycles was considered negligible. However, the membrane sizes may vary slightly be-

tween units, and thus, the ESV was verified with a CT scan and manual measurements.

During the IQ-SPECT and LEHR acquisitions, the myocardial volume of the phantom

was filled with a solution of 300 MBq of 99mTc-pertechnetate diluted with 400 ml of

distilled water. A high amount of 99mTc activity was used to produce statistically high-

Fig. 1 The dynamic heart phantom. Left—the membrane and pump units. Right—the phantom assembled

and ready for measurement in the gamma camera. The membrane unit installed is shown inside a NEMA

IEC PET body phantom and positioned for IQ-SPECT acquisition
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quality SPECT projection data. This non-clinical concentration was used to distinguish

the effect of iteration numbers from other confounding factors such as (denoising) filter

choice or delineation software performance on low statistics data. The activity concen-

tration within the myocardium space was verified with gamma counter measurements

to ensure consistency between acquisitions. The CT was carried out without introdu-

cing radionuclides or contrast agents.

Phantom validation with gated CT

To validate phantom volume accuracy and consistency, the dynamic heart phantom

was scanned with a second-generation dual-source Siemens SOMATOM Definition

Flash CT system. ECG-triggered cardiac CT scans were performed at 60 bpm with four

different EF settings: 45, 55, 65 and 70%. EF 65% was additionally scanned at heart rates

of 40, 50, 60 and 70 bpm. The scanning parameters used in the measurements were

tube voltage 100 kVp, slice collimation 2 × 128 × 0.6 mm with z-flying focal spot, gantry

rotation time 280 ms, quality reference tube current-time product 320 mAs per rota-

tion (CareDose 4D), and pitch factor 3.4. The time resolution of the scans was 75 ms.

The mean volume CT dose index and dose length product were 36 mGy and

570 mGy cm, respectively. For comprehensive evaluation of the phantom volumes, im-

ages with a slice thickness of 0.6 mm and an increment of 0.6 mm were reconstructed

with an I26f reconstruction kernel (SAFIRE level 2) from 21 cardiac phases (0–100%

with 5% intervals) for each scan. The reconstructed image field of view was set to

150 mm and the matrix size to 256 × 256 resulting in near-isotropic voxels.

For ESV validation, a non-gated CT scan of the resting state phantom was performed

with a chest CT scan protocol. The scanning parameters were 120 kVp, 128 × 0.6 mm

slice collimation, 0.5-s rotation time, 0.6 pitch and 120 quality reference mAs. Images

with a slice thickness of 0.6 mm, an increment of 0.6 mm, 150 mm FOV and 512 × 512

image matrix were reconstructed using the B30f kernel. In addition, ESV was manually

measured by dipping a relaxed inner membrane unit into a water path. The water bath

was placed on a high precision scale, and the replaced water mass was measured with

the scale and interpreted as volume.

Gated CT image analysis

The following analysis was carried out individually on all the data sets and cardiac

phases and on the non-gated reference volume. Each volume was resampled to

align along the horizontal long axis with isotropic 0.6-mm resolution using bicubic

interpolation. A double-peaked Gaussian function (see Fig. 2) was fitted to the vol-

ume histogram using a simplex search method of Lagarias et al. [17] implemented

in MATLAB (MathWorks, Natick, MA, USA). The water-membrane segmentation

decision threshold was set at the half-value of the obtained Gaussians’ peak loca-

tions. As the CT number of water is expected to be near zero, the resulting

threshold is approximately half of the mean CT number of the membrane wall.

While preserving the membrane boundary 3-D morphological dilation, erosion and

hole-filling were applied to remove the clutter caused by image noise. Each seg-

mented slice was verified visually to only hold voxels belonging to the innermost

phantom volume and the corresponding membrane wall. LV volumes from all the
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4-D acquisitions and time points were determined to ensure segmentation algo-

rithm stability. The EFTrue values for each phantom setting were calculated using

the smallest (ESVTrue) and largest volumes (EDVTrue). EF 65% acquisitions with

different BPM settings were used to further assess the phantom measurement and

analysis consistency and repeatability.

IQ-SPECT and LEHR acquisitions

Acquisition protocols

Both acquisitions were performed using the same dual head gamma camera (Siemens

Symbia T2) using ECG-gating with eight bins. The data were acquired into a 128 × 128

matrix producing a 4.8-mm voxel size. The energy window was centred at 140 keV with

15% width. The IQ-SPECT protocol was based on the manufacturer’s recommenda-

tions with an extended acquisition time of 30 s per view. IQ-SPECT covers a 204° scan-

ning arc with an angular step of 6.12°. A total of 34 projections were acquired. To

ensure repeatable positioning, the phantom was first aligned with camera’s lasers. Then,

the first cardio-centric orbit setup was marked on the surface of the phantom with a

cobalt-57 pen-point and a regular marker. The following cardio-centric orbit setups

were focused with the help of the cobalt-57 pen-point marker on the surface markings

of the phantom. The radius of the rotation was constant (28 cm) for the IQ-SPECT

due to the cardio-centric orbit.

The LEHR protocol had a scanning arc of 180° with an angular step of 1.4° and an

acquisition time of 25 s per view. A total of 128 projections were acquired with camera

heads in the 90° cardiac configuration. For the LEHR acquisitions, the phantom was

positioned at the centre of the field of view (FOV), but the acquisition was carried out

using a non-circular orbit and auto-contouring as is routinely carried out in clinical

scanning.

Fig. 2 CT imaging was used in the phantom validation d. Segmentation between phantom wall and water

was performed by fitting a double Gaussian function to the CT volume histogram a. The volume

corresponding to the ESV is delineated in b and c by the thin black line including the inner membrane. The

thick black line indicates the corresponding slice locations in b and c. The segmentation was verified by

visually viewing the axial slices c
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Image reconstruction and data analysis

The gated LEHR projection data were reconstructed using ordered subset expectation

maximization (OSEM)-based Flash3D iterative reconstruction (Siemens Healthineers,

Erlangen, Germany). IQ-SPECT data were reconstructed using Siemens implementa-

tion of conjugate-gradient iterative algorithm. No attenuation correction was used as it

was not supported in the reconstruction software for gated data. Because the algo-

rithms included a collimator-detector response compensation and the projection data

had high signal-to-noise ratio, filtering was not applied. The images were reconstructed

using different combinations of numbers of iterations and subsets, but henceforth, the

results will be presented as a function of equivalent number of iterations (EI), i.e. the

product of the number of iterations and the number of subsets.

The EF and LV volumes were calculated using Quantitative Gated SPECT software

(QGS, Cedars-Sinai Medical Center, Los Angeles, USA) and Corridor4DM (4DM, Uni-

versity of Michigan Medical Center, USA) with an automatic myocardium delineation.

For 4DM, ‘Mid membraneous Septum’ algorithm was used for delineation [18].

Results

Phantom validation

The LV volumes of different cardiac phases measured from the gated CT are shown in

Fig. 3. The measured ESVTrue, EDVTrue and EFTrue values are presented in Table 1. The

differences between measured EFs and phantom settings were less than one percentage

point. In addition, the ESV was verified with non-gated CT scan and with manual mea-

surements, and the ESVTrue was found to be 34.0 and 32.9 ml, respectively.

IQ-SPECT and LEHR

Representative gated SPECT images for EF setting 65% with different EI values are

shown in Fig. 4. There are distinct differences between LEHR and IQ-SPECT images,

Fig. 3 The phantom volumes analysed from the gated CT data. The largest and smallest volume values

were used to calculate the EF. All the shown 21 phase volumes obtained from the gated CT scans were

analysed as an additional verification of the phantom and CT analysis method: the expected sinusoidal-like

curves were produced for all the settings. The values include the innermost water volume and the phantom

membrane surrounding it as shown in Fig. 2b, c
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resulting in smaller ventricle volumes in the latter. For example the ‘myocardium’ is

shorter and thicker in the IQ-SPECT than in LEHR images. Also, the apex thickening,

often seen in clinical images, is visible in the IQ-SPECT data.

The EF values for the IQ-SPECT and LEHR protocols as a function of EI are shown

in Fig. 5a, b. In both protocols, the EF calculations depend highly on the number of re-

construction iterations; for low number of iterations, both algorithms greatly overesti-

mate the EF. This results from the slow convergence of the reconstruction algorithms

and underestimations of the volumes (also seen in Fig. 6). Both algorithms slowly ap-

proach a stable EF value around 30 EIs, but with higher EI, proceed to underestimate

EF from 5 to 10 percentage points.

The volume estimates of ESV and EDV for different number of EIs are shown in Fig. 6

for both imaging protocols with corresponding true volumes (dashed lines) determined

during CT validation. EDVs and ESVs can be seen to converge towards the true phys-

ical volumes produced by the phantom. The volume estimates keep increasing over the

studied EI range, but the ‘stroke volume’ (EDV-ESV) reaches a constant after approxi-

mately 10 iterations. This explains the decreasing phenomenon in the calculated EF

with QGS software (Fig. 5a); the EDV and ESV increase, but the difference between

them remains constant. In contrast, 4DM does not alter the cardiac muscle thickness

as much as QGS with higher EIs. Therefore, similar increasing volume phenomenon is

not as clearly present (Fig. 5b), and EF is more stable with high number of EIs. How-

ever, The IQ-SPECT produced systematically smaller volumes than LEHR protocol at

the studied iterations range.

The best EF estimates and the associated number of EIs, EDVs and ESVs are shown

in Table 2. Percentage difference (ΔEDV and ΔESV) between SPECT protocol and cor-

responding CT volumes are also shown. With the right choice of EIs both protocols

produced EF values within one percentage point of the EFTrue. However, the absolute

volume estimates were approximately 40 and 20% lower for IQ-SPECT and LEHR,

respectively, when compared to ESVTrue and EDVTrue. IQ-SPECT required a higher

number of EIs to reach the EFTrue values, possibly due to a smaller number of projec-

tions and a more complex reconstruction process. The slower convergence of the IQ-

SPECT reconstruction is also shown in Fig. 7, where the cardiac cycle volumes of the

phantom (phantom EF setting 65%) are compared with the corresponding CT data

using different number of equivalent iterations.

Table 1 ESVTrue, EDVTrue and EFTrue measured from gated CT images

Phantom settings bpm EDVTrue
[ml]

ESVTrue
[ml]

EDV-ESV
[ml]

EFTrue
[%]

EF 45% 60 56.9 31.2 25.8 45.3

EF 55% 60 73.1 33.1 40.0 54.8

EF 65% 40 94.3 33.2 61.2 64.8

EF 65% 50 95.2 33.3 61.9 65.0

EF 65% I 60 93.6 32.6 61.0 65.2

EF 65% II 60 94.9 32.9 62.0 65.1

EF 65% 70 95.2 33.2 61.9 65.1

EF 70% 60 110.4 32.5 77.9 70.6
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Fig. 4 (See legend on next page.)

Hippeläinen et al. EJNMMI Physics  (2017) 4:20 Page 8 of 14



(See figure on previous page.)

Fig. 4 SPECT images of the phantom. Representative slices of the phantom EF setting 65% acquired using

LEHR and IQ-SPECT protocols. Images are at end-diastolic (EDV) and end-systolic (ESV) phases after 2, 12

and 34 equivalent iterations presented with corresponding EF values. The contours present QPS software

volume delineations

Fig. 5 EFLEHR and EFIQSPECT estimates as a function of number of reconstruction equivalent iterations for the

dynamic heart phantom, analysed using a QGS and b 4DM software. The phantom was imaged with 45, 55,

65 and 70% EF settings (grey solid line)
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Discussion

EF and LV volume estimates are clinically important parameters, but accurate volume

determination is a non-trivial task prone to errors with any clinically available imaging

modality [19]. Using gated MPI, the overall perfusion, EF and LV volumes can be esti-

mated with a single imaging session simultaneously and the results are highly reprodu-

cible and in good agreement with other imaging techniques [20–23]. However,

conventional MPI is time consuming for both the patient and for the imaging facility.

Thus, there is a need for faster MPI acquisition techniques, both non-gated (for perfu-

sion) and gated (LV function). IQ-SPECT presents an innovative combination of im-

proved reconstruction methods and collimator design that increases system sensitivity

Fig. 6 ESV and EDV estimates of the dynamic heart phantom using LEHR and IQ-SPECT protocols and

analysed using a QGS and b 4DM. The phantom results for phantom EF settings 45 and 70% are shown.

The long and short dashed lines represent the EDVtrue and the ESVtrue volumes, respectively, determined

from the gated CT images
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at the centre of the cardio-centric orbit allowing reduced acquisition time or injected

activity. Several groups around the world have compared IQ-SPECT with other nuclear

medicine imaging techniques and protocols, although studies show conflicting results

(see Background).

In this study, we have validated the volumes of a novel dynamic heart phantom using

gated CT imaging and subsequently used the phantom to evaluate the accuracy of the

EF estimates of two clinically used, IQ-SPECT and LEHR, MPI protocols. The CT re-

sults showed that phantom measurements were repeatable and accurate. Based on the

measured EF accuracy (within 0.6% of the set values), consistency between different EF

65% acquisitions (within 0.2%), good correspondence to the values reported by the

manufacturer and an acceptable level of uncertainty in the estimated absolute volumes,

we conclude that the CT EF measurements are accurate enough to be treated as refer-

ences for SPECT analyses.

Table 2 The best EF estimates of IQ-SPECT and LEHR imaging protocols and corresponding EI,

EDV and ESV values analysed using QGS and 4DM software

QGS

Phantom EF
setting

IQ-SPECT LEHR

EI EF EDV
[ml]

ΔEDV
[%]

ESV
[ml]

ΔESV
[%]

EI EF EDV
[ml]

ΔEDV
[%]

ESV
[ml]

ΔESV
[%]

45 21 45 38 −33 21 −36 12 44 44 −23 24 −26

55 17 53 42 −43 18 −44 12 54 54 −26 25 −23

65 16 65 54 −42 19 −41 12 65 67 −28 24 −26

70 16 70 63 −43 19 −41 14 69 80 −28 24 −26

4DM

Phantom EF
setting

IQ-SPECT LEHR

EI EF EDV
[ml]

ΔEDV
[%]

ESV
[ml]

ΔESV
[%]

EI EF EDV
[ml]

ΔEDV
[%]

ESV
[ml]

ΔESV
[%]

45 21 45 38 −33 21 −35 30 45 55 −3 30 −7

55 16 56 42 −43 18 −44 20 58 54 −26 26 −20

65 18 67 54 −42 18 −44 16 65 74 −21 26 −20

70 22 70 57 −48 17 −47 10 70 74 −33 22 −32

The percentage differences, ΔESV and ΔEDV, to CT volumes are also shown

Fig. 7 Cardiac phantom volume estimates for LEHR and IQ-SPECT protocols compared with corresponding

CT measurements (small dot) with phantom EF setting 65%. The effect of the number of reconstruction

iterations (EI) is shown with different markers (cross = 2, square = 12 and large dot = 34)
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Using the validated dynamic phantom, we showed that the EF and LV volume

results using clinical IQ-SPECT and LEHR protocols are highly dependent on the

number of reconstruction iterations (Fig. 5a, b). Both methods could accurately

estimate the EF of the phantom, the error being one percentage point or less

(Table 2). The absolute LV volumes were systematically underestimated more with

IQ-SPECT than with LEHR (Fig. 6a, b). The LV volume calculations could be

improved by using a higher number of iterations but that, in turn, would lead to

increasingly underestimated EF values. These results imply that reporting the

reconstruction parameters is of great importance, especially when comparing

different MPI protocols. These findings can partly explain the inconsistency of the

previously published results discussed in the Introduction.

The IQ-SPECT volumes were found to be systematically lower than the LEHR

volumes. We presume that the underestimation of the volumes is mostly due to

the limited number of views in the IQ-SPECT protocol and the LV volume esti-

mates could be improved significantly if the number of views was increased. This

hypothesis is supported by results from Horiguchi et al. [14], who showed that in-

creasing the number of views from 17 to 36 in a 201Tl IQ-SPECT protocol results

in more equivalent images to those acquired using conventional SPECT. We also

hypothesize that increasing the number of views could rectify the deformed phan-

tom shape in the IQ-SPECT (Fig. 4). Acquisition protocol optimisation is a very

interesting topic and is currently under investigation by our group.

In this study, we did not use any background activity around the heart phantom

since we aimed to omit confounding factors when studying IQ-SPECT and LEHR

performance on myocardium phantom volume estimation. Our future studies,

including imaging protocol optimisation, will include this omission. Attenuation

correction was not used due to reconstruction software limitations for gated data.

Further study is needed to determine if including attenuation correction in the re-

construction would improve the volume estimates as well as produce more faithful

perfusion representation especially for gated IQ-SPECT.

Another issue that separates the phantom measurements from a clinical setting

arises from analysis software used to analyse the gated SPECT images. The auto-

matic myocardium delineation process in the QGS and 4DM software has an

inherent anatomic model that may give different EF and LV volume results for a

symmetrical phantom compared to a real human heart. All automated delinea-

tions were successfully processed without manual adjustment, and no clear faults

in the delineations were not visible. We believe that the software effect on the

results is small and, if present, is systematic and affects both LEHR and IQ-

SPECT protocols equally.

In this study, all SPECT acquisitions were carried out using eight gating bins as per

our standard clinical imaging protocol. The number of the bins affects the volume

definition, and it has been shown that using eight bins underestimates LVEF by ap-

proximately 4% compared to 16 bins, primarily due to a poorer temporal resolution

[20]. Fortunately, the underestimation is quite uniform over a wide range of LVEFs and

can be taken into account when interpreting the LVEF values. In patient data, the use

of 16 bins gating is usually limited by low count statistics of the SPECT projections that

appears as poor image quality.
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As IQ-SPECT has a high sensitivity, it should be possible to overcome the low count

statistics and improve the volume assessment accuracy. However, the optimal acquisi-

tion protocol has still to be determined. Routinely, low statistics and noise in images

are compensated by using post-reconstruction filters. Filtering helps to reduce noise

but at the same time blurs the images to some extent. This evidently affects the SPECT

volume and defect determination. Blurring caused by filtering has a similar effect on

the LV volume and EF values as reducing the number of iterations has. From Fig. 5, we

can see that the images with low number of EIs are blurred and that appears as under-

estimations of the LV volumes (Fig. 7) and an overestimation of the EF (Fig. 6). OSEM-

based reconstruction algorithms tend to create grainy images if noise is present, and

the number of iterations is increased. Because in our study a high activity concentration

was used, this effect was not prominent and therefore no post-filtering was applied.

Conclusions

We validated the volumes of a dynamic heart phantom using gated CT imaging. With

the validated phantom, we showed that a clinical routine IQ-SPECT protocol produces

systematically smaller LV volumes than a LEHR protocol. Both protocols could achieve

accurate EF estimates, but the EF values were very dependent on the reconstruction pa-

rameters, which should be taken into account when comparing different imaging proto-

cols. The optimal acquisition protocol for MPI with the IQ-SPECT warrants further

study.
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