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Abstract We combine a convectively driven dynamo in a spherical shell with
an isothermal density-stratified exterior that mimics a stellar corona to study
the emergence and ejections of magnetic field structures. This approach is an
extension of earlier models where we employed forced turbulence simulations to
generate magnetic fields. A spherical wedge is used which consists of a convection
zone and a corona up to more than twice the radius of the sphere. The wedge
contains a quarter of the azimuthal extent of the sphere and 150◦ in latitude.
The magnetic field is self-consistently generated by the turbulent motions due to
convection underneath the surface. Magnetic fields are found to emerge at the
surface and are ejected to the coronal part of the domain. These ejections occur
in irregular intervals and are smaller than in earlier work. We associate these
events with coronal mass ejections on the Sun.

Keywords: Magnetic fields, Corona; Coronal Mass Ejections, Theory; Interior,
Convective Zone; Turbulence; Helicity, Current

1. Introduction

Recent observations of the Solar Dynamic Observer (SDO) have provided us with
a record of impressive solar eruptions. These eruptions are mostly associated with
coronal mass ejections (CMEs). These are events through which the Sun sheds
hot plasma from the corona into the interplanetary space. The energy causing
such huge eruptions is stored in the magnetic field and can be released due to
reconnection of field lines (Sturrock, 1980; Antiochos et al., 1999). A fraction of
CMEs are directed towards the Earth, hitting its magnetosphere and causing
phenomena like aurorae. Furthermore, encounters with CMEs can cause sudden
outages of GPS signals due to ionospheric scintillation. The resulting radiation
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dose from such events poses risks to astronauts. This is now also of concern to
airlines, because the radiation load during polar flights can reach annual limits,
especially for pregnant women. This leads to a great interest of scientists in many
fields.

However, there is an additional motivation which comes along with the space
weather effects. The solar dynamo, which is broadly believed to be responsible for
the generation of the solar magnetic field, needs to be sustained by shedding mag-
netic helicity from the Sun’s interior, as pointed out in Blackman and Brandenburg
(2003). Mean–field and direct numerical simulations have shown that the mag-
netic field generation is catastrophically quenched at high magnetic Reynolds
numbers in closed systems that do not allowmagnetic helicity fluxes (Vainshtein and Cattaneo,
1992; Brandenburg and Subramanian, 2005). The magnetic Reynolds number,
which is the ratio of the advective to the diffusive term in the induction equation,
is known to be very large in the Sun, therefore implying catastrophic quenching
of the solar dynamo unless efficient magnetic helicity fluxes occur. In the work by
Blackman and Brandenburg (2003) these fluxes can be provided by the eruptive
events like CMEs. Observations, see Plunkett et al. (2000) and Régnier et al.
(2002), and a recent study by Thompson et al. (2011), where the observations are
compared with numerical models, suggest that CMEs have a twisted magnetic
structure, implying that CMEs transport helicity outwards.

There has been significant progress in the study of CMEs in recent years.
In addition to improved observations from spacecrafts like SDO or the Solar
TErestical RElation Observatory (STEREO), there have also been major ad-
vances in the field of numerical modeling of CME events (Russev et al., 2003;
Antiochos et al., 2009). However, the formation and the origin of eruptive events
like CMEs is not yet completely understood. Simulating CMEs and their for-
mation is challenging. Leaving the difficulties of modeling the interstellar space
aside, a CME, after being ejected in the chromosphere or lower corona, travels
over a larger radial distance to the upper corona. In this environment the density
and the temperature vary several orders of magnitude, which is not easy to
handle in numerical models. Additionally, the origin of the CMEs is assumed to
relate to the magnetic fields and the velocity pattern at the surface. However, the
surface magnetic and velocity fields are strongly rooted in the solar convection
zone, where convective motions, in interplay with differential rotation, generate
the magnetic field and the velocity patterns that are observed at the surface. The
majority of the researchers modeling CMEs do not include the convection zone
in their setup, and thereby neglect the effect of the magnetic and velocity fields
being rooted to this layer. Most often the initial conditions for the magnetic
and velocity fields are prescribed or taken from 2D observations, see for example
Antiochos et al. (1999) and Török and Kliem (2003).

Another approach is to study the emergence of flux ropes from the lower
convection zone into the corona. There the convective motions follow a self-
consistent model, but the flux ropes are prescribed and their origin is left unex-
plained. In the work of Fang et al. (2010) and Martnez-Sykora et al. (2008) the
focus lies on the emergence of magnetic flux and the resulting features in the
solar atmosphere; eruptive events have not been investigated with this setup.
In earlier work (Warnecke and Brandenburg, 2010; Warnecke et al., 2011) we
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have developed a different approach. We combine the solar convection zone
with a simple model of the solar corona. The magnetic field, which is gen-
erated by dynamo action underneath the solar surface, emerges through the
surface and is ejected out of the domain. Our focus lies on the connection of the
dynamo–generated field and eruptive events like CMEs. Therefore, we first used
a simplified coronal model and drove the dynamo with forced turbulence. These
simplifications allowed us to study the emergence and a new mechanism to drive
ejections in great detail. In Warnecke et al. (2011), we improved the setup of
Warnecke and Brandenburg (2010) by using a spherical coordinate system and
helical forcing with opposite sign in each hemisphere to mimic the effects of
differential rotation. In addition, we applied a stratification due to gravity in an
isothermal fluid. To improve this model, we now employ convection to generate
the velocity field. The turbulent motions driving the generation of magnetic field
are now self-consistently generated by convective cells, operating underneath
the surface. The setup of the convection zone follows ideas of Käpylä et al.
(2008, 2010, 2011a,b) with an extended cooling layer to mimic a solar corona.
The results of this work fit well with the results obtained by earlier work and
observations. There are other approaches simulating convection in massive hot
stars, which have thin subsurface convection zones Cantiello et al. (2011a,b).

The remainder of the paper is organized as follows: the numerical model is
described in Section 2, and the results and conclusions are presented in Sections 3
and 4, respectively.

2. The model

As in Warnecke and Brandenburg (2010) and Warnecke et al. (2011) a two-layer
model is used, which combines the convection zone and the corona in a single do-
main. Our convection zone is similar to that in Käpylä et al. (2010, 2011b). The
domain is a segment of the Sun and is described in spherical polar coordinates
(r, θ, φ). We model the convection zone starting at radius r = 0.7R and the solar
corona until r = Rc, where Rc = 1.4R and in some runs Rc ≈ 2R, where R
is the solar radius, used from here on as our unit length. In the latitudinal
direction, our domain extends from colatitude θ = 15◦ to 165◦ and in the
azimuthal direction from φ = 0◦ to 90◦. We solve the following equations of
compressible magnetohydrodynamics,

∂A

∂t
= U ×B + η∇2A, (1)

D ln ρ

Dt
= −∇ ·U , (2)

DU

Dt
= g − 2Ω×U +

1

ρ
(J ×B −∇p+∇ · 2νρS)−D(r, θ), (3)

T
Ds

Dt
=

1

ρ
∇ ·K∇T + 2νS2 +

µ0η

ρ
J2 − Γcool, (4)

where the magnetic field is given by B = ∇ ×A and thus obeys ∇ ·B = 0 at
all times. The vacuum permeability is given by µ0, whereas magnetic diffusivity
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and kinematic viscosity are given by η and ν, respectively. D/Dt = ∂/∂t+U ·∇
is the advective time derivative, ρ is the density, and U is the velocity. The
traceless rate-of-strain tensor is given by

Sij =
1
2
(Ui;j + Uj;i)−

1
3
δij∇ ·U , (5)

where semicolons denote covariant differentiation; see Mitra et al. (2009) for
details. Ω = Ω0(cos θ,− sin θ, 0) is the rotation vector, p is the pressure, and K
is the radiative heat conductivity. D(r, θ) describes damping in the corona, see
Section 2.2 for details. The gravitational acceleration is given by

g = −GMr/r3, (6)

where G is the gravitational constant or Newton constant, and M is the mass
of the star or the Sun. The fluid obeys the ideal gas law following p = (γ− 1)ρe,
where γ = cp/cv = 5/3 is the ratio of specific heats at constant pressure and
volume, respectively, and e = cvT is the internal energy density.

2.1. Initial setup and boundary conditions

For the thermal stratification in the convection zone, we consider a simple ana-
lytical setup instead of profiles from solar structure models as in e.g. Brun et al.
(2004). The hydrodynamic temperature gradient is given by

∂T

∂r
=

−|g|

cv(γ − 1)(m+ 1)
, (7)

where m = m(r) is the radially varying polytropic index. We use Equation (7)
as the lower boundary condition for the temperature. This gives the logarithmic
temperature gradient ∇ (not to be confused with the operator ∇) as:

∇ =
∂ lnT

∂ ln p
=

1

m+ 1
. (8)

The stratification is convectively unstable if ∇−∇ad > 0, where ∇ad = 1−1/γ is
the adiabatic temperature gradient, corresponding to m < 1.5. We choose m = 1
in the convectively unstable layer underneath the surface r < R. The region
above r = R is stably stratified and isothermal due to a cooling term Γcool in the
entropy equation. The Γcool term is r-dependent and causes a smooth transition
to the isothermal layer representing the corona. The density stratification is
obtained by requiring the hydrostatic equilibrium condition to be satisfied.

The thermal conductivity follows from the constancy of the luminosity L
throughout the domain and is given by

K =
L

4πr2∂T/∂r
. (9)

In order to speed up the thermal relaxation processes, we apply shallower profiles,
corresponding to ρ ∝ T 1.4, for the thermal variables within the convectively
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Figure 1. Initial stratification of temperature (solid line), density (dashed), pressure (dot–
dashed) and the Brunt-Väisälä frequency N2 = −(|g|/Hp)(∇−∇ad) (dash-triple-dotted) for
Run A5. The subscripts b refers to the values at r = 0.7R. The dotted horizontal (vertical)
line denotes the value of zero (r = R).

unstable layer. The value m = 1 is just used in the convection zone to deter-
mine the thermal conductivity. In Figure 1 we show the initial non-convecting
stratification. The temperature gradient at the bottom of the domain is set to
a constant value, which leads to a constant heat flux into the domain. In the
corona the gradient is smoothly set to 0 by using a r dependent cooling function
Γcool, which is added to the entropy evolution Equation (4). The cooling term
is given by

Γcool = Γ0f(r)

(

c2s − c2s0
c2s0

)

, (10)

where f(r) is a profile function equal to unity in r > R and smoothly connecting
to zero in r ≤ R, and Γ0 is a cooling luminosity chosen so that the sound speed
in the corona relaxes towards c2s0 = c2s (r = Rc). Whether the stratification is
convectively unstable can be determined by the Brunt-Väisälä frequency:

N2 = |g|

(

1

γ

∂ ln p

∂r
−

∂ ln ρ

∂r

)

= −
|g|

Hp

(∇−∇ad) , (11)

where Hp = ∂r/∂ ln p is the pressure scale height. If the frequency is negative,
the stratification is unstable.

We apply periodic boundary conditions in the azimuthal direction. For the
velocity we apply stress-free boundary conditions at all other boundaries. The
temperature gradient is imposed at the bottom and constant temperature is
imposed at the top. Thermodynamic variables have zero gradients at the latitude
boundaries. We use perfect conductor boundaries for the magnetic field at the
latitudinal and at the lower radial boundaries, and vertical field conditions at the
outer radial boundary. The latter is due to the fact that the solar wind pushes
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the magnetic field to open field lines and at a solar radius of r = 1.5R till r = 2R
the field lines are mostly vertical (Levine et al., 1982).

We use the Pencil Code1, which uses sixth-order centered finite differences
in space and a third-order accurate Runge-Kutta scheme in time; see Mitra et al.
(2009) for the extension of the Pencil Code to spherical coordinates. We use
a grid size of 128 × 128 × 64 mesh points (Runs A2, A3, A4, A5, Ar1, C1)
,256× 256 × 128 (Runs A12a, A4a, A5a, A5b, A5c, Ar1a, Ar2a, E1a, F1, F1a,
F1b) and 256× 128× 64 (Run H1).

2.2. Velocity damping in the corona

Whether the solar corona rotates like a solid body or differentially coupled with
the photosphere is currently unclear. In recent work by Wöhl et al. (2010), where
SOHO-EIT data of the bright points in the solar corona are used to estimate
the rotation speeds, it was found that the corona rotates similarly as the small
magnetic features in the photosphere. However, the observations of the “boot”
coronal hole by SKYLAB suggested rigid rotation (Timothy et al., 1975). Due
to the low plasma β (defined as the ratio of the thermal to magnetic pressure
β = 2µ0p/B

2) in the solar corona, the fluid motions are dominated by the
magnetic fields whose footpoints are anchored in the photosphere or even further
down. So the magnetic field then might be rigid enough to prevent differential
rotation of the solar corona. However, the observed bright points and other
features in the corona are strongly correlated with the magnetic field so they
can give a misleading picture about the global rotation of the corona.

In our simulations, the Coriolis force is included in the momentum equation
as a consequence of the rotation. In the solar corona the density is more than
14 orders of magnitude smaller than in the lower convection zone. Because
of the weak density stratification in our simulation, the Coriolis force in our
corona is too strong and can cause non-coronal effects like magnetorotational
instability. To avoid this—at least for runs with rapid rotation—we apply a
damping function D(r, θ) in the momentum equation, which is given by

D(r, θ) =
1

τ
D0(r −R)U(r, θ), (12)

where

D0(r −R) = 1
2

[

tanh

(

r −R

w

)

+ 1

]

, (13)

with τ being the damping time and w the width of the transition layer from
convection zone to the corona, and where the overbar denotes φ averaging.

2.3. Units, nondimensional quantities, and parameters

Dimensionless quantities are obtained by setting

GM = ρb = pb = cp = µ0 = 1, (14)

1http://pencil-code.googlecode.com
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where ρb is the density at r = 0.7R, and pb is the reference value of the pressure.
Below, we will describe the properties of the runs by the following dimensionless
parameters: fluid Reynolds number Re = urms/νkf , magnetic Reynolds number
ReM = urms/ηkf where kfR = 21 is the wavenumber of the energy-carrying
eddies and urms is the volume averaged rms velocity for the convection zone
(r ≤ R). The magnetic Prandtl number PrM = ν/η = ReM/Re and the Coriolis
number Co = 2Ω0/urmskf . In the following analysis, we use φ averages, defined as
F (r, θ, t)=

∫

F (r, θ, φ, t) dφ/2π. Occasionally we also use time averages denoted

by 〈.〉t. Time is expressed in units of τ = (urmskf)
−1

, which is the eddy turnover
time in the convection zone. We measure the magnetic field strength as the
rms value averaged over the convection zone Brms, where we often normalize
this value with the equipartition value of the magnetic field defined by B2

eq =
µ0(ρu

2
rms)r≤R. The relative kinetic helicity hrel(r, t) = ω · u/ωrmsurms, where

ω = ∇×u is the vorticity and ωrms the rms value averaged over the convection
zone.

3. Results

3.1. Hydrodynamic phase of the simulations

After around 100 turnover times, the convection has reached saturation and we
find convection cells as typical patterns in the radial velocity just below the
surface. The size of these cells depends strongly on the strength of rotation and
the degree of density stratification; see also Käpylä et al. (2011b). In addition,
extremely low Reynolds numbers also prevents smaller cells to form. As an
example, we plot the radial velocity Ur at r = 0.89R for Runs A5, A5a and
Ar1 in Figure 2. The Run A5 has a low fluid Reynolds number and therefore
the convection cells are large, see Table 1. The flow pattern shows clear ‘banana
cells’ as in previous work with comparable Coriolis parameter, cf. Käpylä et al.
(2011a). A higher fluid Reynolds number and higher resolution, as in Run A5a,
allow the velocity field to form more complex structures. However, the banana
cells are still visible. If one now looks at a simulation with more rapid rotation
(Run Ar1 plotted in the right-most panel of Figure 2) with a Coriolis number of
Co = 50, the number of banana cells increases and they are more clearly visible
than in Run A5a.

In the Sun, differential rotation is an important element to produce the mag-
netic field structures observed at large scales, exhibiting a cyclic behavior over
time, as manifested by the sunspot cycle. To illustrate the differential rotation
profiles generated in the simulations, we plot the azimuthally averaged angular
velocity, Ω = Uφ/(r sin θ) + Ω0, for Runs A5, A5a, and Ar1 in the saturated
state of the simulation, see Figure 3. In the plot, we show isocontours of angular
velocity with solid black lines. The corona seems to rotate as a solid body outside
the tangent cylinder whereas at higher latitude some differential rotation occurs
also in the corona. In the three runs shown in Figure 3 the stratification in
the whole domain is just ρb/ρt = 40, which is extremely small if compared
to the stratification of the Sun (ρb/ρt ∼ 1014). Therefore, the Coriolis force
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Table 1. Summary of the runs. Re is the fluid Reynolds number, PrM is the magnetic
Prandtl number, Co is the Coriolis number, and hrel is the maximum value of the relative
kinetic helicity over each hemisphere, as defined in Section 2.3. ρb

ρs
and ρb

ρt
give the density

ratios of the bottom of the convection zone and the surface and the top of the domain,
respectively. Rc indicates the top of the domain in the radial direction. In the right-most
column we denote if damping for velocity in the corona is used (Y) or not (N), see
Section 2.2.

Run Resolution Re PrM
B2

rms

B2
eq

ρb
ρs

ρb
ρt

Co hrel Rc/R D

A2 1282 × 64 53 1 0.08 3.6 39 2.0 0.3 1.5 N

A2a 2652 × 128 121 1 0.06 3.6 39 1.9 0.2 1.5 Y

A3 1282 × 64 87 1 0.1-0.4 3.6 39 5.2 0.30 1.5 N

A4 1282 × 64 14 2 1.9 3.6 39 16 0.3 1.5 N

A4a 2652 × 128 67 1 0.30 3.6 39 14 0.2 1.5 N

A5 1282 × 64 3.2 10 0.1-0.4 3.6 39 7 0.5 1.5 N

A5a 2652 × 128 100 1 0.2 3.6 39 4.5 0.3 1.5 N

A5b 2652 × 128 45 1 0.8 3.7 154 5.0 0.3 2.1 N

A5c 2652 × 128 3.1 10 0.2-0.6 3.6 39 7 0.4 1.5 N

Ar1 1282 × 64 38 1 2.0-6.0 3.6 39 50 0.3 1.5 Y

Ar1a 2652 × 128 53 1 0.4 3.5 38 34 0.2 1.5 Y

Ar2 1282 × 64 36 1 0.3-1.3 3.6 63 37 0.05 1.5 Y

Ar2a 2652 × 128 88 1 0.01 3.5 38 52 0.15 1.5 Y

C1 1282 × 64 8.0 1.5 0.2-0.5 5.3 152 5.7 0.4 1.5 Y

E1a 2652 × 128 168 1 0.07 8.3 896 4.5 0.2 1.5 Y

F1 2652 × 128 22 1.7 0.6 5.2 1732 60 0.2 2.1 Y

F1a 2652 × 128 29 1.5 0.02 5.3 1723 52 0.10 2.1 N

F1b 2652 × 128 48 3 0.15 5.2 1743 6.4 0.25 2.1 N

H1 2652 × 128 25 4 0.29 5.8 1826 8.5 0.25 2.0 Y

Figure 2. Radial velocity (Ur) underneath the surface (r = 0.89R) for Runs A5, A5a, Ar1.
Dark blue shades represent negative and light yellow positive values.
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Figure 3. Differential rotation profiles Ω(r, θ) = Uφ/(r sin θ) + Ω0 for Runs A5, A5a, Ar1.
Dark blue shades represent low and light yellow high values, overplotted by the isocontours
with solid black lines.

is acting much more strongly in the corona of our simulation than in reality.
In the convection zone, we find quenching of convection due to rapid rotation.
In Run A5, where the Coriolis number Co = 7, the lines of constant rotation
rate are more radial than vertical and show super-rotation, i.e., the equator
rotates faster than the poles. However, the convection cells are very big and
have stronger local influence on Uφ. Note that the rms velocity in Run A5 is two
times smaller than in Run A5a, which has a higher resolution and higher fluid
and magnetic Reynolds numbers (Re = ReM = 100). Due to this, we find clear
super-rotation, even though the Coriolis number is slightly lower (Co = 4.5) than
realized in Run A5. In the third case, Run Ar1, where the rotation is extremely
rapid (Co = 50), we also find super-rotation, where the lines of constant rotation
rate are almost all vertical. In comparable work (Käpylä et al., 2011a,b), super-
rotation has been found, when the Coriolis number was larger than 4. This is
similar to our results including the corona. In addition, there is a minimum of
the rotation rate at mid-latitudes and a polar vortex at high latitudes. Solar
rotation profiles, which show a comparable behavior have been found by several
research groups (Miesch et al., 2000; Elliot et al., 2000; Käpylä et al., 2011a,b).
The region with the higher rotation rate near the equator is limited to upper
convection and even penetrate the corona. In Run Ar1 the velocity damping
described in Section 2.2 is used. By comparing the right-most panel of Figure 3
with damping to the left-most panels without it, it can be concluded that the
damping does not make much of a difference to the coronal velocity structures.

Simulations with randomly forced turbulence (e.g. Warnecke and Brandenburg,
2010; Warnecke et al., 2011) have shown that the relative kinetic helicity hrel

has a strong influence both on the generation of large-scale magnetic fields and
the ejection events. In Warnecke and Brandenburg (2010) and Warnecke et al.
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Figure 4. Relative helicity hrel(r, t) = ω · u/ωrmsurms plotted for Runs A5, A5a, Ar1 Dark
blue shades represent negative and light yellow positive values.

(2011) we has hrel ≈ 1, achieved by using a forcing function with purely helical
plane waves. In the convection runs presented here, however, values of maximally
hrel = 0.5 are obtained (for Run A5), at least at certain radii. In Figure 4, we
present contour plots of azimuthally averaged relative helicity in the meridional
plane for Runs A5, A5a and Ar1. All three show the typical sign rule of kinetic
helicity under the influence of rotation, i.e. the northern hemisphere has a pre-
dominantly negative sign and in the southern a positive one. Very close to the
bottom of the convection zone, the sign changes, which has earlier been reported
by several authors both in Cartesian (e.g. Ossendrijver et al., 2001) and spherical
geometries (e.g. Käpylä et al., 2010). Only in the Run Ar1 with rapid rotation,
the behavior is not that clear. The relative helicity is no longer confined to the
convection zone, but significant values occur also in the coronal region. The
sign rule still holds within the convection zone, while a more complicated sign
behavior is visible in the corona. The maximal values of the azimuthally averaged
helicity are around hrel = 0.3, occurring close to the surface. In Run A5a, the
maximum value is slightly higher and is located in the middle of the convection
zone, although relatively high values are present in the corona as well. It is not
yet completely clear how high values of relative kinetic helicity can be achieved;
strong rotation tends to suppress it, whereas high stratification increases it. Also
its exact role in generating coronal ejections is yet unclear.

3.2. Convective dynamo

The convective motions generate a large-scale magnetic field due to dynamo
action. The magnetic field grows first exponentially and then suppresses the
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Figure 5. Phase relation of the magnetic field (B2
rms/B

2
eq, solid black lines) and the velocity

field (urms(t)2/〈u2
rms〉t, dashed red lines) in the convection zone for Runs A5 (left panel) and

Ar1 (right). The velocity has been multiplied with a factor of 0.3 (left panel) and 3 (right),
respectively, and smoothed over 5 neighboring data points. We indicate the time average value
as a solid red line.

velocity field. The growth of the magnetic field saturates after around 200 to
1000 turnover times, depending on the Coriolis and Reynolds numbers. In the
runs in Table 1, we obtain different dynamo solutions for the saturated field.
In Run A5, for example, we find an oscillation of the volume-averaged rms
magnetic field in the convection zone, see Figure 5. The growth tends to be
sharper than the decline, the period being around t/τ = 220. The field reaches
a maximum of 60% of the equipartition field strength, Beq, which is comparable
to the values obtained in the forced turbulence counterparts both in Cartesian
and spherical coordinates (Warnecke and Brandenburg, 2010; Warnecke et al.,
2011). Comparing this with the change of the kinetic energy, plotted as fluctua-
tions of the rms velocity squared, we find an anti-correlation with respect to the
magnetic field oscillation. The magnetic field is high (low), when the velocity is
low (high). This behavior is not seen as clearly in the large-scale magnetic field
which fluctuates in strength, but not in sign. As shown in Figure 6 for Run A5,
the Bφ and Br have local maxima in time and in latitude, but the overall
structure is nearly constant in time. Even though the large-scale field structure
is stationary, the small-scale structures show an equatorward migration near the
equator. The azimuthal velocity Uφ over time and latitude is shown in Figure 8
shows minima at the same times as the maxima of the magnetic field occur.
In Run A5a, the occurrence of strong magnetic fields suppresses the differential
rotation. The pattern of the azimuthal velocity is symmetric about the equator
and shows an oscillatory behavior, which is not that clear in the large-scale
magnetic field.

In Run Ar1a, the magnetic field reaches up to 2.3 equipartition, but does
not show a periodic oscillation, see Figure 5. In comparable work (Käpylä et al.,
2010), similar values for the field strength were found. However, the rms velocity
is also quenched, when the magnetic field is high. Looking at the Bφ and Br,
plotted over time and latitude in Figure 7, the large-scale magnetic field is similar
to Run A5, that is constant in time and does not show any oscillation. Comparing
the two hemispheres, however, the field structure is antisymmetric. In the Uφ

plot in Figure 8, we find just one localized minimum, which coincides with the
low values of urms(t)

2/〈u2
rms〉t between t/τ = 2100 and 2400.
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Figure 6. Variation of Bφ and Br in the convection zone at r = 0.9R for Run Ar1. Dark blue
shades represent negative and light yellow positive values. The dotted horizontal lines show
the location of the equator at θ = π/2. The magnetic field is normalized by the equipartition
value.

Figure 7. Variation of Bφ and Br in the convection zone at r = 0.9R for Run Ar1. Dark blue
shades represent negative and light yellow positive values. The dotted horizontal lines show
the location of the equator at θ = π/2. The magnetic field is normalized by the equipartition
value.
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Figure 8. Variation of Uφ in the convection zone at r = 0.8R for Run A5 (left panel) and
Run Ar1 (right panel). Dark blue shades represent negative and light yellow positive values.
The dotted horizontal lines show the location of the equator at θ = π/2. The velocity is
normalized by the mean rms velocity in the convection zone.

Figure 9. Time series of a coronal ejection near the equator (θ = π/2). The normalized

current helicity, µ0RJ ·B/〈B2〉t, is shown in a color-scale representation from different times;
dark blue represents negative and light yellow positive values. The dashed horizontal lines show
the location of the surface at r = R. Taken from Run A5.

3.3. Coronal ejections

As seen in Table 1, 19 runs have been performed, which cover a considerable
parameter space. However, only a small fraction of events can be identified with
actual coronal ejections similar to the ones seen in Warnecke and Brandenburg
(2010) and Warnecke et al. (2011). Especially the Runs A5 and Ar1a show some
clear ejection events. There the magnetic field emerges out of the convection
zone and is ejected as an isolated structure. In Figure 9 we have plotted the
normalized current helicity, µ0RJ ·B/〈B2〉t, as a time series for Run A5. At
small scales, the current helicity density, J · B, is a good proxy for magnetic
helicity density, A · B, and is, as opposed to this quantity, gauge invariant. In
addition the current helicity can be an indicator of helical magnetic structures,
which are believed to be present in coronal mass ejections (Plunkett et al., 2000;
Régnier et al., 2002; Thompson et al., 2011). Close to the equator a bipolar
structure emerges through the surface. The inner bulk has a positive current
helicity in Figure 9 represented by a yellow color and pushes an arc with negative
current helicity in its front. Such bipolar ejections have been identified in earlier
work (Warnecke et al., 2011) and compared with the ‘three-part structure’ of
coronal mass ejection which is described in Low (1996). The three parts consist
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Figure 10. Time series of formation of a plasmoid ejections zoomed in the region of the
ejection. Contours of r sin θAφ are shown together with a color-scale representation of Bφ;

dark blue stands for negative and light yellow for positive values. The contours of r sin θAφ

correspond to field lines of B in the rθ plane, where solid lines represent clockwise magnetic
field lines and the dashed ones counter-clockwise. The dashed horizontal lines show the location
of the surface at r = R. Taken from Run A5.

out of a prominence, which is similar to the bulk in our simulations, a front
with an arc shape corresponding to our arc and the cavity between these two
features. Even though the domain of the simulation is larger in the θ direction as
in Warnecke et al. (2011), the ejections are much smaller, which is actually closer
to the CMEs observed on the Sun. The difference in size is mostly due to the
more complex and fluctuating magnetic field in convection runs than in forced
turbulent ones, see more in Section 4. In the sequence of images of Figure 9, an
ejection near the equator reaches the outer boundary and leaves the domain. To
investigate the mechanism driving the ejection, we look at the dynamics of the
magnetic field in Figure 10, where field lines of the azimuthally averaged mean
field are shown as contours of r sin θAφ and colors representBφ for the same time
series. During the ejection, one can notice a strong concentration of magnetic
field lines that are directed radially outwards. This concentration appears first
underneath the surface and then emerges below the current helicity structure
and follows it up into the corona. Investigating the direction of the magnetic field
lines in the time series in Figure 10, an X-point can be found. In the first panel,
at r = 1.07R and θ = π/2 + 0.1, the magnetic field lines form a junction-like
shape. The dotted line represents a counter-clockwise oriented field loop, so at
the two corners of the junction there are field lines with opposite signs. After
around 14 turnover times this “junction” has reconnected at the same position
where the ejection is detected. It appears that these two events are related to
each other.

The ejection causes also a strong variation in the density. If the time-averaged
density profile is subtracted from instantaneous ones, the density fluctuations are
obtained. After removing the density stratification one obtains ∆ρ(t) = ρ(t) −
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Figure 11. Time series of the evolution of the density fluctuations ∆ρ(t) = ρ(t)−〈ρ〉t in the
corona, zoomed in the region of the ejection. In the color-scale, dark blue represents negative
and light yellow positive values. The dashed horizontal lines show the location of the surface
at r = R. Taken from Run A5.

〈ρ〉t. We plot these density fluctuations, ∆ρ(t), for the same times in Figure 9 in
Figure 11 to visualize the effect of the ejection on the density. The density in the
ejection is much lower than in the rest of the corona. One interpretation could
be that the strong magnetic field reduces the density to achieve total pressure
equilibrium and the ejection rises then because of magnetic buoyancy. Such an
effect is also seen by inspecting other ejections. In the solar corona, the plasma
β is very low because of the low density. There the magnetic field can drag
dense plasma from the lower corona to its upper part. In our simulations the
density stratification of the convection zone is much lower compared to the Sun.
Therefore, the density in the corona in our model is much higher and is closer
to the density of the photosphere or the chromosphere. The rising magnetic flux
tube has formed a low density region in its interior due to the higher magnetic
pressure. When the tube then further rises to the corona, the density inside it is
still lower than outside, because the coronal density is When the tube rise then
further into the corona, the density inside the tube is still lower than outside,
because the coronal density is rather high.

The ejection shown in the Figures 9 and 11 does not occur as a single event—
it rather shows recurrent behavior. However, the periodicity is not as clear as in
previous work (Warnecke and Brandenburg, 2010; Warnecke et al., 2011).

For Run A5, for example, we observe around 5 ejections during a time interval
of about 1000 turnover times. A more clear indication for the recurrence of the
ejections can be seen in Figure 12, where the normalized current density is
averaged over two narrow latitude bands on each hemisphere.

4. Conclusions

In the present paper we have presented an extension of our two-layer approach by
including a self-consistent convection zone into the model. We find a large-scale
magnetic field generated by the convective turbulent motion in the convection
zone. With the rotation, where the Coriolis number is larger than 3, we obtain
a differential rotation pattern showing super-rotation, i.e. an equator rotating
faster than the poles. The dynamo solutions we find are different and some
of them have a periodic oscillatory behavior, where the large-scale magnetic
field does not change sign; only the strength is varying. At the maxima, the
velocity is suppressed due to the backreaction via the Lorentz force. Small-scale
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Figure 12. Dependence of the dimensionless ratio µ0RJ ·B/〈B2〉t on time t/τ and radius r
in terms of the solar radius. The top panels show a narrow band in θ in the northern hemisphere
and the bottom ones in the southern hemisphere. We have also averaged in latitude from 4.1◦

to 19.5◦ (left panel) and 32.5◦ to 45.5◦ (right). Dark blue shades represent negative and light
yellow positive values. The dotted horizontal lines show the location of the surface at r = R.
Taken from Run A5

magnetic structures seem to show an equatorward migration near the equator

and a poleward one near the poles.

Using a convectively-driven dynamo complicates the generation of ejections

into the corona due to lower relative kinetic helicity. However, it was possible to

produce ejections in two of the runs. The shape and the bipolar helicity structure

is comparable with earlier work (Warnecke et al., 2011). Due to the high plasma

β in the corona, the ejections produce a local minimum of density which is carried

along and ejected out of the domain. The ejections occur recurrently, but not

clearly periodically, which is similar to the Sun.

An extension of the present work would include a detailed parameter study of

cause and properties of the ejections. It includes also an advanced model for the

solar corona with a lower plasma β and a more efficient convection, which has

a stronger stratification and is cooled by radiation. Another important aspect

would be the generation of a self-consistent solar wind, which supports and

interacts with the ejections.
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