
Citation: Hu, G.; Wang, J.; Li, M.;

Hussien, A.G.; Abbas, M. EJS:

Multi-Strategy Enhanced Jellyfish

Search Algorithm for Engineering

Applications. Mathematics 2023, 11,

851. https://doi.org/10.3390/

math11040851

Academic Editors: Ioannis G. Tsoulos

and Ripon Kumar Chakrabortty

Received: 12 December 2022

Revised: 16 January 2023

Accepted: 29 January 2023

Published: 7 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

EJS: Multi-Strategy Enhanced Jellyfish Search Algorithm for
Engineering Applications
Gang Hu 1,* , Jiao Wang 2, Min Li 1, Abdelazim G. Hussien 3,4 and Muhammad Abbas 5

1 Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, China
2 School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology,

Xi’an 710048, China
3 Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden
4 Faculty of Science, Fayoum University, Faiyum 63514, Egypt
5 Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan
* Correspondence: hg_xaut@xaut.edu.cn

Abstract: The jellyfish search (JS) algorithm impersonates the foraging behavior of jellyfish in the
ocean. It is a newly developed metaheuristic algorithm that solves complex and real-world optimiza-
tion problems. The global exploration capability and robustness of the JS algorithm are strong, but
the JS algorithm still has significant development space for solving complex optimization problems
with high dimensions and multiple local optima. Therefore, in this study, an enhanced jellyfish
search (EJS) algorithm is developed, and three improvements are made: (i) By adding a sine and
cosine learning factors strategy, the jellyfish can learn from both random individuals and the best
individual during Type B motion in the swarm to enhance optimization capability and accelerate
convergence speed. (ii) By adding a local escape operator, the algorithm can skip the trap of local
optimization, and thereby, can enhance the exploitation ability of the JS algorithm. (iii) By applying
an opposition-based learning and quasi-opposition learning strategy, the population distribution is
increased, strengthened, and more diversified, and better individuals are selected from the present
and the new opposition solution to participate in the next iteration, which can enhance the solution’s
quality, meanwhile, convergence speed is faster and the algorithm’s precision is increased. In addi-
tion, the performance of the developed EJS algorithm was compared with those of the incomplete
improved algorithms, and some previously outstanding and advanced methods were evaluated on
the CEC2019 test set as well as six examples of real engineering cases. The results demonstrate that
the EJS algorithm can skip the trap of local optimization, can enhance the solution’s quality, and can
increase the calculation speed. In addition, the practical engineering applications of the EJS algorithm
also verify its superiority and effectiveness in solving both constrained and unconstrained optimiza-
tion problems, and therefore, suggests future possible applications for solving such optimization
problems.

Keywords: metaheuristic algorithm; jellyfish search algorithm; sine and cosine learning factors; local
escape operator; opposition-based learning

MSC: 49K35; 68T20

1. Introduction

Challenging optimization problems with highly nonlinear objective requests, intricate
constraints, and large-scale decision variables are becoming more and more common in
today’s rapidly developing real world. Especially, when solving an optimization problem
with multiple peaks, the global optimization methods using traditional methods become
less powerful and easily converge to local optimization. Meanwhile, traditional exact
optimization methods work on a single feasible region and need gradient information,
whereas the metaheuristic algorithm, in this paper, works on a set (population) composed

Mathematics 2023, 11, 851. https://doi.org/10.3390/math11040851 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11040851
https://doi.org/10.3390/math11040851
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2274-7482
https://orcid.org/0000-0001-5394-0678
https://orcid.org/0000-0002-0491-1528
https://doi.org/10.3390/math11040851
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11040851?type=check_update&version=2

Mathematics 2023, 11, 851 2 of 32

of multiple feasible solutions, using the fitness value of the objective function (or fitness
function), without using gradient and other auxiliary information, and therefore, it can
provide high-quality solutions (optimal solution or near-optimal solution) with reasonable
computing resources. Traditional exact methods may not obtain accurate solutions, but
metaheuristic algorithms pursue satisfactory approximate solutions, and can provide
satisfactory and high-quality solutions for challenging practical problems [1].

Metaheuristic algorithms [2] have the following advantages: (i) The structure and
implementation process is simple; satisfactory solutions can be found by modifying the
structure and parameters of the method. (ii) Gradient information is not required to
solve optimization problems using metaheuristic algorithms, since the output data are
obtained according to the input data in a given optimization problem. (iii) The algorithm
randomly explores the whole search region because of randomness, which effectively
avoids the algorithm plunging into a local optimal solution. (iv) Metaheuristic algorithms
can by applied for solving various types of optimization problems with non-differentiable,
nonlinear, and complex multiple local solutions.

There are two main components of metaheuristic algorithms: exploration and ex-
ploitation [3]. The search for promising areas is the goal of the exploration phase; without
this ability, the algorithm may be premature and plunges into a local peak. Searching the
promising areas found is called exploitation; without this ability, the algorithm may not
even converge. The coordination point between the exploration and development stages
is always the goal of researchers, and is also the major work for performance testing of a
metaheuristic algorithm. Owing to the randomness of a metaheuristic algorithm, this is
still a problem worth exploring.

As the name implies, evolution is certainly a simulation of natural evolution, such as
the genetic algorithm (GA) [4], which is the most popular and widely used evolutionary
algorithm. It evolves the individual by simulating the principle of survival of the fittest in
nature, and can obtain high-quality solutions while avoiding local optimal solutions. Ever
since, many other evolutionary algorithms have emerged, including differential evolution
(DE) [5], etc.

Similarly, constrained by different laws of physics in the universe, the most classic
example is the simulated annealing (SA) [6] algorithm. Since then, for instance, the gravi-
tational search algorithm (GSA) [7], the Big Bang–Big Crunch (BB-BC) algorithm [8], the
multi-verse optimization (MVO) algorithm [9], an improved version of the sooty tern
optimization (ST) algorithm (ST-AL) [10], and the Archimedes optimization algorithm
(AOA) [11], etc. have also been named and put forward one by one.

The collective behavior of simulated species is summarized as a group algorithm.
Swarm-based methods impersonate the collective behavior of species. Two prominent
examples are the particle swarm optimization (PSO) algorithm [12] and the ant colony
optimization (ACO) [13] algorithm. Additional examples include the whale optimization
algorithm (WOA) [14,15], grey wolf optimization (GWO) algorithm [16], ant lion optimiza-
tion (ALO) algorithm [17], grasshopper optimization algorithm (GOA) [18], Harris hawks
optimization (HHO) algorithm [19], barnacles mating optimization (BMO) algorithm [20],
seagull optimization algorithm (SOA) [21], and jellyfish search (JS) algorithm [22,23]. At the
same time, some improved algorithms have also been studied, one after another, such as
the enhanced chimp optimization algorithm (SOCSChOA) [24], the enhanced manta ray for-
aging optimization (WMQIMRFO) algorithm [25], the integrated variant of MRFO with the
triangular mutation operator and orthogonal learning strategy (MRTM) algorithm [26], the
enhanced hybrid arithmetic optimization algorithm (CSOAOA) [27], the improved whale
optimization algorithm (IWOA) [28], the improved salp swarm optimization algorithm [29],
the boosting chameleon swarm algorithm [30], the hybrid firefly algorithm–particle swarm
optimization (FFAPSO) algorithm [31], etc.

The last one is a developed algorithm according to some specific social groups behav-
iors of humans. Teaching and learning-based optimization (TLBO) [32], harmony search

Mathematics 2023, 11, 851 3 of 32

(HS) [33], social learning optimization (SLO) [34], social group optimization (SGO) [35],
social evolution and learning optimization (SELO) [36], etc. are some famous algorithms.

The jellyfish search (JS) algorithm is a novel swarm-based method, put forward by
Chou et al. in 2021, which mainly impersonates searching for food behavior of jellyfish in
the ocean. The better global hunting capability, strong robustness, few parameters involved,
and so on are excellent merits of the JS algorithm, and therefore, we have conducted further
and more in-depth research on this topic. In the JS algorithm, jellyfish have two ways of
moving: (1) moving in the ocean current; and (2) within the group. Jellyfish can transform
among these moving modes according to the principle of time control, which can enhance
the optimization performance of the JS algorithm. In view of its good superiority, many
practical engineering problems have been solved and studied using this method. Gouda
et al. [37] applied the JS method to pick up undiscovered parameters in a former PEM fuel
cell. Youssef et al. [38] used the JS method for a parameter estimation of a single phase
transformer. The JS method was able to deal with the optimal volt coordination problem
in automated distribution systems [39]. Subsequently, multi-objective JS methods [40]
combined with quasi-reflected learning have been studied. At present, some scholars have
improved the jellyfish search algorithm [41–44].

In the research process, the global exploration capability and robustness of the JS
algorithm are strong, but the JS algorithm still has significant development space for solving
complex optimization problems with high dimensions and multiple local optima. We found
that the JS algorithm had some errors with the theoretical optimal value when solving
some benchmark test functions, due to defects of the JS algorithm on some benchmark test
functions, such as low calculation precision and easily getting stuck at a local optimal value.
Therefore, we proposed an enhanced jellyfish search (EJS) algorithm by adding sine and
cosine learning factors, as well as a local escape operator and learning strategy. Based on
the original JS algorithm, the main contributions include the following four points:

(a) The introduction of sine and cosine learning factors enable jellyfish to learn from
the position of the optimal individual when they are moving in Type B shape within the
jellyfish group, which is able to improve the optimization capability, and further accelerate
convergence rate.

(b) By adding the local escape operator, the algorithm is able to skip the trap of local
optimization, which can increase the exploitation capability of the JS algorithm.

(c) By applying an opposition-based learning and quasi-opposition learning strategy,
the result is a more diverse distribution of candidate individuals, thereby, enhancing the qual-
ity of solution, accelerating convergence speed, and improving the algorithm’s precision.

(d) The comparison tests of the EJS algorithm with the incomplete improved algorithms
and with other famous optimization algorithms, the exploration and development balance
test of the EJS algorithm on the CEC2019 benchmark test set, and six engineering practical
applications verify that the EJS algorithm has strong competitiveness.

The framework of this article is arranged as follows: In Section 2, the basic law
of the jellyfish search algorithm is briefly described, and its steps and pseudo-code are
given. The enhanced jellyfish search (EJS) algorithm is developed by adding sine and
cosine learning factors, a local escape operator, and a learning strategy to the original JS
algorithm, and the steps, pseudo-code, flow chart, and time complexity of the proposed
EJS are given in Section 3. The test is carried out on CEC2019 respect to EJS and several
famous previous algorithms in Section 4. Meanwhile, in order to verify the performance
of the EJS algorithm, an exploration and development balance test of the EJS algorithm is
also carried outed, compared, and analyzed. Six practical engineering cases are resolved
using the EJS algorithm in Section 5. Finally, a brief summary and forecast are outlined in
the Conclusions.

Mathematics 2023, 11, 851 4 of 32

2. Overview of the Basic Jellyfish Search Algorithm

The jellyfish search (JS) algorithm imitates the pattern of jellyfish looking for food. This
mathematical model can be described as follows: A large number of nutritious foods exists
in the ocean current, which attracts the jellyfish into a group. Therefore, first, the jellyfish
go after the ocean current, and then move within the group. When moving within the
group, jellyfish have two ways of motion: Types A and B, which represent the passive and
active behaviors, respectively. For the convenience of description, the following statements
are based on A and B. In order to determine the time-varying motion types, the time
control principle plays a role as an involved parameter in the process of controlling the
transformation between Types A and B.

2.1. Population Initialization

Generally speaking, the solution’s quality of intelligence method is influenced by the
quality of the initial candidate individuals. Increased diversity of the initial candidate
individuals helps to enhance the optimization performance. However, the populations of
general optimization algorithms are usually randomly initialized. This method may lead to
the exploration space not being exhaustively searched, and therefore, the algorithm has low
precision and the limitation of running into a local optimal value. Therefore, to increase
the diversity of the initial candidate individuals, the JS algorithm adopts logistic maps to
initialize the population according to the ergodicity and randomness of chaotic mapping,
which ensures that the search region is fully researched to a certain degree. Logistic maps
can be described by the following Equation (1):

Pi+1 = ηPi(1− Pi) (1)

where η is a parameter that is set to 4. The logistic chaos value corresponding to the position
of the i-th candidate individuals is recorded as Pi, the initial value of Pi is called P0, and
satisfy P0 ∈ (0, 1), meanwhile, P0 /∈{0, 0.25, 0.5, 0.75, 1}.

2.2. Jellyfish Follow the Ocean Current

All directional variables for each candidate from their own position to the optimal

position can be called the direction of the current (
−−−−−−→
Direction). In other words, the ocean

current can be expressed by Equation (2):

−−−−−−→
Direction =

1
N ∑

−−−−−−→
Directioni =

1
N ∑ (P∗ − ecPi) = P∗ − ec

∑ Pi
N

= P∗ − ecµ (2)

Let d f = ecµ, then
−−−−−−→
Direction can be shortened as follows:

−−−−−−→
Direction = P∗ − d f , (3)

where N, ec, and µ are the amount of candidate individuals (population), the attraction
factor, and the average position of all jellyfish, respectively. P∗ is the best position of
candidate individuals in the present solution. Here, df is defined as the difference between
the optimal and average location.

Due to the assumption of normal distribution of candidate individuals, the distance
near the average location ±βσ may include all candidate individuals, thus, df can be
reduced to the following form:

d f = β× r1× µ. (4)

Here, ec = β× r1, r1 = rand(0, 1). Thus, the mathematical Equation (3) of the ocean
current can be described by Equation (5):

−−−−−−→
Direction = P∗ − β× r1× µ (5)

Mathematics 2023, 11, 851 5 of 32

Now, the updated equation for each candidate individual that goes after the ocean
current is represented by Equation (6):

Pi(t + 1) = Pi(t) + r2×
−−−−−−→
Direction (6)

Combining Equation (5), the above Equation (6) can be transformed into:

Pi(t + 1) = Pi(t) + r2× (P∗ − β× r1)× µ (7)

Here, β > 0, β = 3, r2 = rand(0, 1).

2.3. Jellyfish Move within a Swarm

In a jellyfish swarm, there are two behavior movements of the jellyfish: Types A and
B movements, and candidates switch between Types A and B. At first, the jellyfish group
forms and has no active ability; most candidate individuals show Type A movements. With
the passage of time, Type B movements begin.

(1) Type A movement:

In passive movement, the candidate individual moves around its own position, and
its position can be updated using Equation (8):

Pi(t + 1) = Pi(t) + γ× r3× (Ub− Lb). (8)

where Ub and Lb are the upper and lower limits of search region, respectively. γ > 0 is the
movement factor, and γ = 0.1, r3 = rand(0, 1).

(2) Type B movement:

In active movement, the candidate individual (j) is randomly selected, when the
amount of food at the selected candidate location Pj exceeds its own candidate location
Pi, Pi moves in the direction of Pj. Otherwise, pi moves in the opposite direction of Pj.
Therefore, each candidate migrates in a favorable direction to search for a food source in
the colony. At this time, the location update formula of each candidate is:

Pi(t + 1) = Pi(t) +
−→
step (9)

where
−→
step = rand(0, 1)×

−−−−−−→
DDirection (10)

−−−−−−→
DDirection =

{
Pj(t)− Pi(t) i f f (Pi) ≥ f (Pj)
Pi(t)− Pj(t) i f f (Pi) < f (Pj)

(11)

2.4. Time Control Mechanism

In order to capture the type of movement that changes with time, the time control
theory needs to be introduced. It controls the passive and active movements of candidate
individuals in the colony, and also the movements of candidates going after ocean currents.

In order to adjust different movements of candidate individuals, the time control
function C(t) and constant C0 need to be considered. Figure 1 displays the change trend of
the time control function. C(t) is the random value that fluctuates between 0 and 1 from
Figure 1, therefore, C0 is set to 0.5. The candidate individuals follow the ocean current
when C(t) > 0.5; otherwise, candidates move within the swarm.

C(t) = |(1− t/T)× (2× rand(0, 1)− 1)| (12)

where t and T are the current and maximum iterations, respectively.

Mathematics 2023, 11, 851 6 of 32

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 34

<−

≥−
=

)()()()(
)()()()(

n
jiji

jiij

PfPfiftPtP

PfPfiftPtP
DDirectio (11)

2.4. Time Control Mechanism
In order to capture the type of movement that changes with time, the time control

theory needs to be introduced. It controls the passive and active movements of candidate
individuals in the colony, and also the movements of candidates going after ocean cur-
rents.

In order to adjust different movements of candidate individuals, the time control
function C(t) and constant C0 need to be considered. Figure 1 displays the change trend of
the time control function. C(t) is the random value that fluctuates between 0 and 1 from
Figure 1, therefore, C0 is set to 0.5. The candidate individuals follow the ocean current
when C(t) > 0.5; otherwise, candidates move within the swarm.

)1)1 ,0rand(2()1()(−××−= TttC (12)

where t and T are the current and maximum iterations, respectively.

Figure 1. Time control function [23].

Similarly, function 1 − C(t) is also applied to regulate A and B movements of candi-
dates within a swarm. The candidates show passive moving if rand(0, 1) > 1 − C(t), Other-
wise, candidates exhibit active moving. Since the value of 1 − C(t) increases from 0 to 1 at
the beginning of iteration, then rand(0, 1) > 1 − C(t), at which time, passive moving of
candidates takes precedence over active movement of candidates.

2.5. Boundary Conditions
Since the earth is spherical, it returns to the phase when the jellyfish movements ex-

ceed the bounded search zone. The process is shown in Equation (13):

Va
lu

e

Figure 1. Time control function [23].

Similarly, function 1− C(t) is also applied to regulate A and B movements of candidates
within a swarm. The candidates show passive moving if rand(0, 1) > 1 − C(t), Otherwise,
candidates exhibit active moving. Since the value of 1 − C(t) increases from 0 to 1 at
the beginning of iteration, then rand(0, 1) > 1 − C(t), at which time, passive moving of
candidates takes precedence over active movement of candidates.

2.5. Boundary Conditions

Since the earth is spherical, it returns to the phase when the jellyfish movements
exceed the bounded search zone. The process is shown in Equation (13):{

P′di = (Pd
i −Ubd) + Lbd i f Pd

i > Ubd

P′di = (Pd
i − Lbd) + Ubd i f Pd

i < Lbd (13)

where Pd
i is location of the i-th candidate with the d-th dimension, P′di is the renewed

position after checking boundary constraints, Ubd and Lbd are the upper and lower limits
of the d-th dimension in finding space, respectively.

2.6. Steps of the Jellyfish Search Algorithm

For the JS algorithm, the moving of candidate individuals chasing after the ocean
current is called exploration, and the movement of candidate individuals within the swarm
is defined as exploitation, and time control parameters control the switch between these
two phases. The JS algorithm focuses on exploration to find potential areas at the beginning
of iteration; the JS algorithm prefers exploitation to determine the best position in the
determined area at the end of the iteration. To summarize the above phases, the exhaustive
steps of the JS algorithm are summarized in the following description; meanwhile, the
pseudo-code of the JS algorithm is displayed in Algorithm 1:

Step 1. Define the fitness function, set N and T, generate initial positions of N jellyfish
individuals in solution search space through logistic maps defined by Equation (1), and let
t = 1.

Step 2. Evaluate and compare the objective value of each candidate, and save the
optimal location found so far and the corresponding optimal objective value.

Mathematics 2023, 11, 851 7 of 32

Step 3. Compute the time control function C(t) using Equation (12). If C(t) > 0.5,
the candidate individual tracts ocean current, and the new location is renewed using
Equation (7), otherwise, perform Step 4;

Step 4. Jellyfish move within swarm. If rand(0, 1) > 1−C(t), the candidate individual
carries out Type A movement, and the new position is calculated using Equation (8).
Otherwise, the candidate carried out Type B movement, and the new position is update
using Equation (9).

Step 5. Check the updated individual position whether go beyond boundary condition.
If it is out of the search area, Equation (13) is used to return to the opposite boundary.

Step 6. Compare the objective cost of the current location before and after updating.
If the fitness value of the updated position is better, replace the current location and
corresponding fitness value, and then compare the objective value of the current position
with the optimal fitness value. If the objective value of the present location is better, renew
the best location found so far and corresponding optimal objective value.

Step 7. If t < T, go back to Step 3, otherwise, perform Step 8.
Step 8. Outlet the best location and corresponding target cost value.

Algorithm 1: JS algorithm

Begin
Step 1: Initialization. Define the objective function, set N and T, initialize population of

jellyfish using Logistic map according to Equation (1), and set t = 1.
Step 2: Objective calculation. Calculate quantity of food at each candidate location, and

pick up the optimal location of candidate.
Step 3: While t < T do

for i = 1 to N do
Implement c(t) with Equation (12)

if C(t) > 0.5 then
Update location with Equation (7)

else
if rand(0, 1) > 1 − C(t) then
Update location with Equation (8)
else

Update location with Equation (9)
end if

end if
Check whether the boundary is out of bounds and and replace the optimal position.
end for

end while
Step 4: Return. Return the global best position and corresponding optimal objective cost

fitness value.
End

3. Enhanced Jellyfish Search Algorithm

Due to defects of the JS algorithm on some benchmark test functions, such as low
calculation precision and easily getting stuck at a local optimal value. in this section, we
introduce the following improvements to the JS algorithm, which can enhance the quality of
the solution, accelerate convergence, and improve the algorithm’s precision: (i) By adding
sine and cosine learning factors, jellyfish learn from the best individual at the same time
when moving in Type B motion, which enhances the solution’s quality, and accelerates
convergence. (ii) The addition of the local escape operator prevents the JS algorithm from
getting stuck at a local optimal value, which improves the exploitation capability of the
JS algorithm. (iii) An opposition-based learning and quasi-opposition learning strategy
is applied to increase the diversity distribution of candidate populations, and the better
individuals in the present solution and the new solution are executed in the next iteration,
which enhances the solution’s quality and improves the convergence speed and accuracy
of the JS algorithm.

Mathematics 2023, 11, 851 8 of 32

3.1. Sine and Cosine Learning Factors

In the exploration phase of the JS algorithm, when jellyfish move in Type B motion
within the jellyfish swarm, the updated position of the jellyfish is only related to another
jellyfish randomly selected. In other words, the jellyfish randomly learn from the jellyfish
individuals in the current population, which has certain blindness and lacks effective
information exchange within the population. This process may lead the algorithm to move
away from the orientation of the optimal candidate solution, and at the same time, the
convergence speed could be slowed down. In order to ameliorate these deficiencies, the
sine and cosine learning factors, i.e., ω1 and ω2, are introduced to make jellyfish learn
from both random individuals and the best individual in the search range. This strategy
improves the quality of the candidate solution during the exploration phase by seeking the
best location more quickly and accelerating the convergence speed.

ω1 = 2 · sin[(1− t/T) · π/2] (14)

ω2 = 2 · cos[(1− t/T) · π/2] (15)

In Type B movement, Equation (16) describes the location update mode of jellyfish:

Pi(t + 1) = ω1 · (Pi(t) +
−→
step) + ω2 · (P∗ − Pi(t)) (16)

where
−→
step can see Equations (10) and (11).

The original JS algorithm adopts a random strategy to learn, which makes jellyfish
randomly learn from the current individual. Poor fitness values of the learned jellyfish
individuals will lead to limited convergence speed. Therefore, the sine and cosine learning
factors that are introduced into the JS algorithm make the jellyfish learn from random
solutions and follow the optimal solution within the search range, and therefore, quickly
improves the quality of the solution and accelerates convergence speed.

3.2. Local Escape Operator

The core of swarm intelligence algorithms is to effectively judge and weigh the ex-
ploration and exploitation capability of an algorithm. The added sine and cosine learning
factors can increase the JS algorithm’s local exploration capability, but the global exploita-
tion capability is weakened. The local escape operator (LEO) is a local search operator
based on a gradient-based optimizer (GBO) [45], which aims to find new areas and to
enhance the exploitation capability. Therefore, it is implemented in the phase of jellyfish
following the ocean current. Notably, the local search operator can update the position of
the candidate Pi(t + 1). This helps the algorithm skip any local optimal solutions. Because
of this, it can expand the diversity of candidate individuals to search for the global optimal
solution. In other words, it makes the algorithm skip the trap of local optimization.

By using multiple solutions such as optimal individual P∗, two randomly candidate
solutions P1i(t) and P2i(t), two randomly selected candidate solutions Pr1(t) and Pr2(t), a
new candidate position Pk(t), the LEO gives the alternative solution PLEO(t) of the current
solution Pi(t + 1), and the generated solution can explore the search space around the
optimal solution. See Equations (17) and (18) for a specific mathematical description:

if rand < 0.5
PLEO(t) = Pi(t + 1) + f1(u1P∗ − u2Pk(t)) + f2ρ1(u3(P2i(t)− P1i(t)))

+u2(Pr1(t)− Pr2(t))/2
Pi(t + 1) = PLEO(t)

(17)

Mathematics 2023, 11, 851 9 of 32

else
PLEO(t) = P∗ + f1(u1P∗ − u2Pk(t)) + f2ρ1(u3(P2i(t)− P1i(t)))

+u2(Pr1(t)− Pr2(t))/2
Pi(t + 1) = PLEO(t)
End

(18)

where f 1 is any number uniformly distributed in [−1, 1], f 2 ~N (0, 1). u1, u2, and u3 are
three random numbers with the following mathematical formulae:

u1 = L1 × 2× R1 + (1− L1) (19)

u2 = L1 × R2 + (1− L1) (20)

u3 = L1 × R3 + (1− L1) (21)

where L1 is a binary parameter, and L1 = 0 or 1. If µ1 < 0.5, L1 = 1, otherwise, L1 = 0, and µ1 is
defined as an arbitrary number between 0 and 1. In addition, ρ1 is the adaptive coefficient;
R1 = rand(0, 1), R2 = rand(0, 1), and R3 = rand(0, 1) are three random numbers between 0
and 1. Specific definitions are as follows:

ρ1 = 2× rand(0, 1)× α− α (22)

α =|χ× sin(3π/2 + sin(β× 3π/2))| (23)

χ = χmin + (χmax − χmin)× (1− (t/T)3)
2

(24)

where χmin = 0.2, χmax = 1.2.
In addition, the following mathematical formulae give two randomly generated solu-

tions P1i(t) and P2i(t):
P1i(t) = Lb + R4× (Ub− Lb) (25)

P2i(t) = Lb + R5× (Ub− Lb) (26)

The meaning of parameter representation is described above. R4 = rand(1, D) and R5
= rand(1, D). The mathematical formula of solution Pk(t) is defined in Equation (27):

Pk(t) = L2 × Pp(t) + (1− L2)× Prand (27)

Prand = Lb + R6× (Ub− Lb) (28)

where Pp, p ∈ {1,2, . . . , N} is an arbitrarily solution, R6 = rand(0, 1) and L2 is a binary
parameter. If µ2 < 0.5, L2 = 1, otherwise, L2 = 0. µ2 = rand(0, 1).

3.3. Learning Strategy

Opposition-based learning (OBL) [46] and quasi-opposition learning (QOL) [47] are
both effective methods to increase the diversity of the candidate individuals, the coverage
space of solutions, and the performance of the algorithm. After completing the exploration
and exploitation phases of the algorithm, with the aim to further increase the solution pre-
cision of the JS algorithm, the OBL and QOL strategy is used to update jellyfish individuals
according to probability p, and the solution’s quality in the population is enhanced, and
then the optimization competence is magnified.

Mathematics 2023, 11, 851 10 of 32

By implementing the OBL and QOL strategy for the i-th candidate individual Pi in the
present population, the opposition-based solution and the quasi-opposition solution can

be obtained, recorded as P̃i = (P̃1
i , P̃2

i , · · · , P̃D
i) and

^
P i = (

^
P

1

i ,
^
P

2

i , · · · ,
^
P

D

i). The specific
expression of the component is shown in Equations (29) and (30).

P̃d
i = Lbd + Ubd − Pd

i (29)

^
P

d

i = rand

(
Lbd + Ubd

2
, Lbd + Ubd − Pd

i

)
(30)

where Pd
i is location of the i-th candidate with the d-th dimension, Ubd and Lbd are the

upper and lower limits with the d-th dimension in solution space, respectively.
To sum up, the renewed equation of the i-th candidate jellyfish Pi is defined as the

following equation:

Pnew
i =

{
P̃i i f rand < p
^
P i i f rand ≥ p

, i = 1, 2, · · · , N (31)

where p is selection probability, and p = 0.5.
The algorithm generates N new jellyfish individuals through Equation (31), and

then calculates the objective values of the present and new candidates. According to the
calculation results, the 2N candidate individuals are sorted, and choose the better N jellyfish
individuals to participate in the next iteration process.

3.4. Steps of Enhanced Jellyfish Search Algorithm

The sine and cosine learning factors strategy improves the local exploration capability
and the convergence performance of the algorithm. The local escape operator strategy
enhances the global exploitation capability and the capability to skip the trap of local opti-
mization. The OBL and QOL strategy increases the diversity of the candidate individuals,
the solution’s quality in population is enhanced, thus magnifying the optimization com-
petence. By combining these three strategies with the JS algorithm, an enhanced jellyfish
search algorithm is developed (called the EJS algorithm). The detailed steps of the EJS
algorithm are similar to the JS algorithm in Section 2.6. The main difference is that the
opposition-based learning and quasi-opposition learning strategy is implemented between
Step 4 and Step 5. Figure 2 shows the flow chart of the EJS algorithm to facilitate under-
standing the entire process. Meanwhile, the pseudo-code of the EJS algorithm is displayed
in Algorithm 2.

3.5. Time Complexity of the EJS Algorithm

An algorithm refers to a group of methods used to operate data and to solve program
problems. For the same problem, using different algorithms may result in the same result,
but the resources and time consumed in the process will vary greatly. So how should
we measure the advantages and disadvantages of different algorithms? This article will
use time complexity to illustrate. That is, estimate the execution times (execution time) of
program instructions.

The time complexity of the EJS algorithm lies on N, D and T. For all iteration period,
the EJS algorithm performs the following procedure: candidates follow the ocean current,
then the local escape operator is implemented, candidates move in active motion with
sine and cosine learning factors or passive motion within a swarm, new individuals are
generated through an opposition-based learning and quasi-opposition learning strategy,
and better candidate individuals are selected to participate in the iterative process of the

Mathematics 2023, 11, 851 11 of 32

next generation. Combined with the above analysis, the time complexity can be calculated.
The meaning of T, N, and D can see above content.

O(EJS) = O(T(O(candidate follow ocean current + local escaping operator)
+O(passive motion + active motion) + O(Learning strategy)))

(32)

O(EJS) = O(T(ND + ND + ND)) = O(TND). (33)

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 34

The algorithm generates N new jellyfish individuals through Equation (31), and then
calculates the objective values of the present and new candidates. According to the calcu-
lation results, the 2N candidate individuals are sorted, and choose the better N jellyfish
individuals to participate in the next iteration process.

3.4. Steps of Enhanced Jellyfish Search Algorithm
The sine and cosine learning factors strategy improves the local exploration capabil-

ity and the convergence performance of the algorithm. The local escape operator strategy
enhances the global exploitation capability and the capability to skip the trap of local op-
timization. The OBL and QOL strategy increases the diversity of the candidate individu-
als, the solution’s quality in population is enhanced, thus magnifying the optimization
competence. By combining these three strategies with the JS algorithm, an enhanced jel-
lyfish search algorithm is developed (called the EJS algorithm). The detailed steps of the
EJS algorithm are similar to the JS algorithm in Section 2.6. The main difference is that the
opposition-based learning and quasi-opposition learning strategy is implemented be-
tween Step 4 and Step 5. Figure 2 shows the flow chart of the EJS algorithm to facilitate
understanding the entire process. Meanwhile, the pseudo-code of the EJS algorithm is
displayed in Algorithm 2.

Figure 2. Flow chart of the EJS algorithm.

3.5. Time Complexity of the EJS Algorithm
An algorithm refers to a group of methods used to operate data and to solve program

problems. For the same problem, using different algorithms may result in the same result,
but the resources and time consumed in the process will vary greatly. So how should we
measure the advantages and disadvantages of different algorithms? This article will use

No

No

Yes

No

No

Yes

Yes

Start

Initialize the population using Lo-
gistic chaos mapping

Renew position
by Equation (3)

Renew position
by Equation (7)

t < T

Compute the objective value of
all candidate solution

Perform control function c(t)

Generate new population by Equation (31),
and Replace the global best solution

Output the global
bests and optimal

fitness value

End

rand < 0.5

t = t + 1

c(t) >0.5

Carried out
Equation (17)

rand >1-c(t)

Carried out
Equation (18)

Renew position
by Equation (8)

Yes No Yes

Figure 2. Flow chart of the EJS algorithm.

Mathematics 2023, 11, 851 12 of 32

Algorithm 2: EJS algorithm

Begin
Step 1: Initialization. Define the fitness function, set N and T, initialize with Logistic map

Pi+1 = ηPi(1− Pi), 0 ≤ P0 ≤ 1 for i = 1, · · · , N, and set t = 1.
Step 2: Fitness calculation. Calculate quantity of food at each jellyfish position fi = f (Pi),

and pick up the best position Pbest
Step 3: While t < T do

for I = 1 to N do
C(t) = |(1− t/T)× (2× rand(0, 1)− 1)|

if C(t) > 0.5 do
Pi(t + 1) = Pi(t) + r2× (P∗ − β× r2× µ)

//Local escaping operator(LEO)
if rand < 0.5

PLEO(t) = Pi(t + 1) + f1(u1P∗ − u2Pk(t)) + f2ρ1(u3(P2i(t)− P1i(t)))
+u2(Pr1(t)− Pr2(t))/2

Pi(t + 1) = PLEO(t)
else

PLEO(t) = P∗ + f1(u1P∗ − u2Pk(t)) + f2ρ1(u3(P2i(t)− P1i(t)))
+u2(Pr1(t)− Pr2(t))/2

Pi(t + 1) = PLEO(t)
end

else
if rand(0, 1) > (1− C(t)) Do //Type A

Pi(t + 1) = Pi(t) + γ× r3× (Ub− Lb)
else //Type B

//Sine and cosine learning factors
ω1 = 2 · sin[(1− t/T) · π/2]
ω2 = 2 · cos[(1− t/T) · π/2]

Pi(t + 1) = ω1 · (Pi(t) +
→

step) + ω2 · (P∗ − Pi(t))
end if

end if
//Learning strategy

P̃d
i = Lbd + Ubd − Pd

i
^
P

d

i = rand
(

Lbd+Ubd

2 , Lbd + Ubd − Pd
i

)
Pnew

i =

{
P̃i i f rand < p
^
P i i f rand ≥ p

, i = 1, 2, · · · , N

Check whether the boundary is out of bounds. If it out of search region, and
replace the location;

end for
end while

Step 4: Return. Return the global optimal solution.
End

4. Numerical Experiment and Result Analysis Based on a Benchmark Test Set

To benchmark the performance of the proposed EJS algorithm, 29 benchmark functions
from the standard CEC2017 test set and ten benchmark functions from the legal CEC2019
test set are used to execute the experimental sequence. The EJS algorithm is compared with
other famous optimization methods. Aiming at unbiased experimental results, all tests
are conducted in the same Windows 10 environment; all tests are implemented on Matlab-
2018a installed on an Intel(R) Core(TM) i5-8625u CPU @ 1.60 GHz, 1.80 GHz, and 8.00 GB.
For all optimization algorithms, set N = 50. In addition, all algorithms are implemented
20 times independently, T = 1000 is the termination condition.

The test sets are both discussed. Due to space limitations, in this article, we only
show the CEC2019 test functions in detail. Ten CEC2019 benchmark functions [48] are
employed to evaluate the algorithm’s execution. The test functions F4–F10 can be shifted

Mathematics 2023, 11, 851 13 of 32

and rotated with the boundary range [−100, 100], while the test functions F1–F3 with
different boundary ranges and dimensions cannot be moved and rotated. Table 1 gives the
details of the CEC2019 test functions.

Table 1. The details of the CEC2019 test functions.

No Function Name Optimal Value Dim Search Range

F1 Storn’s Chebyshev Polynomial
Fitting Problem 1 9 [−8192, 8192]

F2 Inverse Hilbert Matrix Problem 1 16 [−16,384, 16,384]
F3 Lennard-Jones Minimum Energy Cluster 1 18 [−4, 4]
F4 Rastrigin’s Function 1 10 [−100, 100]
F5 Griewangk’s Function 1 10 [−100, 100]
F6 Weierstrass Function 1 10 [−100, 100]
F7 Modified Schwefel’s Function 1 10 [−100, 100]
F8 Expanded Schaffer’s F6 Function 1 10 [−100, 100]
F9 Happy Cat Function 1 10 [−100, 100]

F10 Ackley Function 1 10 [−100, 100]

4.1. Performance Indicators

Here, we give six evaluation indicators to accurately analyze the performance of the
EJS algorithm [49].

(i) Best value
Best = min{best1, best2, · · · , bestm} (34)

where besti represents the best value of the i-th independent run.
(ii) Worst value

Worst = max{best1, best2, · · · , bestm} (35)

(iii) Mean value

Mean =
1
m

m

∑
i=1

besti (36)

(iv) Standard deviation

Std =

√
1

m− 1

m

∑
i=1

(besti −Mean)2 (37)

(v) Rank
The average value of all compared methods are sorted in order, and the corresponding

serial number of each algorithm is defined as the rank. If mean values are the same, the
standard deviations are further compared. The algorithm with the lowest ranking possesses
outstanding performances. Conversely, it indicates that the EJS algorithm is worse than the
other compared methods. The average ranking, in this paper, refers to the result obtained
by summing the rankings of all test functions of the specified algorithm and dividing it by
the total number of test functions.

The median is the number in the middle of a group of data arranged in order, repre-
senting a value in a sample population or probability distribution, which can divide the
set of values into equal upper and lower parts. Therefore, we also believe that the median
can more fairly reflect the ranking of the algorithm. The final ranking is determined by
combining the median and the average of the rank. First, the median is used for ranking.
When the median is the same, the average rank is considered for the final ranking of all the
compared algorithms.

(vi) Wilcoxon rank sum test result
Taking the EJS algorithm as the benchmark, p-values are computed by running

other methods for m times, and the statistical results are given at 95% significance level

Mathematics 2023, 11, 851 14 of 32

(α = 0.05). +/=/− are the number of test functions that the EJS algorithm is obviously
inferior/equal/superior, respectively, to some famous methods.

4.2. Comparison between the EJS Algorithm and Other Optimization Algorithms

In order to verify the contribution of each main improvement strategy (the contribution
of the individual-based updating strategy) to the performance of the EJS algorithm, the EJS
algorithm is compared with its six incomplete algorithms and the JS algorithm. To evaluate
the impact of the strategies on convergence speed and accuracy, the incomplete algorithms
include the sine and cosine learning factors strategy, the local escape operator strategy, or
the learning strategy, corresponding to the JSI, JSII, and JSIII algorithms, respectively, and
the select combination strategies corresponding to the JSIV algorithm (the sine and cosine
learning factors and the local escape operation), the JSV algorithm (the local escape operator
and the learning strategy), and the JSVI algorithm (the learning strategy and the sine and
cosine learning factors) algorithm. The selected CEC2019 test set shows references as test
function sets. Different function types represent different performances of the algorithms.
For details, please refer to Table 1.

The parameter settings are the same as the above. The results including best value,
average value, standard deviation, and rank after 20 runs on each test function are sum-
marized in Table 2. Numbers marked with black font represent the best results on each
evaluation index.

From Table 2, all the evaluating indicators of the EJS algorithm and most of the incom-
plete algorithms are better than the JS algorithm, except for function test F10; therefore,
this is adequate to show that the three strategies added in this paper improve the original
algorithm to a certain extent. The JS algorithm can obtain the optimal solution except for
on test functions F2, F4, and F8. On the individual functions, the improvement of the
three strategies is not as good as the improvement of the original algorithm using a single
strategy. For example, for test function F2, the effect of the JSVI algorithm is better than
that of the EJS algorithm, that is, the local escape operator may cause the accuracy of the
algorithm to be reduced on test function F2. The effect of the EJS algorithm is inferior to
the JSI and JSIII algorithms on test function F7, that is, the sine and cosine learning factors
strategy and the learning strategy may cause the accuracy of the algorithm to be reduced on
test function F7. The effects of the JSII and JSIII algorithms are superior to the EJS algorithm
on test function F10, that is, the local escape operator strategy and the learning strategy
may cause the accuracy of the algorithm to be reduced on function F10, but the difference
is not large; the best values are obtained using JSIV and JSIII, however, they all fluctuate
slightly near the optimal solution. From the overall ranking, the ranking order of the eight
algorithms is EJS > JSVI > JSI > JSIV > JSIII > JSV > JSII > JS. These results show that the
EJS algorithm is able to avoid local optimal solutions and find better solutions by using the
local escape operator, which is consistent with the analysis in Section 3.2. The performance
of the EJS algorithm in solving accuracy and stability is comparable to the JS algorithm on
all functions, and therefore, the theoretical optimal value has been found.

Due to article space constraints, in this paper, we only present the convergence curves
of some test sets in Figure 3. It can be seen from the figure that the convergence speed and
accuracy of the JSI algorithm is improved, the convergence speed and accuracy of the JSII,
JSIII, JSV, and JSVI algorithms are improved, and the JSIII algorithm is relatively obvious,
that is to say, the learning strategy can significantly improve the calculation accuracy,
accelerate convergence speed, and avoid falling into local optimization.

Mathematics 2023, 11, 851 15 of 32

Table 2. Comparison results of different improvement strategies on the CEC2019 benchmark
test functions.

No. Result
Algorithm

JS JSI JSII JSIII JSIV JSV JSVI EJS

F1

Best 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
Worst 107.874719 4.518274 2005.953718 1.000000 34.033461 1.000000 1.000000 1.000000
Mean 25.353117 1.714772 730.661957 1.000000 7.867176 1.000000 1.000000 1.000000

Std 4.6579 × 101 1.5674 × 100 8.7582 × 102 8.1288 × 10−8 1.4638 × 100 4.0521 × 10−9 2.2238 × 10−11 4.0951 × 10−13

Rank 7 5 8 4 6 3 2 1

F2

Best 4.246899 4.198636 4.266541 4.186653 3.908319 4.222719 4.096543 4.225043
Worst 26.384846 5.010327 8.670419 4.548559 11.681408 4.358863 4.269076 4.274394
Mean 9.976218 4.455787 5.476164 4.317989 6.827503 4.274081 4.246312 4.265880

Std 9.3415 × 100 3.2849 × 10−1 1.8428 × 100 1.2939 × 10−1 3.1694 × 100 4.8525 × 10−2 1.4885 × 10−2 5.7127 × 10−3

Rank 8 5 6 4 7 3 1 2

F3

Best 1.409205 1.409135 1.423200 1.419679 1.000000 2.133738 1.409135 1.000001
Worst 5.9568 1.4140 5.1663 5.1481 4.6081 5.6611 2.2787 1.4497
Mean 3.829589 1.409379 3.541565 3.371766 1.567780 3.861664 1.462579 1.390706

Std 1.4241 × 100 1.0867 × 10−3 1.0588 × 100 1.1612 × 100 7.2708 × 10−1 1.0251 × 100 1.9616 × 10−1 9.2406 × 10−2

Rank 7 2 6 5 4 8 3 1

F4

Best 5.974795 4.979836 7.964708 8.959667 5.974795 7.965020 3.984877 1.994959
Worst 19.904187 20.899141 22.579489 24.878957 21.894100 27.720452 19.904187 22.889059
Mean 13.571367 10.651094 14.364349 16.351025 10.253112 16.154598 10.601347 10.203363

Std 4.2744 × 100 4.5320 × 100 4.4084 × 100 4.4952 × 100 4.1478 × 100 4.4344 × 100 4.5683 × 100 5.2338 × 100

Rank 5 4 6 8 2 7 3 1

F5

Best 1.000391 1.009865 1.019678 1.003905 1.007396 1.009858 1.007396 1.000001
Worst 1.164923 1.256066 1.127889 1.201756 1.130397 1.129320 1.132895 1.120643
Mean 1.062980 1.067922 1.065941 1.058357 1.064226 1.059325 1.059564 1.002496

Std 4.3754 × 10−2 5.8209 × 10−2 2.8223 × 10−2 5.5578 × 10−2 3.7415 × 10−2 3.0438 × 10−2 3.2596 × 10−2 3.4416 × 10−2

Rank 5 8 7 2 6 3 4 1

F6

Best 1.010457 1.000000 1.008890 1.033805 1.000000 1.030205 1.000000 1.000000
Worst 3.125804 2.576493 3.071817 4.085525 2.576352 4.234450 1.008229 1.002320
Mean 1.799196 1.140360 1.629071 1.900689 1.154138 2.045131 1.000851 1.000247

Std 6.3932 × 10−1 3.9503 × 10−1 6.3335 × 10−1 1.0009 × 100 4.7352 × 10−1 8.5399 × 10−1 2.3623 × 10−3 7.0205 × 10−4

Rank 6 3 5 7 4 8 2 1

F7

Best 263.387643 119.875516 475.665511 24.567441 432.363813 165.724634 134.682820 123.243229
Worst 1.1952 × 103 1.2673 × 103 1.3974 × 103 1.1286 × 103 1.1644 × 103 1.3881 × 103 1.2171 × 103 1.2086 × 103

Mean 745.119061 615.341713 889.860067 711.903040 757.697432 874.636013 577.351162 702.483287
Std 2.3229 × 102 3.0147 × 102 2.4962 × 102 2.8263 × 102 2.0552 × 102 3.2378 × 102 2.5476 × 102 2.8796 × 102

Rank 5 2 8 4 6 7 1 3

F8

Best 3.110874 2.197454 2.839690 2.043254 1.758220 3.274288 2.566743 1.717564
Worst 4.101536 3.813682 4.261395 4.032497 3.647034 3.938084 4.097482 3.809025
Mean 3.677661 2.928565 3.614662 3.518221 2.927741 3.586926 3.179098 2.871277

Std 2.4798 × 10−1 4.3209 × 10−1 4.0743 × 10−1 4.2721 × 10−1 5.0958 × 10−1 1.7740 × 10−1 4.2090 × 10−1 4.8730 × 10−1

Rank 8 3 7 5 2 6 4 1

F9

Best 1.108133 1.047001 1.170710 1.081691 1.040930 1.133197 1.035531 1.040001
Worst 1.385159 1.157980 1.294128 1.379456 1.144856 1.376869 1.149305 1.128768
Mean 1.209967 1.096928 1.235022 1.202045 1.080990 1.223293 1.090168 1.080195

Std 6.9719 × 10−2 2.7865 × 10−2 3.9300 × 10−2 7.4747 × 10−2 2.8149 × 10−2 6.2415 × 10−2 3.2839 × 10−2 2.8916 × 10−2

Rank 6 4 8 5 2 7 3 1

F10

Best 11.6185 7.491409 1.000001 1.000000 1.000000 3.013315 3.013315 1.000000
Worst 21.5071 21.511923 21.452565 21.496805 21.501699 21.534074 21.539023 21.500175
Mean 20.0395 20.701859 16.406949 15.824920 18.436521 18.611377 19.590365 17.416985

Std 1.05 × 101 3.1102 × 100 8.0406 × 100 8.3796 × 100 7.1870 × 100 6.0449 × 100 5.5736 × 100 8.1379 × 100

Rank 7 8 2 1 4 5 6 3

Mean Rank 6.5 4.2 6.3 4.5 4.3 5.7 2.9 1.5
Median Rank 6.5 4 6.5 4.5 4 6.5 3 1

Result 8 3 7 5 4 6 2 1

The EJS algorithm is compared with some other recognized optimization methods
(such methods include JS [23], HHO [19], GBO [45], WOA [14], AOA [11], SCA [50],
BMO [20], SSA [51], SOA [21], PSO [12], and MTDE [52]) to further prove the performance of
the EJS algorithm. Table 3 provides related parameter settings of these recognized methods.

Mathematics 2023, 11, 851 16 of 32

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 34

Rank 7 8 2 1 4 5 6 3
Mean Rank 6.5 4.2 6.3 4.5 4.3 5.7 2.9 1.5

Median Rank 6.5 4 6.5 4.5 4 6.5 3 1
Result 8 3 7 5 4 6 2 1

From Table 2, all the evaluating indicators of the EJS algorithm and most of the in-
complete algorithms are better than the JS algorithm, except for function test F10; there-
fore, this is adequate to show that the three strategies added in this paper improve the
original algorithm to a certain extent. The JS algorithm can obtain the optimal solution
except for on test functions F2, F4, and F8. On the individual functions, the improvement
of the three strategies is not as good as the improvement of the original algorithm using a
single strategy. For example, for test function F2, the effect of the JSVI algorithm is better
than that of the EJS algorithm, that is, the local escape operator may cause the accuracy of
the algorithm to be reduced on test function F2. The effect of the EJS algorithm is inferior
to the JSI and JSIII algorithms on test function F7, that is, the sine and cosine learning
factors strategy and the learning strategy may cause the accuracy of the algorithm to be
reduced on test function F7. The effects of the JSII and JSIII algorithms are superior to the
EJS algorithm on test function F10, that is, the local escape operator strategy and the learn-
ing strategy may cause the accuracy of the algorithm to be reduced on function F10, but
the difference is not large; the best values are obtained using JSIV and JSIII, however, they
all fluctuate slightly near the optimal solution. From the overall ranking, the ranking order
of the eight algorithms is EJS > JSVI > JSI > JSIV > JSIII > JSV > JSII > JS. These results show
that the EJS algorithm is able to avoid local optimal solutions and find better solutions by
using the local escape operator, which is consistent with the analysis in Section 3.2. The
performance of the EJS algorithm in solving accuracy and stability is comparable to the JS
algorithm on all functions, and therefore, the theoretical optimal value has been found.

Due to article space constraints, in this paper, we only present the convergence
curves of some test sets in Figure 3. It can be seen from the figure that the convergence
speed and accuracy of the JSI algorithm is improved, the convergence speed and accuracy
of the JSII, JSIII, JSV,and JSVI algorithms are improved, and the JSIII algorithm is rela-
tively obvious, that is to say, the learning strategy can significantly improve the calcula-
tion accuracy, accelerate convergence speed, and avoid falling into local optimization.

0 200 400 600 800 1000
Iteration

100

102

104

106

108

1010 F1

JS
JS1
JS2
JS3
JS4
JS5
JS6
EJS

0 200 400 600 800 1000
Iteration

100

101

102

103

104

105 F2

JS
JS1
JS2
JS3
JS4
JS5
JS6
EJS

0 200 400 600 800 1000
Iteration

100

101

F3

JS
JS1
JS2
JS3
JS4
JS5
JS6
EJS

0 200 400 600 800 1000
Iteration

101

102

F4

JS
JS1
JS2
JS3
JS4
JS5
JS6
EJS

0 200 400 600 800 1000
Iteration

3

3.5

4

4.5

5

F8
JS
JS1
JS2
JS3
JS4
JS5
JS6
EJS

0 200 400 600 800 1000
Iteration

1.5

2

2.5

3

3.5

4
4.5

5
F9

JS
JS1
JS2
JS3
JS4
JS5
JS6
EJS

Figure 3. Convergence curves of the incomplete improved algorithms (some test sets).

Table 3. Related parameters of other recognized algorithms.

Algorithm Parameter Value

JS C0 0.5

EJS
C0 0.5
Selection probability p 0.5

HHO Initial energy E0 [−1, 1]

GBO
Constant parameters βmin = 0.2, βmax = 1/2
Probability parameter pr 0.5

WOA a, b Decreasing from 2 to 0 with linearly 1
AOA C C1 = 2, C2 = 6, C3 = 1, C4 = 2
SCA a 2
BMO pl 7
SSA Initial speed v0 0

SOA
Control Parameter A Decreasing from 2 to 0 with linearly
The value of fc 0

PSO
Cognitive coefficient 2
Social coefficient 2
Inertia constant decreases from 0.8 to 0.2 linearly

MTDE Constant parameters WinIter = 20, H = 5, initial = 0.001,
final = 2, Mu = log(D), µf = 0.5, σ = 0.2

Each benchmark function is carried out 20 times on the CEC2019 test set. Table 4
summarizes the evaluation index results for the EJS algorithm and other methods, including
the best, worst, mean, standard devation, and rank; the optimal value is highlighted in
bold among all the compared algorithms. Based on the data in Table 4, the optimization
capability of the EJS algorithm is significantly better than the original JS algorithm on
all test function, which may be due to the introduction of the sine and cosine learning
factors, local escape operator, and learning strategies that have significantly accelerated the
calculation speed and enhanced the calculation precision.

Mathematics 2023, 11, 851 17 of 32

Table 4. Results of the EJS algorithm and other optimization algorithms on the CEC2019 test set.

No. Result
Algorithm

SSA SOA PSO WOA SCA MTDE JS EJS

F1

Best 2.03 × 103 1 7.46 × 103 1.57 × 102 1 1 1 1
Worst 3.39 × 106 2.38 × 102 2.30 × 105 2.06 × 107 3.60 × 106 1.0001 9.62 × 103 1
Mean 7.55 × 105 2.28 × 101 7.18 × 104 4.22 × 106 3.87 × 105 1 5.61 × 102 1

Std 6.94 × 1011 3.33 × 103 3.61 × 109 3.72 × 1013 9.30 × 1011 4.33 × 10−1 4.57 × 106 1.56 × 10−24

MeanFEs 50,050 50,000 50,000 50,000 50,000 50,050 50,050 4,269,450
Rank 7 3 5 8 6 2 4 1

F2

Best 1.37 × 102 4.2578 1.51 × 102 2.36 × 103 2.81 × 101 3.6598 4.0952 4.1721
Worst 2.33 × 103 2.02 × 102 4.40 × 102 1.94 × 104 4.13 × 103 1.63 × 101 4.05 × 101 4.2865
Mean 5.86 × 102 3.39 × 101 2.61 × 102 7.21 × 103 2.42 × 103 6.7871 8.3173 4.2474

Std 2.95 × 105 2.99 × 103 7.68 × 103 1.52 × 107 1.09 × 106 8.5241 6.44 × 101 8.34 × 10−4

MeanFEs 50,050 50,000 50,000 50,000 50,000 50,050 50050 4,278,650
Rank 6 4 5 8 7 2 3 1

F3

Best 1 5.5227 1.4091 1.0114 4.9662 1.4092 1.4190 1
Worst 7.3871 11.7128 6.7120 8.6335 11.1873 2.9206 5.0663 1.4101
Mean 3.5624 9.6919 2.0993 4.3972 8.7119 1.6112 3.0739 1.3683

Std 3.4887 2.3448 2.9966 5.0363 3.021 1.80 × 10−1 1.3527 1.59 × 10−2

MeanFEs 50,050 50,000 50,000 50,000 50,000 50,050 50,050 4,288,670
Rank 5 8 3 6 7 2 4 1

F4

Best 10.9496 12.8433 8.9597 11.0267 24.2144 1.3311 8.9597 1.9950
Worst 55.7222 43.2380 25.8739 97.5722 55.3016 8.9603 32.8386 16.9193
Mean 25.2778 24.5804 16.6427 50.0062 41.7837 5.7551 14.1974 9.1587

Std 153.3892 88.2880 22.2697 508.0421 84.6501 4.6816 29.5700 16.9436
MeanFEs 50,050 50,000 50,000 50,000 50,000 50,050 50,050 4,287,350

Rank 6 5 4 8 7 1 3 2

F5

Best 1.0566 1.4885 1 1.2966 4.5055 1 1.0172 1.0099
Worst 1.6835 15.6787 1.2437 3.3065 10.5726 1.0319 1.1846 1.1454
Mean 1.2653 3.4743 1.1169 2.0409 6.8461 1.0059 1.0728 1.0625

Std 2.98 × 10−2 9.4315 4.71 × 10−3 2.52 × 10−1 2.3672 9.52 × 10−5 1.81 × 10−3 1.55 × 10−3

MeanFEs 50,050 50,000 50,000 50,000 50,000 50,050 50,050 4,282,650
Rank 5 7 4 6 8 1 3 2

F6

Best 1.5031 5.5717 1 5.9743 4.9522 1 1.015 1
Worst 7.6048 9.9222 5.6087 11.8140 9.1251 2.500 3.5932 1.0596
Mean 4.4052 7.4945 2.4119 8.5441 6.9821 1.1239 1.674 1.0034

Std 3.9027 1.8243 1.9215 2.0366 1.1457 1.28 × 10−1 4.30 × 10−1 1.78 × 10−4

MeanFEs 50,050 50,000 50,000 50,000 50,000 50,050 50,050 4,280,150
Rank 5 7 4 8 6 2 3 1

F7

Best 5.16 × 102 4.86 × 102 2.38 × 102 5.33 × 102 1.17 × 103 1.2575 3.57 × 102 1.3747
Worst 1.67 × 103 1.39 × 103 1.17 × 103 1.74 × 103 1.74 × 103 1.57 × 102 1.35 × 103 1.10 × 103

Mean 8.93 × 102 9.36 × 102 7.26 × 102 1.23 × 103 1.45 × 103 6.77 × 101 7.93 × 102 5.81 × 102

Std 1.02 × 105 1.01 × 105 7.03 × 104 9.80 × 104 2.14 × 104 3.04 × 103 7.60 × 104 1.20 × 105

MeanFEs 50,050 50,000 50,000 50,000 50,000 50,050 50,050 4,271,650
Rank 5 6 3 7 8 1 4 2

F8

Best 2.8406 3.3827 1.4577 4.0885 3.8107 2.3048 2.2607 1.8870
Worst 4.5761 5.0174 4.4825 5.0042 4.6990 3.6979 4.1202 3.6695
Mean 3.8634 4.3280 3.4510 4.5452 4.2684 3.0618 3.6681 2.8739

Std 2.10 × 10−1 1.29 × 10−1 3.96 × 10−1 8.09 × 10−2 7.10 × 10−2 1.46 × 10−1 1.69 × 10−1 1.96 × 10−1

MeanFEs 50,050 50,000 50,000 50,000 50,000 50,050 50,050 4,282,450
Rank 5 7 3 8 6 2 4 1

F9

Best 1.1179 1.1342 1.0353 1.1215 1.3690 1.1001 1.1084 1.0222
Worst 1.9214 1.5262 1.2829 1.6979 1.7938 1.2156 1.3049 1.1698
Mean 1.3812 1.3216 1.1108 1.3552 1.5182 1.1440 1.1981 1.0788

Std 4.82 × 10−2 1.26 × 10−2 3.11 × 10−3 2.22 × 10−2 1.44 × 10−2 8.23 × 10−4 3.68 × 10−3 1.57 × 10−3

MeanFEs 50,050 50,000 50,000 50,000 50,000 50,050 50,050 4,289,150
Rank 7 5 2 6 8 3 4 1

F10

Best 20.9965 21.1771 21.0431 21.0073 15.0350 21.0899 11.6185 2.1551
Worst 21.1029 21.5108 21.4662 21.3630 21.5155 21.2469 21.5071 21.5214
Mean 21.0130 21.3651 21.2159 21.1252 21.0376 21.1722 20.0395 18.6298

Std 1.10 × 10−3 8.41 × 10−3 1.04 × 10−2 1.04 × 10−2 2.0042 2.42 × 10−3 1.05 × 101 4.58 × 101

MeanFEs 50,050 50,000 50,000 50,000 50,000 50,050 50,050 4,287,350
Rank 3 8 7 5 4 6 2 1

Mean Rank 5.4 6.0 4.0 7.0 6.7 2.2 3.4 1.3
Medial Rank 5 6.5 4 7.5 7 2 3.5 1

Result 5 6 4 8 7 2 3 1

Among eight optimization algorithms, the EJS algorithm has more significant advan-
tages in solving the CEC2019 test set. From the rank of algorithms, except for test functions
F4, F5, and F7, the EJS algorithm ranks first on the remaining test functions. Especially
on test function F1, the EJS algorithm is significantly superior to the other algorithms; the
theoretical optimal value is obtained, and has a very small standard deviation. However,

Mathematics 2023, 11, 851 18 of 32

the other optimization algorithms, including the original JS algorithm, are far from the
theoretical optimal value. The MTDE algorithm is in line with the theoretical optimal value,
but its stability is not as good as the EJS algorithm. In conclusion, the EJS algorithm can
significantly accelerate convergence speed, and can improve the calculation precision.

The final ranking of the last row in Table 4 shows a research phenomenon: The
performance ranking of the compared algorithms is WOA < SCA < SOA < SSA < PSO < JS
< MTDE < EJS, which fully shows that the three strategies introduced in the EJS algorithm
significantly accelerate convergence speed and improve the calculation precision of the JS
algorithm. This verifys the effectiveness and applicability of the EJS algorithm, which are
further confirmed on the CEC2019 test set.

It can be seen from Table 4 that the evaluation times of the fitness value of the original
algorithms (JS, SSA, PSO, WOA, SCA, and MTDE) are the same, but the meanFE values
of the test functions are different for the EJS algorithm. The average FEs value of 20 times
is given in Table 4. It can also be seen that the EJS algorithm has improved the accuracy
and convergence speed, but its required space storage and calculation time have increased,
which further verifies the complexity highlighted in Section 3.5.

Under a 95% significance level (α = 0.05) with the EJS algorithm as the benchmark,
the Wilcoxon rank sum test values and statistical data of the other compared methods,
implemented 20 times on the CEC2019 test set, are listed in Table 5. Wilcoxon rank sum test
values that exceed 0.05 are highlighted in bold, which means that the EJS algorithm and
the compared algorithms have competitiveness, and they are roughly the same. Combined
with the ranking in Table 4, the statistical results of the last line in Table 5 are 0/0/10, 0/1/9,
0/1/9, 0/0/10, 0/1/9, 3/1/6, and 0/3/7. The numbers of functions that the EJS algorithm
is significantly better than the SSA, WOA, SOA, PSO, SCA, MTDE, and JS algorithms are
10, 10, 9, 9, 9, 6, and 7, respectively. Therefore, for the CEC2019 test set, the computational
accuracy of the EJS algorithm is significantly improved on seven test functions as compared
with the original JS algorithm, and the EJS algorithm also has strong competitiveness as
compared with the other compared algorithms.

Table 5. p-value results on the CEC2019 test set with the EJS algorithm as the benchmark.

Function
Algorithm

SSA SOA PSO WOA SCA MTDE JS

F1 6.791 × 10−8 6.791 × 10−8 6.791 × 10−8 6.791 × 10−8 6.791 × 10−8 6.791 × 10−8 6.791 × 10−8

F2 6.791 × 10−8 2.56 × 10−7 6.791 × 10−8 6.791 × 10−8 6.791 × 10−8 1.60 × 10−5 1.20 × 10−6

F3 1.35 × 10−3 6.791 × 10−8 4.20 × 10−3 9.13 × 10−7 6.791 × 10−8 1.66 × 10−7 6.791 × 10−8

F4 1.37 × 10−6 7.93 × 10−7 4.15 × 10−5 1.65 × 10−7 6.78 × 10−8 2.56 × 10−2 2.04 × 10−3

F5 2.06 × 10−6 6.791 × 10−8 6.04 × 10−3 6.791 × 10−8 6.791 × 10−8 1.92 × 10−7 4.90 × 10−1

F6 4.001 × 10−8 4.001 × 10−8 1.14 × 10−6 4.001 × 10−8 4.001 × 10−8 2.15 × 10−2 5.45 × 10−8

F7 1.33 × 10−2 3.64 × 10−3 1.99 × 10−1 5.17 × 10−6 6.791 × 10−8 5.90 × 10−5 8.10 × 10−2

F8 2.06 × 10−6 1.06 × 10−7 5.631 × 10−4 6.791 × 10−8 6.791 × 10−8 1.48 × 10−1 1.25 × 10−5

F9 1.92 × 10−7 1.06 × 10−7 4.68 × 10−2 9.17 × 10−8 6.791 × 10−8 2.04 × 10−5 9.13 × 10−7

F10 1.61 × 10−4 9.68 × 10−1 8.35 × 10−4 3.05 × 10−4 3.512 × 10−1 1.614 × 10−4 3.94 × 10−1

+/=/− 0/0/10 0/1/9 0/1/9 0/0/10 0/1/9 3/1/6 0/3/7

The convergence curves of the EJS algorithm on the test functions are shown in Figure 4
in order to better evaluate the EJS algorithm. As indicated in the figure, for the CEC2019
test set, the EJS algorithm has obviously improved convergence characteristics as compared
with the JS algorithm. On test functions F1, F2, F6, and F9, the EJS algorithm accelerates
convergence speed, and also increases calculation precision. On test functions F3, F7, and
F8, although the convergence speed of the EJS algorithm is not better than that of the PSO
algorithm, its convergence does not stop at the late iteration, skipping the trap of local
optimization, and its calculation precision is obviously better than the PSO algorithm. The
solution’s precision of the EJS algorithm is obviously better than the MTDE algorithm on
test functions F4 and F7, but the calculation rate of the MTDE algorithm is slightly slower

Mathematics 2023, 11, 851 19 of 32

on each test function, and the EJS algorithm performs well on other test functions. On
balance, the convergence curves show that the proposed EJS algorithm has remarkably
improved convergence characteristics as compared with the JS algorithm and the additional
compared methods, it accelerates convergence speed and correspondingly improves the
calculation precision.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 34

The convergence curves of the EJS algorithm on the test functions are shown in Fig-
ure 4 in order to better evaluate the EJS algorithm. As indicated in the figure, for the
CEC2019 test set, the EJS algorithm has obviously improved convergence characteristics
as compared with the JS algorithm. On test functions F1, F2, F6, and F9, the EJS algorithm
accelerates convergence speed, and also increases calculation precision. On test functions
F3, F7, and F8, although the convergence speed of the EJS algorithm is not better than that
of the PSO algorithm, its convergence does not stop at the late iteration, skipping the trap
of local optimization, and its calculation precision is obviously better than the PSO algo-
rithm. The solution’s precision of the EJS algorithm is obviously better than the MTDE
algorithm on test functions F4 and F7, but the calculation rate of the MTDE algorithm is
slightly slower on each test function, and the EJS algorithm performs well on other test
functions. On balance, the convergence curves show that the proposed EJS algorithm has
remarkably improved convergence characteristics as compared with the JS algorithm and
the additional compared methods, it accelerates convergence speed and correspondingly
improves the calculation precision.

Figure 4. Convergence curves of all algorithms on the CEC2019 test set.

The box plots can help researchers to understand and to explain the distribution char-
acteristics obtained with all the algorithms’ solutions. The box plots of the EJS algorithm
and the other eight optimization methods on the CEC2019 test set are shown in Figure 5.
They show that the median of the EJS algorithm running 20 times is small, except for func-
tion tests F4 and F7, which verifies the superiority and effectiveness of the EJS algorithm.
At the same time, the rectangular area of the EJS algorithm is clearly narrower than the
other methods on function tests F1~F3, F5, and F6, which illustrates that the EJS algorithm

0 200 400 600 800 1000
Iterations

100

102

104

106

108

1010 F1

SSA
SOA
PSO
WOA
SCA
MTDE
JS
EJS

0 200 400 600 800 1000
Iterations

100

101

102

103

104

105 F2

SSA
SOA
PSO
WOA
SCA
MTDE
JS
EJS

0 200 400 600 800 1000
Iterations

100

101

F3

SSA
SOA
PSO
WOA
SCA
MTDE
JS
EJS

0 200 400 600 800 1000
Iterations

100

101

102

F4

SSA
SOA
PSO
WOA
SCA
MTDE
JS
EJS

0 200 400 600 800 1000
Iterations

100

101

102

F5

SSA
SOA
PSO
WOA
SCA
MTDE
JS
EJS

0 200 400 600 800 1000
Iterations

100

101

F6

SSA
SOA
PSO
WOA
SCA
MTDE
JS
EJS

0 200 400 600 800 1000
Iterations

102

103

F7

SSA
SOA
PSO
WOA
SCA
MTDE
JS
EJS

0 200 400 600 800 1000
Iterations

3.5

4

4.5

5

5.5

F8

SSA
SOA
PSO
WOA
SCA
MTDE
JS
EJS

0 200 400 600 800 1000
Iterations

2

3

4

5

6

F9

SSA
SOA
PSO
WOA
SCA
MTDE
JS
EJS

Figure 4. Convergence curves of all algorithms on the CEC2019 test set.

The box plots can help researchers to understand and to explain the distribution
characteristics obtained with all the algorithms’ solutions. The box plots of the EJS algorithm
and the other eight optimization methods on the CEC2019 test set are shown in Figure 5.
They show that the median of the EJS algorithm running 20 times is small, except for
function tests F4 and F7, which verifies the superiority and effectiveness of the EJS algorithm.
At the same time, the rectangular area of the EJS algorithm is clearly narrower than the
other methods on function tests F1~F3, F5, and F6, which illustrates that the EJS algorithm
has strong stability. The approximate solution can be obtained on almost all time runs. In
addition, the height between the upper and the lower quartile is low, indicating that the
solution of the EJS algorithm has high consistency. In terms of the EJS algorithm outliers,
function test F3, F8, and F9 have fewer outliers, which shows that the EJS algorithm avoids
the existence of contingency, and the solution obtained in each iteration is slightly affected
by the random strategy. In general, the EJS algorithm is more stable and more accurate
than the other compared algorithms.

Mathematics 2023, 11, 851 20 of 32

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 34

has strong stability. The approximate solution can be obtained on almost all time runs. In
addition, the height between the upper and the lower quartile is low, indicating that the
solution of the EJS algorithm has high consistency. In terms of the EJS algorithm outliers,
function test F3, F8, and F9 have fewer outliers, which shows that the EJS algorithm avoids
the existence of contingency, and the solution obtained in each iteration is slightly affected
by the random strategy. In general, the EJS algorithm is more stable and more accurate
than the other compared algorithms.

Figure 5. Box plots of all algorithms on the CEC2019 test set.

The radar graphs drawn according to the ranking of all the compared algorithms on
the CEC2019 test set are displayed in Figure 6. The radar graphs illustrate that the EJS
algorithm has the smallest shadow area, and the algorithm has the smallest comprehen-
sive ranking on the test function. Therefore, the stability of the EJS algorithm is improved.
In general, the performance of the EJS algorithm is more valuable than the other compared
algorithms on the CEC2019 benchmark.

SSA

SOA

PSO

W
OA

SCA

MTDE JS EJS

0

0.5

1

1.5

2

107 F1

SSA

SOA

PSO

W
OA

SCA

MTDE JS EJS

0

5000

10000

15000

20000
F2

SSA

SOA

PSO

W
OA

SCA

MTDE JS EJS

2

4

6

8

10

12
F3

SSA

SOA

PSO

W
OA

SCA

MTDE JS EJS

0

20

40

60

80

100
F4

SSA

SOA

PSO

W
OA

SCA

MTDE JS EJS

2

4

6

8

10

12

14

16
F5

SSA

SOA

PSO

W
OA

SCA

MTDE JS EJS

2

4

6

8

10

12
F6

SSA

SOA

PSO

W
OA

SCA

MTDE JS EJS

0

200

400

600

800

1000

1200

1400

1600

1800
F7

SSA

SOA

PSO

W
OA

SCA

MTDE JS EJS

1.5

2

2.5

3

3.5

4

4.5

5

F8

SSA

SOA

PSO

W
OA

SCA

MTDE JS EJS

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

F9

Figure 5. Box plots of all algorithms on the CEC2019 test set.

The radar graphs drawn according to the ranking of all the compared algorithms on
the CEC2019 test set are displayed in Figure 6. The radar graphs illustrate that the EJS
algorithm has the smallest shadow area, and the algorithm has the smallest comprehensive
ranking on the test function. Therefore, the stability of the EJS algorithm is improved. In
general, the performance of the EJS algorithm is more valuable than the other compared
algorithms on the CEC2019 benchmark.

The difference between individual dimensions can infer whether the group is diver-
gent or clustered in the centralized space. On the one hand, when the algorithm diverges,
the difference of the dimension of the group body increases, that is, the group individuals
disperse in the search environment. This is called exploration or diversification in meta-
heuristic research. On the other hand, when the population converges, the difference is
minimized and the population individuals gather in a concentrated region. This is called
development or reinforcement. In the iterative process, different metaheuristic algorithms
adopt different strategies to explore and develop within the group. The concept of explo-
ration and development is ubiquitous in any metaheuristic algorithm. Through exploration,
an algorithm can access the invisible community in the search environment to maximize the
efficiency of finding the global optimal location. On the contrary, development is the use
of neighbors that allow individuals to successfully converge to a potential global optimal
solution. The balance between these two capabilities is a trade-off. Neither of these two
algorithms can produce effective results. Therefore, maintaining the correct collaboration

Mathematics 2023, 11, 851 21 of 32

between the exploration and development modes among algorithms is a necessary con-
dition to ensure the optimization ability. In this paper, we use the dimensional diversity
measure proposed by Hussain et al. in [53] for reference to calculate the corresponding
exploration and production ratio. Figure 7 shows the exploration and development analysis
diagrams of some CEC2019 test functions.

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 34

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6. Radar graphs of all optimization algorithms on the CEC2019 test set. (a) SSA. (b) SOA.
(c) PSO. (d) WOA. (e) SCA. (f) MTDE. (g) JS. (h) EJS.

The difference between individual dimensions can infer whether the group is diver-
gent or clustered in the centralized space. On the one hand, when the algorithm diverges,
the difference of the dimension of the group body increases, that is, the group individuals
disperse in the search environment. This is called exploration or diversification in me-
taheuristic research. On the other hand, when the population converges, the difference is
minimized and the population individuals gather in a concentrated region. This is called
development or reinforcement. In the iterative process, different metaheuristic algorithms
adopt different strategies to explore and develop within the group. The concept of explo-
ration and development is ubiquitous in any metaheuristic algorithm. Through explora-
tion, an algorithm can access the invisible community in the search environment to max-
imize the efficiency of finding the global optimal location. On the contrary, development
is the use of neighbors that allow individuals to successfully converge to a potential global
optimal solution. The balance between these two capabilities is a trade-off. Neither of
these two algorithms can produce effective results. Therefore, maintaining the correct col-
laboration between the exploration and development modes among algorithms is a nec-
essary condition to ensure the optimization ability. In this paper, we use the dimensional
diversity measure proposed by Hussain et al. in [53] for reference to calculate the corre-
sponding exploration and production ratio. Figure 7 shows the exploration and develop-
ment analysis diagrams of some CEC2019 test functions.

Figure 6. Radar graphs of all optimization algorithms on the CEC2019 test set. (a) SSA. (b) SOA.
(c) PSO. (d) WOA. (e) SCA. (f) MTDE. (g) JS. (h) EJS.

From the figure, we can see that the EJS algorithm starts from the exploration on all test
functions, and then gradually transitions to the development stage, i.e., the EJS algorithm
with average exploration above 80% and exploitation below 20% on all functions. On test
functions F1,F2, F5, and F9, the EJS algorithm can still maintain an effective investigation
rate in the middle and early stages of the iteration. On test function F7, the EJS algorithm
quickly turns to an effective exploration rate in the middle stage, and ends the iteration with
an effective exploitation situation. This discovery process shows that the more effective
exploration speed of the EJS algorithm in the early stage ensures reasonable full-range
discovery capability to prevent falling into the current local solution. In contrast, the more
effective development speed in the later stage ensures that the mining can be carried out
with higher accuracy after high exploration.

Mathematics 2023, 11, 851 22 of 32Mathematics 2023, 11, x FOR PEER REVIEW 23 of 34

Figure 7. The exploration and exploitation diagrams of the EJS algorithm.

From the figure, we can see that the EJS algorithm starts from the exploration on all
test functions, and then gradually transitions to the development stage, i.e., the EJS algo-
rithm with average exploration above 80% and exploitation below 20% on all functions.
On test functions F1,F2, F5, and F9, the EJS algorithm can still maintain an effective inves-
tigation rate in the middle and early stages of the iteration. On test function F7, the EJS
algorithm quickly turns to an effective exploration rate in the middle stage, and ends the
iteration with an effective exploitation situation. This discovery process shows that the
more effective exploration speed of the EJS algorithm in the early stage ensures reasonable
full-range discovery capability to prevent falling into the current local solution. In con-
trast, the more effective development speed in the later stage ensures that the mining can
be carried out with higher accuracy after high exploration.

5. Engineering Application
As more and better intelligent algorithms are proposed, we need to verify their uni-

versality and applicability in solving practical engineering problems. All engineering
problems can ultimately be summed up as optimization problems. We need to select var-
ious design and optimization engineering problems to verify the effectiveness and wide
applicability of the algorithm in this paper. Therefore, six different engineering examples
are selected, which represent different types of optimization problems, including con-
strained, unconstrained, discrete variable, continuous variable, mixed variable, implicit
constraint, strong constraint, and weak constraint.

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

70

80

90

100
F1

ExplorationEJS%
ExploitationEJS%

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

70

80

90

100
F2

ExplorationEJS%
ExploitationEJS%

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

70

80

90

100
F3

ExplorationEJS%
ExploitationEJS%

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

70

80

90

100
F4

ExplorationEJS%
ExploitationEJS%

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

70

80

90

100
F5

ExplorationEJS%
ExploitationEJS%

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

70

80

90

100
F6

ExplorationEJS%
ExploitationEJS%

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

70

80

90

100
cec07

ExplorationEJS%
ExploitationEJS%

0 200 400 600 800 1000 1200
Iterations

0

10

20

30

40

50

60

70

80

90

100
F8

ExplorationEJS%
ExploitationEJS%

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

70

80

90

100
F9

ExplorationEJS%
ExploitationEJS%

Figure 7. The exploration and exploitation diagrams of the EJS algorithm.

5. Engineering Application

As more and better intelligent algorithms are proposed, we need to verify their
universality and applicability in solving practical engineering problems. All engineering
problems can ultimately be summed up as optimization problems. We need to select
various design and optimization engineering problems to verify the effectiveness and
wide applicability of the algorithm in this paper. Therefore, six different engineering
examples are selected, which represent different types of optimization problems, including
constrained, unconstrained, discrete variable, continuous variable, mixed variable, implicit
constraint, strong constraint, and weak constraint.

The EJS algorithm and some previous methods with the ability to solve practical prob-
lems are verified in this section. Here, six engineering cases consist of tension/compression
spring design, pressure vessel design, gear set design, cantilever beam design, 3-bar truss
design, and 25 bar truss tower design to illustrate the EJS algorithm’s applicability and
effectiveness in solving practical engineering problems. The calculation indexes can reflect
the practical application effect of the EJS algorithm. In addition to the gear train design,
the other five engineering optimization problems are nonlinear constrained optimization
problems, which have strong nonlinear objective function and constraint conditions. In
this paper, the penalty function is selected to deal with the constraints; it is a technique
to deal with nonlinear constraints effectively. Its basic principle is to impose a penalty
term on the original, goal expression equation, and then transform the constrained into
an unconstrained optimization problem, which is easy to solve with intelligent algorithms

Mathematics 2023, 11, 851 23 of 32

including the EJS algorithm. In all experiments, the running environment is the same as in
Section 4.1, and set D = 50, T = 1000.

5.1. Tension/Compression Spring Design Problem

The tension/compression spring design problem is a nonlinear constrained opti-
mization issue. The objective is to determine the minimum weight, and the variables
that can participate in the optimization are mean coil diameter (D), wire diameter (d),
and number of effective coils (N). Figure 8 gives the sketch map of this case. Consider
Z = [z1, z2, z3] = [d, D, N], the mathematical expressions of the spring design problem are
shown in Equation (38). z1∈[0.05, 2], z2∈[0.25, 1.3], and z3∈[2, 15] are the search areas of
this issue.

Minimize W(Z) = (z3 + 2)z2z2
1 (38)

Subject to h1(Z) = 4z2
2−z1z2

12566(z2z3
1−z4

1)
+ 1

5108z2
1
− 1 ≤ 0, h2(Z) = 1− 140.45z1

z2
2z3

≤ 0

h3(Z) = 1− z3
2z3

71785z4
1
≤ 0, h4(Z) = z1+z2

1.5 − 1 ≤ 0

Mathematics 2023, 11, x FOR PEER REVIEW 24 of 34

The EJS algorithm and some previous methods with the ability to solve practical
problems are verified in this section. Here, six engineering cases consist of tension/com-
pression spring design, pressure vessel design, gear set design, cantilever beam design, 3-
bar truss design, and 25 bar truss tower design to illustrate the EJS algorithm’s applicabil-
ity and effectiveness in solving practical engineering problems. The calculation indexes
can reflect the practical application effect of the EJS algorithm. In addition to the gear train
design, the other five engineering optimization problems are nonlinear constrained opti-
mization problems, which have strong nonlinear objective function and constraint condi-
tions. In this paper, the penalty function is selected to deal with the constraints; it is a
technique to deal with nonlinear constraints effectively. Its basic principle is to impose a
penalty term on the original, goal expression equation, and then transform the constrained
into an unconstrained optimization problem, which is easy to solve with intelligent algo-
rithms including the EJS algorithm. In all experiments, the running environment is the
same as in Section 4.1, and set D = 50, T = 1000.

5.1. Tension/Compression Spring Design Problem
The tension/compression spring design problem is a nonlinear constrained optimi-

zation issue. The objective is to determine the minimum weight, and the variables that can
participate in the optimization are mean coil diameter (D), wire diameter (d), and number
of effective coils (N). Figure 8 gives the sketch map of this case. Consider

],,[],,[321 NDdzzzZ == , the mathematical expressions of the spring design problem are
shown in Equation (38). z1∈[0.05, 2], z2∈[0.25, 1.3], and z3∈[2, 15] are the search areas of
this issue.

Figure 8. Sketch map of the tension/compression spring.

Minimize 2
123)2()(zzzZW += (38)

Subject to 01
5108

1
)(12566

4)(2
1

4
1

3
12

21
2
2

1 ≤−+
−

−
=

zzzz
zzzZh , 045.1401)(

3
2
2

1
2 ≤−=

zz
zZh

0
71785

1)(4
1

3
3
2

3 ≤−=
z
zzZh , 01

5.1
)(21

4 ≤−+= zzZh

All the statistical results of the JS [23], ALO [17], GOA [18], GWO [23], MFO [54],
MVO [9], WOA [14], SCA [50], HHO [19] and EJS algorithms for the design problem
shown in Figure 8 are displayed in Table 6. Table 6 summarizes the variable values and
the evaluation indicators consisting of the minimum, mean, worst, and standard deviation
of spring weight after all algorithms have been run 20 times. The optimal values of the
evaluation indicators are highlighted in bold. As described in Table 6, the EJS algorithm
obviously outperforms the above methods on each statistical indicator. The applicability
and superiority of the EJS algorithm are further verified. The EJS algorithm can provide
the best design variables at the lowest cost as compared with competitors.

Figure 8. Sketch map of the tension/compression spring.

All the statistical results of the JS [23], ALO [17], GOA [18], GWO [23], MFO [54],
MVO [9], WOA [14], SCA [50], HHO [19] and EJS algorithms for the design problem
shown in Figure 8 are displayed in Table 6. Table 6 summarizes the variable values and
the evaluation indicators consisting of the minimum, mean, worst, and standard deviation
of spring weight after all algorithms have been run 20 times. The optimal values of the
evaluation indicators are highlighted in bold. As described in Table 6, the EJS algorithm
obviously outperforms the above methods on each statistical indicator. The applicability
and superiority of the EJS algorithm are further verified. The EJS algorithm can provide the
best design variables at the lowest cost as compared with competitors.

Table 6. Evaluation indicators and variable values for Figure 8.

Algorithm
Design Variables Evaluation Indicators (Weight)

d D N Minimum Mean Std Worst

JS 0.0516656 0.355897 11.3546 0.012666 0.012710 6.0819 × 10−10 0.012761
EJS 0.0520738 0.366045 10.7624 0.012665 0.012668 3.4221 × 10−12 0.012671

ALO 0.050000 0.317425 14.0278 0.012670 0.013001 1.7155 × 10−7 0.014091
GOA 0.067340 0.863100 2.2960 0.012719 0.015966 4.2678 × 10−6 0.019652
GWO 0.053658 0.405890 8.9014 0.012678 0.012720 2.4396 × 10−9 0.012919
MFO 0.058979 0.558790 4.9783 0.012666 0.012969 2.2056 × 10−7 0.014735
MVO 0.069094 0.937540 2.0181 0.012878 0.017167 2.4197 × 10−6 0.018036
WOA 0.060649 0.613040 4.2157 0.012687 0.013813 1.4231 × 10−6 0.017329
SCA 0.050000 0.317316 14.3155 0.012723 0.012900 9.9693 × 10−9 0.013100
HHO 0.057540 0.514510 5.7776 0.012679 0.013872 1.1585 × 10−6 0.017644

Mathematics 2023, 11, 851 24 of 32

5.2. Pressure Vessels Design Problem

Minimizing the total cost of pressure vessels is the first priority of pressure vessel
design. The variables that can participate in the optimization are shell thickness (Ts),
head thickness (Th), inner radius (R), and length of cylindrical part without head (L).
Figure 9 shows a sketch map of this case. Consider R = [r1, r2, r3, r4] = [Ts, Th, R, L]. The
corresponding mathematical model is simplified in Equation (39). Here, we can set r1,
r2∈[0, 99] and r3, r4∈[10, 200] in this problem.

Minimize W(R) = 0.6224r1r3r4 + 1.7781r2r2
3 + 3.1661r2

1r4 + 19.84r2
1r3 (39)

Subject to h1(R) = −r1 + 0.0193r3 ≤ 0, h2(R) = −r2 + 0.00954r3 ≤ 0,
h3(R) = −πr2

3r4 − 4
3 πr3

3 + 1296000 ≤ 0, h4(R) = r4 − 240 ≤ 0.

Mathematics 2023, 11, x FOR PEER REVIEW 25 of 34

Table 6. Evaluation indicators and variable values for Figure 8.

Algorithm
Design Variables Evaluation Indicators (Weight)

d D N Minimum Mean Std Worst
JS 0.0516656 0.355897 11.3546 0.012666 0.012710 6.0819 × 10−10 0.012761

EJS 0.0520738 0.366045 10.7624 0.012665 0.012668 3.4221 × 10−12 0.012671
ALO 0.050000 0.317425 14.0278 0.012670 0.013001 1.7155 × 10−7 0.014091
GOA 0.067340 0.863100 2.2960 0.012719 0.015966 4.2678 × 10−6 0.019652
GWO 0.053658 0.405890 8.9014 0.012678 0.012720 2.4396 × 10−9 0.012919
MFO 0.058979 0.558790 4.9783 0.012666 0.012969 2.2056 × 10−7 0.014735
MVO 0.069094 0.937540 2.0181 0.012878 0.017167 2.4197 × 10−6 0.018036
WOA 0.060649 0.613040 4.2157 0.012687 0.013813 1.4231 × 10−6 0.017329
SCA 0.050000 0.317316 14.3155 0.012723 0.012900 9.9693 × 10−9 0.013100
HHO 0.057540 0.514510 5.7776 0.012679 0.013872 1.1585 × 10−6 0.017644

5.2. Pressure Vessels Design Problem
Minimizing the total cost of pressure vessels is the first priority of pressure vessel

design. The variables that can participate in the optimization are shell thickness (Ts), head
thickness (Th), inner radius (R), and length of cylindrical part without head (L). Figure 9
shows a sketch map of this case. Consider].,,,[],,,[4321 LRTTrrrrR hs== The correspond-
ing mathematical model is simplified in Equation (39). Here, we can set r1, r2∈[0, 99] and
r3, r4∈[10, 200] in this problem.

Figure 9. Sketch map of the pressure vessel design.

Minimize 3
2

14
2

1
2

32431 84.191661.37781.16224.0)(rrrrrrrrrRW +++=

(39)

Subject to 00193.0)(311 ≤+−= rrRh , 000954.0)(322 ≤+−= rrRh ,

01296000
3
4)(3

34
2

33 ≤+−−= rrrRh ππ , 0240)(44 ≤−= rRh .
All statistical results of the JS [23], ALO [17], GOA [18], GWO [23], MFO [54], MVO

[9], WOA [14], SCA [50], HHO [19]and EJS algorithms for the design problem shown in
Figure 9 are displayed in Table 7. Table 7 summarizes the variable values and the evalua-
tion indicators consisting of the optimal, mean, worst, and standard deviation of the total
cost after all algorithms have been run 20 times. The optimal values of the evaluation in-
dicators are highlighted in bold. As described in Table 7, the EJS algorithm is prominently
ahead of the other algorithms on each statistical indicator, and it can provide a higher
quality solution. The GWO algorithm ranked second, and the JS algorithm was third. The
applicability and superiority of the EJS algorithm for solving tension/compression spring

Figure 9. Sketch map of the pressure vessel design.

All statistical results of the JS [23], ALO [17], GOA [18], GWO [23], MFO [54], MVO [9],
WOA [14], SCA [50], HHO [19] and EJS algorithms for the design problem shown in
Figure 9 are displayed in Table 7. Table 7 summarizes the variable values and the evaluation
indicators consisting of the optimal, mean, worst, and standard deviation of the total cost
after all algorithms have been run 20 times. The optimal values of the evaluation indicators
are highlighted in bold. As described in Table 7, the EJS algorithm is prominently ahead of
the other algorithms on each statistical indicator, and it can provide a higher quality solution.
The GWO algorithm ranked second, and the JS algorithm was third. The applicability and
superiority of the EJS algorithm for solving tension/compression spring design are further
verified. The EJS algorithm can provided the optimal solution in this case.

Table 7. Evaluation indicators and variable values for Figure 9.

Algorithm
Design Variables Evaluation Indicators (Cost)

Ts Th R L Optimal Mean Std Worst

JS 0.7770396 0.3848140 40.42532 198.5706 5870.1250 5871.1056 3.3266 5877.8328
EJS 0.7745491 0.3832039 40.31962 200.0000 5870.1240 5870.1240 6.6383 × 10−22 5870.1240

ALO 1.1027100 0.5433020 57.25430 49.5071 5870.1299 6334.3010 254,190.1288 7301.0969
GOA 0.8665065 1.1792950 45.19656 141.6881 6664.3149 8115.7627 2,663,313.7787 13,589.6419
GWO 0.7741732 0.3833187 40.31964 200.0000 5870.3903 5961.9718 81,459.1646 7019.5910
MFO 0.7827661 0.3872136 40.74312 194.1874 5870.1240 6241.3384 294,817.8949 7301.1955
MVO 1.2263800 0.6031600 63.75980 17.4111 6024.7668 6680.0326 207,592.6589 7550.9419
WOA 0.8519145 0.5603772 43.42803 160.8293 6314.9267 7300.9278 478,781.6422 8662.6477
SCA 0.8046946 0.3993354 41.28378 196.3765 6103.2795 6618.5766 199,596.9822 7746.5638
HHO 1.0860800 0.5215510 54.99250 63.0875 5972.4547 6715.7933 175,488.7714 7306.5959

5.3. Gear Train Design Problem

The gear train design problem is a nonlinear unconstrained case; its purpose is to
minimize the cost of gear ratio, and the four integer variables (number of teeth on each

Mathematics 2023, 11, 851 25 of 32

gear) that can participate in the optimization are denoted by TA, TB, TC, and TD. Here,
we give a mark, let Z = [z1, z2, z3, z4] = [TA, TB, TC, TD], and z1, z2, z3, z4 ∈ [12, 60]. The
mathematical expression of the minimum objective function is shown as Equation (40):

W(Z) = (
1

6.931
− z1z2

z3z4
)

2
. (40)

All statistical results of the JS [23], ALO [17], GOA [18], GWO [23], MFO [54], MVO [9],
WOA [14], SCA [50], HHO [19] and EJS algorithms for the design problem shown in
Figure 10 are displayed in Table 8. Table 8 summarizes the variable values and the eval-
uation indicators consisting of the optimal, mean, worst, and standard devation of the
gear ratio cost after all algorithms have been run 20 times. The optimal values of the
evaluation indicators are highlighted in bold. As observed in Table 8, the data of the EJS
algorithm is optimal among the ten optimization algorithms, which fully demonstrates
that the proposed EJS algorithm performs well in solving a gear train design problem. It
can outperform the design effect as compared with the other algorithms.

Mathematics 2023, 11, x FOR PEER REVIEW 26 of 34

design are further verified. The EJS algorithm can provided the optimal solution in this
case.

Table 7. Evaluation indicators and variable values for Figure 9.

Algorithm
Design Variables Evaluation Indicators (Cost)

Ts Th R L Optimal Mean Std Worst
JS 0.7770396 0.3848140 40.42532 198.5706 5870.1250 5871.1056 3.3266 5877.8328

EJS 0.7745491 0.3832039 40.31962 200.0000 5870.1240 5870.1240 6.6383 × 10−22 5870.1240
ALO 1.1027100 0.5433020 57.25430 49.5071 5870.1299 6334.3010 254,190.1288 7301.0969
GOA 0.8665065 1.1792950 45.19656 141.6881 6664.3149 8115.7627 2,663,313.7787 13,589.6419
GWO 0.7741732 0.3833187 40.31964 200.0000 5870.3903 5961.9718 81,459.1646 7019.5910
MFO 0.7827661 0.3872136 40.74312 194.1874 5870.1240 6241.3384 294,817.8949 7301.1955
MVO 1.2263800 0.6031600 63.75980 17.4111 6024.7668 6680.0326 207,592.6589 7550.9419
WOA 0.8519145 0.5603772 43.42803 160.8293 6314.9267 7300.9278 478,781.6422 8662.6477
SCA 0.8046946 0.3993354 41.28378 196.3765 6103.2795 6618.5766 199,596.9822 7746.5638
HHO 1.0860800 0.5215510 54.99250 63.0875 5972.4547 6715.7933 175,488.7714 7306.5959

5.3. Gear Train Design Problem
The gear train design problem is a nonlinear unconstrained case; its purpose is to

minimize the cost of gear ratio, and the four integer variables (number of teeth on each
gear) that can participate in the optimization are denoted by TA, TB, TC, and TD. Here, we
give a mark, let],,,[],,,[4321 DCBA TTTTzzzzZ == , and].60 ,12[,,, 4321 ∈zzzz The mathe-
matical expression of the minimum objective function is shown as Equation (40):

2

43

21)
931.6
1()(

zz
zzZW −= . (40)

All statistical results of the JS [23], ALO [17], GOA [18], GWO [23], MFO [54], MVO
[9], WOA [14], SCA [50], HHO [19] and EJS algorithms for the design problem shown in
Figure 10 are displayed in Table 8. Table 8 summarizes the variable values and the evalu-
ation indicators consisting of the optimal, mean, worst, and standard devation of the gear
ratio cost after all algorithms have been run 20 times. The optimal values of the evaluation
indicators are highlighted in bold. As observed in Table 8, the data of the EJS algorithm is
optimal among the ten optimization algorithms, which fully demonstrates that the pro-
posed EJS algorithm performs well in solving a gear train design problem. It can outper-
form the design effect as compared with the other algorithms.

Figure 10. Sketch map of the gear train design problem [55]. Figure 10. Sketch map of the gear train design problem [55].

Table 8. Evaluation indicators and variable values for Figure 10.

Algorithm
Design Variables Evaluation Indicators (Cost)

TA TB TC TD Optimal Mean Std Worst

JS 53 26 15 51 2.3078 × 10−11 5.8263 × 10−11 5.9403 × 10−20 1.0936 × 10−9

EJS 43 16 19 49 2.7009 × 10−12 2.9871 × 10−11 4.7338 × 10−21 3.0676 × 10−10

ALO 27 12 12 37 1.8274 × 10−8 3.8599 × 10−9 3.1347 × 10−17 1.8274 × 10−8

GOA 59 21 15 37 3.0676 × 10−10 1.8504 × 10−9 3.5997 × 10−17 2.7265 × 10−8

GWO 49 16 19 43 2.7009 × 10−12 1.2263 × 10−10 8.8927 × 10−20 9.9216 × 10−10

MFO 54 37 12 57 8.8876 × 10−10 4.8239 × 10−9 6.9029 × 10−17 2.7265 × 10−8

MVO 57 37 12 54 8.8876 × 10−10 4.8240 × 10−10 3.6788 × 10−19 2.3576 × 10−9

WOA 53 13 20 34 2.3078 × 10−11 1.0561 × 10−9 8.0578 × 10−19 2.3576 × 10−9

SCA 59 21 15 37 3.0676 × 10−10 1.4669 × 10−9 1.2268 × 10−17 1.6200 × 10−8

HHO 60 15 15 26 2.3576 × 10−9 1.6465 × 10−9 1.6339 × 10−17 1.8274 × 10−8

5.4. Cantilever Beam Design Problem

Similarly, the design problem of a cantilever beam is also a classic representative of non-
linear constraint optimization. The final requirement is to lighten its weight. The required
variables of five people’s design departments have been marked in Figure 11. In other
words, the cross-section parameters of five hollow square elements are (z1, z2, z3, z4, z5),

Mathematics 2023, 11, 851 26 of 32

and all parameters belong to the range [0.01, 100]. Professionals have given their specific
expressions in Equation (41) as follows:

Minimize W(Z) = 0.6224(z1 + z2 + z3 + z4 + z5) (41)

Subject to h(Z) =
61
z3

1
+

37
z3

2
+

19
z3

3
+

7
z3

4
+

1
z3

5
≤ 0

Mathematics 2023, 11, x FOR PEER REVIEW 27 of 34

Table 8. Evaluation indicators and variable values for Figure 10.

Algorithm
Design Variables Evaluation Indicators (Cost)

TA TB TC TD Optimal Mean Std Worst
JS 53 26 15 51 2.3078 × 10−11 5.8263 × 10−11 5.9403 × 10−20 1.0936 × 10−9

EJS 43 16 19 49 2.7009 × 10−12 2.9871 × 10−11 4.7338 × 10−21 3.0676 × 10−10
ALO 27 12 12 37 1.8274 × 10−8 3.8599 × 10−9 3.1347 × 10−17 1.8274 × 10−8
GOA 59 21 15 37 3.0676 × 10−10 1.8504 × 10−9 3.5997 × 10−17 2.7265 × 10−8
GWO 49 16 19 43 2.7009 × 10−12 1.2263 × 10−10 8.8927 × 10−20 9.9216 × 10−10
MFO 54 37 12 57 8.8876 × 10−10 4.8239 × 10−9 6.9029 × 10−17 2.7265 × 10−8
MVO 57 37 12 54 8.8876 × 10−10 4.8240 × 10−10 3.6788 × 10−19 2.3576 × 10−9
WOA 53 13 20 34 2.3078 × 10−11 1.0561 × 10−9 8.0578 × 10−19 2.3576 × 10−9
SCA 59 21 15 37 3.0676 × 10−10 1.4669 × 10−9 1.2268 × 10−17 1.6200 × 10−8
HHO 60 15 15 26 2.3576 × 10−9 1.6465 × 10−9 1.6339 × 10−17 1.8274 × 10−8

5.4. Cantilever Beam Design Problem
Similarly, the design problem of a cantilever beam is also a classic representative of

nonlinear constraint optimization. The final requirement is to lighten its weight. The re-
quired variables of five people’s design departments have been marked in Figure 11. In
other words, the cross-section parameters of five hollow square elements are
(54321 ,,,, zzzzz), and all parameters belong to the range [0.01, 100]. Professionals have
given their specific expressions in Equation (41) as follows:

Figure 11. Sketch map of the cantilever beam design problem [56].

Minimize)(6224.0)(54321 zzzzzZW ++++= (41)

Subject to
017193761)(3

5
3
4

3
3

3
2

3
1

≤++++=
zzzzz

Zh

All statistical results of the JS [23], ALO [17], GOA [18], GWO [23], MFO [54], MVO
[9], WOA [14], SCA [50], HHO [19] and EJS algorithms for the design problem shown in
Figure 11 are listed in Table 9. Table 9 summarizes the variable values and the evaluation
indicators consisting of the best, mean, worst, and standard deviation of cantilever beam
weight after all algorithms have been run 20 times. The optimal values of the evaluation
indicators are highlighted in bold. As can be observed, Table 9 shows that the average
values of the EJS algorithm, the JS algorithm, and the ALO algorithm are the same, and
are the smallest after running 20 times, indicating that they all have good superiority in

Figure 11. Sketch map of the cantilever beam design problem [56].

All statistical results of the JS [23], ALO [17], GOA [18], GWO [23], MFO [54], MVO [9],
WOA [14], SCA [50], HHO [19] and EJS algorithms for the design problem shown in
Figure 11 are listed in Table 9. Table 9 summarizes the variable values and the evaluation
indicators consisting of the best, mean, worst, and standard deviation of cantilever beam
weight after all algorithms have been run 20 times. The optimal values of the evaluation
indicators are highlighted in bold. As can be observed, Table 9 shows that the average
values of the EJS algorithm, the JS algorithm, and the ALO algorithm are the same, and are
the smallest after running 20 times, indicating that they all have good superiority in dealing
with this case. However, the EJS algorithm has the smallest standard deviation, which
means the EJS algorithm is more stable. The statistical table demonstrates that the EJS
algorithm possesses significant competitiveness as compared with the other optimization
methods, and therefore, the optimal variables can be obtained by using the EJS algorithm.

Table 9. Evaluation indicators and variable values for Figure 11.

Algorithm
Design Variables Evaluation Indicators (Weight)

z1 z2 z3 z4 z5 Best Mean Std Worst

JS 6.0112 5.3155 4.4904 3.5012 2.1554 1.3365 1.3365 4.7910 × 10−12 1.3365
EJS 6.0160 5.3092 4.4943 3.5015 2.1527 1.3365 1.3365 3.0445 × 10−15 1.3365

ALO 6.0210 5.3121 4.4844 3.5027 2.1535 1.3365 1.3365 1.0989 × 10−10 1.3366
GOA 5.9451 5.3673 4.5345 3.5124 2.1191 1.3366 1.3370 2.2100 × 10−7 1.3381
GWO 6.0251 5.3171 4.4790 3.4924 2.1606 1.3365 1.3366 4.0520 × 10−10 1.3366
MFO 5.9850 5.3610 4.4794 3.5137 2.1364 1.3366 1.3369 5.6538 × 10−8 1.3375
MVO 6.0900 5.2498 4.5082 3.4908 2.1384 1.3367 1.3370 1.9942 × 10−7 1.3382
WOA 6.5788 5.3648 4.7280 4.0443 1.5657 1.3489 1.4467 7.4364 × 10−3 1.6955
SCA 5.7691 5.4245 4.7114 3.2731 2.8091 1.3494 1.3780 2.0906 × 10−4 1.4005
HHO 6.3177 5.2692 4.3444 3.4316 2.1528 1.3368 1.3387 1.5729 × 10−6 1.3413

5.5. Planar Three-Bar Truss Design Problem

The lightest mass of a three-bar truss is a typical problem, and it can be simplified
into an optimization problem with two variables (recorded as zA1 and zA2). This model is
indicated in Figure 12. zA1 and zA2 represent the cross-sectional areas of the bar trusses.

Mathematics 2023, 11, 851 27 of 32

Consider Z = [z1, z2] = [zA1, zA2] and z1, z2 ∈ [0, 1], the mathematical equation of Figure 12
is set out in Equation (42).

Minimize W(Z) = (2
√

2z1 + z2) ∗ l (42)

Subject to h1(Z) =
√

2z1+z2√
2z2

1+2z1z2
P− σ ≤ 0, h2(Z) = z2√

2z2
1+2z1z2

P− σ ≤ 0,

h3(Z) = 1√
2z2+z1

P− σ ≤ 0

where l = 100 cm, P = 2 KN/cm2, and σ = 2 KN/cm2. All statistical results of the JS [23],
ALO [17], GOA [18], GWO [23], MFO [54], MVO [9], WOA [14], SCA [50], HHO [19] and
EJS algorithms for the design problem shown in Figure 12 are displayed in Table 10. Table 10
summarizes the variable values and the evaluation indicators consisting of the minimum,
mean, worst, and standard deviation of truss weight after all algorithms have been run
20 times. The optimal results of the evaluation indicators are highlighted in bold. Table 10
shows that the mean value of the EJS algorithm is the same as the JS algorithm, but the
standard deviation indicator of the EJS algorithm is relatively small, which indicates that
the EJS algorithm has certain advantages. At the same time, the proposed EJS algorithm has
excellent performance. The statistical table demonstrates that the EJS algorithm possesses
significant superiority as compared with the other optimization methods. At the same time,
this algorithm can effectively solve this case and has a more pleasing design effect than the
other algorithms.

Mathematics 2023, 11, x FOR PEER REVIEW 28 of 34

dealing with this case. However, the EJS algorithm has the smallest standard deviation,
which means the EJS algorithm is more stable. The statistical table demonstrates that the
EJS algorithm possesses significant competitiveness as compared with the other optimi-
zation methods, and therefore, the optimal variables can be obtained by using the EJS
algorithm.

Table 9. Evaluation indicators and variable values for Figure 11.

Algorithm
Design Variables Evaluation Indicators (Weight)

1z 2z 3z 4z 5z Best Mean Std Worst

JS 6.0112 5.3155 4.4904 3.5012 2.1554 1.3365 1.3365 4.7910 × 10−12 1.3365
EJS 6.0160 5.3092 4.4943 3.5015 2.1527 1.3365 1.3365 3.0445 × 10−15 1.3365

ALO 6.0210 5.3121 4.4844 3.5027 2.1535 1.3365 1.3365 1.0989 × 10−10 1.3366
GOA 5.9451 5.3673 4.5345 3.5124 2.1191 1.3366 1.3370 2.2100 × 10−7 1.3381
GWO 6.0251 5.3171 4.4790 3.4924 2.1606 1.3365 1.3366 4.0520 × 10−10 1.3366
MFO 5.9850 5.3610 4.4794 3.5137 2.1364 1.3366 1.3369 5.6538 × 10−8 1.3375
MVO 6.0900 5.2498 4.5082 3.4908 2.1384 1.3367 1.3370 1.9942 × 10−7 1.3382
WOA 6.5788 5.3648 4.7280 4.0443 1.5657 1.3489 1.4467 7.4364 × 10−3 1.6955
SCA 5.7691 5.4245 4.7114 3.2731 2.8091 1.3494 1.3780 2.0906 × 10−4 1.4005
HHO 6.3177 5.2692 4.3444 3.4316 2.1528 1.3368 1.3387 1.5729 × 10−6 1.3413

5.5. Planar Three-Bar Truss Design Problem
The lightest mass of a three-bar truss is a typical problem, and it can be simplified

into an optimization problem with two variables (recorded as 1Az and 2Az). This model
is indicated in Figure 12. 1Az and 2Az represent the cross-sectional areas of the bar
trusses. Consider],[],[2121 AA zzzzZ == and]1 ,0[, 21 ∈zz , the mathematical equation of
Figure 12 is set out in Equation (42).

Figure 12. Sketch map of the 3-bar truss design problem.

Minimize lzzZW ∗+=)22()(21 (42)

Figure 12. Sketch map of the 3-bar truss design problem.

5.6. Spatial 25-Bar Truss Design Problem

Under the conditions of stress and node displacement constraints, lightweight design
of a 25-bar truss is also a topic that structural researchers have been studying. The goal is
to minimize the mass of 25 rods.This engineering structure has 25 elements and 10 nodes.
To sum up, 25 member elements are summarized into 8 different units, and the sectional
area of member elements in each group is the same. The units are recorded as U1 = S1,
U2 = {S1~S5}, U3 = {S6~S9}, U4 = {S10, S11}, U5 = {S12, S13}, U6 = {S14~S17}, U7 = {S18~S21},
and U8 = {S22~S25}, as displayed in Figure 13. The material density of all elements is defined
as 0.1 lb/in3, the elastic modulus is set as 10,000 ksi, and the stress is [−40,000, 40,000] psi.
The displacement of all nodes in three coordinates X, Y, and Z are governed by [−0.35, 0.35]
(in), and the node loads are given as P1x = 1 kips, P3x = 0.5 kips, P6x = 0.6 kips, and

Mathematics 2023, 11, 851 28 of 32

P1y = P1z = P2y = P2z = −10 kips. The member sectional area belongs to any number of
D = {0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4} (in2).

Table 10. Evaluation indicators and variable values for Figure 12.

Algorithm
Design Variables Evaluation Indicators (Weight)

zA1 zA2 Minimum Mean Std Worst

JS 0.78862 0.40841 263.8958 263.8958 2.7666 × 10−11 263.8958
EJS 0.78867 0.40825 263.8958 263.8958 2.3809 × 10−26 263.8958

ALO 0.78796 0.41027 263.8962 263.8959 3.9186 × 10−8 263.8967
GOA 0.78972 0.40529 263.8966 263.9962 5.2969 × 10−2 264.7909
GWO 0.78999 0.40457 263.8992 263.8977 2.5911 × 10−6 263.9010
MFO 0.78560 0.41702 263.9028 263.9305 2.6756 × 10−3 264.0610
MVO 0.78762 0.41125 263.8966 263.8969 8.2328 × 10−7 263.8990
WOA 0.79180 0.39949 263.9029 264.0623 4.9253 × 10−2 264.7084
SCA 0.79582 0.38879 263.9704 264.9253 1.7790 × 101 282.8427
HHO 0.77258 0.45580 264.0975 264.0089 1.6864 × 10−2 264.3323

Mathematics 2023, 11, x FOR PEER REVIEW 31 of 34

Figure 13. Sketch map of the spatial 25-bar truss design problem [21].

Table 11. Evaluation indicators and the variable values for Figure 13.

Algorithm
Design Variables

Minimum Mass
1U 2U 3U

4U 5U
6U

7U
8U

JS 0.0066375 0.045319 3.6303 0.0012569 1.9773 0.78542 0.16327 3.9084 464.5255
EJS 0.0088242 0.040509 3.6138 0.0010299 1.9941 0.77452 0.15717 3.9438 464.5177

ALO 3.5940000 0.028565 3.4983 0.0010007 4.5648 0.77050 0.13363 3.7717 464.6441
GOA 0.0010000 0.052098 3.4372 0.0117620 4.9753 0.70938 0.11953 3.8916 464.5766
GWO 0.0352840 0.101400 3.6433 0.0186540 1.9827 0.77268 0.13597 3.9080 464.8678
MFO 0.0010000 0.054239 3.4971 0.0010000 1.9624 0.78602 0.15505 4.0293 464.6413
MVO 0.0631310 0.031478 3.6963 0.0018894 2.1164 0.78697 0.14766 3.8506 464.5775
WOA 0.0160690 0.659360 4.3802 0.1496500 3.6878 1.51760 1.25870 2.2564 481.5535
SCA 0.0890750 0.141850 3.5827 0.0010000 2.5481 0.66840 0.30984 3.8077 468.2995
HHO 0.0010000 0.162690 3.4298 0.0348380 1.8363 0.74599 0.18196 4.0619 468.0012

Table 12. Evaluation indicators of all the algorithms for Figure 13.

Algorithm Minimum Worst Mean Std
JS 464.5255 464.6061 464.5538 0.00043794

EJS 464.5177 464.5437 464.5255 4.7167 × 10−5
ALO 464.6441 566.3295 483.1 816.5387
GOA 464.5766 553.7468 483.3067 817.8789
GWO 464.8678 466.1551 465.3356 0.13529
MFO 464.6413 521.802 467.8903 161.3347
MVO 464.5775 467.4785 464.9683 0.38278
WOA 481.5535 629.2815 534.5016 1999.6866
SCA 468.2995 533.837 507.8849 685.4388
HHO 468.0012 508.5609 475.7416 83.3678

6. Conclusions

Figure 13. Sketch map of the spatial 25-bar truss design problem [21].

All statistical results of the JS [23], ALO [17], GOA [18], GWO [23], MFO [54], MVO [9],
WOA [14], SCA [50], HHO [19] and EJS algorithms for the design problem shown in
Figure 13 are displayed in Tables 11 and 12. Since one table displaying all the results would
be somewhat crowded, the results are divided into two tables. Table 11 summarizes the
variable values and the minimum weight of spatial 25-bar truss. Table 12 summarizes the
evaluation indicators consisting of the minimum, mean, worst, and standard deviation of
truss mass after all algorithms have been run 20 times. The best results of the evaluation
indicators are highlighted in bold. The results demonstrate that the solution obtained by
the EJS algorithm is optimal in all evaluating indicator values such as minimum, worst,
mean, and standard deviation, which further demonstrates that the EJS algorithm possesses
significant superiority, validity, and applicability in dealing with truss size design problem.

Mathematics 2023, 11, 851 29 of 32

Table 11. Evaluation indicators and the variable values for Figure 13.

Algorithm
Design Variables

Minimum Mass
U1 U2 U3 U4 U5 U6 U7 U8

JS 0.0066375 0.045319 3.6303 0.0012569 1.9773 0.78542 0.16327 3.9084 464.5255
EJS 0.0088242 0.040509 3.6138 0.0010299 1.9941 0.77452 0.15717 3.9438 464.5177

ALO 3.5940000 0.028565 3.4983 0.0010007 4.5648 0.77050 0.13363 3.7717 464.6441
GOA 0.0010000 0.052098 3.4372 0.0117620 4.9753 0.70938 0.11953 3.8916 464.5766
GWO 0.0352840 0.101400 3.6433 0.0186540 1.9827 0.77268 0.13597 3.9080 464.8678
MFO 0.0010000 0.054239 3.4971 0.0010000 1.9624 0.78602 0.15505 4.0293 464.6413
MVO 0.0631310 0.031478 3.6963 0.0018894 2.1164 0.78697 0.14766 3.8506 464.5775
WOA 0.0160690 0.659360 4.3802 0.1496500 3.6878 1.51760 1.25870 2.2564 481.5535
SCA 0.0890750 0.141850 3.5827 0.0010000 2.5481 0.66840 0.30984 3.8077 468.2995
HHO 0.0010000 0.162690 3.4298 0.0348380 1.8363 0.74599 0.18196 4.0619 468.0012

Table 12. Evaluation indicators of all the algorithms for Figure 13.

Algorithm Minimum Worst Mean Std

JS 464.5255 464.6061 464.5538 0.00043794
EJS 464.5177 464.5437 464.5255 4.7167 × 10−5

ALO 464.6441 566.3295 483.1 816.5387
GOA 464.5766 553.7468 483.3067 817.8789
GWO 464.8678 466.1551 465.3356 0.13529
MFO 464.6413 521.802 467.8903 161.3347
MVO 464.5775 467.4785 464.9683 0.38278
WOA 481.5535 629.2815 534.5016 1999.6866
SCA 468.2995 533.837 507.8849 685.4388
HHO 468.0012 508.5609 475.7416 83.3678

6. Conclusions

This paper proposes an enhanced jellyfish search (EJS) algorithm, which has the
advantages of better calculation precision and faster convergence speed. The following
three improvements have been applied based on the JS algorithm: (i) The addition of a
sine and cosine learning factors strategy can enhance the solution’s quality, and accelerate
convergence speed. (ii) The introduction of a local escape operator strategy can prevent the
JS algorithm from getting stuck at a local optimal solution and can improve the exploitation
capability. (iii) By applying an opposition-based learning and quasi-opposition learning
strategy in probability the diversity distribution of candidate populations can be increased.
The comparison test between the incomplete improved algorithms of individual strategies
and the original algorithm further visualizes the impact of each strategy on the algorithm.
By comparing other popular optimization algorithms on the CEC2019 test set, it is verified
that the EJS algorithm has strong competitiveness. In order to verify the performance of
the EJS algorithm, an exploration and development balance test of the EJS algorithm was
also carried out. For example, quick convergence rate, high calculation precision, strong
robustness, and so on are excellent characteristics of the EJS algorithm. As compared with
the JS algorithm, the EJS algorithm escaped the trap of local optimization, enhances the
solution’s quality, and accelerates the calculation speed of the algorithm. In addition, the
practical engineering application of the EJS algorithm also shows its superiority in solving
both constrained and unconstrained real optimization problems, and therefore, provides a
way to solve such problems.

Mathematics 2023, 11, 851 30 of 32

Author Contributions: Conceptualization, G.H., A.G.H. and M.A.; Methodology, G.H., J.W., M.L.,
A.G.H. and M.A.; Software, J.W. and M.L.; Validation, J.W. and M.L.; Formal analysis, G.H.; Investi-
gation, G.H., J.W., M.L., A.G.H. and M.A.; Resources, G.H. and A.G.H.; Data curation, J.W. and M.L.;
Writing—original draft, G.H., J.W., M.L., A.G.H. and M.A.; Writing—review & editing, G.H., J.W.,
M.L., A.G.H. and M.A.; Visualization, M.L., A.G.H. and M.A.; Supervision, G.H. and M.A.; Project
administration, G.H. and M.A.; Funding acquisition, G.H. and A.G.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is supported by the Project Supported by Natural Science Basic Research Plan in
Shaanxi Province of China (No.2021JM320).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
published article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hu, G.; Du, B.; Wang, X.; Wei, G. An enhanced black widow optimization algorithm for feature selection. Knowl.-Based Syst. 2022,

235, 107638. [CrossRef]
2. Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549.

[CrossRef]
3. Fausto, F.; Reyna-Orta, A.; Cuevas, E.; Andrade, Á.G.; Perez-Cisneros, M. From ants to whales: Metaheuristics for all tastes. Artif.

Intell. Rev. 2020, 53, 753–810. [CrossRef]
4. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
5. Storn, R.; Price, K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
6. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
7. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
8. Erol, O.K.; Eksin, I. A new optimization method: Big Bang–Big Crunch. Adv. Eng. Softw. 2006, 37, 106–111. [CrossRef]
9. Abualigah, L. Multi-verse optimizer algorithm: A comprehensive survey of its results, variants, and applications. Neural Comput.

Appl. 2020, 32, 12381–12401. [CrossRef]
10. Mostafa, R.R.; El-Attar, N.E.; Sabbeh, S.F.; Ankit, V.; Fatma, A.H. ST-AL: A hybridized search based metaheuristic computational

algorithm towards optimization of high dimensional industrial datasets. Soft Comput. 2022, 1–29. [CrossRef]
11. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new

metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [CrossRef]
12. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
13. Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation, Washington, DC, USA, 6–9 July 1999; pp. 1470–1477.
14. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
15. Ashraf, N.N.; Mostafa, R.R.; Sakr, R.H.; Rashad, M.Z. Optimizing hyperparameters of deep reinforcement learning for autonomous

driving based on whale optimization algorithm. PLoS ONE 2021, 16, e0252754. [CrossRef]
16. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
17. Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]
18. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimization algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]
19. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.L. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
20. Sulaiman, M.H.; Mustaffa, Z.; Saari, M.M.; Daniyal, H. Barnacles mating optimizer: A new bio-inspired algorithm for solving

engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103330. [CrossRef]
21. Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems.

Knowl.-Based Syst. 2019, 165, 169–196. [CrossRef]
22. Chou, J.-S.; Truong, D.N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021,

389, 125535. [CrossRef]
23. Elkabbash, E.T.; Mostafa, R.R.; Barakat, S.I. Android malware classification based on random vector functional link and artificial

Jellyfish Search optimizer. PLoS ONE 2011, 16, e0260232. [CrossRef]

http://doi.org/10.1016/j.knosys.2021.107638
http://doi.org/10.1016/0305-0548(86)90048-1
http://doi.org/10.1007/s10462-018-09676-2
http://doi.org/10.1038/scientificamerican0792-66
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1126/science.220.4598.671
http://doi.org/10.1016/j.ins.2009.03.004
http://doi.org/10.1016/j.advengsoft.2005.04.005
http://doi.org/10.1007/s00521-020-04839-1
http://doi.org/10.1007/s00500-022-07115-7
http://doi.org/10.1007/s10489-020-01893-z
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1371/journal.pone.0252754
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.advengsoft.2015.01.010
http://doi.org/10.1016/j.advengsoft.2017.01.004
http://doi.org/10.1016/j.future.2019.02.028
http://doi.org/10.1016/j.engappai.2019.103330
http://doi.org/10.1016/j.knosys.2018.11.024
http://doi.org/10.1016/j.amc.2020.125535
http://doi.org/10.1371/journal.pone.0260232

Mathematics 2023, 11, 851 31 of 32

24. Hu, G.; Dou, W.; Wang, X.; Abbas, M. An enhanced chimp optimization algorithm for optimal degree reduction of Said-ball
curves. Math. Compu. Simulat. 2022, 197, 207–252. [CrossRef]

25. Hu, G.; Li, M.; Wang, X.F.; Guo, W.; Ching-Ter, C. An enhanced manta ray foraging optimization algorithm for shape optimization
of complex CCG-Ball curves. Knowl.-Based Syst. 2022, 240, 108071. [CrossRef]

26. Elaziz, M.A.; Abualigah, L.; Ewees, A.A.; Al-qaness, M.A.; Mostafa, R.R.; Yousri, D.; Ibrahim, R.A. Triangular mutation-based
manta-ray foraging optimization and orthogonal learning for global optimization and engineering problems. Appl. Intell. 2022,
2022, 1–30. [CrossRef]

27. Hu, G.; Zhong, J.; Du, B.; Wei, G. An enhanced hybrid arithmetic optimization algorithm for engineering applications. Comput.
Methods Appl. Mech. Eng. 2022, 394, 114901. [CrossRef]

28. Chaabane, S.B.; Kharbech, S.; Belazi, A.; Bouallegue, A. Improved Whale optimization Algorithm for SVM Model Selection:
Application in Medical Diagnosis. In Proceedings of the 2020 International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), Split, Croatia, 17–19 September 2020; IEEE: Piscataway, NJ, USA, 2020.

29. Ben Chaabane, S.; Belazi, A.; Kharbech, S.; Bouallegue, A.; Clavier, L. Improved Salp Swarm Optimization Algorithm: Application
in Feature Weighting for Blind Modulation Identification. Electronics 2021, 10, 2002. [CrossRef]

30. Mostafa, R.R.; Ewees, A.A.; Ghoniem, R.M.; Abualigah, L.; Hashim, F.A. Boosting chameleon swarm algorithm with consumption
AEO operator for global optimization and feature selection. Knowl.-Based Syst. 2022, 21, 246. [CrossRef]

31. Adnan, R.M.; Dai, H.L.; Mostafa, R.R.; Parmar, K.S.; Heddam, S.; Kisi, O. Modeling Multistep Ahead Dissolved Oxygen
Concentration Using Improved Support Vector Machines by a Hybrid Metaheuristic Algorithm. Sustainability 2022, 14, 3470.
[CrossRef]

32. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design
optimization problems. Comput.-Aided Des. 2011, 42, 303–315. [CrossRef]

33. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 2, 60–68.
[CrossRef]

34. Liu, Z.Z.; Chu, D.H.; Song, C.; Xue, X.; Lu, B.Y. Social learning optimization (SLO) algorithm paradigm and its application in
QoS-aware cloud service composition. Inf. Sci. 2016, 326, 315–333. [CrossRef]

35. Satapathy, S.; Naik, A. Social group optimization (SGO): A new population evolutionary optimization technique. Complex Intell.
Syst. 2016, 2, 173–203. [CrossRef]

36. Kumar, M.; Kulkarni, A.J.; Satapathy, S.C. Socio evolution & learning optimization algorithm: A socio-inspired optimization
methodology. Future Gener. Comput. Syst. 2018, 81, 252–272.

37. Gouda, E.A.; Kotb, M.F.; El-Fergany, A.A. Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models:
Steady-state performance and analysis. Energy 2021, 221, 119836. [CrossRef]

38. Youssef, H.; Hassan, M.H.; Kamel, S.; Elsayed, S.K. Parameter estimation of single phase transformer using jellyfish search
optimizer algorithm. In Proceedings of the 2021 IEEE International Conference on Automation/XXIV Congress of the Chilean
Association of Automatic Control (ICA-ACCA), Online, 22–26 March 2021; pp. 1–4.

39. Shaheen, A.M.; Elsayed, A.M.; Ginidi, A.R.; Elattar, E.E.; El-Sehiemy, R.A. Effective automation of distribution systems with joint
integration of DGs/ SVCs considering reconfiguration capability by jellyfish search algorithm. IEEE Access 2021, 9, 92053–92069.
[CrossRef]

40. Shaheen, A.M.; El-Sehiemy, R.A.; Alharthi, M.M.; Ghoneim, S.S.; Ginidi, A.R. Multi-objective jellyfish search optimizer for
efficient power system operation based on multi-dimensional OPF framework. Energy 2021, 237, 121478. [CrossRef]

41. Barshandeh, S.; Dana, R.; Eskandarian, P. A learning automata-based hybrid MPA and JS algorithm for numerical optimization
problems and its application on data clustering. Knowl.-Based Syst. 2021, 236, 107682. [CrossRef]

42. Manita, G.; Zermani, A. A modified jellyfish search optimizer with orthogonal learning strategy. Procedia Comput. Sci. 2021, 192,
697–708. [CrossRef]

43. Abdel-Basset, M.; Mohamed, R.; Chakrabortty, R.; Ryan, M.; El-Fergany, A. An improved artificial jellyfish search optimizer for
parameter identification of photovoltaic models. Energies 2021, 14, 1867. [CrossRef]

44. Abdel-Basset, M.; Mohamed, R.; Abouhawwash, M.; Chakrabortty, R.K.; Ryan, M.J.; Nam, Y. An improved jellyfish algorithm for
multilevel thresholding of magnetic resonance brain image segmentations. Comput. Mater. Con. 2021, 68, 2961–2977. [CrossRef]

45. Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new metaheuristic optimization algorithm. Inform.
Sci. 2020, 540, 131–159. [CrossRef]

46. Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference
on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 695–701.

47. Hu, G.; Zhu, X.N.; Wei, G.; Chang, C.T. An improved marine predators algorithm for shape optimization of developable Ball
surfaces. Eng. Appl. Artif. Intell. 2021, 105, 104417. [CrossRef]

48. Brest, J.; Maučec, M.S.; Bošković, B. The 100-digit challenge: Algorithm jde100. In Proceedings of the 2019 IEEE Congress on
Evolutionary Computation, CEC, Wellington, New Zealand, 10–13 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 19–26.

49. Hu, G.; Yang, R.; Qin, X.Q.; Wei, G. MCSA: Multi-strategy boosted chameleon-inspired optimization algorithm for engineering
applications. Comput. Methods Appl. Mech. Eng. 2023, 403, 115676. [CrossRef]

50. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]

http://doi.org/10.1016/j.matcom.2022.01.018
http://doi.org/10.1016/j.knosys.2021.108071
http://doi.org/10.1007/s10489-022-03899-1
http://doi.org/10.1016/j.cma.2022.114901
http://doi.org/10.3390/electronics10162002
http://doi.org/10.1016/j.knosys.2022.108743
http://doi.org/10.3390/su14063470
http://doi.org/10.1016/j.cad.2010.12.015
http://doi.org/10.1177/003754970107600201
http://doi.org/10.1016/j.ins.2015.08.004
http://doi.org/10.1007/s40747-016-0022-8
http://doi.org/10.1016/j.energy.2021.119836
http://doi.org/10.1109/ACCESS.2021.3092337
http://doi.org/10.1016/j.energy.2021.121478
http://doi.org/10.1016/j.knosys.2021.107682
http://doi.org/10.1016/j.procs.2021.08.072
http://doi.org/10.3390/en14071867
http://doi.org/10.32604/cmc.2021.016956
http://doi.org/10.1016/j.ins.2020.06.037
http://doi.org/10.1016/j.engappai.2021.104417
http://doi.org/10.1016/j.cma.2022.115676
http://doi.org/10.1016/j.knosys.2015.12.022

Mathematics 2023, 11, 851 32 of 32

51. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for
engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

52. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Faris, H. MTDE: An effective multi-trial vector-based differential evolution
algorithm and its applications for engineering design problems. Appl. Soft Comput. 2020, 97, 106761. [CrossRef]

53. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. On the exploration and exploitation in popular swarm-based metaheuristic
algorithms. Neural Comput. Appl. 2019, 31, 7665–7683. [CrossRef]

54. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.
[CrossRef]

55. Gupta, S.; Deep, K.; Mirjalili, S.; Kim, J.H. A modified sine cosine algorithm with novel transition parameter and mutation
operator for global optimization. Expert Syst. Appl. 2020, 154, 113395. [CrossRef]

56. Nematollahi, A.F.; Rahiminejad, A.; Vahidi, B. A novel meta-heuristic optimization method based on golden ratio in nature. Soft
Comput. 2020, 24, 1117–1151. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.asoc.2020.106761
http://doi.org/10.1007/s00521-018-3592-0
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1016/j.eswa.2020.113395
http://doi.org/10.1007/s00500-019-03949-w

	Introduction
	Overview of the Basic Jellyfish Search Algorithm
	Population Initialization
	Jellyfish Follow the Ocean Current
	Jellyfish Move within a Swarm
	Time Control Mechanism
	Boundary Conditions
	Steps of the Jellyfish Search Algorithm

	Enhanced Jellyfish Search Algorithm
	Sine and Cosine Learning Factors
	Local Escape Operator
	Learning Strategy
	Steps of Enhanced Jellyfish Search Algorithm
	Time Complexity of the EJS Algorithm

	Numerical Experiment and Result Analysis Based on a Benchmark Test Set
	Performance Indicators
	Comparison between the EJS Algorithm and Other Optimization Algorithms

	Engineering Application
	Tension/Compression Spring Design Problem
	Pressure Vessels Design Problem
	Gear Train Design Problem
	Cantilever Beam Design Problem
	Planar Three-Bar Truss Design Problem
	Spatial 25-Bar Truss Design Problem

	Conclusions
	References

