
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2020

EKLT: Asynchronous Photometric Feature Tracking Using Events and
Frames

Gehrig, Daniel ; Rebecq, Henri ; Gallego, Guillermo ; Scaramuzza, Davide

Abstract: We present EKLT, a feature tracking method that leverages the complementarity of event
cameras and standard cameras to track visual features with high temporal resolution. Event cameras are
novel sensors that output pixel-level brightness changes, called “events”. They offer significant advantages
over standard cameras, namely a very high dynamic range, no motion blur, and a latency in the order of
microseconds. However, because the same scene pattern can produce different events depending on the
motion direction, establishing event correspondences across time is challenging. By contrast, standard
cameras provide intensity measurements (frames) that do not depend on motion direction. Our method
extracts features on frames and subsequently tracks them asynchronously using events, thereby exploiting
the best of both types of data: the frames provide a photometric representation that does not depend on
motion direction and the events provide updates with high temporal resolution. In contrast to previous
works, which are based on heuristics, this is the first principled method that uses intensity measurements
directly, based on a generative event model within a maximum-likelihood framework. As a result, our
method produces feature tracks that are more accurate than the state of the art, across a wide variety of
scenes.

DOI: https://doi.org/10.1007/s11263-019-01209-w

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-197701
Journal Article
Accepted Version

Originally published at:
Gehrig, Daniel; Rebecq, Henri; Gallego, Guillermo; Scaramuzza, Davide (2020). EKLT: Asynchronous
Photometric Feature Tracking Using Events and Frames. International Journal of Computer Vision,
128(3):601-618.
DOI: https://doi.org/10.1007/s11263-019-01209-w

Accepted for publication at the International Journal of Computer Vision (IJCV), Aug. 2019

EKLT: Asynchronous Photometric Feature Tracking using
Events and Frames

Daniel Gehrig · Henri Rebecq · Guillermo Gallego · Davide Scaramuzza

Received: Jan. 2019 / Accepted: Aug. 2019

Abstract We present EKLT, a feature tracking method
that leverages the complementarity of event cameras

and standard cameras to track visual features with high
temporal resolution. Event cameras are novel sensors
that output pixel-level brightness changes, called “events”.

They offer significant advantages over standard cam-

eras, namely a very high dynamic range, no motion

blur, and a latency in the order of microseconds. How-

ever, because the same scene pattern can produce dif-

ferent events depending on the motion direction, estab-
lishing event correspondences across time is challeng-
ing. By contrast, standard cameras provide intensity

measurements (frames) that do not depend on motion

direction. Our method extracts features on frames and

subsequently tracks them asynchronously using events,

thereby exploiting the best of both types of data: the

frames provide a photometric representation that does

not depend on motion direction and the events pro-

vide updates with high temporal resolution. In contrast

to previous works, which are based on heuristics, this

is the first principled method that uses intensity mea-

surements directly, based on a generative event model

within a maximum-likelihood framework. As a result,
our method produces feature tracks that are more ac-
curate than the state of the art, across a wide variety
of scenes.

The authors are with the Robotics and Perception Group,
Dept. of Informatics, University of Zurich, and Dept. of Neu-
roinformatics, University of Zurich and ETH Zurich, Switzer-
land — http://rpg.ifi.uzh.ch.

Multimedia Material

A supplemental video for this work is available at
https://youtu.be/ZyD1YPW1h4U and the tracking code can
be found here: https://github.com/uzh-rpg/rpg_eklt.

In addition, the evaluation code can be found here:
https://github.com/uzh-rpg/rpg_feature_tracking_

analysis.

1 Introduction

Event cameras, such as the Dynamic Vision Sensor (DVS)

[1], work very differently from traditional cameras (Fig. 1).

They have independent pixels that send information

(called “events”) only in presence of brightness changes

in the scene at the time they occur. Thus, their out-
put is not an intensity image but a stream of asyn-

chronous events. Event cameras excel at sensing mo-

tion, and they do so with very low latency (1 microsec-

ond). However, they do not provide absolute intensity

measurements, rather they measure only changes of in-
tensity. Conversely, standard cameras provide direct in-

tensity measurements for every pixel, but with compar-

atively much higher latency (10–20ms). Event cameras

and standard cameras are, thus, complementary, which

calls for the development of novel algorithms capable of

combining the specific advantages of both cameras to
perform computer vision tasks with high temporal res-
olution. In fact, the Dynamic and Active-pixel Vision

Sensor (DAVIS) [2] was recently introduced (2014) in

that spirit. It is a sensor comprising an asynchronous

event-based sensor and a standard frame-based camera

in the same pixel array. A survey on event cameras,

algorithms, and applications can be found in [3].

EKLT: Asynchronous Photometric Feature Tracking using Events and Frames 3

We tackle the problem of feature tracking using both

events and frames, such as those provided by the DAVIS.
Our goal is to combine both types of intensity measure-
ments to maximize tracking accuracy, and for this rea-

son we develop a maximum likelihood approach based

on a generative event model.

Feature tracking is an important research topic in

computer vision, and has been widely studied in the

last decades. It is a core building block of numerous ap-

plications, such as object tracking [4] or Simultaneous

Localization and Mapping (SLAM) [5–8]. While feature

detection and tracking methods for frame-based cam-

eras are well established, they cannot track in the blind

time between consecutive frames, and are expensive be-

cause they process information from all pixels, even in

the absence of motion in the scene. Conversely, event
cameras acquire only relevant information for tracking
and respond asynchronously, thus, filling the blind time

between consecutive frames.

1.1 Contribution

In this work we present a feature tracker which we
term EKLT, event-based Lucas-Kanade, that extracts
features on frames and subsequently tracks them us-
ing only events. This allows us to take advantage of

the asynchronous, high dynamic range and low-latency

nature of the events to produce feature tracks with

high temporal resolution. However, associating individ-

ual events coming from the same object is challenging
due to the varying appearance of the events with re-
spect to the motion of the object on the image plane,
which is known as the data association problem. In con-

trast to previous works, which used heuristics to solve

for data association, we introduce a feature tracker that

combines events and frames in a way that (i) fully ex-

ploits the strength of the brightness gradients causing

the events, (ii) circumvents the data association prob-

lem, and (iii) leverages a generative model to explain,

in a maximum likelihood formulation, how events are

related to brightness patterns (i.e., features) on the

frames. We thoroughly evaluate the proposed tracker

using sequences from publicly available datasets [9,10],

and show its performance both on man-made environ-

ments with large contrast and on natural scenes.

This paper is based on our previous work [11], which

we extend in several ways:

• We provide an interpretation of the method as an

extension for event cameras of the popular Lucas-

Kanade tracker (KLT) originally designed for frame-

based cameras (Section 4.5).

(a) (b)

Fig. 1: Fig. 1(a): Comparison of the output of a
standard frame-based camera and an event camera

when facing a black dot on a rotating disk (figure
adapted from [12], and animated here: https://youtu.

be/LauQ6LWTkxM?t=25). The standard camera outputs

frames at a fixed rate, thus sending redundant infor-

mation when there is no motion in the scene. Event

cameras respond to pixel-level brightness changes with
microsecond latency. Fig. 1(b): A combined frame and

event-based sensor such as the DAVIS [2] provides both

standard frames and the events that occurred in be-

tween. Events are colored according to polarity: blue

(brightness increase) and red (brightness decrease).

• We provide additional experiments with sequences

from driving and flying scenarios (Section 5).
• We compare our method against four baselines (Sec-

tion 5.2), and show that our approach provides more
accurate feature tracks.

• We carry out a quantitative analysis of the depen-

dency of the proposed method on grayscale frames,

by comparing against frames obtained by a state-of-

the-art image reconstruction method for event cam-

eras (Section 6).

The paper is organized as follows: Section 2 reviews
prior work; Section 3 motivates why event-based fea-

ture tracking is challenging; Section 4 presents our so-

lution; Sections 5 and 6 analyze the performance of the

proposed method through extensive evaluation. Finally,

Sections 7 and 8 briefly discuss future work and con-

clude the paper, respectively.

2 Related Work

Feature detection and tracking with event cameras is a

major research topic [13–23], where the goal is to unlock

the capabilities of event cameras and use them to solve

these classical problems in computer vision in challeng-

ing scenarios inaccessible to standard cameras, such as

low-power, high-speed and high dynamic range (HDR)

scenarios. A good survey of algorithms for event cam-

eras can be found in [3]. Recently, extensions of popu-

lar image-based keypoint detectors, such as Harris [24]

4 Daniel Gehrig et al.

and FAST [25], have been developed for event cam-

eras [21–23]. Detectors based on the distribution of opti-

cal flow [26] for recognition applications have also been

proposed for event cameras [20]. Finally, most event-

based trackers use binary feature templates, either pre-

defined [15–17] or built from events [14], to which they

align new events by means of iterative point-set–based

methods, such as Iterative Closest Point (ICP) [27].

Our work is most related to [13], since it also com-
bines frames and events for feature tracking. The ap-

proach in [13] detects patches of Canny edges around

Harris corners in the grayscale frames and then tracks

such local edge patterns using ICP on the event stream.

Thus, the patch of Canny edges acts as a template to

which the events are registered to yield tracking infor-

mation. Under the simplifying assumption that events
are mostly generated by strong edges, the Canny edgemap
template is used as a proxy for the underlying grayscale

pattern that causes the events. The method in [13] con-

verts the tracking problem into a geometric, point-set

alignment problem: the event coordinates are compared

against the point template given by the pixel locations

of the Canny edges. Hence, pixels where no events are

generated are, efficiently, not processed. However, the

method has two drawbacks: (i) the information about

the strength of the edges is lost (since the point tem-

plate used for tracking is obtained from a binary edgemap)

(ii) explicit correspondences (i.e., data association) be-

tween the events and the template need to be estab-

lished for ICP-based registration. The method in [14]

can be interpreted as an extension of [13] with (i) the

Canny-edge patches replaced by motion-corrected event

point sets and (ii) the correspondences computed in

a soft manner using Expectation-Maximization (EM).

The methods in [13,14], which process events as points

sets, are inspired by prior event-based ICP trackers [15,

16].

Like [13,14], our method can be used to track generic
features, as opposed to constrained (i.e., predefined)

edge patterns. However, our method differs from [13,14]
in that (i) we take into account the strength of the edge

pattern causing the events and (ii) we do not need to

establish correspondences between the events and the

edgemap template. In contrast to [13, 14], which use

a point-set template for event alignment, our method

uses the spatial gradient of the raw intensity image, di-

rectly, as a template. Correspondences are implicitly es-

tablished as a consequence of the proposed image-based

registration approach (Section 4), but before that, let

us motivate why establishing correspondences is chal-

lenging with event cameras.

3 The Challenge of Data Association for

Feature Tracking

The main challenge in tracking scene features (i.e., edge
patterns) with an event camera is that, because this

sensor responds to temporal changes of intensity (caused

by moving edges on the image plane), the appearance

of the feature varies depending on its motion, and thus,

it may continuously change in time (see Fig. 2). Fea-

ture tracking using events requires the establishment of

correspondences between events at different times (i.e.,

data association), which is difficult due to the above-

mentioned varying feature appearance (Fig. 2).

Instead, if additional information is available, such

as the absolute intensity of the pattern to be tracked

(i.e., a time-invariant representation or “map” of the

feature), such as in Fig. 2(a), then event correspon-

dences may be established indirectly, via establishing

correspondences between the events and the intensity

pattern. This, however, additionally requires to contin-

uously estimate the motion (optic flow) of the pattern

since it determines the appearance of the events. This is

in fact an important component of our approach. As we
show in Section 4, our method is based on a model to
generate a prediction of the time-varying event-feature

appearance using a given frame and an estimate of the

optic flow. This generative model has not been consid-

ered in previous feature tracking methods, such as [13,

14,28].

4 Methodology

An event camera has independent pixels that respond

to changes in the continuous brightness signal1 L(u, t).
Specifically, an event ek = (xk, yk, tk, pk) is triggered

at pixel uk = (xk, yk)
⊤ and at time tk as soon as the

brightness increment since the last event at the pixel

reaches a threshold ±C (with C > 0):

∆L(uk, tk)
.
= L(uk, tk)− L(uk, tk −∆tk) = pkC, (1)

where ∆tk is the time since the last event at the same

pixel, and pk ∈ {−1,+1} is the event polarity (i.e.,

the sign of the brightness change). Eq. (1) is the event

generation equation of an ideal sensor [29, 30].

4.1 Brightness-Increment Images from Events and

Frames

Pixel-wise accumulation of event polarities over a time

interval ∆τ produces an image ∆L(u) with the amount

1 Event cameras such as the DVS [1] respond to logarithmic
brightness changes, i.e., L

.
= log I, with brightness signal I,

so that (1) represents logarithmic changes.

EKLT: Asynchronous Photometric Feature Tracking using Events and Frames 5

(a) Frame (b) Left-right motion.

(c) Up-down motion. (d) Diagonal motion.

Fig. 2: Result of moving a checkerboard (a) in differ-

ent directions in front of an event camera. (b)-(d) show

brightness increment images (Eq. (2)) obtained by ac-

cumulating events over a short time interval. Pixels that

do not change intensity are represented in gray, whereas

pixels that increased or decreased intensity are rep-

resented in bright and dark, respectively. Clearly, (b)
(only vertical edges), (c) (only horizontal edges), and
(d) cannot be related to each other without the prior

knowledge of the underlying photometric information

provided by (a).

of brightness change that occurred during the interval

(Fig. 3a),

∆L(u) =
∑

tk∈∆τ

pkC δ(u− uk), (2)

where δ is the Kronecker delta due to its discrete argu-

ment (pixels on a lattice).

For small ∆τ , such as in the example of Fig. 3a,

the brightness increments (2) are due to moving edges

according to the event generation model2:

∆L(u) ≈ −∇L(u) · v(u)∆τ, (3)

that is, increments are caused by brightness gradients

∇L(u) =
(

∂L
∂x

, ∂L
∂y

)⊤
moving with velocity v(u) over a

displacement ∆u
.
= v∆τ (see Fig. 3b). As the dot prod-

uct in (3) conveys, (i) if the motion is parallel to the

edge (v ⊥ ∇L), the increment vanishes, i.e., no events

are generated; (ii) if the motion is perpendicular to the

2 Eq. (3) can be shown [30] by substituting the bright-
ness constancy assumption (i.e., optical flow constraint)
∂L
∂t

(u(t), t) + ∇L(u(t), t) · u̇(t) = 0, with image-point veloc-

ity v ≡ u̇, in Taylor’s approximation ∆L(u, t)
.
= L(u, t) −

L(u, t−∆τ) ≈ ∂L
∂t

(u, t)∆τ .

edge (v ‖ ∇L) events are generated at the highest rate.

From now on (and in Fig. 3b) we denote the modeled
increment (3) using a hat, ∆L̂, and the frame by L̂.

Remark. Despite the fact that brightness increment im-

ages (2) (Fig. 3a) have been used in the past for several
tasks, such as segmentation [31] and stereo [32] or opti-
cal flow [33] computation, our contribution consists of

using them in combination with a forward model (3)

to solve for feature tracking. Specifically, as we show in

Section 4.2, we use a generative model of the events (4)

to predict brightness increments (“observations”) from

a few explanatory variables (feature brightness, warp

and optic flow) characterizing the scene under investi-

gation (Fig. 5). Then, we use an optimization frame-

work to compute the unknown explanatory variables

from the error between the observations and the pre-

dictions. This approach can be applied to solve other

problems, such as camera tracking [34].

4.2 Optimization Framework

Following a maximum likelihood approach, we propose

to use the difference between the observed brightness

changes ∆L from the events (2) and the predicted ones

∆L̂ from the brightness signal L̂ of the frames (3) to
estimate the motion parameters that best explain the

events according to an optimization score.

More specifically, we pose the feature tracking prob-

lem using events and frames as that of image registra-
tion [35, 36], between images (2) and (3). Effectively,

frames act as feature templates with respect to which

events are registered. As is standard, let us assume

that (2) and (3) are compared over small patches (P)

containing distinctive patterns, and further assume that

the optic flow v is constant for all pixels in the patch

(same regularization as [35]).

Letting L̂ be given by an intensity frame at time

t = 0 and letting ∆L be given by events in a space-
time window at a later time t (see Fig. 4), our goal is

to find the registration parameters p and the velocity

v that maximize the similarity between ∆L(u) and

∆L̂(u;p,v)
.
= −∇L̂(W(u;p)) · v∆τ, (4)

where W is the warping map used for the registration.

We explicitly model optic flow v instead of approximat-
ing it by finite differences of past registration parame-

ters to avoid introducing approximation errors and to

avoid error propagation from past noisy feature posi-

tions. A block diagram showing how both brightness

increments are computed, including the effect of the

warp W, is given in Fig. 5.

6 Daniel Gehrig et al.

�L(�)
Events fekg

�
��

dt

integration

incrementPolarity

Brightness
increment

@L̂
@x

r

patch L̂

�v��

@L̂
@y

Gradient

Dot product
optic �ow

Frame Predicted
brightness
increment

�L̂(�)

(a) ∆L(u) given by the events (2). (b) ∆L̂(u) predicted using the frame (3).

Fig. 3: Brightness increments given by the events (2) vs. predicted from the frame and the optic flow using the

generative model (3). Pixels of L(u) that do not change intensity are represented in gray in ∆L, whereas pixels

that increased or decreased intensity are represented in bright and dark, respectively.

x��t)

Frame L̂

�L(u)

�̂���u;p�t)))

x��0) Brightness

from events
increment

Warp �

(time t = 0)

(time t � 0)

Fig. 4: Illustration of tracking for two independent

patches. Events in a space-time window at time t > 0

are collected into a patch of brightness increments
∆L(u) (in orange), which is compared, via a warp

(i.e., geometric transformation) W against a predicted

brightness-increment image based on L̂ (given at t = 0)

around the initial feature location (in blue). Patches are

computed as shown in Fig. 5, and are compared in the

objective function (7).

Assuming that the difference ∆L − ∆L̂ follows a

zero-mean additive Gaussian distribution with variance

σ2 [1], we define the likelihood function of the set of

events E
.
= {ek}

Ne

k=1 producing ∆L as

p(E |p,v, L̂) ∝ e−
1

2σ2

∫
P

(

∆L(u)−∆L̂(u;p,v)
)2

du. (5)

Maximizing this likelihood with respect to the motion

parameters p and v (since L̂ is known) yields the min-

imization of the L2 norm of the photometric residual,

min
p,v
‖∆L(u)−∆L̂(u;p,v)‖2L2(P) (6)

where ‖f(u)‖2
L2(P)

.
=

∫

P
f2(u)du.

However, the objective function (6) depends on the

contrast sensitivity C (via (2)), which is typically un-

known in practice. Inspired by [36], we propose to min-

imize the difference between unit-norm patches:

min
p,v

∥

∥

∥

∥

∥

∆L(u)

‖∆L(u)‖L2(P)
−

∆L̂(u;p,v)

‖∆L̂(u;p,v)‖L2(P)

∥

∥

∥

∥

∥

2

L2(P)

, (7)

which cancels the terms in C and ∆τ , and only de-

pends on the direction of the feature velocity v. In this

generic formulation, the same type of parametric warps

W as for image registration can be considered (pro-

jective, affine, etc.). For simplicity, we consider warps

given by rigid-body motions in the image plane,

W(u;p) = R(p)u+ t(p), (8)

where (R, t) ∈ SE(2). The objective function (7) is op-
timized using the non-linear least squares framework

provided in the Ceres software [37].

4.3 Discussion of the Approach

One of the most interesting characteristics of the pro-
posed method (7) is that it is based on a generative
model for the events (3). As shown in Fig. 5, the frame

L̂ is used to produce a registration template ∆L̂ that

changes depending on v (weighted according to the

dot product) in order to best fit the motion-dependent

event data ∆L, and so our method not only estimates

the warping parameters of the event feature but also
its optic flow. This optic flow dependency was not ex-
plicitly modeled in previous works, such as [13, 14, 28].

Moreover, for the template, we use the full gradient in-

formation of the frame ∇L̂, as opposed to its Canny

(i.e., binary-thresholded) version [13], which provides

higher accuracy and the ability to track less salient pat-

terns.

EKLT: Asynchronous Photometric Feature Tracking using Events and Frames 7

@L̂
@x

�L(u)
Events fekg

r p

�
��

dt

patch L̂ Warp �

�v��

Error
calculation

Feature location

@L̂
@y

Warp �

Warp
parameters

Gradient
Warped gradient

Dot product
optic �ow

Frame
Predicted
brightness
increment

�L̂(�(u;p))

Polarity integration

Brightness increment

Fig. 5: Block diagram showing how the brightness increments being compared (∆L,∆L̂) are computed for one of

the patches in Fig. 4. The top of the diagram depicts the brightness increment obtained by event integration (2),

whereas the bottom of the diagram shows the generative event model stemming from the frame (3).

Another characteristic of our method is that it does

not suffer from the problem of establishing event-to-

feature correspondences, as opposed to ICP methods [13,

14]. We borrow the implicit pixel-to-pixel data associa-

tion typical of image registration methods by creating,

from events, a convenient image representation. Hence,

our method has smaller complexity (establishing data

association in ICP [13] has quadratic complexity) and

is more robust since it is less prone to be trapped in

local minima caused by data association (as it is shown

in Section A.1). As optimization iterations progress, all

event correspondences evolve jointly as a single entity

according to the evolution of the warped pixel grid.

Additionally, monitoring the evolution of the mini-

mum cost values (7) provides a sound criterion to detect

feature track loss and, therefore, initialize new feature

tracks (e.g., in the next frame or by acquiring a new

frame on demand).

4.4 Algorithm

The steps of our asynchronous, low-latency feature tracker
are summarized in Algorithm 1, which consists of two
phases: (i) initialization of the feature patch and (ii)

tracking the pattern in the patch using events according
to (7). Multiple patches are tracked independently from
one another. To compute a patch ∆L(u), (2), we inte-
grate over a given number of eventsNe [28,38–40] rather

than over a fixed time ∆τ [41, 42]. Hence, tracking is
asynchronous, as soon as Ne events are acquired on

the patch (2), which typically happens at rates higher

than the frame rate of the standard camera (∼ 10 times

higher). Section 5.4 provides an analysis of the sensitiv-

Algorithm 1 Photometric feature tracking using
events and frames

Feature initialization:
- Detect Harris corners [24] on the frame L̂(u), extract in-

tensity patches around corner points and compute ∇L̂(u).
- Set patches ∆L(u) = 0, set initial registration parameters
p to those of the identity warp, and set the number of
events Ne to integrate on each patch.
Feature tracking:
for each incoming event do
- Update the patches containing the event
(i.e., accumulate polarity pixel-wise (2)).
for each patch ∆L(u) (once Ne events have been
collected (2)) do
- Minimize the objective function (7), to get parameters
p and optic flow v.

- Update the registration parameters p of the feature
patch (e.g., position).

- Reset the patch (∆L(u) = 0) and recompute Ne.

ity of the method with respect to Ne and a formula to
compute a sensible value, to be used in Algorithm 1.

4.5 Connection with the Lucas-Kanade Method

The approach (6) can be interpreted as an extension

of the KLT tracker [35, 43] to the case of event-based

cameras, where we estimate, in addition to the feature’s

warping parameters, its optical flow.

Lucas-Kanade. The goal of the Lucas-Kanade method
[35, 43] is to minimize the photometric error, using the

L2 norm criterion, between an image I and another one

T that are related via a geometric distortion described

by a warp W(u;p) with parameters p ∈ R
M :

min
p

‖(I ◦W)(u)− T (u)‖2L2(P). (9)

8 Daniel Gehrig et al.

(a) (b) (c)

Fig. 6: Feature tracking results on simulated data. (a) Example texture used to generate synthetic events in the
simulator [9]. (b) Qualitative feature tracks represented as curves in space-time. (c) Mean tracking error (center

line) and fraction of surviving features (width of the band around the center line) as a function of time. Our

features are tracked with 0.4 pixel accuracy on average.

This is a non-linear least-squares (NLLS) problem, since

it can be written as the (squared) L2 norm of a residual:

min
p

‖r(p)‖2L2(P), r(p)
.
= (I ◦W)(u)− T (u), (10)

where the pixel-wise dependency was omitted for sim-

plicity of notation. Problem (10) is solved iteratively

using Gauss-Newton’s method, which consists of lin-

earizing the residual using Taylor’s expansion

r(p+∆p) ≈ r(p) +∇r(p) ·∆p, (11)

where ∇r(p)
.
= (∂r

∂p
(p))⊤, and finding the parameter

update ∆p that minimizes the norm of the linearized

residual (a quadratic expression in ∆p). This yields

a linear system of equations (the normal equations),

A∆p = b, with

A ≡ A(p)
.
=

∫

P

∇r(p) (∇r(p))⊤du,

b ≡ b(p)
.
= −

∫

P

∇r(p) r(p) du.

(12)

The parameters are iteratively updated, p ← p +∆p,

with ∆p = A−1b, until convergence.

Our proposal. The approach (6) also minimizes a pho-

tometric error using the L2 norm criterion, as in the
KLT method (9). However, the goal of (6) is to register

two brightness increment images (rather than “abso-

lute” brightness ones), one rendered by accumulating

events and the other one computed from the gradient

of the brightness frame (Fig. 5). This requires to opti-

mize for both, the geometric transformation W (as in

original KLT) and the appearance of the feature, which

depends on the motion. Since the motion (optical flow)

is unknown, we simultaneously vary the warp parame-

ters p and the optic flow v of the feature to find the

geometric distortion and appearance of the predicted

image (4) that best explains the image obtained by ac-

cumulating events.

Redefining the residual as ∆L−∆L̂, i.e.,

r(p̃)
.
= ∆L(u) +∇L̂(W(u;p)) · v∆τ (13)

with respect to the augmented parameter vector p̃
.
=

(p⊤,v⊤)⊤ ∈ R
M+2, allows us to apply the Gauss-Newton

method to minimize the photometric error (6). This

yields a linear system Ã∆q = b̃, as in the Lucas-Kanade
method (12), but now with (M + 2) unknowns instead

of M (due to the two additional unknowns in v). The

two components of p̃, namely the warp parameters p

and the optic flow v of the feature, are thus jointly esti-

mated. Alternatively, defining r(p̃)
.
= ∆L(W(u;p)) +

∇L̂(u) · v∆τ reduces the interaction between p and

v, yielding simpler derivatives than with (13). Due to
this connection we term our method EKLT, event-based

KLT.

5 Experiments

To illustrate the high accuracy of our method, we first

evaluate it on simulated data (Section 5.1), where we

can control scene depth, camera motion, and other model

parameters. Then we test our method against four base-
line trackers on real data consisting of high-contrast and
natural scenes, with challenging effects such as occlu-

sions, parallax and illumination changes (Section 5.2).

We also analyze the sensitivity of our method with re-

spect to the number of events used (Section 5.4) and

the spatial size of the feature (Section 5.5). The robust-

ness of the method to illumination changes and to low
light conditions is also shown (Section 5.6). Addition-
ally, we show that our tracker can operate using frames

reconstructed from a set of events [44–46], which have

higher dynamic range than those of standard cameras,

EKLT: Asynchronous Photometric Feature Tracking using Events and Frames 9

thus opening the door to feature tracking in high dy-

namic range (HDR) scenarios (Section 6.1). Moreover,

we quantify the gap between using our method with

regular frames from a standard camera and using re-

constructed HDR frames from events (Section 6).

For all experiments we use patches ∆L(u) of 25 ×
25 pixel size (as justified in Section 5.5) and the corre-

sponding events falling within the patches as the fea-

tures moved on the image plane. On the synthetic datasets,

we use the 3D scene model and camera poses to com-

pute the ground truth feature tracks. On the real datasets,

we use KLT [35] as ground truth. Since our feature
tracks are produced at a higher temporal resolution
than the ground truth, interpolating ground truth fea-
ture positions may lead to wrong error estimates if

the feature trajectory is not linear in between samples.

Therefore, we evaluate the error by comparing each

ground truth sample with the feature location given by

linear interpolation of the two closest feature locations
in time and averaging the Euclidean distance between
ground truth and the estimated positions.

5.1 Simulated Data. Assessing Tracking Accuracy

By using simulated data we assess the accuracy limits of

our feature tracker. To this end, we used the event cam-

era simulator presented in [9] and 3D scenes with dif-

ferent types of texture, objects and occlusions (Fig. 6).
The tracker’s accuracy can be assessed by how the aver-
age feature tracking error evolves over time (Fig. 6(c));

the smaller the error, the better. All features were ini-

tialized using the first frame and then tracked until dis-

carded, which happened if they left the field of view

or if the registration error (7) exceeded a threshold of

1.6. We define a feature’s age as the time elapsed be-
tween its initialization and its disposal. The longer the

features survive, the more robust the tracker.

The results for simulated datasets are given in Fig. 6

and Table 1. Our method tracks features with a very

high accuracy, of about 0.4 pixel error on average, which

can be regarded as a lower bound for the tracking error

(in noise-free conditions). The remaining error is likely

due to the linearization approximation in (3). Note that

feature age is just reported for completeness, since sim-

ulation time cannot be compared to the physical time

of real data (Section 5.2).

Table 1: Average pixel error and average feature age for

simulated data.

Datasets Error [px] Feature age [s]

sim april tags 0.20 1.52
sim 3planes 0.29 0.78
sim rocks 0.42 1.00
sim 3wall 0.67 0.40

5.2 Real Data

5.2.1 Description of Baseline Methods

We compare the proposed feature tracker against four

baselines, which we present next. In all cases, we use

the same initial feature locations to compare the track-

ing results across methods on the same set of features.

Thus, the methods mainly differ in two aspects: the

way features are represented around the given location

(i.e., the feature template), and the way tracking is per-

formed. In all methods, tracking is done with respect

to the feature template created at initial time (i.e.,

the time of the grayscale frame), as proposed in Algo-

rithm 1, rather than with respect to the last frame (i.e.,

frame-to-frame tracking). Ground truth is provided by

Lucas-Kanade tracking (KLT) on the DAVIS [2] frames.

• Feature Tracking on Canny Point Sets (ICP). The

method in [13] represents features from the grayscale

frame using point sets extracted from Canny edges.

Tracking is performed by point set registration (ICP)

between the feature and the incoming events.

• Feature Tracking on Motion-compensated Point Sets
(EM-ICP). The method in [14] also represents fea-

tures as point sets, but they are built from the events

by means of motion compensation. Thus, we take

the events around the given feature location to build

a motion-compensated feature template. Tracking is

performed by Expectation-Maximization (EM) and
fuzzy ICP between the feature and the incoming
events.

• KLT Feature Tracking on Motion-compensated Event
Frames (KLT-MCEF). In [28], motion-compensated

event images were built from the events, the esti-
mated scene depth and the rotational motion pro-

vided by an inertial measurement unit (IMU). Then,
a standard feature detector and tracker (FAST [25]
and KLT [35], respectively) were used on these event

images to track the feature’s location. Inspired by

[28], we build motion-compensated event images by

fitting a homography to a temporal window of events

[39] (thus, effectively assuming a quasi-planar scene),

which avoids the need for an IMU and scene depth

10 Daniel Gehrig et al.

(a) shapes 6dof (b) checkerboard

(c) boxes 6dof (d) poster 6dof

(e) pipe 2 (f) bicycles

(g) outdoor day1 (h) outdoor forward

Fig. 7: Feature tracking on all eight datasets reported in Table 2: simple black and white scenes (a)(b), highly
textured scenes (c)(d) and natural scenes (e)-(h). Plots on the right of the image show the mean tracking error

(center line) and fraction of surviving features (band around the center line) for our method and all four baselines

in Table 2. We encourage the reader to watch the accompanying video for a visualization of the feature tracks.

Figure best viewed in color.

estimation. The motion-compensated event image

provides the feature templates used for tracking with

the KLT method.

• KLT Feature Tracking on Reconstructed Images (KLT-

HF). This is an approach inspired by the combi-
nation of recent developments in image reconstruc-

tion and classical feature tracking. In this approach,
grayscale frames are built at the timestamps of the
DAVIS frames using the image reconstruction method

in [46]. Frames are reconstructed from all past events,
by pixel-wise temporal integration and high-pass fil-

tering (HF), without requiring estimation of the scene

depth or the camera ego-motion. Additionally, we

apply the Contrast Limited Adaptive Histogram Equal-

ization (CLAHE) from OpenCV to improve the qual-

ity of the frames. Tracking is done using the KLT
tracker on the reconstructed brightness frames (in

EKLT: Asynchronous Photometric Feature Tracking using Events and Frames 11

the same way as ground truth is obtained using the

DAVIS frames).

5.2.2 Quantitative Comparison of Feature Trackers

The above-mentioned methods were evaluated on sev-

eral datasets. The sequences used are “shapes 6dof”,

“checkerboard”, “boxes 6dof” and“poster 6dof” from the

Event Camera Dataset [9], “pipe 2” and “bicycles” from
[29]3, “outdoor day1” from the Multi-Vehicle Stereo Event

Camera Dataset (MVSEC) [10] and “outdoor forward5”

from the UZH-FPV Drone Racing Dataset [47]. The re-

sults are reported in Figs. 7-8 and Tables 2-3. Sample

feature tracks are visualized in Fig. 9. To take into ac-

count the tracking capabilities of KLT we normalize

the feature age by the age of corresponding KLT fea-

ture track. In addition, to remove any bias from features

that are discarded early we report the track-normalized

tracking error for each dataset. This metric first com-

putes the average tracking error over single tracks and

then averages them over all features. More details about

the evaluation can be found in our open source feature-
tracking evaluation package4.

The plots in Fig. 7 show the mean tracking error
as a function of time (center line). The width of the
colored band indicates the proportion of features that

survived up to that point in time. The width of the

band decreases with time as feature tracks are grad-

ually lost. The wider the band, the more robust the

feature tracker. Table 2 reports the tracking error of

all compared methods, using the span of the features
tracked by our method. This is so in order to compare
accuracy before drift in other methods occurs. Table 3

reports the average feature age of the tracks.

Fig. 8 visually summarizes the values on Tables 2

and 3. Overall, our method outperforms all other meth-

ods in tracking accuracy. It also provides longer tracks

than previous works ICP and EM-ICP, and comparable

feature age to the newly desgined baselines KLT-MCEF

and KLT-HF.

In simple, black and white scenes (Figs. 7(a) and

7(b)), such as those in [13], our method is, on average,
twice as accurate and produces tracks that are twice
longer than ICP. Compared to EM-ICP our method
is also more accurate and robust. The method KLT-

MCEF provides longer tracks, albeit it is not as accu-

rate as our method. For highly textured scenes (Figs. 7(c)

and 7(d)), our tracker maintains the accuracy even though

many events are generated everywhere in the patch,

3 The datasets are publicly available at: http://rpg.ifi.
uzh.ch/direct_event_camera_tracking/
4 Code can be found here: https://github.com/uzh-rpg/

rpg_feature_tracking_analysis

Table 2: Comparison of five different feature tracking

methods on eight test sequences from real data. Average

of the tracking error, normalized by the length of the

tracks, for each combination of method and sequence.

Track-normalized error [px]
Scene Datasets

Ours ICP EM-ICP KLT-MCEF KLT-HF

shapes 6dof 0.80 1.49 2.31 0.94 2.43
Black & White

checkerboard 1.21 1.92 2.30 2.30 1.75

poster 6dof 0.64 2.48 3.10 0.97 1.18
High Texture

boxes 6dof 0.72 4.59 1.60 0.80 1.24

bicycles 0.76 4.22 1.50 1.26 1.21

pipe 2 0.78 4.90 1.63 1.04 1.06
Natural

outdoor day1 0.71 2.96 2.30 2.00 2.52

outdoor forward5 0.80 4.15 1.47 1.58 2.36

Table 3: Comparison of five different feature track-

ing methods on eight test sequences from real data.

Relative feature age, normalized by the length of KLT

tracks, for each combination of method and sequence.

Relative feature age
Scene Datasets

Ours ICP EM-ICP KLT-MCEF KLT-HF

shapes 6dof 0.54 0.28 0.21 0.60 0.53
Black & White

checkerboard 0.35 0.13 0.27 0.45 0.37

poster 6dof 0.45 0.04 0.22 0.27 0.37
High Texture

boxes 6dof 0.54 0.09 0.27 0.55 0.69

bicycles 0.20 0.09 0.10 0.25 0.27

pipe 2 0.34 0.10 0.25 0.41 0.37
Natural

outdoor day1 0.23 0.07 0.15 0.34 0.48

outdoor forward5 0.25 0.13 0.16 0.16 0.30

0.0 0.2 0.4 0.6 0.8 1.0

Rel. Feature Age [-]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

T
ra
ck

N
or
m
.
E
rr
or

[p
ix
el
s]

our method

KLT-HF

KLT-MCEF

EM-ICP

ICP

Fig. 8: Visualization of the values on Tables 2 and 3.

Normalized Tracking Error and Relative Feature Age

for five feature trackers on all eight test sequences. The

smaller the error and the longer the feature age, the

better.

which leads to significantly high errors in ICP and EM-

ICP. Although our method and KLT-HF achieve similar

feature age, our method is more accurate. Similarly, on

natural scenes, our method is more accurate than the

baselines. A more detailed comparison with [13] (ICP)

12 Daniel Gehrig et al.

Fig. 9: Visualization of feature tracks. The sequence “outdoor day1” [10] (top row) depicts the data acquired

with a DAVIS camera installed on the windshield of a car, driving through streets in a city. The sequence “out-

door forward5” (bottom row) shows the data acquired by a camera mounted on a drone, flying through a meadow

and a forest. See also the accompanying video.

is further explored in Appendix A.1, where we show

that our objective function is better behaved.

On average, high-contrast and high-texture scenes

yield longer tracks than natural scenes (width of the

band around the center line). In many cases, the aver-

age error decreases as time progresses since the features

that survive longest are typically those that are most

accurately tracked.

The tracking error of our method on real data is

larger than that on synthetic data, which is likely due to

modeling errors concerning the events, including noise

and dynamic effects (such as unequal contrast thresh-

olds for events of different polarity). Nevertheless, our

tracker achieves subpixel accuracy and outperforms the

baselines in terms of accuracy.

5.3 Computational Performance

Our non-optimized C++ implementation of the pro-

posed approach is able to process about 17000 events

per second (on an Intel i7 CPU, with 64 bits, 3.20GHz,

single-threaded), only counting events that fall within

the domain of the tracked features. On the considered

dataset (shapes 6dof), the real event rate reaches be-

tween 54 000–130 000 events per second. Since features

can be tracked independently from one another, on the

implementation side there is room for improvement us-

ing a more distributed, i.e., parallelized, platform.

5.4 Sensitivity with respect to the Number of Events

in a Patch

As anticipated in Section 4.4 (Algorithm 1), we adap-

tively find the optimal number of events Ne integrated

EKLT: Asynchronous Photometric Feature Tracking using Events and Frames 13

in (2) to create a patch ∆L(u). Let us show how. As

shown in (3), it is clear that ∆L(u) (thus Ne) depends
on the scene texture as well as the motion. First, the

larger the amount of texture (i.e., brightness gradients),

the more events will be generated by the feature. Sec-

ond, motion parallel to an edge prevents some events

from being generated (Fig. 2).

Fig. 10 shows how the number of accumulated events

Ne, which defines the appearance of the patch ∆L(u),
affects the shape of the objective function (7), and,

therefore, affects its minimizer. Using too few or too

many events does not provide a reliable registration

with respect to the frame template, either due to the

fact that there is not enough information about the

patch appearance conveyed by the events or because

the information has been washed out by an excessive in-

tegration time. These are the left- and right-most plots

in Fig. 10, respectively. Using an intermediate Ne gives

an event-brightness patch that captures the underlying

scene texture and produces a nicely-shaped objective

function with the minimizer at the correct warp and

flow parameters.

We propose a simple formula to compute Ne based

on the the frame, L̂, as follows. Stemming from (2), the

amount of brightness change over a patch P is

∫

P

|∆L(u)|du = C Ne (14)

assuming that no events of opposite polarity are trig-

gered at the same pixel during the short integration

time ∆τ . Then, assuming that (3) is a good approxi-

mation for the event patch gives C Ne ≈
∫

P
|∇L̂(u) ·

v∆τ |du. Finally, considering an integration time ∆τ ≈

1/‖v‖ (so that the events correspond to a displacement

of the pattern of ‖v‖∆τ ≈ 1 pixel) and a threshold in

the order of C ≈ 1 gives

Ne ≈

∫

P

∣

∣

∣

∣

∇L̂(u) ·
v

‖v‖

∣

∣

∣

∣

du. (15)

At each time step, the newly estimated unit vector

v/‖v‖ is used to compute the optimal number of events

to be processed. For Fig. 10, this value is approximately

the number of events in the center plot. By adapting the

number of events our method gains considerable accu-

racy as is highlighted in Fig. 11 and Table 4. In this

experiment we compare the tracking accuracy against

using a fixed number of events on “shapes 6dof”. Note

that the adaptive method used an average of 72 events

per update step. We can clearly see that the tracking

error is optimal if we use an adaptive number, while the

feature age stagnates with higher numbers of events.

(a) Ne = 10 (b) 50 (c) 200 (d) 500 (e) 1000

Fig. 10: Effect of varying the number of events Ne accu-
mulated in (2). Top row : brightness increment patches

∆L(u), of size 25×25 pixels. For simplicity, the feature
moves horizontally. Bottom row : corresponding profiles

of the function (7), represented as heat maps, along the

x, y translation parameters (±5 pixels from the mini-

mizer of the function, indicated by a red cross (×)).

The magenta plus sign (+) indicates the ground truth

warp parameters.

Table 4: Tracking error and feature age depending on

the number of integrated events per patch evaluated on

the shapes 6dof dataset. The best tracking results are
achieved when we adapt the number of events according

to (15) which yields an average of 72 events per update.

Number of events 10 30 72* 150 300

Error [px] 1.12 0.91 0.72 1.00 1.14

Feature Age [s] 0.86 1.81 1.84 1.94 2.09

10 30 72* 150 300

Number of Events

0.0

1.0

2.0

3.0

F
ea
tu
re

A
ge

[s
]

*adaptive number
of events

0.0

0.2

0.5

0.8

1.0

E
rr
or

[p
ix
el
s]

Fig. 11: Visualization of the values in Table 4. The best

tracking results are achieved when we adapt the number

of events according to (15) which yields an average of

72 events per update.

5.5 Influence of the Patch Size

As anticipated at the beginning of Section 5, we provide

a justification of the choice of the patch size used in our

method. Tables 5, 6 and Fig. 12 report the dependency

of the tracking error and the feature age with respect to

the size of the patches used, from 5×5 pixels to 35×35
pixels.

14 Daniel Gehrig et al.

(a) (b)

Fig. 12: Visualization of the values on Tables 5 and 6.
Panels (a) and (b) show, respectively, the evolution of

the mean tracking error and feature age as a function
of the patch size used.

In Tables 5 and 6 we highlighted in bold the best

result per row. Better accuracy is achieved for larger
patch sizes whereas longer feature tracks are achieved
towards medium to smaller patch sizes. We chose a
patch size of 25 × 25 pixels as a compromise between

accuracy and robustness (feature age), and performed
all other experiments in Section 5 with this value.

Table 5: Tracking error for different datasets and vary-
ing patch size (p).

Sequences
Error [px]

p = 5 p = 11 p = 15 p = 21 p = 25 p = 31 p = 35

sim april tags 3.04 0.48 0.32 0.23 0.20 0.17 0.16
sim rocks 4.61 1.39 0.55 0.41 0.42 0.38 0.35
shapes 6dof 3.62 0.89 0.65 0.54 0.64 0.6 0.62
checkerboard 2.30 1.25 1.20 0.93 0.78 0.75 0.75
poster 6dof 11.59 1.21 0.73 0.71 0.67 0.62 0.67
boxes 6dof 7.24 1.36 1.05 0.96 0.89 0.90 0.98
pipe 2 2.69 1.39 1.18 0.87 0.80 0.81 0.77
bicycles 3.04 1.20 1.13 0.88 0.75 0.83 0.78

Table 6: Feature age for different datasets and varying
patch size (p).

Sequences
Feature Age [s]

p = 5 p = 11 p = 15 p = 21 p = 25 p = 31 p = 35

sim april tags 0.23 0.98 2.33 1.93 1.52 1.44 1.20
sim rocks 0.05 1.05 0.72 0.99 1.00 0.74 0.86
shapes 6dof 0.59 3.15 3.31 3.52 3.97 3.11 3.21
checkerboard 2.68 7.72 8.21 8.32 8.24 7.74 8.22
poster 6dof 0.46 1.88 2.34 2.09 2.65 1.73 1.62
boxes 6dof 0.50 1.77 1.76 1.95 1.56 1.71 1.81
pipe 2 0.72 1.05 0.77 1.45 0.78 1.62 1.04
bicycles 0.44 1.22 1.33 1.26 1.16 1.19 1.11

5.6 Feature Tracking in Low Light and with Abrupt

Light Changes

To further illustrate the robustness of our tracker, we

performed additional experiments in low light and with

abrupt changes of illumination, achieved by switching

the lights on and off in the room. Results are displayed

in Figs. 13, 14 and 15. In these experiments we show

that our tracker can extract features from a standard
frame and track them robustly through time, even when
the light is off, thanks to the very high dynamic range

of the event camera. Our method is also able to track

after the light has been switched on again. By contrast,

KLT [35] loses track immediately after switching the

light off because the frames do not have a dynamic

range as high as the events. We encourage the reader

to watch the accompanying video, which shows the ex-

periment in a better form than still images can convey.

(a) Frame at t = 0 (b)

(c) Frame at t = 9 s (d)

Fig. 13: Figs. (a) and (b) show the standard frames
with the events superimposed, respectively when the
light in the room is on or off. Figs. (b) and (d) show

the evolution of the x and y coordinates of one feature

tracked through time (red: KLT [35] on the frames,

blue: our method). In contrast to KLT, our tracker

maintains stable feature tracks even in the period when

the light is off (marked in gray), and keeps tracking
them when the light is on again.

6 Are Standard Camera Frames Needed?

6.1 Tracking using Frames Reconstructed from Events

Recent research [44–46, 48, 49] has shown that events

can be combined to reconstruct intensity frames that in-

herit the outstanding properties of event cameras (high

dynamic range (HDR) and lack of motion blur). In the

next experiment, we show that our tracker can be used

EKLT: Asynchronous Photometric Feature Tracking using Events and Frames 15

(a) Frame at t = 0 (b)

(c) Frame at t = 2 s (d)

Fig. 14: Feature tracking in low light and with abrupt

illumination changes. Rocks scene. Same notation as in

Fig. 13.

(a) Frame at t = 0 (b)

(c) Frame at t = 3 s (d)

Fig. 15: Feature tracking in low light and with abrupt
illumination changes. Office scene. Same notation as in
Fig. 13. See the multimedia material.

on such reconstructed images, thus removing the lim-
itations imposed by standard cameras. As an illustra-
tion, we focus here on demonstrating feature tracking

in HDR scenes (Fig. 16). However, our method could

also be used to perform feature tracking during high-

speed motions by using motion-blur–free images recon-

structed from events.

Standard cameras have a limited brightness dynamic

range (60 dB), which often results in under- or over-

exposed areas of the sensor in scenes with a high dy-

namic range (Fig. 16(b)), which in turn can lead to

tracking loss. Event cameras, however, have a much

larger dynamic range (140 dB) (Fig. 16(b)), thus pro-

viding valuable tracking information in those problem-

atic areas. Figs. 16(c)-(d) show qualitatively how our

method can exploit HDR intensity images reconstructed

from a set of events [46] to produce feature tracks in

such difficult conditions. For example, Fig. 16(d) shows

Table 7: Performance of the proposed feature

tracker using two different types of frames: the DAVIS

frames [2], and frames reconstructed using [46]. The av-

erage pixel error and average feature age are reported

for all eight test sequences.

Track-norm. error [px] Rel. feature age
Scene Sequences

DAVIS [2] HF [46] DAVIS [2] HF [46]

shapes 6dof 0.80 1.51 0.54 0.51
Black & White

checkerboard 1.21 1.10 0.35 0.21

poster 6dof 0.64 0.67 0.45 0.23
High Texture

boxes 6dof 0.72 0.74 0.54 0.41

bicycles 0.76 0.57 0.20 0.16

pipe 2 0.78 0.55 0.34 0.14
Natural

outdoor day 1 0.71 0.77 0.23 0.18

outdoor forward 5 0.80 1.14 0.25 0.17

that some feature tracks were initialized in originally
overexposed areas, such as the top right of the im-

age (Fig. 16). A quantitative analysis of the difference
between using DAVIS frames versus using intensity-
reconstructed frames is provided in Section 6.

6.2 Quantitative Evaluation

In the experiment on Fig. 16, we showed that the pro-

posed method is able to track even when the grayscale

frame used is not produced by a frame-based sensor,

but rather reconstructed from events. In this section, we

analyze the dependency of our method with respect to
the type of grayscale frame used. We compare the per-
formance of our method using frames from the DAVIS

camera, and frames reconstructed from the events using

a state-of-the-art image reconstruction method.

More specifically, we perform image reconstruction
using [46] at the time of a frame acquired by the DAVIS

camera. We detect features on the DAVIS frame (e.g.,

Harris corners), and use them to initialize our feature

tracker on the DAVIS frame as well as on the recon-

structed frame, so that the comparison on these two

different frames is carried out using the same tracked

features. Fig. 17 and Table 7 summarize the results of

the experiments carried out on eight test sequences (the

same ones as in Section 5.2).

In general, we observe that the tracking results are

very similar in terms of accuracy (about 1 pixel error),
and the biggest differences occur in terms of feature

age. In terms of feature age, the best results are ob-
tained when our method uses the DAVIS frames. How-
ever, the tracking results on the reconstructed frames

are also good, and they are solely based on events, that

is, the proposed method (Algorithm 1) does not require

a frame-based sensor co-located with the event-based

sensor. Additionally, in challenging scenarios (HDR or

high-speed) the DAVIS frames are impaired, whereas

16 Daniel Gehrig et al.

Time [s]

0 1 2 3 4

(a) (b) (c) (d)

Fig. 16: Our feature tracker is not limited to intensity frames from a real camera. In this example, we use an

intensity image reconstructed from a stream of events [46] in a scene with high dynamic range (a). The DAVIS

frame, shown in (b) with events overlaid on top, cannot capture the full dynamic range of the scene. By contrast,

the reconstructed image in (c) captures the full dynamic range of the scene. Our tracker (d) can successfully use
this image to produce accurate feature tracks everywhere, including the badly exposed areas of (b).

0.0 0.2 0.4 0.6 0.8 1.0

Rel. Feature Age [-]

0.0

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

T
ra
ck

N
or
m
.
E
rr
or

[p
ix
el
s]

regular frames

HF

Fig. 17: Visualization of the values on Table 7. Accu-

racy and feature age for all eight test sequences and two

different types of frames used in our method: regular

frames from the DAVIS camera [2] and reconstructed
brightness frames using [46]. The smaller the error and
the longer the feature age, the better.

the reconstructed frames may be the only viable option

since they inherit the lack of motion blur and HDR
characteristics from the events.

Note that the proposed method (Algorithm 1) only
requires a limited number of frames since features can
be tracked for several seconds. This complements the

computationally-demanding task of image reconstruc-

tion. Thus, it is sensible to reconstruct the frames at

low rates (∼1Hz) (or on demand) to initialize features

and then track asynchronously (i.e., at high rate) with

the events, as shown in the accompanying video.

7 Discussion

While our method advances event-based feature track-

ing in natural scenes, there remain directions for future

research. For example, the generative model we use to

predict events is an approximation that does not ac-

count for severe dynamic effects and noise. In addition,

our method assumes uniform optical flow in the vicinity

of features. This assumption breaks down at occlusions

and at objects undergoing large flow distortions, such

as motion along the camera’s optical axis. Neverthe-

less, as shown in the experiments, many features in a

variety of scenes and motions do not suffer from such

effects, and are therefore tracked well (with sub-pixel

accuracy). Finally, we demonstrated the method using

a Euclidean warp since it was more stable than more

complex warping models (e.g., affine). Future research
includes ways to make the method more robust to sen-
sor noise and to use more accurate warping models.

8 Conclusion

We presented a method that leverages the complemen-

tarity of event cameras and standard cameras to track

visual features with low-latency. Our method extracts

features on frames and subsequently tracks them asyn-

chronously using events. To achieve this, we presented

the first method that relates events directly to pixel

intensities in frames via a generative event model. We

thoroughly evaluated the method on a variety of scenes
and against four baselines, showing that it produces
feature tracks that are more accurate (subpixel accu-

racy) than the state-of-the-art. We also investigated

the need for frames from the standard camera and con-

cluded that they can be replaced with a similar signal:

frames built from events by means of state-of-the-art

image reconstruction methods. This removes the need

EKLT: Asynchronous Photometric Feature Tracking using Events and Frames 17

Patch on frame Events Cost (7) Cost (16), [13] Track (position history)

Fig. 18: Our cost function (7) is better behaved (smoother and with fewer local minima) than that in [13],

yielding a better tracking (last column). The first two columns show the datasets and feature patches selected,
with intensity (grayscale) and events (red and blue). The third and fourth columns compare the cost profiles of (7)

and (16) for varying translation parameters in x and y directions (±5 pixel around the best estimate from the

tracker). The point-set–based cost used in [13] shows many local minima for more textured scenes (second row)

which is not the case of our method. The last column shows the position history of the features (green is ground

truth, red is [13] (ICP) and blue is our method).

for having a standard camera co-located with the event

camera. We believe this work will open the door to un-

lock the outstanding properties of event cameras on var-

ious computer vision tasks that rely on accurate feature

tracking.

A Appendix

A.1 Objective Function Comparison against

ICP-based Method [13]

As mentioned in Section 4, one of the advantages of our
method is that data association between events and the tracked
feature is implicitly established by the pixel-to-pixel corre-
spondence of the compared patches (2) and (3). This means
that we do not have to explicitly estimate it, as was done
in [13,14], which saves computational resources and prevents
false associations that would yield bad tracking behavior. To
illustrate this advantage, we compare the cost function pro-
files of our method and [13] (ICP), which minimizes the align-
ment error (Euclidean distance) between two 2D point sets:
{pi} from the events (data) and {mj} from the Canny edges
(model),

{R, t} = argmin
R,t

∑

(pi,mi)∈Matches

bi ‖Rpi + t−mi‖
2 . (16)

Here, R and t are the alignment parameters and bi are weights.
At each step, the association between events and model points
is done by assigning each pi to the closest point mj and re-
jecting matches which are too far apart (> 3 pixel). By vary-
ing the parameter t around the estimated value while fixing
R we obtain a slice of the cost function profile. The resulting
cost function profiles for our method (7) and (16) are shown
in Fig. 18.

For simple black and white scenes (first row of Fig. 18), all
events generated belong to strong edges. In contrast, for more
complex, highly-textured scenes (second row), events are gen-
erated more uniformly in the patch. Our method clearly shows
a convex cost function in both situations. In contrast, [13]
exhibits several local minima and very broad basins of at-
traction, making exact localization of the optimal registra-
tion parameters challenging. The broadness of the basin of
attraction, together with the multitude of local minima can
be explained by the fact that data association changes for
each alignment parameter. This means that there are several
alignment parameters which may lead to partial overlapping
of the point-clouds resulting in a suboptimal solution.

To show how non-smooth cost profiles affect tracking per-
formance, we show the feature tracks in the last column of
Fig. 18. The ground truth derived from KLT is marked in
green. Our tracker (in blue) is able to follow the ground truth
with high accuracy. On the other hand [13] (in red) exhibits
jumping behavior leading to early divergence from ground
truth.

Acknowledgements This work was supported by the DARPA
FLA program, the Swiss National Center of Competence Re-
search Robotics, through the Swiss National Science Founda-
tion, and the SNSF-ERC starting grant.

References

1. Patrick Lichtsteiner, Christoph Posch, and Tobi Del-
bruck. A 128×128 120 dB 15 µs latency asynchronous
temporal contrast vision sensor. IEEE J. Solid-State Cir-
cuits, 43(2):566–576, 2008.

2. Christian Brandli, Raphael Berner, Minhao Yang, Shih-
Chii Liu, and Tobi Delbruck. A 240x180 130dB 3us la-
tency global shutter spatiotemporal vision sensor. IEEE
J. Solid-State Circuits, 49(10):2333–2341, 2014.

18 Daniel Gehrig et al.

3. Guillermo Gallego, Tobi Delbruck, Garrick Orchard,
Chiara Bartolozzi, Brian Taba, Andrea Censi, Stefan
Leutenegger, Andrew Davison, Jörg Conradt, Kostas
Daniilidis, and Davide Scaramuzza. Event-based vision:
A survey. arXiv e-prints, abs/1904.08405, 2019.

4. Huiyu Zhou, Yuan Yuan, and Chunmei Shi. Object track-
ing using SIFT features and mean shift. Comput. Vis.
Image. Und., 113(3):345–352, 2009.

5. Georg Klein and David Murray. Parallel tracking and
mapping on a camera phone. In IEEE ACM Int. Sym.
Mixed and Augmented Reality (ISMAR), 2009.

6. Christian Forster, Zichao Zhang, Michael Gassner,
Manuel Werlberger, and Davide Scaramuzza. SVO:
Semidirect visual odometry for monocular and multicam-
era systems. IEEE Trans. Robot., 33(2):249–265, 2017.

7. Raúl Mur-Artal, José M. M. Montiel, and Juan D.
Tardós. ORB-SLAM: a versatile and accurate monocu-
lar SLAM system. IEEE Trans. Robot., 31(5):1147–1163,
2015.

8. Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer,
and Davide Scaramuzza. Ultimate SLAM? combining
events, images, and IMU for robust visual SLAM in HDR
and high speed scenarios. IEEE Robot. Autom. Lett.,
3(2):994–1001, April 2018.

9. Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi
Delbruck, and Davide Scaramuzza. The event-camera
dataset and simulator: Event-based data for pose esti-
mation, visual odometry, and SLAM. Int. J. Robot. Re-
search, 36(2):142–149, 2017.

10. Alex Zihao Zhu, Dinesh Thakur, Tolga Ozaslan, Bernd
Pfrommer, Vijay Kumar, and Kostas Daniilidis. The mul-
tivehicle stereo event camera dataset: An event camera
dataset for 3D perception. IEEE Robot. Autom. Lett.,
3(3):2032–2039, July 2018.

11. Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and
Davide Scaramuzza. Asynchronous, photometric feature
tracking using events and frames. In Eur. Conf. Comput.
Vis. (ECCV), pages 766–781, 2018.

12. Elias Mueggler, Basil Huber, and Davide Scaramuzza.
Event-based, 6-DOF pose tracking for high-speed ma-
neuvers. In IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS), pages 2761–2768, 2014. . Event camera anima-
tion: https://youtu.be/LauQ6LWTkxM?t=25.

13. Beat Kueng, Elias Mueggler, Guillermo Gallego, and Da-
vide Scaramuzza. Low-latency visual odometry using
event-based feature tracks. In IEEE/RSJ Int. Conf. In-
tell. Robot. Syst. (IROS), pages 16–23, 2016.

14. Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis.
Event-based feature tracking with probabilistic data as-
sociation. In IEEE Int. Conf. Robot. Autom. (ICRA),
pages 4465–4470, 2017.

15. Zhenjiang Ni, Aude Bolopion, Joel Agnus, Ryad Benos-
man, and Stéphane Régnier. Asynchronous event-based
visual shape tracking for stable haptic feedback in micro-
robotics. IEEE Trans. Robot., 28(5):1081–1089, 2012.

16. Zhenjiang Ni, Sio-Höı Ieng, Christoph Posch, Stéphane
Régnier, and Ryad Benosman. Visual tracking using
neuromorphic asynchronous event-based cameras. Neural
Computation, 27(4):925–953, 2015.

17. Xavier Lagorce, Cédric Meyer, Sio-Hoi Ieng, David
Filliat, and Ryad Benosman. Asynchronous event-
based multikernel algorithm for high-speed visual fea-
tures tracking. IEEE Trans. Neural Netw. Learn. Syst.,
26(8):1710–1720, August 2015.

18. Xavier Clady, Sio-Hoi Ieng, and Ryad Benosman. Asyn-
chronous event-based corner detection and matching.
Neural Netw., 66:91–106, 2015.

19. David Tedaldi, Guillermo Gallego, Elias Mueggler, and
Davide Scaramuzza. Feature detection and tracking with
the dynamic and active-pixel vision sensor (DAVIS). In
Int. Conf. Event-Based Control, Comm. Signal Proc.
(EBCCSP), 2016.

20. Xavier Clady, Jean-Matthieu Maro, Sébastien Barré, and
Ryad B. Benosman. A motion-based feature for event-
based pattern recognition. Front. Neurosci., 10, January
2017.

21. Valentina Vasco, Arren Glover, and Chiara Bartolozzi.
Fast event-based Harris corner detection exploiting the
advantages of event-driven cameras. In IEEE/RSJ Int.
Conf. Intell. Robot. Syst. (IROS), 2016.

22. Elias Mueggler, Chiara Bartolozzi, and Davide Scara-
muzza. Fast event-based corner detection. In British
Mach. Vis. Conf. (BMVC), 2017.

23. Ignacio Alzugaray and Margarita Chli. Asynchronous
corner detection and tracking for event cameras in real
time. IEEE Robot. Autom. Lett., 3(4):3177–3184, Octo-
ber 2018.

24. Chris Harris and Mike Stephens. A combined corner and
edge detector. In Proc. Fourth Alvey Vision Conf., vol-
ume 15, pages 147–151, 1988.

25. Edward Rosten and Tom Drummond. Machine learning
for high-speed corner detection. In Eur. Conf. Comput.
Vis. (ECCV), pages 430–443, 2006.

26. Rizwan Chaudhry, Avinash Ravichandran, Gregory
Hager, and Rene Vidal. Histograms of oriented op-
tical flow and Binet-Cauchy kernels on nonlinear dy-
namical systems for the recognition of human actions.
In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
pages 1932–1939, 2009.

27. Paul J. Besl and Neil D. McKay. A method for registra-
tion of 3-D shapes. IEEE Trans. Pattern Anal. Mach.
Intell., 14(2):239–256, 1992.

28. Henri Rebecq, Timo Horstschaefer, and Davide Scara-
muzza. Real-time visual-inertial odometry for event cam-
eras using keyframe-based nonlinear optimization. In
British Mach. Vis. Conf. (BMVC), 2017.

29. Guillermo Gallego, Jon E. A. Lund, Elias Mueggler,
Henri Rebecq, Tobi Delbruck, and Davide Scaramuzza.
Event-based, 6-DOF camera tracking from photometric
depth maps. IEEE Trans. Pattern Anal. Mach. Intell.,
40(10):2402–2412, October 2018.

30. Guillermo Gallego, Christian Forster, Elias Mueggler,
and Davide Scaramuzza. Event-based camera pose track-
ing using a generative event model. arXiv:1510.01972,
2015.

31. Francisco Barranco, Ching L. Teo, Cornelia Fermuller,
and Yiannis Aloimonos. Contour detection and charac-
terization for asynchronous event sensors. In Int. Conf.
Comput. Vis. (ICCV), 2015.

32. Jürgen Kogler, Christoph Sulzbachner, Martin Humen-
berger, and Florian Eibensteiner. Address-event based
stereo vision with bio-inspired silicon retina imagers. In
Advances in Theory and Applications of Stereo Vision,
pages 165–188. InTech, 2011.

33. Ryad Benosman, Sio-Hoi Ieng, Charles Clercq, Chiara
Bartolozzi, and Mandyam Srinivasan. Asynchronous
frameless event-based optical flow. Neural Netw., 27:32–
37, 2012.

34. Samuel Bryner, Guillermo Gallego, Henri Rebecq, and
Davide Scaramuzza. Event-based, direct camera track-
ing from a photometric 3D map using nonlinear opti-
mization. In IEEE Int. Conf. Robot. Autom. (ICRA),
2019.

EKLT: Asynchronous Photometric Feature Tracking using Events and Frames 19

35. Bruce D. Lucas and Takeo Kanade. An iterative image
registration technique with an application to stereo vi-
sion. In Int. Joint Conf. Artificial Intell. (IJCAI), pages
674–679, 1981.

36. Georgios D. Evangelidis and Emmanouil Z. Psarakis.
Parametric image alignment using enhanced correlation
coefficient maximization. IEEE Trans. Pattern Anal.
Mach. Intell., 30(10):1858–1865, October 2008.

37. Sameer Agarwal, Keir Mierle, and Others. Ceres solver.
http://ceres-solver.org.

38. Guillermo Gallego and Davide Scaramuzza. Accurate an-
gular velocity estimation with an event camera. IEEE
Robot. Autom. Lett., 2(2):632–639, 2017.

39. Guillermo Gallego, Henri Rebecq, and Davide Scara-
muzza. A unifying contrast maximization framework for
event cameras, with applications to motion, depth, and
optical flow estimation. In IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR), pages 3867–3876, 2018.

40. Henri Rebecq, Guillermo Gallego, Elias Mueggler, and
Davide Scaramuzza. EMVS: Event-based multi-view
stereo—3D reconstruction with an event camera in real-
time. Int. J. Comput. Vis., 126(12):1394–1414, December
2018.

41. Ana I. Maqueda, Antonio Loquercio, Guillermo Gallego,
Narciso Garćıa, and Davide Scaramuzza. Event-based
vision meets deep learning on steering prediction for self-
driving cars. In IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), pages 5419–5427, 2018.

42. Patrick Bardow, Andrew J. Davison, and Stefan
Leutenegger. Simultaneous optical flow and intensity es-
timation from an event camera. In IEEE Conf. Comput.
Vis. Pattern Recog. (CVPR), pages 884–892, 2016.

43. Simon Baker and Iain Matthews. Lucas-kanade 20
years on: A unifying framework. Int. J. Comput. Vis.,
56(3):221–255, 2004.

44. Hanme Kim, Ankur Handa, Ryad Benosman, Sio-Hoi
Ieng, and Andrew J. Davison. Simultaneous mosaicing
and tracking with an event camera. In British Mach.
Vis. Conf. (BMVC), 2014.

45. Henri Rebecq, Timo Horstschäfer, Guillermo Gallego,
and Davide Scaramuzza. EVO: A geometric approach
to event-based 6-DOF parallel tracking and mapping in
real-time. IEEE Robot. Autom. Lett., 2(2):593–600, 2017.

46. Cedric Scheerlinck, Nick Barnes, and Robert Mahony.
Continuous-time intensity estimation using event cam-
eras. In Asian Conf. Comput. Vis. (ACCV), 2018.

47. Jeffrey Delmerico, Titus Cieslewski, Henri Rebecq,
Matthias Faessler, and Davide Scaramuzza. Are we ready
for autonomous drone racing? the UZH-FPV Drone Rac-
ing Dataset. In IEEE Int. Conf. Robot. Autom. (ICRA),
2019.

48. Christian Reinbacher, Gottfried Graber, and Thomas
Pock. Real-time intensity-image reconstruction for event
cameras using manifold regularisation. In British Mach.
Vis. Conf. (BMVC), 2016.

49. Gottfried Munda, Christian Reinbacher, and Thomas
Pock. Real-time intensity-image reconstruction for event
cameras using manifold regularisation. Int. J. Comput.
Vis., 126(12):1381–1393, July 2018.

