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Abstract 

Background: Non-invasive discrimination between lung squamous cell carcinoma 

(LUSC) and lung adenocarcinoma (LUAD) subtypes of non-small-cell lung cancer 

(NSCLC) could be very beneficial to the patients unfit for the invasive diagnostic proce-

dures. The aim of this study was to investigate the feasibility of utilizing the multimodal 

magnetic resonance imaging (MRI) radiomics and clinical features in classifying NSCLC. 

This retrospective study involved 148 eligible patients with postoperative pathologi-

cally confirmed NSCLC. The study was conducted in three steps: (1) feature extraction 

was performed using the online freely available package with the multimodal MRI 

data; (2) feature selection was performed using the Student’s t test and support vector 

machine (SVM)-based recursive feature elimination method with the training cohort 

(n = 100), and the performance of these selected features was evaluated using both 

the training and the validation cohorts (n = 48) with a non-linear SVM classifier; (3) a 

Radscore model was then generated using logistic regression algorithm; (4) Integrat-

ing the Radscore with the semantic clinical features, a radiomics–clinical nomogram 

was developed, and its overall performance was evaluated with both cohorts.

Results: Thirteen optimal features achieved favorable discrimination performance 

with both cohorts, with area under the curve (AUC) of 0.819 and 0.824, respectively. 

The radiomics–clinical nomogram integrating the Radscore with the independent 

clinical predictors exhibited more favorable discriminative power, with AUC improved 

to 0.901 and 0.872 in both cohorts, respectively. The Hosmer–Lemeshow test and 

decision curve analysis results furtherly showed good predictive precision and clinical 

usefulness of the nomogram.

Conclusion: Non-invasive histological subtype stratification of NSCLC can be done 

favorably using multimodal MRI radiomics features. Integrating the radiomics features 

with the clinical features could further improve the performance of the histological 

subtype stratification in patients with NSCLC.
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Background

Lung cancer is the most common diagnosed cancer and the leading cause of can-

cer death for both men and women [1–5]. As the most common type of lung cancer, 

non-small-cell lung cancer (NSCLC) comprises 85% of the primary lung malignancies, 

and the 5-year survival rate is less than 20% [1–3, 5, 6]. According to the New England 

Journal of Medicine [5], non-small-cell lung cancer (NSCLC) can be divided into three 

major histologic subtypes, namely squamous cell carcinoma (LUSC), adenocarcinoma 

(LUAD), and large-cell lung cancer, and all these subtypes are malignant tumors, among 

which LUSC and LUAD constitute approximately 35% and 60% of the primary NSCLC 

cases, respectively [1, 2, 4, 5, 7]. LUSC and LUAD have their own tissue characteristics, 

anatomical site and location, and glucose metabolism, which indicates different optimal 

treatment decisions to improve the clinical outcomes [4–7]. �erefore, it is very crucial 

to accurately confirm the histological subtype of the NSCLC prior to the treatment deci-

sions [6].

Clinically, the histopathological analysis of the tumor tissues by biopsy is the first-line 

reference in identifying the NSCLC subtypes [4–8]. It is an invasive diagnostic process 

and full of risk in actual practices [6]. Besides, considering the spatial and temporal het-

erogeneity of the tumors, the biopsy can only extract very limited portions of the target 

tissue, incapable of a complete characterization of tumor properties [1, 7]. Hence, a non-

invasive approach for the preoperative, accurate identification of LUSC and LUAD with 

the whole tumor site is required.

In recent years, computed tomography (CT) and magnetic resonance imaging (MRI) 

have been widely used for preoperative detection and diagnosis of lung cancer [1, 7, 9–

12]. Compared with the CT, MRI has excellent soft tissue contrast and does not involve 

the use of ionizing radiation. However, as for the discrimination between LUSC and 

LUAD, it is a real challenge for the radiologists to make a visual judgment based on the 

MRI data. Besides, the performance and consistency of the previous studies varied dra-

matically [2, 13, 14]. Deep extraction of the quantitative features beneath the MRI data, 

i.e., radiomics [15–19], for the objective accurate discrimination between LUSC and 

LUAD deserves more attention.

Currently, the radiomics strategies based on multimodal MRI data, including the 

T2-weighted images (T2WI), diffusion-weighted images (DWI) and the corresponding 

apparent diffusion coefficient (ADC) images, have been widely used for breast cancer, 

bladder cancer, nasopharyngeal carcinoma and glioblastoma subtypes discrimination 

and outcomes prediction [15–26]. Whether the radiomics features extracted from mul-

timodal MRI could reflect the significant differences of tissue distribution patterns 

between LUSC and LUAD, remains inconclusive up to now.

�erefore, the first aim of this study was to investigate whether the radiomics features 

extracted from multimodal MRI could significantly reflect the tissue distribution differ-

ences between LUSC and LUAD, and explore a feasible way for preoperative discrimi-

nation of LUSC and LUAD. To achieve this goal, five feature categories were employed 

in this study, including the histogram features, the Haralick features of co-occurrence 

matrices (CM features hereafter) [27], and features derived from the run length matrix 

(RLM features hereafter) [28], the neighborhood gray-tone difference matrix (NGTDM 

features hereafter) [29], and the gray-level size zone matrix (GLSZM features hereafter) 
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[30], to fully characterize the global, local and regional heterogeneity differences of 

tumor tissues between LUSC and LUAD [19].

Considering that the semantic clinical features like age, sex, smoking history, size, 

location, the longest diameter (LD) and its longest perpendicular diameter (LPD) of the 

target lesion, and carcinoembryonic antigen (CEA) are closely related to lung cancer [4, 

5], the second aim of this was to investigate whether integrating the radiomics features 

with these clinical features could further improve the diagnostic performance.

Results

Clinical characteristics of the patients

�e baseline demographics and clinical information of the patients in both the train-

ing and the validation cohorts were collected from the archival medical documents, as 

shown in Table 1. �e statistical analyses showed no significant differences between the 

training and validation cohorts in term of all these factors.

Table 1 Baseline demographics of the patients involved in this research

a LD, LPD and CEA indicate the longest diameter, the longest perpendicular diameter, and carcinoembryonic antigen, 

respectively

Characteristics Training cohort
(n = 100)

Validation cohort
(n = 48)

p value

Age, years 0.055

 Median [range] 58 [20, 76] 61 [42, 83]

Sex, no. (%) 0.220

 Male 79/100 (79%) 33/48 (68.75%)

 Female 21/100 (21%) 15/48 (31.25%)

Smoking, no. (%) 0.707

 Yes 70/100 (70%) 32/48 (66.7%)

 No 30/100 (30%) 16/48 (33.3%)

Side, no. (%) 0.389

 Upper left lobe 34/100 (34%) 12/48 (25%)

 Lower left lobe 14/100 (14%) 8/48 (16.7%)

 Upper right lobe 22/100 (22%) 12/48 (25%)

 Middle right lobe 4/100 (4%) 2/48 (4.2%)

 Lower right lobe 26/100 (26%) 14/48 (29.1%)

Location, no. (%) 0.216

 Peripheral 63/100 (63%) 25/48 (52.1%)

 Central 37/100 (37%) 23/48 (47.9%)

LD,  mma 0.230

 Median [range] 54 [10, 115] 43.5 [15, 100]

LPD,  mma 0.838

 Median [range] 36.5 [8, 77] 35 [11, 90]

CEA, (ng/ml)a 0.380

 Median [range] 4.7 [0.486, 1135] 7.11 [1.19, 646.4]

Histological subtype, no. (%) 0.164

 Squamous cell carcinoma 50/100 (50%) 18/48 (37.5%)

 Adenocarcinoma 50/100 (50%) 30/48 (62.5%)
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Performance of the optimal features selected for the discrimination between LUSC 

and LUAD

After Student’s t tests for all the 1404 radiomics features in the training cohort, 534 fea-

tures showed significant differences between LUSC and LUAD, indicating that the mul-

timodal MRI radiomics features describing the tissue distribution patterns, could well 

reflect the tissue distribution differences between LUSC and LUAD.

With a non-linear support vector machine (SVM)-based recursive feature elimina-

tion (SVM-RFE) approach further applied in these significant features, 13 features were 

finally selected as the optimal features, as shown in Fig.  1a. �e discrimination per-

formance of the optimal features in both the training and validation cohorts was then 

evaluated using a radial basis function-based non-linear SVM classifier with the LUSC 

patients labeled as “1” and the LUAD labeled as “−1”, as shown in Fig. 1b, c, indicating a 

favorable prediction performance.

Fig. 1 Optimal features selection process and their classification performance with both cohorts: a features 

selection process (AUC indicates the area under the curve of the receiver operating characteristic); b the 

performance of the selected features in the training cohort; c  the performance of the features with the 

validation cohort
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The Radscore calculation

To simplify the prediction model furtherly, a Radscore formula based on these optimal 

features was generated by using a logistic regression algorithm, and the coefficient for 

each feature is listed in Fig. 2a. �e intercept of the formula was 2.975. Figure 2b shows 

the sum of the absolute coefficients of these features in terms of image modalities or 

feature categories, from which we noticed that (1) the RLM feature category had the 

highest weight in the Radscore formula, and (2) the features derived from ADC maps 

contributed most in the Radscore calculation. Using the formula, the Radscore of each 

patient in both cohorts was calculated, which exhibited significant differences between 

the LUSC and LUAD patients (p value < 0.01), as shown in Fig. 2c.

Performance of the radiomics–clinical nomogram in the discrimination task

In order to further improve the discrimination performance, the clinical features and 

the Radscore were jointly considered. After the univariate and multivariable analyses 

of the Radscore and the clinical features, age, smoking, location, LD, LPD, and Rad-

score were identified as independent predictors for the discrimination task, as shown in 

Table 2.

�en, the radiomics–clinical nomogram was developed by integrating these five pre-

dictors, as shown in Fig. 3a. Based on the nomogram, the risk of each patient for being 

identified with LUSC was quantitatively calculated. Figure 3b shows the significant dif-

ferences of the risk distribution between the LUSC and LUAD patients in both cohorts 

(p value  ≪ 0.01). With this nomogram, the discriminative performance was greatly 

improved, as shown in Fig. 3c and Table 3. With a risk threshold of 0.450, the prediction 

accuracy and AUC were improved to 83.0% and 0.901 in the training cohort and 79.2% 

and 0.872 in the validation cohort, respectively. Besides, comparing the performance of 

proposed approach (Fig. 3c) with the existing techniques on the basis of t test + SVM 

(Fig. 1b), the former achieved a much higher predictive precision in terms of the accu-

racy and AUC.

Additionally, the Hosmer–Lemeshow test yielded a p value of 0.893 without statisti-

cal significance, suggesting a favorable agreement between the predicted and observed 

results using this nomogram model. Clinical usefulness was assessed by decision curve 

analysis, as shown in Fig. 4, which indicated a greater net benefit than individually using 

the clinical model or the radiomics model as the risk larger than 0.1.

Discussion

In this study, we developed and validated a radiomics–clinical nomogram incorporating 

the multimodal MRI-based radiomics features and the primary clinical features for the 

preoperatively individualized discrimination and the risk stratification of the patients 

with LUSC and LUAD. �e results of using the nomogram in both the training and the 

validation cohorts demonstrate a favorable discriminative power and clinical usefulness, 

suggesting that the proposed nomogram could be an effective, non-invasive and abso-

lutely safe manner for the preoperative identification of histological subtypes of NSCLC.

In recent years, the MRI was widely used for a variety of cancers diagnosis like glio-

blastoma, nasopharyngeal carcinoma, lung cancer, bladder cancer, and prostate cancer 
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[13, 17, 31–38]. Most of the diagnoses were based on the visual interpretation of the 

experts. With the rapid development of multimodal MRI and image analysis techniques, 

radiomics approaches based on multimodal MRI data have recently drawn great atten-

tion for cancer properties and subtype prediction and prognosis, preoperatively [15–22]. 

Fig. 2 Radscore generation and its inter-group distribution (ADC, DWI, T2WI, CM, RLM, GLSZM and GL 

represent the apparent diffusion coefficient, the diffusion-weighted images, the T2-weighted images, the 

co-occurrence matrices, the run length matrix, the gray-level size zone matrix, the gray level, respectively): 

a coefficient map of the 13 features; b sum absolute coefficients of the features with different modalities or 

categories; c the distribution and inter-group analyses of the Radscore 
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However, as for the NSCLC histological subtype discrimination, the feasibility and per-

formance of the multimodal MRI-based radiomics approach remain largely unknown up 

to now. �erefore, we aimed to (i) investigate whether the radiomics features extracted 

from multimodal MRI could significantly reflect the tissue distribution differences 

between LUSC and LUAD, exploring a feasible way for preoperative discrimination 

between LUSC and LUAD and (ii) verify if integrating the radiomics features with the 

clinical features would further improve the discriminative power in this study.

Due to the different original grayscales of the T2WI, DWI and ADC images, gray-

scale standardization was indispensable prior to the CM, RLM, NGTDM and GLSZM 

features calculation in the process of radiomics feature extraction. In this study we 

implemented a multi-grayscale normalization strategy with five commonly normalized 

grayscales based on the previous researches [18, 19], to extract more features potentially 

useful for the discrimination task. With the Student’s t test and SVM-RFE approaches 

jointly used for feature selection, 13 features with significant inter-group differences 

were determined as the optimal features, and their classification results with both the 

training and validation cohorts demonstrated the feasibility and fairly good performance 

of the multimodal MRI-based radiomics strategy for the preoperative discrimination of 

patients with LUSC or LUAD.

Although the SVM classifier has several drawbacks, including the apparent complexity 

increase and large time consumption for large database [39, 40], its merits are also very 

apparent. Specifically, as for the small samples like the circumstance in this study, SVM 

can usually get favorable results using the limited datasets in the training set [39–41]. 

Besides, the generalizability of the SVM classifier is also remarkable in terms of the small 

and limited datasets [39, 40].

Among these optimal features selected, the sum of the absolute coefficients of the 

RLM features was the highest, potentially demonstrating that features well reflecting 

the regional heterogeneity of tumor tissues could better characterize the heterogeneous 

Table 2 Univariate and  multivariable regression analyses of  the  Radscore with  primary 

clinical features for the histological subtype prediction of NSCLC in the training cohort

The underlined values indicate statistical signi�cance with p value < 0.05 after the univariate analysis

The italics underlined values indicate statistical signi�cance with p value < 0.05 after the multivariable analysis

a LD, LPD, CEA and OR indicate the longest diameter, the longest perpendicular diameter, carcinoembryonic antigen, and 

odds ratio, respectively

Indicators Univariate analysis Multivariable analysis

ORa 95% CI p value OR 95% CI p value

Lower Upper Lower Upper

Age 2.481 1.368 4.499 < 0.05 3.994 1.421 11.228 < 0.05

Sex 0.068 0.015 0.313 ≪ 0.05 0.413 0.015 10.889 0.59

Smoking 0.148 0.053 0.409 ≪ 0.05 0.104 0.012 0.947 < 0.05

Side 0.353 0.127 0.981 0.051 – – – –

Location 2.191 0.954 5.028 0.06 – – – –

LDa 1.991 1.061 3.734 < 0.05 0.048 0.005 0.511 < 0.05

LPDa 3.246 1.651 6.379 ≪ 0.05 9.807 1.420 67.719 < 0.05

CEAa 0.784 0.635 0.968 < 0.05 0.661 0.488 1.129 0.062

Radscore 11.128 4.100 30.198 ≪ 0.01 74.937 9.339 601.32 ≪ 0.01
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differences between LUSC and LUAD. In addition, the sum of the absolute coefficients 

of the features extracted from ADC maps was exceedingly the highest, indicating that 

the ADC maps could well reflect the histological differences between LUSC and LUAD 

of NSCLC.

Concerning that the primary clinical features like age, sex, smoking, side, location, 

LD and LPD of the target lesion, and CEA are commonly used for the clinical diagno-

sis of patients with lung cancer, whether incorporating these factors with the Radscore 

Fig. 3 Construction and validation of the nomogram: a development of the nomogram based on the 

Radscore and independent clinical predictors (LD and LPD represent the longest diameter and the longest 

perpendicular diameter, respectively); b the risk calculated and its statistical inter-group distribution 

differences; c performance verification (AUC indicates the area under the curve of the receiver operating 

characteristic)
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generated by the 13 optimal features would improve the discriminative performance 

was in great need to answer. �e univariate and multivariable analyses results showed 

that age, smoking, the longest diameter of the target lesion, the longest perpendicular 

diameter of the target lesion and the Radscore were independent predictors for the 

discrimination task. Based on these predictors, a nomogram was then generated. �e 

discriminative performance of the nomogram was evidently better than that of the radi-

omics model, apparently demonstrating that integrating the radiomics features with the 

primary clinical features could further improve the discriminative power. Besides, the 

Hosmer–Lemeshow test and the decision curve analysis results further demonstrate 

good predictive precision and clinical usefulness of the nomogram.

In recent years, only a few CT-based studies have investigated the performance of the 

radiomics strategy for preoperatively differentiating LUSC from LUAD. Previously, Zhu 

et al. [7] used 485 radiomics features extracted from 81 patients’ CT images to generate 

a radiomics signature for the discrimination task. It finally achieved an AUC of 0.893 

in the validation cohort (48 patients) [7]. In another study, Linning et al. [42] adopted 

the preoperative non-enhanced CT images and dual-phase chest contrast-enhanced CT 

images acquired from 90 LUAD and 84 LUSC patients with the radiomics strategy to 

generate two predictive models, respectively. And the AUC of these models were 0.801 

and 0.806, respectively. In a more recent study [2], Bashir et  al. employed 115 radi-

omics features extracted from 106 patient’s CT images with the random forest classi-

fier to develop the predictive model. And its performance in the validation cohort (100 

patients) was really poor, with AUC of only 0.56 [2]. Comparing with the results of these 

Table 3 Performance of the radiomics–clinical nomogram in discriminating between lung 

squamous cell carcinoma (LUSC) and  lung adenocarcinoma (LUAD) in  both  training 

and validation cohorts

a Sen, Spe, Acc and AUC indicate the sensitivity, speci�city, accuracy and area under the curve of the receiver operating 

characteristic curve, respectively

Cohort Sena Spea Acca AUC a 95% CI p value

Lower Upper

Training 90.0% 76.0% 83.0% 0.901 0.842 0.960 < 0.05

Validation 88.9% 73.3% 79.2% 0.872 0.779 0.965 < 0.05

Fig. 4 Clinical usefulness assessed by using the decision curve analysis indicating a greater net benefit than 

individually using the clinical model or the radiomics model
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studies, the proposed algorithm in our study achieved a favorable and compatible per-

formance, with AUC of 0.901 and 0.872 in the training cohort and the validation cohort, 

respectively. Besides, the proposed approach in our study could also realize the quanti-

tative estimation and risk stratification for patients with LUSC and LUAD, promisingly 

working as an effective and complementary tool to help the clinicians make appropriate 

treatment decisions.

Apart from the current study, development of the quantitative image-based diagnostic 

models for disease definition has received unprecedented attention these years [2, 7, 18, 

25, 38, 43–47], not only in the field of cancer diseases, but also in more broad research 

fields, such as retinal diseases [43, 44], diabetes [46], calcaneal fracture [45], and mental 

disorders [36]. �ese models have achieved favorable performance in diseases diagnoses 

and understanding, demonstrating the great power and promising application of these 

approaches for clinical practice. However, the results of this study should be carefully 

interpreted due to several limitations. First, inherent bias might exist because of the ret-

rospective nature of this current study with relatively limited patient cohorts. A larger 

amount of participants from two or more clinical centers are needed to further validate 

the overall performance of the proposed approach. Moreover, other potentially clinical 

factors, such as gene mutations and key molecular biomarkers, are not included in the 

current study because of the incomplete data in the archival database, and should be 

further analyzed.

Conclusions

�e proposed multimodal MRI-based radiomics signature could be an effective tool for 

the quantitative description and discrimination of NSCLC subtypes. Additional integra-

tion of the significant clinical factor with the signature further improves the discrimi-

natory power. Extensive multicenter validations of the proposed approach are required 

prior to real clinical application.

Methods

�e institutional ethics review board of the Xijing hospital approved this retrospective 

study and waived the requirement for informed content. Overall methodology of this 

study is shown in Fig. 5.

Patients

�is study consisted of 148 eligible patients in which all the lesions we included were 

postoperatively confirmed with LUSC or LUAD from a single clinical center between 

January 2015 and December 2018. �en, their preoperative imaging datasets were 

enrolled and used for model development. If he/she is a healthy subject, the tumor mass 

will not be observable and delineated for feature extraction. �erefore, it is impossible 

and unnecessary to launch the model for the prediction. According to the previous stud-

ies [21, 37, 48–50], we randomly allocated the entire datasets into the training cohort 

and the validation cohort. �erefore, 100 patients (79 males and 21 females) with post-

operative pathologically confirmed LUSC (n = 50) or LUAD (n = 50) were allocated as 

the training cohort for model development, and 48 patients (33 males and 15 females) 

were allocated as the independent validation cohort. �e overall inclusion and exclusion 



Page 11 of 17Tang et al. BioMed Eng OnLine            (2020) 19:5 

criteria are illustrated in Fig.  6. Only the lesions greater than 8  mm were included in 

this study to ensure sufficient counting statistics and consistent region of interest analy-

sis. Besides, the primary clinical features including age, sex, smoking, side, location, LD, 

LPD, and CEA were obtained from the archival medical records. Postoperative histo-

logical subtypes were used as the true label of the NSCLC patients.

Fig. 5 The overall schematic outline of this study for the preoperative discrimination between squamous cell 

carcinoma (LUSC) and adenocarcinoma (LUAD)

Fig. 6 Inclusion and exclusion criteria of this study (LUSC and LUAD represent the lung squamous cell 

carcinoma and lung adenocarcinoma, respectively)
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Image acquisition and region of interest delineation

All patients underwent MRI using a 1.5 T scanner (MAGNETOM Aera, Siemens Medi-

cal Solutions, Erlangen, Germany) with an 8-channel phased-array torso coil. MRI 

sequences, including T2-weighted and Diffusion-weighted MRI sequences, were per-

formed to obtain the corresponding images. �e ADC maps were derived automatically 

from the DWI using a biexponential model with b values of 50 and 800 s/mm2. �e pri-

mary parameters of these sequences were described in the Additional file 1.

Before tumor region of interest (ROI) delineation, the axial image slice for each MRI 

modality was selected based on obtaining the largest area of the archived tumor with 

the maximal size in each patient’s lung region. �en, a manually depicted polygonal ROI 

was used to segment the tumor area on the selected images. Two radiologists with 9 

and 5 years of MRI interpretation experience of lung cancer, independently performed 

tumor delineation with a custom-developed package. �en, divergence of their delinea-

tion results was carefully corrected by consensus. Considering that the ADC maps were 

calculated from the DWI using the biexponential model, the tumor ROIs obtained from 

the DWI were mapped onto the ADC maps to extract the corresponding tumor regions. 

Examples of the ROI delineation results are illustrated in Fig. 7.

Feature extraction

�e image features including 8 histogram features, 39 CM features, 33 RLM features, 

five NGTDM features [29], and 15 GLSZM features [30], were extracted from the 

tumor ROIs of the MRI data to fully characterize the local, regional and global tissue 

distribution variations of the tumor [18, 50]. Detailed feature information is shown in 

Additional file 1: Table S1. Due to the different grayscales of the original T2W, DW and 

ADC images, which is prior to the second-order (CM features) and higher-order (RLM, 

Fig. 7 Examples of the delineated lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) 

on the multimodal MRI data
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NGTDM, and GLSZM features) texture feature extraction, a multi-grayscale standardi-

zation strategy was performed on all the tumor ROIs delineated from three MRI modali-

ties by using 8, 16, 32, 64, and 128 grayscales [15, 17, 22]. �en, a total of 1404 features 

were obtained, and their values were linearly normalized in the range of − 1 to 1 to 

reduce the computational burdens. �e feature extraction process was performed using 

a publicly shared MATLAB package available online [18, 19, 51].

Feature selection, predictive performance evaluation, and Radscore generation

Multiple test methods were utilized in combination to select the optimal features for 

the discrimination between LUSC and LUAD of patients with NSCLC. First, the Stu-

dent’s t test was employed to select the features with statistically significant differences 

between the two groups in the training cohort. Subsequently, SVM-RFE approach was 

adopted to select an optimal feature subset from these features in the training cohort 

[37], and its differentiation performance was evaluated with both the training and the 

validation cohorts. Detailed description on SVM-RFE has been summarized in the Ref. 

[18, 19]. After that, a logistic regression algorithm was performed with these optimal 

features in the training group to obtain the coefficient of each feature and the intercept 

for Radscore formula generation [18, 19, 37]. Based on the formula, the Radscore of 

each patient in the two patient cohorts was then computed for the further analysis [18, 

19, 37].

Radiomics–clinical nomogram development and its predictive performance assessment

After exploring the feasibility and evaluating the performance of the radiomics model 

for the discrimination between LUSC and LUAD, whether the inclusion of both radi-

omics and the primary clinical features could improve the diagnostic accuracy for the 

discrimination task was further investigated. First, the univariate and multivariable 

regression analyses were performed with the Radscore and the clinical features in the 

training cohort to determine the independent predictors for the discrimination between 

LUSC and LUAD [19, 49, 52]. �en, the nomogram based on these independent predic-

tors was developed using the training cohort [19, 49, 52], and its predictive performance 

was quantitatively assessed in terms of the sensitivity, specificity, accuracy, and AUC of 

receiver operating characteristic (ROC) using both the training and validation cohorts 

[19, 49, 52]. Among these metrics, sensitivity measures the percentage of positives sam-

ples which are correctly identified, specificity evaluates the proportion of negatives sam-

ples which are correctly predicted, and the accuracy is the ratio of all samples which are 

correctly identified, as shown in Eq. 1, where TP, TN, FP, FN are the abbreviations of 

true positive, true negative, false positive and false negative, respectively [52–54]. �e 

AUC measures the area under the curve of the receiver operating characteristic (ROC) 

after the test, assessing the general performance of the predictive model [53–55]. �e 

Hosmer–Lemeshow test and decision curve analysis were performed to verify the preci-

sion and net benefit of the nomogram in clinical applications [56].
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Statistical analysis

All statistical analyses were performed using R statistical software (version 3.4.4., × 64), 

R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-proje 

ct.org/ and two-sided p values less than 0.05 were considered to be significant [19, 49, 

52]. Univariate and multivariable regression analyses were applied to identify independ-

ent predictors for the discrimination task [19, 49, 52]. �e Hosmer–Lemeshow test was 

performed to quantitatively assess the calibration and agreement between the predicted 

and observed results, and decision curve analysis was employed to evaluate the clinical 

usefulness of the proposed nomogram model.
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