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Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates
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An elastic analog of graphene is introduced and analyzed. The system consists of a honeycomb arrangement

of spring-mass resonators attached to a thin elastic layer, and the propagation properties of flexural waves along

it is studied. The band-structure calculation shows the presence of Dirac points near the K point of the Brillouin

zone. Analytical expressions are found for both Dirac frequency and velocity as a function of the resonator’s

parameters. Finally, the bounded modes of infinitely long ribbons of this honeycomb arrangement are analyzed.

The presence of edge states, which are studied using multiple scattering theory, is shown. It is concluded that

these structures can be used to control the propagation of flexural waves in thin plates.
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I. INTRODUCTION

The extraordinary properties of graphene1–4 have attracted

interest in the search of analogous systems for other type of

waves. These extraordinary properties are mainly due to the

presence in the dispersion relation of Dirac cones,5 which are

points of the band structure in which the dispersion relation

shows two cones that touch at the so-called Dirac point.

The search of equivalent systems for other waves started

looking at two-dimensional (2D) periodic systems with

Dirac. Thus, Dirac points appear in the band structure

of 2D photonic6–10 and sonic11–13 crystals, showing also

extraordinary propagation properties, like Zitterbewegung,14

a near-zero refraction index,15 edge states,16 extraordinary

transmission,11,17,18 or one-way propagation.19–22

An elastic analog of graphene has not been fully analyzed,

although the effort to create structures to control the propaga-

tion of elastic waves in 2D systems has been remarkable. Thus

phononic band-gap systems for Lamb waves have been widely

studied,23–27 as well as advanced refractive structures28–30 or

more complex devices based on the transformation-coordinate

method.31–33

This work presents an elastic analog of graphene. It consists

of a thin elastic plate loaded with a honeycomb arrangement of

resonators. Under the thin-plate approximation, it is shown that

the dispersion relation presents Dirac cones, which have been

perfectly characterized in terms of the resonator parameters.

Also, edge states have been found for infinite zigzag ribbons

and numerical multiple scattering simulations of finite cluster

have been performed, supporting the results predicted by the

band-structure calculations.

The paper is organized as follows. In Sec. II the equation

of motion for the mentioned system has been solved for the

case of a honeycomb arrangement of resonators, showing that

Dirac cones also appear in the mentioned structure. In Sec. III

these Dirac cones are analyzed, and analytical expressions for

both Dirac frequency and velocity are found as a function

of the resonator’s parameters. Section IV is devoted to the

analysis of the dispersion relation of zigzag ribbons, the

structures where edge states are expected. Section V solves

the multiple scattering problem of a finite cluster of resonators,

and some simulations are presented validating the infinite

system analysis, showing that edge states are present in finite

structures and that they can be used to control the propagation

of elastic waves by subwavelength units. The work is finally

summarized in Sec. VI.

II. BAND STRUCTURE

Let us assume that an elastic plate is loaded with a periodic

distribution of spring-mass resonators with force constant kR

and mass mR , as it is shown in Fig. 1. The arrangement is such

that there are N resonators per unit cell located at positions

Rnα = Rn + Rα , where n runs for all the lattice vectors and α

runs for all the resonators within the unit cell. The governing

equation of motion for the plate’s displacement W1 is given

by26

(D∇4 − ω2ρh)W1(r) =
∑

Rn,α

f (Rnα)δ(r − Rnα), (1)

where ∇4 is the biharmonic operator, D = Eh3/12(1 − ν2)

is the plate bending stiffness, ρ is the mass density of

the plate, and h its thickness. The quantity f (Rnα) is the

force due to the presence of the spring-mass resonator. This

force is responsible for the movement of the mass attached to

the plate. Then Newton’s second law is

ω2mRαW2(Rnα) = f (Rnα), (2)

W2(Rnα) being the mass displacement. Moreover, Hook’s law

is

f (Rnα) = −kRα[W1(Rnα) − W2(Rnα)]. (3)

From (2) and (3) we can solve for W2(Rnα) and the force

f (Rnα) in terms of W1(Rnα). Inserting this solution in (1), the

equation of motion becomes, after some algebra,
(

∇4 − ω2 ρh

D

)

W1(r) =
∑

Rn

∑

α

tαW1(Rnα)δ(r − Rnα),

(4)

where the tα is the resonator’s strength, which has been defined

as

tα =
mRα

D

ω2
Rαω2

ω2
Rα − ω2

, (5)
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FIG. 1. (Color online) Schematic view of the system studied in

this work. An array of resonators is attached to a thin elastic plate.

Each resonator is modeled as a point mass attached to the plate by

a spring, mR being its mass, and the resonant frequency ωR of the

mass-spring system the relevant parameters.

and ωRα =
√

kRα/mRα is the resonant frequency of the α

resonator.

The periodic arrangement of resonators allows for the

application of Bloch’s theorem, and then W1(r) is expanded

as

W1(r) =
∑

G

WGei(K+G)·r , (6)

K being the Bloch wave number and G the reciprocal lattice

vector. Notice that

W1(Rnα) =
∑

G

WGei(K+G)·Rnα = ei K ·Rnα

∑

G

WGeiG·Rα .

(7)

Thus the equation of motion is

∑

G

(

|K + G|4WG − ω2 ρh

D
WG

)

ei(K+G)·r

=
∑

Rn,α,G′

tαei K ·RnαWG′eiG′·Rαδ(r − Rnα). (8)

If the above equation is multiplied by exp[−i(K + G) · r]

and integrated over one unit cell, we find that
(

|K + G|4 − ω2 ρh

D

)

WG =
∑

α,G′

tα

Ac

e−iG·RαWG′eiG′·Rα ,

(9)

Ac being the area of the unit cell.

This equation defines an eigenvalue equation with eigen-

vectors WG and eigenvalues ω, from which we can obtain the

dispersion relation ω = ω(K ). This procedure was employed

in Ref. 26; however, in the present work, another form of

Eq. (9) is required. As we will show below, the system still

can be simplified.

If we define

Wβ =
∑

G′

WG′eiG′·Rβ (10)

and multiply Eq. (9) by eiG·Rβ , after summing for all G, we

arrive at

Wβ =
∑

G

1

|K + G|4 − ω2ρh/D

1

Ac

∑

α

eiG·Rαβ tαWα (11)

or, equivalently,
∑

β

[δαβ − χαβ]Wβ = 0, (12)

where

χαβ =
tα

Ac

∑

G

e−iG·Rαβ

|K + G|4 − ω2ρh/D
. (13)

This quantity can be expressed in a simpler form if it is

multiplied and divided by a4, a being the lattice constant. It is

easy to show that

χαβ =
mRβa4

AcD

ω2

1 − ω2/ω2
Rβ

∑

G

e−iG·Rαβ

|K + G|4a4 − ω2ρha4/D

(14)

and, by defining the normalized frequency 	 as

	2 = ω2 ρa2h

D
(15)

and the parameter γβ as the ratio between the mass of the

resonator and that of the unit cell, that is,

γβ =
mRβ

ρAch
, (16)

we arrive at

χαβ =
γβ	2a2

1 − 	2/	2
Rβ

∑

G

e−iG·Rαβ

|K + G|4a4 − 	2a2
, (17)

which allows computing the frequencies 	a of the band

structure as a function of Ka once the position and properties

of all the resonators within the unit cell, γα,	Rα and Rα , are

given.

Equation (12) defines a homogeneous system of N equa-

tions, N being the number of resonators per unit cell. In order

to have nontrivial solutions, we need that the determinant of the

matrix defining the system of equations be equal to zero. The

values of 	 that for a given K makes the determinant of such

a matrix equal to zero defines the band structure 	 = 	(K ).

The band structure for a rectangular array of these res-

onators has been already studied in Ref. 26, where the band

gaps and transmission through finite structures were analyzed.

In this work we consider the honeycomb arrangement shown

in Fig. 2, which is a triangular lattice with two resonators per

unit cell. We have chosen this arrangement since this work is

devoted to the search of an elastic analog of graphene, where

carbon atoms are arranged in a honeycomb lattice.

Figure 3 shows the solution of Eq. (12) for a honeycomb

arrangement of resonators, that is, a unit cell defined by the

lattice vectors

a1 = a x̂, (18a)

a2 = a cos
π

3
x̂ + a sin

π

3
ŷ, (18b)

with two resonators per unit cell placed at positions

Rα =
a

2
√

3

(

cos
π

6
x̂ + sin

π

6
ŷ

)

, (19a)

Rβ = −
a

2
√

3

(

cos
π

6
x̂ + sin

π

6
ŷ

)

. (19b)
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Rα β

â 1

â 2

FIG. 2. (Color online) Geometry of the honeycomb arrangement

of resonators. It is seen that there are two resonators per unit cell.

In this analogy, every resonator is equivalent to carbon atoms in

graphene.

A conical dispersion relation in Fig. 3 appears, as expected,

at the K points of the reduced Brillouin zone. The frequency

and slope at which this cone appears are called, respectively,

Dirac frequency 	D and velocity cD .

In the next section, Eq. (12) is solved in the neighborhood

of these points, and analytical expressions for both 	D and cD

are obtained.

III. DIRAC FREQUENCY AND VELOCITY

The honeycomb lattice, which can be described by a

triangular lattice with two resonators per unit cell, produces

solutions to Eq. (12) that are obtained from the zeros of the

2 × 2 determinant,

∣

∣

∣

∣

∣

1 − χαα −χαβ

−χ∗
αβ 1 − χαα

∣

∣

∣

∣

∣

= 0, (20)

0
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Γ KM Γ

Ω
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Γ K
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FIG. 3. (Color online) Band structure for the flexural waves

propagating the system of attached resonators with the honeycomb

arrangement. In this example, γR = 10.0 and 	Ra = 4π . At the K

point the doubly degenerated conical-like dispersion relation called a

Dirac cone can be seen.
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FIG. 4. (Color online) Normalized Dirac frequency (frequency

of the vertex of the cone in the band structure) as a function of the

normalized resonant frequency of the spring-mass system for different

γR values.

where we have used that Rαβ = −Rβα . The solutions are then

1 = χαα ± |χαβ |. (21)

The resulting band structure for a system with γα ≡ γR =
10.0 and 	Rαa ≡ 	Ra = 4π is shown in Fig. 3. The Dirac

point appears at Ka = KDa = 4π/3, where χαβ = δαβ , so

that Eq. (21) becomes simply 1 = χαα; therefore

χD
αα =

γR	2
Da2

1 − 	2
D/	2

R

∑

G

1

|K D + G|4a4 − 	2
Da2

= 1 (22)

solves for Dirac frequency 	D as a function of the resonator’s

parameters γR and 	R .

Figure 4 shows a plot of Dirac frequency as a function of

the resonant frequency 	R for several values of γR . Note that

Eq. (22) implies an infinite number of solutions for 	D , but

we keep only the lower value, since at higher frequencies the

wave Eq. (1) is no longer valid.

The denominator in Eq. (22) will be dominated by the term

|K D + G|4 due to the fourth power of the modulus; thus this

equation can be simplified if we assume that the infinite sum

involved is independent of 	D , that is,

∑

G

1

|K D + G|4a4 − 	2
Da2

≈
∑

G

1

|K D + G|4a4
≡ S0.

(23)

Thus we can solve for 	D as

	Da =
1

√

γRS0 + 1/	2
Ra2

. (24)

From this expression it can be concluded that for 	Ra → ∞
we have that 	Da → (γRS0)−1/2.

Figure 4 demonstrates the large degree of tunability for the

Dirac frequency. Furthermore, note that the Dirac frequency

can be kept constant by properly changing the pairs (	R,γR);

thus two different “graphenelike” media can be obtained with

the same Dirac frequency.

The procedure to determine the Dirac velocity is more

complex, but it is similar to that previously shown in Ref. 13.
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The reader is referenced to the Supplementary Material of

the referenced work for further details. Thus it is shown that

by performing a first-order expansion around the Dirac point

(	Da,KDa), we obtain that

χαβ = δαβ

(

1 + δ	a
∂χD

αα

∂	a

)

+ (1 − δαβ)δKa
∂χD

αβ

∂ Ka
. (25)

Once the expansion coefficients of δ	a and δKa are

properly computed, the above expression is introduced into

Eq. (12) and it becomes the Dirac equation for 2D massless

particles, from which we can obtain the Dirac velocity cD .

Then the expansion coefficient for δ	a,

∂χD
αα

∂	a
=

∂

∂	a

[

γR	2a2

1 − 	2/	2
R

∑

G

1

|K + G|4a4 − 	2a2

]

,

(26)

can be simplified using Eq. (22), and it can be cast in

∂χD
αα

∂	a
=

2

	D

(

1 − 	2
D/	2

R

) +
2γR	3

Da3

1 − 	2
D/	2

R

Sαα, (27)

where

Sαα =
∑

G

1
(

|K D + G|4a4 − 	2
Da2

)2
, (28)

which can be solved numerically.

The expansion coefficient for δKa is13

∂χD
αβ

∂ Ka
= −

γR	2
Da2

1 − 	2
D/	2

R

∑

G

e−iG·Rαβ

×
|K D + G|2a2

(

|K D + G|4a4 − 	2
Da2

)2
(K D + G)a

= −
2γR	2

Da2

1 − 	2
D/	2

R

Sαβ(x̂ + i ŷ), (29)

where

Sαβ =
∑

G

|K D + G|2a2e−iG·Rαβ

(

|K D + G|4a4 − 	2
Da2

)2
(x̂ − i ŷ) · (K D + G)a.

(30)

After inserting these expressions into Eq. (20) it becomes
∣

∣

∣

∣

−δ	a/cD δK · (x̂ + i ŷ)

δK · (x̂ − i ŷ) −δ	a/cD

∣

∣

∣

∣

= 0, (31)

where the Dirac velocity is obtained from

1

cD

=
1

|Sαβ |γR	3
Da3

+ 	Da
Sαα

|Sαβ |
. (32)

This is the Dirac equation for 2D massless particles, the

same equation describing electrons in graphene.5 Equation

(31) was already derived for acoustic graphene.13

Figure 5 shows cD as a function of 	R for several values

γR . Again we can see how this parameter can be tailored with

a wide range of values. Note that cD is nondimensional, since

neither δ	a nor δKa have dimensions.

The Dirac velocity is usually expressed relative to that of

the background, but in this case the background does not

5 10 15

0.2

0.4

0.6

0.8

1

1.2

ΩRa

c D

γR = 1.0
γR = 2.0
γR = 4.0
γR = 6.0
γR = 10.0

FIG. 5. (Color online) Normalized Dirac velocity as a function

of the normalized resonant frequency of the spring-mass system for

different γR values.

present a linear dispersion relation, so that the comparison

is not straightforward.

The physical velocity ĉD = δω/δK at which Dirac waves

propagate can be easily obtained from the definition of the

scaled frequency 	; thus

cD =
δ	a

δKa
=

δω

δk

√

ρha2

D
, (33)

which gives

ĉD = cD

h

a

√

E

12(1 − ν2)ρ
. (34)

In summary, the elastic analog of graphene can be designed

by means of the resonator’s properties as well as by the

physical dimensions of the plate, which makes these structures

of potential interest as devices for controlling elastic waves.

In the next section finite slabs of elastic graphene, also called

“ribbons,” are studied in order to show that these ribbons, as in

the electronic graphene and related analogs, present a special

case of bounded states called “edge states.”

IV. DISPERSION RELATION OF ZIGZAG RIBBONS

Let us consider now the dispersion relation of finite

“ribbons” of the honeycomb arrangement. The structure

considered is shown schematically in Fig. 6. In this case,

the ribbon is cut along what is known as a zigzag edge. The

dispersion relation is computed using Eq. (13), where the unit

cell is made by the resonators within the vertical rectangle in

Fig. 6.

The dimensions of the unit cell are now infinite, because

we are studying a waveguide, where the unit cell is defined

by the rectangle x ∈ [0,a], y ∈ (−∞,∞). Therefore in the

y direction we change Ky + Gy by ky , and replace the

summation by an integration by performing the following

transformation:

1

Ac

∑

Gy

→
1

2πa

∫ ∞

−∞
dky . (35)
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FIG. 6. Schematic view of a ribbon with zigzag edges. The

left and right arrows indicate that the system is infinite along the

horizontal direction (x axis). The vertical rectangle defines the unit

cell that is repeated along the x axis and is employed for the

calculation of the dispersion relation. The horizontal dashed rectangle

defines a “line.” The depicted structure has five lines.

Therefore Eq. (13) becomes

χαβ =
tα

2πa

∑

n

e−i2nπxαβ/a

∫ ∞

−∞

e−ikyyαβ

|K + G|4 − ω2ρh/D
, (36)

where now we have that

|K + G|4 =

[

(

Kx +
2nπ

a

)2

+ k2
y

]2

. (37)

The integral in (36) can be solved using the residue theorem,

leading to

χαβ =
tα

4ω

√

ρh

D
a

∑

n

e−i2nπxαβ/a

[

e−ξ−|yαβ |

ξ−
−

e−ξ+|yαβ |

ξ+

]

,

(38)

where

ξ± =

√

(

Kx +
2nπ

a

)2

± ω

√

ρh

D
. (39)

The convergence of the solution is subject to ξ± being real,

which is the condition of having a guided wave in the ribbon.

kxa

Ω
a

0 2 4 6
0

0.5

1

1.5

2

2.5

3

FIG. 8. (Color online) Dispersion relation of a ribbon made of ten

lines with zigzag edges. The gray area is the band structure projected

on the edge direction, showing clearly the difference between edge

states and bulk states. The white spots in the gray regions correspond

to roots not encountered by the searching algorithm due to its lack of

precision.

Figure 7 shows the dispersion relation for waveguides made

of 1, 2, 3, and 4 lines. It is noticed that bulk modes are

formed as the number of lines increases, but there are some

modes, between 	a = 2 and 	a = 3, in which modes with

flat dispersion relation appear. These are the so-called edge

states.

Figure 8 shows better the difference between bulk and edge

states. Here we can see the dispersion relation for a ribbon

of ten lines together with the band structure of the infinite

system projected along the ribbon axis (the x axis). It is clear

how the flat modes do not pertain to the bulk system, being

bounded between the two projected Dirac points at kxa =
2π/3,4π/3.

These modes are well known in electronic graphene,3,34

as well as in both photonic6,7,22 and acoustic graphene.12 In

the next section a multiple scattering method is developed for

the simulations of waves propagating in ribbons under point

source excitation.
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FIG. 7. (Color online) The red lines represent the dispersion relations computed for ribbons with zigzag edges with one, two, three, and

four lines. The dispersion relations are limited by the free-wave dispersion relation, since outside this region the modes are leaky modes. It is

clear how bulk modes are formed as we increase the number of lines but edge states appear between 	a ≈ 2 and 	a ≈ 3.
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FIG. 9. (Color online) Multiple scattering simulation of an edge state excited in a single-line zigzag ribbon. The source is oscillating at a

normalized frequency 	a = 2.6. Note that although the state is guided along the ribbon, there are also leaky waves.

V. MULTIPLE SCATTERING SIMULATIONS

Let us consider now a finite cluster of resonators placed at

positions Rα . The equation of motion (4) is now
(

∇4 − ω2 ρh

D

)

W1(r) =
∑

α

tαW1(Rα)δ(r − Rα). (40)

To solve the above equation we need to find a Green’s function

satisfying

(∇4 − k4)G0(r) = δ(r), (41)

where the wave number k satisfies

k4 = ω2 ρh

D
, (42)

which has four roots, k = ±
√

ω(ρh/D)1/4 and k =
±i

√
ω(ρh/D)1/4. The solutions are forward- and backward-

propagating and evanescent waves. In general, propagating

waves will be described by Bessel and Hankel functions, while

the evanescent waves will be described by modified Bessel

and Hankel functions, since we are dealing with 2D scattering

problems. The argument of all these functions always contains

the modulus of the wave vector |k| =
√

ω(ρh/D)1/4, which

hereafter is named k.

The solution for the Green’s function in Eq. (41) is

G0(r) =
i

8k2

[

H0(kr) +
2i

π
K0(kr)

]

, (43)

where H0(·) is the zeroth-order Hankel function and K0(·) is

the zeroth-order modified Bessel function of the second kind.

The problem of multiple scattering is solved by setting up

a system of self-consistent equations, so that the solution for

the field W1(r) under some incident excitation ψ0(r) is given

by35

W1(r) = ψ0(r) +
∑

α

Tαψe(Rα)G0(r − Rα), (44)

where ψe(Rα) is called the “external” field and is the incident

field on the scatterer α; thus

ψe(Rα) = ψ0(Rα) +
∑

β �=α

Tβψe(Rβ)G0(Rα − Rβ). (45)

The coefficients Tα can be obtained from the response of

a single scatterer, since then ψe = ψ0 and the field will be

simply

W1(r) = ψ0(r) + Tαψ0(Rα)G0(r − Rα). (46)

Inserting it into the wave equation we get, from the left-hand

side,

(∇4 − k4) [ψ0(r) + Tαψ0(Rα)G0(r − Rα)]

= Tαψ0(Rα)δ(r − Rα), (47)

and from the right-hand side,

tαW1(Rα)δ(r − Rα)

= tα[ψ0(Rα) + Tαψ0(Rα)G0(0)]δ(r − Rα), (48)

x/a

y/
a

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

FIG. 10. (Color online) Multiple scattering simulation of a finite

structure with only zigzag edges. The excitation is a point source

located in the upper-right corner and oscillating at a normalized

frequency 	a = 2.566. The edge state is clearly observed, although

a weak bulk state is also excited.
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FIG. 11. (Color online) Multiple scattering simulation of a structure larger than that studied in Fig. 10 with zigzag edges. In comparison

with Fig. 10, now more bulk states are excited.

which allows solving for Tα as

Tα =
tα

1 − itα/(8k2)
, (49)

where we have used G0(0) = i/(8k2). Note that, unlike multi-

ple scattering methods for point scatterers for other waves,35,36

the Green’s function given by Eq. (43) is not divergent at the

origin; thus no finite-size effect of the resonators needs to be

added here.

Finally, we can solve for the ψe(Rα) coefficients by solving

the system of equations

∑

β

[δαβ − (1 − δαβ)TβG0(Rα − Rβ)]ψe(Rβ) = ψ0(Rα).

(50)

Therefore we can completely compute the field by inserting

the solutions in Eq. (45).

Figure 9 shows a multiple scattering simulation obtained by

solving Eq. (50) in which a point source is placed at the origin

of a one-line zigzag ribbon. The oscillation frequency of the

source is set to 	a = 2.6. The ribbon is twisted 60◦ and then 0◦

again, having a z shape and showing the waveguide properties

of the ribbon structure. We can observe how, although some

leaky waves are also excited, the field is guided along the

ribbon.

Figure 10 shows a simulation in which the point source

is placed at one corner of a parallelogram cluster with zigzag

edges. Here the edge state nature of the excited mode is clearly

observed, since the field is weak inside the cluster, and it is

mainly located along the edge of the parallelogram.

Figure 11 represents a situation similar to that described in

Fig. 10 but now with a larger cluster. Although the edge states

still are dominant, bulk states are also excited. It shows that

although edge states are present, in general the excitation of a

field is made by exciting some frequency. Thus all the modes

lying within this frequency will be excited as well, especially

when the excitation field is a point source, which is made by a

combination of all wave numbers.

VI. SUMMARY

A two-dimensional system showing graphenelike disper-

sion relations has been presented. The system consists of a

honeycomb arrangement of spring-mass resonators attached

to a thin elastic plate, and Dirac cones have been found for the

dispersion relation of flexural waves in the thin plate. These

Dirac cones are characterized by a Dirac frequency, which

is the vertex of the cone, and a Dirac velocity, which is the

speed at which Dirac waves travel. Analytical expressions have

been derived for both parameters in terms of the resonator’s

properties. It has been shown that both parameters can be

tailored within a wide range of values.

Finite structures, also named ribbons, have been analyzed

from the point of view of wave propagation, showing that they

present edge states with nearly flat dispersion relations. These

edge states have been studied in finite ribbons in the framework

of a multiple scattering method, allowing the representation of

full wave distributions and supporting the results found in the

infinite and semi-infinite calculations. It has been shown that

these edge states can be used to waveguide flexural waves

by subwavelength units, suggesting that elastic analogs of

graphene have potential applications such as devices for the

control of elastic waves.

Finally, let us point out that the structures here studied are

realizable in a variety of ways, for example, by attaching solid

spheres to the plate or by connecting cylindrical cavities to the

plate using thin channels.
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F. Schäfer, Phys. Rev. B 82, 014301 (2010).
9W. Zhong and X. Zhang, Opt. Express 19, 13738 (2011).

10K. Sakoda, Opt. Express 20, 25181 (2012).
11X. Zhang and Z. Liu, Phys. Rev. Lett. 101, 264303 (2008).
12W. Zhong and X. Zhang, Phys. Lett. A 375, 3533 (2011).
13D. Torrent and J. Sánchez-Dehesa, Phys. Rev. Lett. 108, 174301

(2012).
14X. Zhang, Phys. Rev. Lett. 100, 113903 (2008).
15X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, Nat.

Mater. 10, 582 (2011).
16S. R. Zandbergen and M. J. A. de Dood, Phys. Rev. Lett. 104,

043903 (2010).
17R. A. Sepkhanov, Ya. B. Bazaliy, and C. W. J. Beenakker, Phys.

Rev. A 75, 063813 (2007).
18S. Bittner, B. Dietz, M. Miski-Oglu, and A. Richter, Phys. Rev. B

85, 064301 (2012).
19Z. Wang, Y. Chong, J. Joannopoulos, and M. Soljačić, Phys. Rev.
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