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Abstract. An infinite elastic medium contains an elastic spheroidal inclusion.

Both materials are transversely isotropic. Assuming that the stress field in the absence

of any inhomogeneity is prescribed, it is desired to calculate the modification caused

by the inclusion. This paper presents a general solution to this elasticity problem with

the restriction that the prescribed stress field is axisymmetric. The analysis is based

upon some new identities in Legendre functions, which are derived in this paper. The

solution is in the form of combinations of Legendre functions. An example of a spheroidal

cavity in a tension field is given.

1. Introduction. In many mechanical design problems, it is necessary to estimate

the stresses in the neighborhood of inhomogeneities, cavities, or holes. Assuming that the

stress field in the absence of any inhomogeneity is known, it is desired to calculate the

modification caused by the inhomogeneity. Also, one may wish to find the stresses

induced by a change in shape or size of the inhomogeneity due to a martensitic trans-

formation or an uneven thermal expansion. Recent interest in such stress problems

also stems from the development and application of composite materials in industry.

There are many exact solutions in linear elasticity theory which give a detailed

knowledge of the stresses around inhomogeneities of simple mathematical shapes in

media of infinite extent. A review of significant contributions in the area of three-

dimensional stress concentration is contained in a survey paper by Sternberg [1] in 1958.

The earliest works on three-dimensional problems were concerned with spherical cavities

in isotropic materials under homogeneous stresses at infinity. Later many investigators

considered spheroidal and ellipsoidal shaped inhomogeneities, and in some instances

the inhomogeneity materials were taken to be elastic, and both materials to be anisotropic.

Since the publication of Sternberg's survey, Eshelby [2] has given a general review of

the problem, with a particularly detailed account of his method of solution. Some recent

contributions are cited by Chen [3] and by Sendeckyj [4]. In most of these works,

the stress field perturbed by the inhomogeneity is homogeneous (tension, shear), or

linear (bending and torsion). Recently, Podil'chuk [5]1 has considered the problem of a

spheroidal cavity in an infinite isotropic medium subjected to prescribed axisymmetric

torsionless surface traction, which may be of a general nature, on the cavity surface.

Podil'chuk illustrates his analysis with the example of a spheroidal cavity in a radially

* Received November 10, 1969.
1 The author wishes to express his deep appreciation to Professor G. P. Sendeckyj for making avail-

able to the author an English translation of Podil'chuk's paper.
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symmetrical bending field. A knowledge of the results in [3] and [5] suggests that the

solution to the problem of a spheroidal elastic inclusion contained in an infinite trans-

versely isotropic medium under prescribed axisymmetric loading can be easily obtained,

if the stress field in this medium without the inclusion is known. It turns out that the

conjecture is true. The analytical results have a very simple form. Formally the isotropic

solution can be obtained from the corresponding transversely isotropic one by a suitable

limiting process. That this is not a trivial matter is evident from the work of Podil'chuk [5]

for the case of a cavity (an infinitely weak inclusion).

2. Description and formulation of the physical problem. An elastic component

is strained by external loads. The stress field induced by these forces has been obtained

with the assumption that the material is elastic and homogeneous. How would this

stress field be altered if there is an elastic inhomogeneity in the shape of a spheroid,

situated inside the component? This question will be answered here using the linear

elasticity theory, with the restriction that the stress field is axisymmetric. The inclusion

and outside materials are assumed to both be transversely isotropic. In transversely

isotropic materials, the physical property has an axis of symmetry. We shall assume that.

this axis is parallel to the axis of the spheroid. At the interface, the traction and dis-

placements are continuous. Since the main interest would be in the neighborhood of the

inclusion, the outside material is taken to be infinite in extent. The shape of the spheroidal

inclusion is defined by

? + ?=1' (1)

where a and b are two semiaxes of the spheroid.

We shall call the stress field, which is obtained under the condition that the material

is homogeneous, the 'unperturbed stress field'. In this paper, it will be assumed that this

stress field is torsionless and axisymmetric. The surface traction associated with this

unperturbed stress field (superscript U) is given by

af. + a'l,(njnr) = (a/r) IK + i; CIn + l)DnPn(z/a)\ ,
n = 1 J

(2)

+ aUnJn,) = £ (2n + 1 )EnP'n(z/a). (3)
n= 1

Dn and En are known constants. Pn is the Legendre polynomial of the nth degree; nr and

nz are the direction cosines of the normal vector to the spheroid. This unperturbed

stress distribution must be self-equilibrating, i.e.,

[ krl + <r^(njn,.)]r dz = 0. (4)
J —a

It follows that in Eq. (2) the constant

Dn = 0. (5)

The problem now is to find the stress field inside the inclusion, and an additional stress

field for the outside medium to be superimposed upon the unperturbed stress field, so

that traction and displacements are continuous across the interface. These continuity

conditions are:
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(^rz &2z)^z ~"l~ (^r 2 Oj

(arr — arr)nr + {ar* — ovJn* = 0, (6)

u, — u\ , u2 = u\ .

The superscript I designates quantities relating to the inclusion.

Finally, it is reasonable to expect that at a distance from the inclusion the perturbing

effect of the inclusion on the stress field gradually disappears.

3. Potential functions solution. The method of analysis used in this paper is

based upon the potential functions solution of the homogeneous displacement equations

of equilibrium in a transversely isotropic elastic medium. A brief account of the method

is given in the treatise by Green and Zerna [6]. We shall use a cylindrical coordinate

system (r, 6, z), where the z-axis is parallel to the material axis of symmetry. We shall

also introduce a set of dimensionless parameters ika (a = 1, 2). vi and v2 are roots

of the equation

cnc4iv2 + [c,3(2c44 + C13) - C\iCiz]p + C33C44 = 0. (7)

fc, and k2 are defined by

ka = (cnva - c44)/(c 13 + C44), (« = 1, 2). (8)

It has been found convenient to employ two new variables

z„ = z/Vva , (a = 1, 2). (9)

A set of displacement and stresses which satisfy the equilibrium equations may be

derived from two potential functions Zi) and 4>2(r, z2), where 4>i(r, z) and 4>2(r, z2)

are harmonic in the (r, d, z) space. These stresses and displacements are:

ciAur = — [0,(r, z,) + <t>2(r, z2)],
or

kx d<£,(r, z,) , k2 d<f>2(r, z2)
r-AiU, = —7   b —7    (10)

V V\ dzl V V2 dz 2

C44W0 0,

/1 1 ? \ d2<t>>(r, z,) d2<t>2{r, z2)
= (1 + K) —+ (1 + k2) ,

= 1 + 32^,(r,z,) 1 + k2 d2<t>2(r, z2)

y/V\ dz, dr y/v2 dz2 dr

1 + kt (d2 , d \. , s , 1 + k2 (d2 , d ), , N

U5 + rdr) T' Zl) + W + rdr)^' ^

Ci 1 Cj2 1

Orr =

C44

d<h (r, Zi) , d<t>2(r, z2)

dr dr ]■

(11)

1 + k, fd2 , 1 d \, , , , 1 + k2 (d2 , 1 d N
w +; jrr(r'Zi) + w5 + r drr{r'2a)

+<t>2(r,z2)].
C 44 UT
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In Eqs. (10) and (11) we have already limited the analysis to the axisymmetric

torsionless situation.

4. Analysis. Define

a2 = a /va , c2a = al - b2 , a = 1, 2. (12)

The spheroidal system (77„ , <j>a , 6) will be employed. Its relation to the cylindrical

coordinate system (r, 6, za) is given by (a = 1,2)

2a = caqapa , r = ca(q\ - 1)I/2(1 - p„)I/2, (13)

where for Re [c2] > 0,

qa = cosh Va , P« = cos <f>a , (14a)

and for Re [c2 ] < 0,

qa = i sinh T]a , pa = cos <pa . (14b)

In the latter case it is customary to have the imaginary part of ca negative.

Note that when q2a = p\ = a\/c'a , Eq. (13) reduces to the spheroidal surface given

by Eq. (1), and pa = z/a. We shall adopt the convention that quantities associated

with the inclusion material have the superscript /, e.g.

(a'S = a2A'a , (c'„)2 = (a'„)2 - b2 .

The ratio of the direction cosines of the normal to the interface may be expressed in

terms of pa:

n,  (pi — l)1'

nr (1 - pi)1/2 PaVv.
(15)

From Eqs. (10) and (11)

nz 1 + k, I d2<t>, / d'cpiuA l+/c2fa202 / d2<t>2n,\ ,1fi.
<t'2 + <r„ — = —7— + Vv, —r —> + —7— Itt- + VVt —2f , (16)'

nr Vi-i Idrdz, dz, nrj VV2 [drdz2 dz2 nr)

, n, 1 + k, fd2<t>i _ / d2<t>i n,\ 1 + ^2 jd2<t>2 _ / d24>2 n,\
<r„ + Or. — = 7— _ v "1 — f - — 5" - V c2 — f

drdz, n J i>2 ldz2 drdz2nr)nr Idz2

Cn — c12 1 &M..

r \dr dr /

At the surface of the spheroidal cavity, the above expressions reduce to

n, _ abl JI + k, d2<j>t
<r" nr r a2 \ c, dqldzl

■ n, 1 /l + fc, dVi
a" nr a \ x/v 1 dpidz,

  C11 ^12 _1 Jd</> 1

C44 r\ar

_l_ 1 + k2 d2<t>2

+

+

c2 dq2dz2

1 -J- fc2 d2<t>2

(17>

(18)

Vv2 dp2dz2

d<t>:
(19)

dr

The potential functions <t>t (r, Zi) and </>2(r, z2) associated with the additional or per-
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turbing stress field are taken to be

za) = E ^a„[jPn+l(p<t)Qn+l(9'a) ~ P n- 1 (pa)Qn-1 (?a)] • (20)
n - 1

Pn and Q„ are Legendre functions of the first kind and second kind respectively. A

property of the harmonic function representation in Eq. (20) is that the partial deriva-

tives with respect to r and za are in very simple forms. They are

£ [Pn+,(pa)Qn+1(qa) - P^ipJQ^iqJ] = -r(2B ' (21)

/- [P.+ ,(p.)Q.+ ,(g.) - Pn-l(Pa)Q.-,(qa)] = Pn(j>°)Qn(q*). (22)
oz„ c„

The above relations are also valid if Qn+i(qa), Qn(qa), Q„-i(g„), are replaced by

•P»+i(5a), Pn(qa), and Pn-i(ga) respectively. (See Appendix.)

Combining Eqs. (18) to (22), the traction and displacement at the spheroidal interface

(i.e., qa = p„) are

+ «r.. ̂ = (-) K EE A"n(:2n VK1 + ka) Q&P-)?&/«)> (23)
7ir \r/ a n=la=i ca

<r„ + ar.^= -EE A „(2 n + 1) [ Qn(pa) _ c" Q'n(Pa)
n, Lac.Vn c44c0rc(n+l)

W<»), (24)

c44ur = -r EE^^jr Q^{pa)P&/a), (25)
n=* 1 a

2

CitUt = EE A"n(2nl)ka Qn(/>a)PnW0) . (26)
n = 1 a = 1 Ca "V Va

The foregoing results from Eqs. (23) to (26) can also be derived if the Legendre

function Q„(p„) is replaced by Pn(pa)- An examination of Eqs. (2) and (3) leads one to

conclude that each of the potential functions of the unperturbed stress field in the vicinity

of the inhomogeneity can be expressed in the form

4>«(r, O = E Can[Pn+1(Pa)Pn+1(qa) ~ Pn-, (? .)P.-, (<?.)] • (27)
n» 1

Each pair of the constants C,n , C2n is determined from the equations

K E (1 + kiPUp") Can = Dn , (28)
a ca

_ y ["(1 4- ka)Pn(pa) _ (c,i — c,2)Pn(p<,)"|g _ jf, ,2q\

L Vfac„a ci4c2an(n + 1) J

Eqs. (27) to (29) provide a convenient way to find the 'unperturbed' displacement

field from a knowledge of the surface traction of the unperturbed field at the interface.

In some problems, one may find that this displacement field can be more easily written

down without going through this procedure.

Note that Eq. (27) does not contain any singularity inside of the inclusion. This is

also a requirement of the potential functions for the inclusion medium. These potential
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functions will assume the forms

<t>Ur,z'a) = Ban[Pn+1(p'a)Pn+l(q'a) - Pn-tip'JPn-iiq'a)!- (30)
n =■ 1 a = 1

The superscript I indicates that the quantities (f>'a., p'a , qra , etc., are associated with

the inclusion. The constants AIn , A2„ , Bln , B2n (n — 1 • • • °°) are determined from

the four continuity conditions specified by Eq. (6).

The four algebraic equations resulting from the continuity conditions are:

V f(l + ka)AaM(pa) _ (1 + k'a)BaJ»M~\ _ aDn

h L c2 (c'j2 J b2 '

(1 + fc a) A anQ„(p „) _ (c 1! — CI2)Aa„Q'n(pa) _ (1 + k'a)BanPn(p'a)

caVf*a c44c'n(n + 1) caVv'aa

(cf. - c'i2)BanP'n(p'a)~\ =

c\i(c\)2n(yi + 1) J

y-> \AanQ'n(ya) + CanP'n(Pa) _ BanP'n(p'S\ =

& L c4icl cUcl)2 J

\UA„QM + CanPn(Pa)] _ k'aBonPn(p'S1 = 0

«-i L C44V/t'„Ca cli Vv\ c'„ J

(31)

(32)

(33)

(34)

The constants Ci„ and C2„ in Eqs. (33) and (34) have already been determined by

Eqs. (28) and (29). For each integer n{n = 1 • • • 00), there are four equations uniquely to

determine the four constants Aan , Ban (a = 1, 2).

The solution to the elasticity problem defined by Eqs. (1), (2), (3) and (6) are now

at hand. They are given in terms of the potential functions specified by Eqs. (20), (27)

and (30). The constants associated with these potential functions are uniquely determined

by Eqs. (28), (29), (31), (32), (33) and (34).
In the case of a spheroidal cavity (very weak inclusion) the constants Ban's may

be set equal to zero, and the constants Aa„'s are determined by Eqs. (31) and (32).

Example. Suppose the unperturbed stress field is a homogeneous one given by

<t2u2 = tz , <jurr = tr , (35)

and all other stress components vanish. From Eqs. (2) and (3),

D1 = tzb2/3a, Ex = tr/3. (36)

The potential functions <t>i and cf>2 of the additional stress field are given in Eq. (20)

<t>a(r,za) = Aal[P2{pa)Q2(qa) - Q0(qa)], a = 1, 2. (37)

The constants Au and A12 are determined by the equations

(1 + fc,)Q[(pi)/ln . (1 + k2)Q2(p2)Al2 tz , .

cf + "c2 - - 3 ' (38)
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(1 + fc,)Qi(pi) (cM - c12)Q[(pi)

C44C!

_l_ r(1 ~l~ k2)Qi(p2)  (cn Ci2)Q?(p2)1 ̂ = —. r39)

|_ V2P2C2 C44C2 J 3

This solution is identical to the results given in an earlier paper by Chen [3].

5. Discussion. An exact analysis, in the realm of linear elasticity, has been presented

to account for the effect of a spheroidal elastic inhomogeneity embedded in an otherwise

homogeneous medium. Both materials are transversely isotropic. The 'unperturbed'

stress field is assumed to be axisymmetric. In the analysis, it is assumed that the surface

tractions at the interface due to this unperturbed stress field are prescribed. The same

analysis can, of course, be carried through if the displacements corresponding to the

unperturbed stress field are prescribed, instead of the surface tractions. This analysis

is also applicable to the situation when the stress field is induced by a prescribed axisym-

metric inelastic strain inside the spheroidal inclusion. It may be shown that the induced

strain field is a polynomial of degree 2n in r and 2, when the prescribed inelastic strain

is a polynomial of degree 2n in r and z. Similar conclusions have been reached by Eshelby

[2] and Sendeckyj [4] for the isotropic ellipsoidal inclusion problem under more general

loading conditions.

Appendix. Let a spheroidal coordinate system (77, <f>, 6), and a cylindrical coordinate

system (r, 6, z) be related by

2 = cqp, r = c(q2 - 1)1/2(1 - p2)1/2,

where for Re [c2] > 0, (prolate spheroidal system)

q = cosh 17, p = cos <f>,

and for Re [c2] < 0, (oblate spheroidal system)

q = i sinh y, p = sin <#>.

The constant c2 is a prescribed length parameter of the spheroidal system. It is specified

that if Re [c2] < 0, then c is in the third quadrant.

One wishes to show that

| [Pn+I(p)Pn+l(q) - P,-»(p)P,-x(g)] = P»(p)Pn(q), (AI)

| [Pn+l(p)Pn+1(q) - P „_j(p)P „-i((?)] = K(p)P'M ; (A2)

and

£ [Pn+l(p)Qn+l(q) - P,-,(p)Qn-l(g)] = 2j~1 Pn(p)Qn(q), (A3)

£ [Pn+1(p)Qn+1(q) - Pn,Av)Qn~M)] = P'n{P)Q'M ■ (A4)

A convenient way to prove the above pairs of formulas is to use the addition theorem

for Legendre functions [7, p, 364-384], Based upon the addition theorem for Legendre

function of the first kind, one may write
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Pn((z - ir cos 6)/c) = I\(q)PJp) + 2 £ (-1 )mPZ(q)P;m(j>) cos mO. (A5)
m = 1

Eq. (A5) leads to the identity (also see [7, p. 412])

P~.(g)P-.(p) - p.-,(?)p.-.(p)

-s /: )]«.
Differentiate both sides with respect to z:

(A6)

03 [P„+1(g)P„+1(p) - P._1(7)P._1(p)] = £ fr P,(" 

c

Differentiate both sides of Eq. (A6) with respect to r:

2n + 1 P.(«/)P.(p).

a
<9r

[P,„(g)P.„(p) " - £ /" i<2" + " />.(" !P"-) COS » ,!>

(271 + l)r n// \n// \

~ ~n(n +

This completes the proof for Eqs. (Al) and (A2). Note that the index n is unrestricted.

The addition theorem for Legendre functions of the second kind enables one to write

q(z - ir cos <A = pJv)QJq) + 2 £ (_i)-P:-(p)Qra(q) cos mO. (A7)
\ C / m-1

The pair of relations (A3) and (A4) may now be proved in exactly the same manner as for

the first pair. For some ranges of values of (z — ir cos 6)/c, the addition theorem for Qn

takes a different form. However, the end result for Eqs. (A3) and (A4) remains the same.

There is the restriction that the index n cannot be equal to — 1 or zero.

It may also be shown that Eqs. (Al), (A2), (A3), and (A4) are special cases of the

following more general formulas:

I [p;+1(g)p-+T(p) - p:-M)p:™(p)] = '2lL~1 pmM)p;m(p), (as)

and (a) rn ^ 1,

|[p;+1(7)p-+7(p) - p;_,(9)p-_»]

(2n + 1)1 [p;+,(<?)p;<m+"(p) + prI(?)p;<-n(p)], (aq)

(b) m = 1,

£ tPUi(q)P:h(p) - pi-,(?)p;i,(p)] = (2n + 1)1 !P»(g)P»(p) + pI(q)p:2(p) ). (aio)
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As before the terms P"+l{q), etc., can be replaced by terms of the form Q"+I(q). When

m = 0, Eqs. (A8) and (A9) reduce to Eqs. (AI) and (A2) respectively. The index m must

always be an integer. These formulas are useful in problems involving nonaxisymmetric

loadings.
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