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Abstract

Cross sections for elastic and proton-dissociative photoproduction of J/ψ mesons are

measured with the H1 detector in positron-proton collisions at HERA. The data were col-

lected at ep centre-of-mass energies
√
s ≈ 318 GeV and

√
s ≈ 225 GeV, corresponding to

integrated luminosities of L = 130 pb−1 and L = 10.8 pb−1, respectively. The cross sec-

tions are measured as a function of the photon-proton centre-of-mass energy in the range

25 < Wγp < 110 GeV. Differential cross sections dσ/dt, where t is the squared four-

momentum transfer at the proton vertex, are measured in the range |t| < 1.2 GeV2 for the

elastic process and |t| < 8 GeV2 for proton dissociation. The results are compared to other

measurements. The Wγp and t-dependences are parametrised using phenomenological fits.

Submitted to Eur. Phys. J. C

ar
X

iv
:1

30
4.

51
62

v1
  [

he
p-

ex
] 

 1
8 

A
pr

 2
01

3



C. Alexa5, V. Andreev25, A. Baghdasaryan37, S. Baghdasaryan37, W. Bartel11, K. Begzsuren34,

A. Belousov25, P. Belov11, V. Boudry28, I. Bozovic-Jelisavcic2, G. Brandt49, M. Brinkmann11,

V. Brisson27, D. Britzger11, A. Buniatyan14, A. Bylinkin24,46, L. Bystritskaya24,

A.J. Campbell11, K.B. Cantun Avila22, F. Ceccopieri4, K. Cerny31, V. Chekelian26,

J.G. Contreras22, J. Cvach30, J.B. Dainton18, K. Daum36,41, E.A. De Wolf4, C. Diaconu21,

M. Dobre5, V. Dodonov13, A. Dossanov12,26, G. Eckerlin11, S. Egli35, E. Elsen11, L. Favart4,

A. Fedotov24, R. Felst11, J. Feltesse10, J. Ferencei16, D.-J. Fischer11, M. Fleischer11,

A. Fomenko25, E. Gabathuler18, J. Gayler11, S. Ghazaryan11, A. Glazov11, L. Goerlich7,

N. Gogitidze25, M. Gouzevitch11,42, C. Grab39, A. Grebenyuk11, T. Greenshaw18,

G. Grindhammer26, S. Habib11, D. Haidt11, R.C.W. Henderson17, E. Hennekemper15,

M. Herbst15, G. Herrera23, M. Hildebrandt35, K.H. Hiller38, J. Hladkỳ30, D. Hoffmann21,
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and F. Zomer27

1 I. Physikalisches Institut der RWTH, Aachen, Germany
2 Vinca Institute of Nuclear Sciences, University of Belgrade, 1100 Belgrade, Serbia
3 School of Physics and Astronomy, University of Birmingham, Birmingham, UKb

4 Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen,

Antwerpen, Belgiumc

5 National Institute for Physics and Nuclear Engineering (NIPNE) , Bucharest, Romaniak

6 STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UKb

7 Institute for Nuclear Physics, Cracow, Polandd

8 Institut für Physik, TU Dortmund, Dortmund, Germanya

9 Joint Institute for Nuclear Research, Dubna, Russia
10 CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France
11 DESY, Hamburg, Germany
12 Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germanya

13 Max-Planck-Institut für Kernphysik, Heidelberg, Germany
14 Physikalisches Institut, Universität Heidelberg, Heidelberg, Germanya

1



15 Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germanya

16 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republice
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1 Introduction

This paper reports a measurement of diffractive J/ψ photoproduction in positron-proton inter-

actions at HERA, ep → e J/ψ X . For the elastic regime X denotes a proton, whereas for the

proton-dissociative regime X denotes a proton-dissociative system Y of mass mp < MY <
10GeV, as depicted in figures 1.
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Figure 1: Diffractive J/ψ meson production in electron proton collisions: a) elastic J/ψ pro-

duction in which the proton stays intact and b) proton-dissociative J/ψ production in which the

proton dissociates to a low mass excited state with mass MY > mp.

Diffractive vector meson production is characterised by the t-channel exchange of a colour-

less object between the incoming photon and proton. In the high-energy limit Regge theory

predicts [1, 2] an approximate cross section dependence σ ∝ W δ
γp as a function of the photon-

proton centre-of-mass energy Wγp. For elastic production of light vector mesons (ρ, ω, φ)

exponents δ ≈ 0.22 [3] are observed. In contrast, the cross section for elastic J/ψ production,

γp→ J/ψp, rises more steeply withWγp, δ ≈ 0.7 [4,5], and is thus incompatible with a univer-

sal pomeron hypothesis [2]. The Wγp dependence of proton-dissociative J/ψ production [6–8]

is expected to be similar to the elastic case.

Due to the presence of a hard scale, the mass of the J/ψ meson, calculations in perturbative

Quantum-Chromo-Dynamics (QCD) are possible. The diffractive production of vector mesons

can then be described in the proton rest frame by a process in which the photon fluctuates into

a qq̄ pair (or colour-dipole) at a long distance from the proton target. The qq̄ pair interacts with

the proton via a colour-singlet exchange, which in lowest order QCD is realised as a colourless

gluon pair [9–12]. The steep rise of the cross section with Wγp is then related to the rise of the

square of the gluon density towards low values of Bjorken x [13–17].

The elastic and proton-dissociative J/ψ cross sections as functions of the squared four-

momentum transfer t at the proton vertex show a fast fall with increasing |t| [4, 5, 18–25]. For

the elastic J/ψ cross section the t-dependence can be parametrised by an exponential function

dσ/dt ∝ e−bel|t| as expected from diffractive scattering. In an optical model the t-dependence of

the elastic cross section carries information on the transverse size of the interaction region. The

proton-dissociative cross section falls less steeply than the elastic one and becomes dominant at

|t| & 1GeV2. The differential proton-dissociative cross section as a function of t is parametrised

4



with a power-law function dσ/dt ∝ (1 + (bpd/n)|t|)−n, which for low |t| has an approximate

exponential behaviour, ∝ e−bpd|t|.

Diffractive J/ψ production has been studied previously at HERA at low values of |t| [4, 5,

18–23], and also at very large values of |t| [24, 25], where proton-dissociative J/ψ production

dominates.

In this analysis cross sections are determined simultaneously for the elastic and proton-

dissociative regimes. In addition to a measurement at the nominal ep centre-of-mass energy

of
√
s ≈ 318GeV, data recorded at a lower centre-of-mass energy of

√
s ≈ 225GeV are

analysed. This low-energy data set extends the kinematic region inWγp into the transition region

between previous diffractive J/ψ measurements at HERA and fixed target experiments [26,27].

The elastic and proton-dissociative cross sections as functions of t and Wγp are subjected to

phenomenological fits, together with previous H1 data [4, 24], and are compared with QCD

based dipole models [14].

2 Experimental Method

2.1 Kinematics

The kinematics of the processes ep → e J/ψX , where X = p or Y (depicted in figure 1), are

described by the following variables: the square of the ep centre-of-mass energy s = (P + k)2,

the square of the γp centre-of-mass energy W 2
γp = (q + k)2, the absolute value of the four-

momentum transfer squared at the lepton vertex Q2 = −q2 = −(k − k′)2 and of the four-

momentum transfer squared at the proton vertex t = (P − P ′)2. The four-momenta k, k′, P, P ′

and q refer to the incident and scattered beam positron, the incoming and outgoing proton (or

dissociated system Y ) and the exchanged photon, respectively.

In the limit of photoproduction, i.e Q2 → 0, the beam positron is scattered at small angles

and escapes detection. In this regime the square of the γp centre-of-mass energy can be recon-

structed via the variable W 2
γp,rec = s yrec, where yrec is the reconstructed inelasticity, measured

as yrec =
(

EJ/ψ − pz, J/ψ
)

/ (2Ee). Here, EJ/ψ and pz, J/ψ denote the reconstructed energy

and the momentum along the proton beam direction (z-axis) of the J/ψ meson and Ee is the

positron beam energy. Furthermore, the variable t can be estimated from the transverse momen-

tum of the J/ψ in the laboratory frame via the observable trec = −p2T,J/ψ. The reconstructed

variables Wγp,rec and trec are only approximately equal to the variables Wγp and t, due to their

definition and due to the smearing effects of the detector. In particular, −p2T,J/ψ is systemati-

cally larger than t for events with a value of Q2 close to the upper boundary of 2.5GeV2 used

in the analysis. In such events the J/ψ recoils against the scattered beam positron in addition

to the proton. The measurement presented here corrects for this recoil effect by the unfolding

procedure described below.
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2.2 Monte Carlo models

Monte Carlo (MC) simulations are used to calculate acceptances and efficiencies for triggering,

track reconstruction, event selection, lepton identification and background simulation. The elas-

tic and proton-dissociative J/ψ signal events are generated using the program DIFFVM [28],

which is based on Regge theory and the Vector Dominance Model [29]. For J/ψ production

with proton dissociation a mass dependence of dσ/dM2
Y ∝ f(M2

Y )M
−β
Y is implemented in

DIFFVM. Here f(M2
Y ) = 1 for M2

Y > 3.6GeV2, whereas for lower values of M2
Y the produc-

tion of excited nucleon states is taken into account explicitly. The description of the forward

energy flow and the simulated Wγp and t dependences are improved by weighting the MC sam-

ples in Wγp, t and MY according to a functional behaviour motivated by the triple pomeron

model [30] for the proton-dissociative case. The reweighting model contains seven parame-

ters, which are adjusted to the data [31]. QED radiation effects, which are particularly relevant

for J/ψ → e+e− decays, are simulated with the program PHOTOS [32]. The non-resonant di-

lepton background is estimated using the GRAPE generator [33], which simulates electroweak

processes ep→ eX ℓ+ℓ−. Possible interference effects between di-lepton production via elec-

troweak processes and J/ψ decays are ignored.

For all MC samples detector effects are simulated in detail with the GEANT program [34].

The MC description of the detector response, including trigger efficiencies, is adjusted using

comparisons with independent data. Beam-induced backgrounds are taken into account by

overlaying the simulated event samples with randomly triggered events. The simulated MC

events are passed through the same reconstruction and analysis software as is used for the data.

2.3 Detector

The H1 detector is described in detail elsewhere [35, 36]. Only those components essential

for this analysis are described here. The origin of the right-handed H1 coordinate system is

the nominal ep interaction point, with the direction of the proton beam defining the positive

z axis (forward direction). Transverse momenta are measured in the x-y plane. Polar (ϑ) and

azimuthal (φ) angles are measured with respect to this frame of reference.

In the central region (15◦<ϑ<165◦) the interaction point is surrounded by the central

tracking detector (CTD). The CTD comprises two large cylindrical jet chambers (CJC1 and

CJC2) and a silicon vertex detector [37]. The CJCs are separated by a further drift cham-

ber which improves the z coordinate reconstruction. The CTD detectors are arranged con-

centrically around the interaction region in a uniform solenoidal magnetic field of 1.16 T.

The trajectories of charged particles are measured with a transverse momentum resolution of

σ(pT )/pT ≈ 0.2% pT/GeV ⊕ 1.5%. The CJCs also provide a measurement of the specific

ionisation energy loss dE/dx of charged particles with a relative resolution of 6.5% for long

tracks.

The liquid argon (LAr) sampling calorimeter [38] surrounds the tracking chambers and has

a polar angle coverage of 4◦<ϑ<154◦. It consists of an inner electromagnetic section with

lead absorbers and an outer hadronic section with steel absorbers. Energies of electromag-

netic showers are measured with a precision of σ(E)/E = 12%/
√

E/GeV ⊕ 1% and those of
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hadronic showers with σ(E)/E = 50%/
√

E/GeV ⊕ 2%, as determined in test beam experi-

ments [39, 40]. In the backward region (153◦<ϑ<178◦), particle energies are measured by a

lead-scintillating fibre spaghetti calorimeter (SpaCal) [36].

The calorimeters are surrounded by the muon system. The central muon detector (CMD) is

integrated in the iron return yoke for the magnetic field and consists of 64 modules, which are

grouped into the forward endcap, the forward and backward barrel and the backward endcap

and cover the range 4◦ ≤ ϑ ≤ 171◦.

Two sub-detectors situated in the forward direction are used in this analysis. These are

the PLUG calorimeter, which is situated at z = 4.9m, and consists of four double layers of

scintillator and lead absorber, and the z = 28m station of the forward tagging system (FTS),

which comprises scintillator counters situated around the beam-pipe.

H1 has a four-level trigger system. The first level trigger (L1) is based on fast signals from

selected sub-detector components, which are combined and refined at the second level (L2). The

third level (L3) is a software based trigger using combined L1 and L2 trigger information. After

reading out the full event information events are reconstructed and subjected to an additional

selection at a software filter farm (L4). The data used for this measurement were recorded

using the Fast Track Trigger (FTT) [41] which, based on hit information provided by the CJCs,

reconstructs tracks with subsequently refined granularity at the first two trigger levels, first in

the x-y plane at L1 and then in three dimensions at L2.

For the data set taken at
√
s ≈ 318GeV the luminosity is determined from the rate of

the elastic QED Compton process ep → e γp, with the positron and the photon detected in

the SpaCal calorimeter, and the rate of Deep-Inelastic Scattering (DIS) events measured in the

SpaCal calorimeter [42]. For the data set taken at
√
s ≈ 225GeV the luminosity determination

is based on the measurement of the Bethe-Heitler process ep → e γp where the photon is

detected in a calorimeter located at z = −104m downstream of the interaction region in the

electron beam direction.

2.4 Event selection

The measurement is based on two data sets, both recorded with a positron beam energy of Ee =
27.6GeV. The first data set was taken in the years 2006 and 2007, when HERA was operated

with a proton beam energy of 920 GeV, resulting in a centre-of-mass energy of
√
s ≈ 318 GeV.

It corresponds to an integrated luminosity of L = 130 pb−1. The second data set was recorded

in the last months before the shutdown of HERA in 2007, when the proton beam had a reduced

energy of 460 GeV, resulting in
√
s ≈ 225 GeV. This data set corresponds to an integrated

luminosity of L = 10.8 pb−1. These two samples will be referred to as high-energy (HE) and

low-energy (LE) data sets in the following.

Photoproduction events are selected by requiring the absence of a high energy electromag-

netic cluster, consistent with a signal from a scattered beam positron in the calorimeters. Events

with positrons detected in the SpaCal or LAr calorimeter with with energy above 8GeV are

rejected. This limits the photon virtuality to Q2 . 2.5 GeV2, resulting in a mean virtuality of

〈Q2〉 = 0.1 GeV2.
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The triggering of events relies on the online reconstruction of exactly two oppositely charged

tracks with transverse momenta pT > 0.8GeV by the FTT. This condition is verified offline

using reconstructed tracks based on the full CTD information in the polar range 20◦ < ϑ <
165◦.

Electrons from J/ψ decays are identified using an electron estimatorD [43], which is based

on energy deposits and shower shape variables in the LAr calorimeter and the specific ionisation

energy loss dE/dxmeasured in the CJCs. The estimator is defined such thatD = 1 for genuine

electrons and D = 0 for background from pions. The selection of J/ψ → e+e− events is

performed by requiring a well identified electron with D > 0.8 in the polar range 20◦ < ϑe <
140◦, and by observing a specific ionisation loss of the second track compatible with the electron

hypothesis [31].

In the selection of J/ψ → µ+µ− events one muon candidate is identified either in the

calorimeter or in the muon system in the polar angle range of 20◦ < ϑµ < 162.5◦ [31]. In

order to reject misidentified J/ψ → e+e− events in this sample, the measured dE/dx values

of both tracks must be incompatible with the electron hypothesis [31]. The signature of a

J/ψ → µ+µ− event can also be mimicked by a muon from a cosmic shower passing through

the detector. The corresponding background is rejected by an acollinearity cut and a cut on the

timing information from the CTD [31].

In order to suppress remaining non-ep background, the event vertex, which is reconstructed

from the charged tracks in the event, is required to be within 35 cm of the nominal interaction

point.

The summed squared energies of the SpaCal and LAr calorimeter clusters not related to

the J/ψ decay and above 400MeV have to satisfy the condition
∑

iE
2
i < 2.5GeV2. This

requirement reduces the remaining background from proton-dissociative J/ψ production with

MY > 10GeV to less than 2% and from inelastic J/ψ production to the per-mille level [31].

The di-lepton invariant mass distributions as reconstructed from the tracks for the muon

and the electron selection are shown in figure 2 for both the HE and LE samples. In all dis-

tributions the J/ψ peak at mℓℓ ≈ 3.1GeV is clearly visible. The prominent tail of the mass

peak in the J/ψ → e+e− channel towards low values of mee is due to QED radiation losses

and bremsstrahlung from the electrons, reducing their momenta. There is also background

from non-resonant QED processes ep→ eX ℓ+ℓ−. Non-resonant diffraction contributes as a

background to the muon channel due to pions misidentified as muons. In contrast, the elec-

tron channel has negligible pion contamination near the J/ψ mass peak due to the superior

background rejection of the electron selection.

2.5 Signal determination

2.5.1 J/ψ → µ+µ−

For the muon decay channel the number of reconstructed J/ψ mesons is obtained from the

invariant di-muon mass distributions mµµ in bins of trec and Wγp,rec. This is done by fitting the
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sum of a Student’s t-function describing the signal and an exponential distribution for the non-

resonant background with an extended binned log-likelihood fit using the RooFit package [44].

The fit model has the form

f(Nsig, NBG,mµµ;µ, σ, n, c) = Nsig psig(mµµ;µ, σ, n) +NBG pBG(mµµ; c) (1)

with free shape parameters µ, σ, n and c describing the probability density functions of the J/ψ
signal psig and of the background pBG. The number of signal and background events are given

by Nsig and NBG, respectively. The probability density functions are defined as

psig(mµµ) = nsig

(

1 +
r2

n

)−0.5(n+1)

, r = (mµµ − µ)/σ, n > 0 and (2)

pBG(mµµ) = nBG e
−c·mµµ . (3)

The factors nsig and nBG are chosen such that the probability densities are normalised to one

for both p = psig and p = pBG, in the fit range 2.3GeV < mµµ < 5GeV. The small ψ(2S)
contribution is also included in the fit, modelled by a Gaussian.

The results of the fits to the di-muon samples are shown together with the data in fig-

ure 2. The fit yields to 29931 ± 217 J/ψ → µ+µ− events for the HE data set and 2266 ± 56
J/ψ → µ+µ− events for the LE data sets.

2.5.2 J/ψ → e+e−

For the electron decay channel the signal is determined from the invariant di-electron mass

distributions obtained in bins of trec and Wγp,rec. To reconstruct the number of J/ψ mesons,

a different procedure from that used in the muon channel is employed, which minimises the

sensitivity to details of the large radiative tail of the J/ψ mass peak visible in figure 2 and dis-

cussed above. The non-resonant background, modelled using the QED process ep→ eX ℓ+ℓ−

as simulated with GRAPE, is subtracted from the data. This is possible due to the negligi-

ble contamination from particles other than electrons at and above the J/ψ mass peak. The

normalisation of the simulated QED background is determined prior to the background sub-

traction by fitting the background to the overall invariant mass distribution in the mass window

3.75 < mee < 5GeV above the ψ(2S) mass, where only the QED contribution is present.

Within errors this normalisation factor is consistent with unity.

After background subtraction the remaining events are counted within a window of 2.3 <
mee < 3.3GeV around the nominal J/ψ mass peak. This yields 23662 ± 177 J/ψ → e+e−

events for the HE data set and 1760 ± 47 J/ψ → e+e− events for the LE data sets. These

numbers of events are then corrected to account for the fraction of signal events outside the

counting window, which is close to 5% as determined using the J/ψ MC simulation. Within

the counting window the J/ψ MC simulation describes the behaviour of the radiative tail in the

data well.
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2.6 Experimental signatures of elastic and proton-dissociative processes

Proton-dissociative candidate events are identified by requiring either a large value of |trec| &
1.5GeV2 or energy deposits in the H1 forward detectors, caused by fragments of the proton-

dissociative system. Three subdetectors, situated at different locations, are used in this analysis

to measure activity in the forward direction, using the following requirements.

• At least one cluster well above the noise level is found in the forward part of the LAr,

with an energy above 400MeV and ϑ < 10◦.

• The summed energy of all clusters in the PLUG calorimeter is above 4GeV, where all

clusters above the threshold level of 1.2GeV are considered.

• Activity is observed in at least one scintillator of the FTS station situated at z = 28m.

If at least one of these conditions is fulfilled, the event is flagged as tagged. Identical tagging

methods are applied in the e+e− and µ+µ− channels.

In figure 3 the simulated tagging efficiencies and tagging fractions observed in data and sim-

ulation are shown as functions ofWγp,rec and −trec. The tagging fractions are obtained from the

e+e− sample, and contain QED contributions in addition to di-electron events from diffractive

J/ψ production. In order to enrich it with genuine J/ψ decays, the sample is restricted to in-

variant masses in the window mee = 2.3− 3.3GeV. The tagging fractions observed in the data

are compared to the simulation. The simulation is based on the MC generators DIFFVM for

elastic and proton-dissociative J/ψ production and GRAPE, which is used to describe the QED

background. The uncertainty in the simulation due to the tagging of the forward energy flow is

represented by the shaded bands. The tagging efficiency and fraction show a flat behaviour as a

function of Wγp,rec. A steep rise of the tagging fraction is observed as a function of trec, which

reflects the relative elastic and proton-dissociative contribution in data.

An unambiguous event-by-event distinction between elastic and proton-dissociative events

is not possible with the H1 detector. Proton-dissociative events can be misidentified as elastic

events if the outgoing dissociated proton remains undetected due to the limited acceptance of

the forward detectors. On the other hand, elastic events may have significant energy deposits

in the forward detectors due to possible beam induced background and may be misidentified

as proton-dissociative events. However, since the forward energy flow is modelled by the MC

simulation, elastic and proton-dissociative cross sections can be unfolded on a statistical basis.

2.7 Unfolding

Regularised unfolding is used to determine the elastic and proton-dissociative cross sections

in bins of t and Wγp from the number of events observed as a function of trec and Wγp,rec,

respectively, and from the tagging information as described in the previous subsection. The

general procedure is described in [43, 45, 46] and the references therein. In the following only

the aspects most relevant to this analysis are summarised; further details are discussed in [31].
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All efficiency corrections and migration effects are described by a response matrix A, which

correlates the number of reconstructed J/ψ events in each analysis bin, represented by the

vector yrec, with the true distribution xtrue via the matrix equation yrec = Axtrue. The matrix

element Aij gives the probability for an event originating from bin j of xtrue to be measured in

bin i of yrec. The unfolded ”true” distribution is obtained from the measured one by minimising

a χ2-function χ2(xtrue;yrec) by variation of xtrue, with a smoothness constraint determined by

a regularisation parameter. This parameter is chosen such that the correlations in the covariance

matrix of the unfolded distribution xtrue are minimised.

Two types of response matrix A are used: one to unfold differential cross sections as a

function of t, and one to unfold differential cross sections as a function of Wγp. The response

matrices are calculated from the simulation and are defined such that the elastic and proton-

dissociative differential cross sections are determined simultaneously. By using the tagging

information for small values of |trec| . 1.5GeV2, the elastic and proton-dissociative cross

sections are disentangled. Since the region of large values of |trec| is completely dominated

by proton dissociation, no tagging condition is applied. Further, two reconstructed bins are

associated with each bin at the truth level, in order to provide sufficiently detailed information

on the probability distribution and to improve the accuracy of the unfolding procedure.

The unfolding procedure is applied separately for the HE and the LE data sets. The response

matrices for the LE data set are similar to those for the HE case. However they contain fewer

bins due to the smaller number of events.

In figure 4 control distributions are shown for Wγp,rec and −trec separately for the µ+µ−

sample and the e+e− sample. Both samples are restricted in mℓℓ to the J/ψ peak region, which

is chosen for the µ+µ− sample to be 2.8 < mµµ < 3.3GeV. For the e+e− sample this region

is enlarged to 2.3 < mee < 3.3GeV in order not to cut into the radiative tail. The relative frac-

tions of the elastic and proton-dissociative events simulated with DIFFVM as determined in the

unfolding procedure, are also shown in figure 4. The contribution from the ψ(2S) resonance

is taken from the simulation, normalised using a previous measurement [20]. For the e+e−

sample, the QED background simulated with GRAPE is indicated and normalised as described

above. For the control distributions of the µ+µ− sample the non-resonant background is sub-

tracted from the data using a side band method [31]. This background contains a contribution

from non-resonant diffractive events, due to pions misidentified as muons, in addition to the

QED background. The data in all distributions are well described by the simulation.

2.8 Cross section determination and systematic uncertainties

The cross sections are measured for the kinematic ranges as defined in table 1. From the un-

folded number of events in each signal bin i for the reaction γp→ J/ψ → ℓℓ, the bin-averaged

cross sections are obtained as

dσ(γp→ J/ψ)

dt
=

1

ΦT
γ

Ni,t,ℓℓ

L · B(ℓℓ) ·∆ti
, (4)

and

σWγp
(γp→ J/ψ) =

1

Φ
T,i,Wγp
γ

Ni,Wγp,ℓℓ

L · B(ℓℓ) , (5)
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Data Set Ep Process Q2 MY |t| Wγp

HE 920GeV
elas

< 2.5GeV2 mp
< 8GeV2 40− 110GeV

pdis mp − 10GeV

LE 460GeV
elas

< 2.5GeV2 mp
< 5(⋆), 8GeV2 25− 80GeV

pdis mp − 10GeV

Table 1: Kinematic range of the analysis. The phase space for elastic and proton-dissociative

J/ψ processes is indicated by elas and pdis, respectively. The high- and low-energy data sets

are denoted by HE and LE. (⋆) The phase space restriction is applied only for the dσ/dt cross

section measurement.

where the variable ΦT
γ is the transverse polarised photon flux [28], Φ

T,i,Wγp
γ the transverse po-

larised photon flux per Wγp bin, ∆ti the bin width in t, ℓℓ = ee or µµ depending on the decay

channel, Ni,t,ℓℓ and Ni,Wγp,ℓℓ are the numbers of unfolded signal events in the corresponding

bins of t or Wγp, L is the integrated luminosity, and B(ee) = 5.94%, B(µµ) = 5.93% are the

J/ψ branching fractions [47].

The systematic uncertainties on the J/ψ cross section measurement are determined by im-

plementing shifts due to each source of uncertainty in the simulation and propagating the re-

sulting variations in the unfolding matrices to the result. Those uncertainties which are uncorre-

lated between the two decay modes are classified as individual systematic uncertainties, while

the uncertainties correlated between the e+e− and µ+µ− samples are referred to as common

systematic uncertainties.

The individual systematic uncertainties are as follows.

Lepton identification The efficiency of the simulated muon identification is reweighed to agree

with that determined from data. The efficiency was determined with a J/ψ → µ+µ−

sample, selected with at least one identified muon. The second muon is then probed to

evaluate the single muon identification efficiency. The uncertainty on these weights is

determined from the remaining difference between the simulation compared to data [31].

The resulting uncertainty on the cross sections is 2% at most.

The cut value on the electron discriminatorD is varied by ±0.04 around its nominal value

of 0.8, which covers the differences in the D-distribution between simulation and data.

The uncertainty propagated to the cross section is below 2%.

Signal extraction The uncertainty on the number of signal events due to the fitting proce-

dure of the mµµ invariant mass distributions is determined by a bias study as described

in [31] and is typically ≈ 1% but can rise to ≈ 5% for the lowest Wγp bin of the proton-

dissociative cross section.

The uncertainty on the background subtraction procedure for the e+e− sample is esti-

mated by determining the background normalisation factor with data at very low invariant

di-electron masses mee and agreement with the default method is found within 20%. The
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corresponding variation on the background is propagated to the differential cross sections

which vary between 3% for bins with a low background to 11% for bins with a higher

background contribution.

Branching ratio The relative uncertainty on the branching ratio for the muon and electron

decay channels is 1% [47].

The following systematic uncertainties are have components contributing to the channel-

specific individual and the common systematic uncertainties.

Trigger The trigger efficiency is typically 80% and is taken from the simulation. The trig-

ger simulation is verified by a comparison to data in a sample of J/ψ mesons in deep-

inelastic-scattering triggered independently on the basis of the scattered beam positron.

A small difference of 3% is observed between the data and the simulation for J/ψ events

decaying into muons. This difference is accounted for by a corresponding upwards shift

of the efficiency in the simulation. No such correction is necessary for electrons. The

remaining uncertainty is estimated to be 2% uncorrelated between the e+e− and µ+µ−

samples, i.e. treated as individual uncertainties, and 2% correlated between the two de-

cay channels, i.e. treated as a common uncertainty.

Track finding efficiency The uncertainty due to the track reconstruction efficiency in the CTD

is estimated to be 1% per track [48]. For electron tracks an additional 1% is applied,

to account for the different hit finding efficiency due to bremsstrahlung effects. Since

the uncertainty on the track finding efficiency affects both selected tracks coherently, a

common uncertainty of 2% is applied to both samples and an additional 2% is applied for

the electron sample.

The following common systematic uncertainties are considered.

Tagging The systematic uncertainty arising from the tagging condition is estimated by varying

separately the simulated tagging efficiency for each detector used. The variations cover

any possible shift in the individual relative efficiency distributions, and are 20% for the

condition from the forward LAr calorimeter, 5% for the PLUG and 1% for the FTS [31].

The resulting uncertainties on the cross sections are typically a few percent, but reach

30% at the highest |t| values of the elastic dσ/dt cross section.

Empty calorimeter The uncertainty on the cut ensuring an empty calorimeter is obtained by

varying the maximum allowed
∑

iE
2
i from 2.25GeV2 to 2.75GeV2 in the simulation.

This results in an uncertainty of typically 5% for the proton-dissociative cross sections.

For the elastic cross sections this variation is negligible for most bins, except for the

highest bin in |t|, where it reaches to 13%.

MC modelling The model uncertainty in the MC simulation due to uncertainties in the depen-

dences on t, Wγp and MY is determined by varying the fit parameters of the weighting

procedure within the errors obtained in a dedicated fit of the forward energy flow [31].

For the cross section as a function of Wγp the corresponding uncertainties are below 4%,

whereas for the cross sections differential in t, values around 10% are obtained for the

high |t| bins.
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Luminosity The integrated luminosity is known to within ±2.7% for the HE data set and to

within ±4% for the LE data set [42].

ψ(2S) background Background from ψ(2S) decays to J/ψX is estimated to contribute 4%
to the selected J/ψ events, and is subtracted from the data prior to the unfolding proce-

dure [20]. The cross section measurements are affected by an uncertainty of 1.5%.

Q2 dependence TheQ2 dependence of the cross section is parametrised as σγp ∝
(

m2
ψ +Q2

)−n

[4]. The corresponding systematic uncertainty is obtained by varying the parameter n in

the range 2.50± 0.09. The cross sections are affected by less than 1%.

The differential cross sections obtained from the electron and the muon data agree within

uncertainties. The two measurements are combined by taking into account their individual

uncertainties. This combination procedure involves the numerical minimisation of a standard

χ2 function including the full statistical error matrix and the correlated systematic errors with

nuisance parameters, similar to that defined in [49, 50]. All individual uncertainties are in-

corporated within this procedure, whereas the common uncertainties are considered after the

combination only. The consistency of the data sets can be verified by looking at the result-

ing nuisance parameters. None of the nuisance parameters shifts by more than one standard

deviation.

Figure 5 shows the result of the combination for the elastic and proton-dissociative cross

sections as a function of Wγp. The input data obtained in the electron and muon decay channels

are shown together with the combined data.

3 Results

The elastic and proton-dissociative differential J/ψ cross sections as functions of t and Wγp are

measured in the kinematic ranges defined in table 1 using the decay channels J/ψ → µ+µ− and

J/ψ → e+e−.

Tables 4, 5 and 6 list the combined data points for all cross sections together with their uncer-

tainties and all common systematic uncertainties. The input data to the combination procedure,

including all individual systematic uncertainties together with the full covariance matrices of

the combined results can be found in [51].

3.1 t dependence

Figure 6 shows the measured elastic and proton-dissociative cross sections differential in −t,
separately for the LE and HE data sets. The cross sections fall steeply with increasing −t, and

shows a clear difference between the shapes of the proton-dissociative and elastic distributions.

The proton-dissociative cross section levels off for very low values of |t|. There is a phase space

effect such that for small |t| it is not possible to produce large masses of MY .

In figure 7 the proton-dissociative measurement from the HE data set as a function of −t
is compared to a previous analysis [24] covering the region of high |t|, which is completely
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dominated by proton-dissociative events. The high |t| data [24] are adjusted to the Wγp, Q
2 and

MY ranges of the present analysis by applying a phase space correction of about 7%. Comparing

the two measurements, the present proton-dissociative cross sections extend the reach to small

values of |t|. In the overlap region 2 < |t| < 8GeV2 the two measurements agree.

The elastic and proton-dissociative differential cross sections dσ/dt are fitted simultane-

ously, using a χ2-function [49, 50] based on the error matrix obtained in the combination pro-

cedure and all common systematic uncertainties. The elastic cross section is parametrised as

dσ/dt = Nel e
−bel|t|. For the proton-dissociative cross section dσ/dt = Npd (1 + (bpd/n)|t|)−n

is chosen, which interpolates between an exponential at low |t| and a power law behaviour at

high values of |t|. The fits are performed separately for the HE and the LE measurements. In

the case of the HE data the previously measured high |t| data are included in the fit. This fit

yields a value of χ2/NDF = 26.6/18 after excluding the two lowest t data points in both the

elastic and the proton-dissociative channel. For fit of the LE data set, the parameter n is fixed to

the value obtained from the HE data set, since the LE data are not precise enough to constrain

bpd and n simultaneously. The obtained parametrisations for the elastic and proton-dissociative

cross sections are compared to the data in figure 6 and figure 7. Table 2 summarises the fit

parameters and their uncertainties.

The elastic cross section data for −t > 0.1GeV are well described by the exponential

parametrisation. They fall much faster with increasing |t| than the proton-dissociative cross

section even at small |t|, which is reflected in the values for bel and bpd. The value extracted

for bel is compatible with previous results [4], although the previous fit was done as a function

of p2T,J/ψ rather than −t. Some difference between the bel values for the LE and HE data is

expected [4] due to the different ranges in Wγp corresponding to 〈Wγp〉 = 78GeV for the HE

data set and 〈Wγp〉 = 55GeV for the LE data.

3.2 Energy dependence

The measured elastic and proton-dissociative cross sections as a function of Wγp are shown in

figures 8. The elastic and proton-dissociative cross sections are of similar size at the lowest

Wγp = 30 GeV accessed in this analysis. The elastic cross section rises faster with increasing

Wγp than the proton-dissociative one. The ratio of the proton-dissociative to the elastic cross

section as a function of Wγp is also shown in figure 8. The ratio decreases from 1 to 0.8
as Wγp increases from 30 GeV to 100 GeV. When calculating the ratio no attempt is made to

extrapolate the elastic measurement to −t = 8GeV2. The corresponding correction is estimated

to be smaller than 1%.

In figure 9 the elastic cross section measurements of this analysis are compared to previ-

ous measurements at HERA [4, 5]. The LE data extend the range accessible in Wγp to lower

values when compared to previous H1 measurements [4]. The HE data have a large overlap

with previous H1 measurements in the region 40GeV < Wγp < 110GeV and show a similar

precision. Within normalisation uncertainties, the previous measurements and the new data are

in agreement.
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Data period Process Parameter Fit value Correlation

HE γp→ J/ψ p bel (4.88± 0.15)GeV−2

ρ(bel, Nel) = 0.50

ρ(bel, bpd) = 0.49

ρ(bel, n) =-0.21

ρ(bel, Npd)=0.68

Nel (305± 17) nb/GeV2
ρ(Nel, bpd) = 0.23

ρ(Nel, n) =-0.07

ρ(Nel, Npd)=0.46

γp→ J/ψ Y bpd (1.79± 0.12)GeV−2 ρ(bpd, n) =-0.78

ρ(bpd, Npd)=0.76

n 3.58± 0.15 ρ(n,Npd)=-0.46

Npd (87± 10) nb/GeV2

LE γp→ J/ψ p bel (4.3± 0.2)GeV−2
ρ(bel, Nel) = 0.37

ρ(bel, bpd) = 0.10

ρ(bel, Npd)=0.41

Nel (213± 18) nb/GeV2 ρ(Nel, bpd) = -0.24

ρ(Nel, Npd)=-0.10

γp→ J/ψ Y bpd (1.6± 0.2)GeV−2 ρ(bpd, Npd)=0.53

n 3.58 (fixed value)

Npd (62± 12) nb/GeV2

Table 2: Parameter values obtained from the fits to the differential cross sections dσ/dt, includ-

ing their errors and correlations. The fit functions are described in the text. HE and LE denote

the high- and low-energy data sets, respectively.

The measured elastic and proton-dissociative cross sections as a function of Wγp, shown

in figure 8, are fitted simultaneously, taking into account the correlations between the proton-

dissociative and the elastic cross sections. The fit also includes data from a previous measure-

ment [4] shown in figure 8, with a normalisation uncertainty of 5% and all other systematic

uncertainties treated as uncorrelated. As parametrisation two power law functions of the form

σ = N (Wγp/Wγp,0)
δ

with Wγp,0 = 90GeV are used with separate sets of parameters for the

elastic and the proton-dissociative cases. The χ2-function is defined in the same manner as for

fits of the t-dependences.

The result of the fit is compared to the measurements in figures 8 and in figures 9. The

parametrisation describes the data well (χ2/NDF = 32.6/36). The fitted parameters are given

in table 3 together with their uncertainties and correlations. In Regge phenomenology the pa-

rameter δ can be related to the pomeron trajectory α(t) = α(0) + α′ · t by δ(t) = 4(α(t)− 1).
Using the values α′

el = 0.164 ± 0.028 ± 0.030GeV−2 [4] and α′
pd = −0.0135 ± 0.0074 ±

0.0051GeV−2 [24], together with the mean values of t for the elastic and proton-dissociative

measurements, 〈t〉 = −0.2GeV2 and 〈t〉 = −1.1GeV2, one can estimate α(0) for the elas-

tic and proton-dissociative process from these measured parameters. The obtained values of

α(0)el = 1.20± 0.01 and α(0)pd = 1.09± 0.02 are in agreement with the results from [4,5,52].

The direct comparison between δel and δpd is made by looking at the ratio of the two cross

sections, shown in figure 8. The ratio is parametrised as NR (Wγp/Wγp,0)
δR with Wγp,0 =
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90GeV, NR = Npd/Nel = 0.81 ± 0.10 and δR = δpd − δel = −0.25 ± 0.06, taking all

correlations into account. Qualitatively the decrease of this ratio with increasing Wγp has been

predicted in [8] as a consequence of the non-unit and Wγp dependant survival probability for

the proton dissociation process.

In figure 10 a compilation of cross section measurements for the elastic J/ψ cross section

is shown as a function of Wγp. The LE data from the present analysis close the gap to data

from fixed target experiments1 [26, 27] at low Wγp. The fixed target data exhibit a lower nor-

malisation and a steeper slope than observed at HERA. Also shown are recent results from the

LHCb experiment [53]. The extrapolated fit function for the elastic J/ψ cross section is able to

describe the LCHb data points at high Wγp well.

Following [14] the obtained value of δ can for large photon-proton centre-of-mass energies,

Wγp ≫ mJ/ψ, be related to a leading-order gluon-density parametrised as x ·g(x, µ2) = N ·x−λ
via δel ≈ 4 · λ. The scale of J/ψ photoproduction is often taken to be µ2 = 2.4GeV2. The

observed value λJ/ψ = 0.168±0.008 is in remarkable agreement with λincl(Q
2 = 2.5GeV2) =

0.166 ± 0.006 obtained from fits to inclusive DIS cross sections [49]. Skewing effects [14, 54]

are ignored in this comparison.

In [14] both a leading order and a next-to-leading order gluon-density are derived, via fits to

previous J/ψ measurements at HERA [4,21–23]. The fit results obtained in [14] are compared

with the data in figure 11. Both fits are also extrapolated from the Wγp range of the input data

to higher Wγp and compared with the LHCb measurement. The leading-order fit describes the

LHCb data well, whereas the next-to-leading order fit lies above the LHCb cross sections.

Process Parameter Fit value Correlation

γp→ J/ψ p δel 0.67± 0.03
ρ(δel, Nel) =-0.08

ρ(δel, δpd) = 0.01

ρ(δel, Npd)=0.09

Nel 81± 3 nb
ρ(Nel, δpd) = -0.27

ρ(Nel, Npd)=-0.18

γp→ J/ψ Y δpd 0.42± 0.05 ρ(δpd, Npd)=0.09

Npd 66± 7 nb

Ratio δR = δpd − δel −0.25± 0.06 ρ(δr, NR)=0.14

NR = Npd/Nel 0.81± 0.11

Table 3: Parameter values obtained from the fit to the cross sections as a function of Wγp, in-

cluding their errors and correlations. The fit functions are described in the text. The parameters

for the ratio of the two functions are also given.

1The data from [26] and [27] have been updated using recent measurements of branching ratios [47]. The data

from [26] are also corrected for contributions from inelastic processes, see [51] for more details.
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4 Summary

Photoproduction cross sections for elastic and proton-dissociative diffractive J/ψ meson pro-

duction have been measured as a function of t, the four-momentum transfer at the proton ver-

tex, and as a function of Wγp, the photon proton centre-of-mass energy in the kinematic ranges

|t| < 8GeV2, 25GeV < Wγp < 110GeV and for the proton-dissociative case MY < 10GeV.

The data were collected in positron-proton collisions with the H1 detector at HERA, at a centre-

of-mass energy of
√
s ≈ 318 GeV and

√
s ≈ 225 GeV. Measurements in the electron and

muon decay channels are combined, and are parametrised using phenomenological fits.

The elastic and the proton-dissociative cross sections are extracted simultaneously. Using

this technique, a precise measurement of proton-dissociative J/ψ production was performed in

the range of small |t| for the first time. The data taken at low centre-of-mass energies close the

gap between previous H1 measurements and fixed target data.

The data agree well with previous HERA measurements and with a model based on two

gluon exchange. The Wγp-dependence of the proton-dissociative channel is found to be signifi-

cantly weaker than that of the elastic channel.
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Wγp range
〈

W bc
γp

〉

ΦT
γ σ

(〈

W bc
γp

〉)

∆tot ∆comb ρGC
comb δTrk,corr

sys δTrg,corr
sys δ2S

sys δLH
sys δLL

sys δLAr10
sys δPLUG

sys δFTS
sys δMC Model

sys δQ
2

sys δRLT
sys δEC

sys

[GeV] [GeV] [nb] [nb] [nb] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

High energy data period for elastic J/ψ production

40.0 - 46.5 43.2 0.0158 50.7 4.9 2.1 62 2.0 2.0 1.5 2.7 - -2.6 0.6 -0.1 -7.1 -0.1 0.0 1.4

46.5 - 53.5 50.0 0.0144 59.5 5.8 2.2 69 2.0 2.0 1.5 2.7 - -2.6 0.6 -0.1 -7.3 -0.1 0.0 1.4

53.5 - 61.2 57.3 0.0131 61.8 6.2 2.7 71 2.0 2.0 1.5 2.7 - -2.6 0.6 -0.1 -7.4 -0.1 0.0 1.4

61.2 - 69.4 65.3 0.0120 67.6 6.2 2.5 71 2.0 2.0 1.5 2.7 - -2.6 0.6 -0.1 -6.6 -0.1 0.0 1.4

69.4 - 78.4 73.9 0.0112 72.4 6.4 2.6 71 2.0 2.0 1.5 2.7 - -2.6 0.6 -0.1 -6.3 -0.1 0.0 1.4

78.4 - 88.0 83.2 0.0103 79.9 7.0 3.0 69 2.0 2.0 1.5 2.7 - -2.6 0.6 -0.1 -6.0 -0.1 0.0 1.4

88.0 - 98.5 93.3 0.0096 84.4 7.0 3.0 69 2.0 2.0 1.5 2.7 - -2.6 0.6 -0.1 -5.5 -0.1 0.0 1.4

98.5 - 110.0 104.3 0.0089 86.7 7.3 3.7 65 2.0 2.0 1.5 2.7 - -2.6 0.6 -0.1 -5.2 -0.1 0.0 1.4

High energy data period for proton dissociative J/ψ production

40.0 - 46.5 43.2 0.0158 46.0 6.0 2.3 54 2.0 2.0 1.5 2.7 - 9.4 -2.2 0.5 -3.9 0.1 0.0 -4.3

46.5 - 53.5 50.0 0.0144 52.1 6.5 2.3 61 2.0 2.0 1.5 2.7 - 9.4 -2.2 0.5 2.5 0.1 0.0 -4.3

53.5 - 61.2 57.3 0.0131 58.7 7.4 2.3 61 2.0 2.0 1.5 2.7 - 9.4 -2.2 0.5 3.5 0.1 0.0 -4.3

61.2 - 69.4 65.3 0.0120 58.7 7.5 2.2 63 2.0 2.0 1.5 2.7 - 9.4 -2.2 0.5 4.6 0.1 0.0 -4.3

69.4 - 78.4 73.9 0.0112 61.5 8.0 2.4 62 2.0 2.0 1.5 2.7 - 9.4 -2.2 0.5 4.8 0.1 0.0 -4.3

78.4 - 88.0 83.2 0.0103 67.7 8.7 2.6 60 2.0 2.0 1.5 2.7 - 9.4 -2.2 0.5 4.6 0.1 0.0 -4.3

88.0 - 98.5 93.3 0.0096 69.8 9.0 2.7 59 2.0 2.0 1.5 2.7 - 9.4 -2.2 0.5 4.8 0.1 0.0 -4.3

98.5 - 110.0 104.2 0.0089 68.8 9.0 3.0 54 2.0 2.0 1.5 2.7 - 9.4 -2.2 0.5 4.6 0.1 0.0 -4.3

Low energy data period for elastic J/ψ production

25.0 - 39.0 31.9 0.0465 39.7 4.9 3.4 62 2.0 2.0 1.5 - 4.0 -3.4 0.8 -0.1 -6.4 -0.1 0.0 1.9

39.0 - 57.0 47.9 0.0359 55.4 5.6 3.3 64 2.0 2.0 1.5 - 4.0 -3.4 0.8 -0.1 -5.1 -0.1 0.0 1.9

57.0 - 80.0 68.4 0.0284 66.4 6.8 4.3 64 2.0 2.0 1.5 - 4.0 -3.4 0.8 -0.1 -4.7 -0.1 0.0 1.9

Low energy data period for proton dissociative J/ψ production

25.0 - 39.0 31.9 0.0465 42.0 8.1 4.8 59 2.0 2.0 1.5 - 4.0 12.0 -2.9 0.3 -4.6 0.1 0.0 -6.4

39.0 - 57.0 47.9 0.0359 55.1 9.4 4.5 59 2.0 2.0 1.5 - 4.0 12.0 -2.9 0.3 -2.5 0.1 0.0 -6.4

57.0 - 80.0 68.3 0.0284 62.0 10.7 5.3 57 2.0 2.0 1.5 - 4.0 12.0 -2.9 0.3 2.5 0.1 0.0 -6.4

Table 4: Elastic and proton-dissociative photoproduction cross sections σ
(〈

W bc
γp

〉)

derived from

the high- and low-energy data sets as a function of the photon proton centre-of-mass energyWγp

for the processes ep→ eJ/ψY , where Y denotes either a proton p or a proton-dissociative sys-

tem of mass mp < MY < 10GeV. These cross sections are obtained after the combination of

the cross sections from the µ+µ− and e+e− decay channels and for the phase space as defined in

table 1.
〈

W bc
γp

〉

indicates the bin centres [55] and ΦT
γ is the transverse polarised photon flux per

bin. ∆tot and ∆comb denote the total and the combined statistical and channel-specific individ-

ual uncertainties, as obtained from the data combination, respectively. The global correlation

coefficients ρGC are also shown. The full covariance matrix can be found in [51]. The remain-

ing columns list the bin-to-bin correlated systematic uncertainties corresponding to a +1σ shift

due to the correlated tracking uncertainty δTrk,corr
sys , the correlated triggering uncertainty δTrg,corr

sys ,

the uncertainty from ψ(2S) contributions δ2S
sys, the integrated luminosities of the high- and low-

energy data sets δLH
sys , δLL

sys , the tagging uncertainties in the LAr δLAr10
sys , the plug δPLUG

sys and the

FTS δFTS
sys , due to the modelling of the MC δMC Model

sys , the Q2 dependance δQ
2

sys and the cut on the

empty calorimeter δEC
sys .
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|t| range
〈

|t|bc
〉

dσ
d|t|

(〈

|t|bc
〉)

∆tot ∆comb ρGC
comb δTrk,corr

sys δTrg,corr
sys δ2S

sys δLH
sys δLAr10

sys δPLUG
sys δFTS

sys δMC Model
sys δQ

2

sys δRLT
sys δEC

sys

[GeV2] [GeV2] [nb/GeV2] [nb/GeV2] [nb/GeV2] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

High energy data period for elastic J/ψ production

0.00 - 0.05 0.02 336 18 11 70 2.0 2.0 1.5 2.7 -1.0 0.2 -0.1 -0.6 -0.1 0.0 0.5

0.05 - 0.11 0.08 240.5 12.9 7.2 71 2.0 2.0 1.5 2.7 -1.2 0.3 -0.1 -0.7 -0.1 0.0 0.6

0.11 - 0.17 0.14 161.2 9.3 5.5 66 2.0 2.0 1.5 2.7 -1.6 0.3 -0.1 -1.0 -0.1 0.0 0.8

0.17 - 0.25 0.21 111.4 7.0 4.1 62 2.0 2.0 1.5 2.7 -2.2 0.5 -0.1 -1.4 -0.1 0.0 1.0

0.25 - 0.35 0.30 70.4 5.1 3.2 61 2.0 2.0 1.5 2.7 -2.9 0.6 -0.2 -1.9 -0.1 0.0 1.4

0.35 - 0.49 0.41 41.2 3.7 2.2 59 2.0 2.0 1.5 2.7 -4.6 1.0 -0.3 -3.0 0.0 0.0 2.3

0.49 - 0.69 0.58 18.0 2.7 1.4 59 2.0 2.0 1.5 2.7 -9.2 2.1 -0.6 -6.5 0.1 0.0 4.7

0.69 - 1.20 0.90 4.83 1.75 0.67 72 2.0 2.0 1.5 2.7 -24.0 5.8 -1.4 -18.0 0.8 0.0 13.0

High energy data period for proton dissociative J/ψ production

0.00 - 0.20 0.10 47.3 6.7 2.3 63 2.0 2.0 1.5 2.7 11.0 -2.2 0.6 3.6 -0.1 0.0 -4.6

0.20 - 0.40 0.29 43.8 6.0 1.9 64 2.0 2.0 1.5 2.7 11.0 -2.4 0.6 2.2 -0.0 0.0 -4.7

0.40 - 0.64 0.52 36.7 5.1 1.6 70 2.0 2.0 1.5 2.7 11.0 -2.6 0.7 2.0 -0.1 0.0 -5.0

0.64 - 0.93 0.78 27.8 4.2 1.3 74 2.0 2.0 1.5 2.7 12.0 -2.9 0.7 2.8 -0.1 0.0 -5.7

0.93 - 1.31 1.12 16.80 2.59 0.87 63 2.0 2.0 1.5 2.7 12.0 -3.1 0.7 2.0 -0.1 0.0 -5.9

1.31 - 1.83 1.55 10.05 1.56 0.52 49 2.0 2.0 1.5 2.7 12.0 -3.1 0.5 1.7 0.0 0.0 -6.2

1.83 - 2.63 2.21 6.04 0.68 0.33 46 2.0 2.0 1.5 2.7 6.0 -1.7 0.3 -5.5 0.5 0.0 -3.0

2.63 - 4.13 3.30 2.80 0.38 0.16 42 2.0 2.0 1.5 2.7 6.7 -1.9 0.3 -8.7 0.5 0.0 -3.6

4.13 - 8.00 5.71 0.875 0.178 0.064 30 2.0 2.0 1.5 2.7 9.0 -2.5 0.3 -15.0 0.2 0.0 -5.4

Table 5: Elastic and proton-dissociative photoproduction cross sections derived from the high-

energy data sets as a function of the squared four-momentum transfer at the proton vertex t, for

the processes ep→ eJ/ψ Y , where Y denotes either a proton p or a proton-dissociative system

of mass mp < MY < 10GeV. These cross sections are obtained after the combination of the

cross sections from the µ+µ− and e+e− decay channels and for the phase space as defined in

table 1.
〈

|t|bc
〉

indicates the bin centres [55]. The transverse polarised photon flux ΦT
γ for the

given phase space range is 0.0953. See caption of table 4 for more dietails.

|t| range
〈

|t|bc
〉

dσ
d|t|

(〈

|t|bc
〉)

∆tot ∆comb ρGC
comb δTrk,corr

sys δTrg,corr
sys δ2S

sys δLL
sys δLAr10

sys δPLUG
sys δFTS

sys δMC Model
sys δQ

2

sys δRLT
sys δEC

sys

[GeV2] [GeV2] [nb/GeV2] [nb/GeV2] [nb/GeV2] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

Low energy data period for elastic J/ψ production

0.00 - 0.11 0.05 178 16 12 49 2.0 2.0 1.5 4.0 -2.0 0.4 -0.1 -1.4 -0.1 0.0 1.0

0.11 - 0.25 0.17 99.6 9.4 7.0 52 2.0 2.0 1.5 4.0 -3.0 0.7 -0.1 -1.4 -0.1 0.0 1.5

0.25 - 0.47 0.35 43.7 5.6 4.3 53 2.0 2.0 1.5 4.0 -5.0 1.1 -0.1 -3.4 -0.0 0.0 2.6

0.47 - 1.20 0.75 9.7 1.8 1.3 57 2.0 2.0 1.5 4.0 -9.8 2.2 -0.3 -4.8 0.1 0.0 5.3

Low energy data period for proton dissociative J/ψ production

0.00 - 0.50 0.23 42.8 7.5 3.5 63 2.0 2.0 1.5 4.0 13.0 -2.9 0.4 2.1 -0.1 0.0 -6.1

0.50 - 1.15 0.80 18.9 4.0 1.8 58 2.0 2.0 1.5 4.0 16.0 -3.7 0.5 -0.6 -0.0 0.0 -8.3

1.15 - 2.30 1.67 8.58 1.54 0.84 36 2.0 2.0 1.5 4.0 11.0 -2.8 0.2 -5.9 0.2 0.0 -6.2

2.30 - 5.00 3.42 2.01 0.58 0.36 21 2.0 2.0 1.5 4.0 8.9 -2.4 0.1 -19.0 0.8 0.0 -5.4

Table 6: Elastic and proton-dissociative photoproduction cross sections of the low-energy data

sets as a function of the squared four-momentum transfer at the proton vertex t, for the processes

ep→ J/ψ Y , where Y denotes either a proton p or a proton-dissociative system of mass MY >
mp. These cross sections are obtained after the combination of the cross sections from the µ+µ−

and e+e− decay channels and for the phase space as defined in table 1.
〈

|t|bc
〉

indicates the bin

centres [55]. The transverse polarised photon flux ΦT
γ for the given phase space range is 0.1108.

See caption of table 4 for more dietails.
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Figure 2: Di-lepton invariant mass distributions for the high- and low-energy data sets in the

J/ψ → µ+µ− decay channel, figures a) and b), respectively, and for the J/ψ → e+e− decay

channel, figures c) and d), respectively. For the muon sample the fits used to reconstruct the

number of J/ψ mesons are shown as well. For the electron sample the simulation of the QED

background ep → eX e+e− is given by the shaded region and the J/ψ signal and sideband

normalisation regions are indicated.
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Figure 3: Tagging efficiencies as functions of (a) Wγp,rec and (b) −trec as obtained from the

simulations of elastic and proton-dissociative J/ψ production. Tagging fractions as functions

of (c) Wγp,rec and (d) −trec, as obtained from the e+e− data set in the invariant mass window

mee = 2.3 − 3.3GeV. The data set contains elastic and proton-dissociative J/ψ decays, as

well as ep → eX e+e− events. It is compared to the simulation based on the event generators

DIFFVM and GRAPE. The data (simulations) are shown by points (shaded bands). The vertical

spread of the bands represents the uncertainty due to the tagging in the simulation.
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Figure 4: Observed distributions as functions of Wγp,rec and −trec restricted in mℓℓ to the

J/ψ signal region. The muon sample is shown in a) and b), the electron sample is shown

in c) and d). The data, shown by the points, are compared to the simulation of elastic and

proton-dissociative J/ψ production. Also shown is the contribution from ψ(2S) events and, for

the electron sample only, the QED background. For the muon sample, background is subtracted

from the data using a sideband method.
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Figure 5: Combined elastic and proton-dissociative cross sections as a function of Wγp (circles)

compared to the input data from J/ψ → e+e− (triangles) and J/ψ → µ+µ− (squares) of the

HE and LE data sets. The error bars of the input data indicate the uncertainty composed of the

statistical errors (inner error bars) and statistical errors combined with all individual systematic

uncertainties (full error bars). The error bars of the combined data points reflect the uncertainty

after the combination. The combined data points are drawn at their bin centres. The electron

and muon data points are shifted in Wγp for better visibility.
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Figure 6: Differential J/ψ photoproduction cross sections dσ/dt as a function of the negative

squared four-momentum transfer at the proton vertex, −t, as obtained in the high-energy data

set for the (a) elastic regime and the (b) proton-dissociative regime and as obtained for the low-

energy data set shown in (c) and (d). The error bars represent the total errors. Also shown by

the curves is a simultaneous fit to this measurement and [24] of the form dσ/dt = Nele
−bel|t| for

the elastic cross sections and dσ/dt = Npd(1 + (bpd/n)|t|)−n for the proton-dissociative cross

sections. The fit uncertainty is represented by the spread of the shaded bands.
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Figure 7: Proton-dissociative cross section as a function of −t (full circles) compared to a

previous measurement at high |t| [24] (triangles) interpolated to match the Wγp, Q
2 and MY

ranges of the current measurement. The curve represents a simultaneous fit to both data sets,

the spread of the shaded band its uncertainty.
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Figure 8: J/ψ photoproduction cross sections as a function of the photon proton centre-of-mass

energy Wγp for (a) the elastic and (b) the proton-dissociative regime. The data from the high-

energy data set are shown by circles, the data from the low-energy data set as squares. The error

bars represent the total errors. Shown by the curves is the simultaneous fit to the data from this

measurement and [4], see figure 9. The fit uncertainty is represented by the shaded bands. In (c)

the ratio of the proton-dissociative to elastic J/ψ photoproduction cross section is shown. The

data are presented as full circles and the vertical bars indicate the total uncertainties, including

normalisation uncertainties. The inner error bars represent the bin-to-bin uncorrelated errors,

determined in an approximative procedure. The curve is the ratio of the fits shown in (a) and

(b). The shaded band indicates the uncertainty on the ratio obtained from the fit uncertainties.
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Figure 9: Elastic cross sections as a function of Wγp from this measurement compared to previ-

ous measurements at HERA [4, 5]. The shaded band represents a fit to the present data and [4]

together with its uncertainties.
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Figure 10: Compilation of elastic J/ψ production cross section measurements including this

measurement, previous HERA results [4, 5], results from fixed target experiments [26, 27] and

from LHCb [53]. Also presented is the fit to the H1 data only, indicated by the curve. The fit is

extrapolated in Wγp from the range of the input data to higher values, as shown by the dashed

curve. The shaded band indicates the uncertainty on the fit.

32



 [GeV]pγW
10 210

3
10

 p
) 

[n
b

]
ψ

 J
/

→
 p

 
γ(σ

10

210

310
 photoproductionψElastic J/

H1 data HE

H1 data LE

H1(2005)

Zeus(2002)

E401, E516

LHCb(2013)

MNRT(LO)

MNRT(NLO)

 photoproductionψElastic J/

Figure 11: Compilation of elastic J/ψ production cross section measurements including this

measurement, previous HERA results [4, 5], results from fixed target experiments [26, 27] and

from LHCb [53]. Also presented are QCD fits from [14] to the previous HERA data [4, 21–23]

to determine a gluon density at leading-order and next-to-leading order, indicated by the curves.

The fits are extrapolated in Wγp from the range of the input data to higher values, as shown by

the dashed curves. The shaded bands indicate the fit uncertainties.
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