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An anisotropy index seeks to quantify how directionally dependent the properties
of a system are. In this article, the focus is on quantifying the elastic anisotropy
of crystalline materials. Previous elastic anisotropy indices are reviewed and their
shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is
proposed, which overcomes these deficiencies. It is based on a distance measure
in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an abso-
lute measure of anisotropy where the limiting case of perfect isotropy yields
zero. It is a universal measure of anisotropy applicable to all crystalline mate-
rials. Specific examples of strong anisotropy are highlighted. A supplementary
material provides an anisotropy table giving the values of AL for 2,176 crys-
tallite compounds. © 2016 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4962996]

I. INTRODUCTION

Elastic anisotropy1 influences a variety of physical processes. Some of these processes include
geophysical explorations of the Earth’s interior,2–5 development of plastic deformation in crystals,6

enhanced positively charged defect mobility,7 microscale cracking in ceramics,8 alignment or mis-
alignment of quantum dots,9 mechanical properties of nickel-based superalloys,10 fluid transport in
poroelastic materials,11 focusing of phonons in crystallites,12 ultrastructural properties of osteonal
bone,13 texture in nanoscale shape-memory alloys,14 and plastic relaxation in thin-film metallics.15

Thus, it is crucial to be able to quantify the elastic anisotropy to observe effects on these and many
other processes for a variety of materials.

Zener16 proposed an anisotropy factor for crystals of cubic symmetry defined as the ratio of the
extreme values of the orientation-dependent shear moduli given by

A=
2c44

c11 − c12
, (1)

where c11, c12, and c44 are the independent single-crystal elastic constants of a crystal having cubic
symmetry. Zener’s anisotropy factor yields unity when the crystallite is isotropic while a deviation
less than or greater than unity signified the degree of anisotropy. Chung and Buessem17 observed that
a crystal is isotropic when the Voigt average of the shear moduli µV over all possible orientations
was equal to the inverse of the orientation averaged shear compliance µR (Reuss average), which
motivated the adoption of the factor

AC =
µV − µR

2µH
, (2)

where µH is the arithmetic or Hill average given by µH =
(
µV + µR

)
/ 2. AC can be calculated for any

crystal symmetry. However, Chung and Buessem refrained from extending AC to lower symmetries
because, in addition to the shear modulus, the bulk modulus influences the anisotropy of crystals other
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than cubic symmetry.17 Ledbetter and Migliori18 noticed that the ratio of the maximum and minimum
long-wavelength shear wave velocities in a cubic crystal yielded Zener’s anisotropy factor A. They
extended this idea to evaluate the anisotropy of non-cubic crystals.18 Such a metric is appealing
because of its connection to easily performed wave-based experiments, but their factor still does not
include the influence of the bulk modulus to the anisotropy. Other anisotropy factors have been derived
within specific symmetry planes and symmetry directions in a crystal. Lau and McCurdy19 derived
factors based on in-plane phonon focusing for crystals of orthorhombic, tetragonal and hexagonal
crystals. Thomsen3 used three anisotropy factors to quantify the anisotropy of transversely isotropic
materials (applicable to hexagonal crystals). Tsvankin4 developed seven anisotropy parameters for
orthorhombic crystals, which followed closely to Thomsen.3

A singular anisotropy index is attractive because of its simplicity when compared to the plurality
of anisotropy factors defined for specific planes in crystals. Ranganathan and Ostoja-Starzewski20

derived a universal anisotropy index AU to provide a singular measure of anisotropy. This index was
termed universal because of its applicability to all crystal symmetries, a short-coming of all previous
measures. AU is based on the fractional difference between the upper (Voigt) and lower (Reuss)
bounds on the bulk (κV , κR) and shear modulus (µV , µR), which introduced the influence of the bulk
modulus for the first time. The Voigt and Reuss bounds arrive from the statistical elasticity models
used to describe elastic deformation of polycrystalline materials. It has long been known that the
Voigt and Reuss bounds converge when the crystallites within the aggregate are isotropic.21 Thus,

the condition of crystallite isotropy exists when CV = CR where CV = 〈C〉, CR =
(
SR

)−1
, and SR = 〈S〉

with 〈C〉 and 〈S〉 being a tensor average operation over all possible orientations of the crystallite’s
elastic modulus C and compliance S, respectively. Recognizing this condition, Ranganathan and
Ostoja-Starzewski20 observed that the contraction of the tensor CV with SR led to a scalar parameter
that yielded a minimum value of 6 when a crystallite is isotropic,

CV
ijklS

R
ijkl =

κV

κR
+ 5

µV

µR
, (3)

where the summation convention over repeated indices is employed. AU was then defined as

AU =
κV

κR
+ 5

µV

µR
− 6 (4)

in order for the minimum possible value of AU to be null for the case of isotropy.20 It was postulated
that a larger fractional difference between the Voigt and Reuss estimated bulk or shear modulus would
indicate a stronger degree of crystallite anisotropy.20

The universal anisotropy index20 was compared with the previous measures,16–18 which demon-
strated the improved utility of AU . Furthermore, the evaluation of AU using tabulated elastic constant
values was provided for a number of different crystalline materials, which provided a strong empirical
argument for its validation.20

However, similar to the other anisotropy indexes,16–18 AU is a relative measure of anisotropy with
respect to a limiting value. For example, AU does not prove that a crystal having AU = 3 has double
the anisotropy of another crystal with AU = 1.5. In Sec. II, this limitation is overcome by seeking
an anisotropy distance measure between CV and CR, which will provide an absolute measure of
anisotropy for different materials.

II. THEORY

A measure of distance between CV and CR is achieved by making use of distance formulas
between tensors.22–24 Norris22 and Norris and Moakher24 used Euclidean and Riemannian distances
to determine how close a material of a given symmetry is to a material of another symmetry. These
distance measures provide a physically appealing scalar parameter that quantifies the resemblance of
materials possibly belonging to nearly disparate symmetry classes. Extending this idea, a measure of
distance between CV and CR is sought in order to provide estimates to the degree of anisotropy present
in the elastic constants. A proper distance will yield zero when the crystal is elastically isotropic and
will scale correctly for increasing levels of anisotropy.
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The log-Euclidean distance first defined by Arsigny et al.23 is used to define the distance between
CV and CR, which is given by

dL

(
CV , CR

)
= | |Log

(
CV

ijkl

)
− Log

(
CR

ijkl

)
| |, (5)

where | |H| | ≡
(
HijklHijkl

)1/2
is the norm of a general fourth-rank tensor H.22 The log-Euclidean

distance is chosen over the standard Euclidean measures because it is less sparse in the limit of
strong anisotropy and it is invariant under inversion, that is, dL

(
CV , CR

)
= dL

(
CV−1

, SR
)
.22 In order

to simplify Eq. (5), Walpole’s decomposition25 is employed to define

CV
ijkl = 2µV Jijkl + 3κV Kijkl, (6)

CR
ijkl = 2µRJijkl + 3κRKijkl. (7)

A number of identities based on the contraction of indices illustrates the utility of Walpole’s
decomposition, such as J ijij = 5, K ijij = 1, K ijmnKmnkl = K ijkl, J ijmnJmnkl = J ijkl, J ijmnKmnkl = 0, and
K ijmnJmnkl = 0.25 Upon substituting into Eq. (5), the log-Euclidean distance dL can be simplified and
then defined as the anisotropy index

AL
(
CV , CR

)
=

√[
ln

(
κV

κR

)]2

+ 5

[
ln

(
µV

µR

)]2

, (8)

where ln is the standard base-e logarithm. The evaluation of the log-Euclidean distance AL requires the
evaluation of the bulk (κV , κR) and shear (µV , µR) moduli. Equating the invariants of the fourth-rank
elastic moduli and compliance tensors leads to

9κV = c11 + c22 + c33 + 2c12 + 2c13 + 2c23, (9)

15µV = c11 + c22 + c33 − c12 − c13 − c23 + 3c44 + 3c55 + 3c66, (10)

1/κR = s11 + s22 + s33 + 2s12 + 2s13 + 2s23, (11)

15/µR = 4 (s11 + s22 + s33 − s12 − s13 − s23 + 3s44 + 3s55 + 3s66) , (12)

which are valid for any crystallite symmetry. The stiffness/compliance relations are obtained from the
set of equations produced by the inner product CijmnSmnkl = (δikδjl + δilδjk)/2. The general analytical
forms for κR and µR are too lengthy to be reproduced here. A supplementary material is provided for
the analytical expressions for κR, κV , µR, µV , and AL valid for any symmetry (from cubic to triclinic).
The supplementary material provides a detailed procedure with a Matlab script for calculating the
anisotropy for any material assuming the elastic constants are well known. For the unique case of
cubic crystallite symmetry, the log-Euclidean anisotropy parameter simplifies into a convenient form
and can be written in terms of other previously used anisotropy parameters,16,17,20

AL
(
CV , CR

)
=
√

5ln

(
µV

µR

)
, (13a)

=
√

5

[
ln

(
(2 + 3A) (3 + 2A)

25A

)]
, (13b)

=
√

5ln

(
1 + AC

1 − AC

)
, (13c)

=
√

5ln

(
1 +

AU

5

)
. (13d)

Equation (13a) shows that AL, for crystals of cubic symmetry, depends on the ratio of the Voigt
and Reuss shear moduli and is independent of the bulk moduli. For lower symmetry, the anisotropy
depends on both the bulk and shear modulus.

For all crystallite symmetries, the universal anisotropy index defined by Ranganathan and Ostoja-
Starzewski20 is related to the standard Euclidean distance between the averaged stiffness CV and
averaged compliance SR,

dE

(
CV , SR

)
=

√
AU + 6. (14)
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On the other hand, AL
(
CV , CR

)
is based on the distance between the averaged stiffnesses CV and

CR, which is more appropriate. Clearly, AL
(
CV , CR

)
is zero when the crystallite is isotropic (when

κV = κR and µV = µR). Unlike AU , AL does not need a normalization factor to indicate a zero-value
for the limiting case of isotropy.

III. RESULTS

A survey and comparison of the anisotropy indexes AL, AU , AC , and A was conducted on a dataset
of 2,176 crystalline materials. The dataset spans all crystallographic symmetries and includes a variety
of species and compounds. Each of the anisotropy measures were evaluated using full elastic tensors
generated from first-principle density functional theory.26 A description of the procedure used to
generate the elastic constants can be found elsewhere.26 Figure 1 gives a comparison of the proposed
parameter AL to AU for all 2,176 materials. The materials were sorted in an order of increasing
anisotropy defined by AL as seen in Fig. 1(a); AU as seen in Fig. 1(b) also follows this ordering for
most materials. However, some cases indicate that a given material is more anisotropic than another
for AU and less anisotropic for AL. This feature can be observed in the close-up subplot for AU .
The greater sparsity of AU compared to AL is easily noticed where the most anisotropic crystals
are about three orders of magnitude greater than the majority of the materials in the dataset. The
materials were color coded according to their symmetry. Their frequency of occurrence in the dataset
are as follows: 749 cubic materials, 504 hexagonal materials, 176 trigonal materials, 369 tetragonal
materials, 298 orthorhombic materials, 76 monoclinic materials, and 9 triclinic materials. Cubic and
hexagonal crystals dominate for the cases extremely low levels of anisotropy (Material #’s¡50). The
extremely anisotropic materials contain entries belonging to each of the symmetry classes. Notable
bands of orthorhombic and monoclinic symmetries exist for larger values of AL and AU . An Excel
file is provided in the supplementary material for the numerical data contained in Fig. 1. The top 25
most anisotropic materials from the dataset is included in Table I.

MP-ID refers to the Materials Project identification numbers assigned to each material.27 Further
information on each of the entries in Table I can be accessed by visiting https://materialsproject.org.
Table I contains entries belonging to each of the 7 crystal symmetry groups. The allotropes of carbon
are the most anisotropic materials examined, which causes great sparsity in the calculated values of
AU ranging from 210 to 397.3. Conversely, AC indicates that the variation in the anisotropy of carbon
is far less sparse (from 0.95 to 0.97). AL assigns anisotropy values from 8.77 to 10.27. The greater
variation present in AL and AU highlights the influence of the bulk modulus in the calculations, which
is neglected in AC .

FIG. 1. Visual comparison between AL (a) and AU (b) for the 2,176 materials considered in the dataset. The values are sorted
by increasing AL and the corresponding crystal symmetries are color coded.

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-6-041609
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TABLE I. The top 25 most anisotropic crystalline materials.

MP-ID Crystal Symmetry Formula AL AU AC A

mp-568286 Orthorhombic C 10.27 397.3 0.97 −

mp-606949 Triclinic C 9.77 320.5 0.97 −

mp-169 Trigonal C 9.50 284.0 0.96 −

mp-629015 Hexagonal BN 9.44 276.8 0.96 −

mp-984 Hexagonal BN 8.86 217.1 0.95 −

mp-48 Hexagonal C 8.77 210.0 0.95 −

mp-559976 Trigonal Ta2CS2 7.09 106.1 0.91 −

mp-25587 Monoclinic LiNiO2 7.09 111.5 0.92 −

mp-543096 Trigonal NiO2 6.61 85.1 0.89 −

mp-7581 Trigonal MoSe2 6.54 80.7 0.87 −

mp-5745 Trigonal Nb2CS2 6.49 79.1 0.87 −

mp-540793 Orthorhombic VCl2O 6.24 72.4 0.87 −

mp-34134 Trigonal MnO2 5.93 61.9 0.85 −

mp-27850 Orthorhombic TiNCl 5.92 62.0 0.85 −

mp-27863 Orthorhombic AlClO 5.79 58.3 0.82 −

mp-7868 Hexagonal PtO2 5.75 56.8 0.82 −

mp-12910 Orthorhombic GeS 5.66 57.7 0.85 −

mp-568346 Orthorhombic HfBrN 5.45 51.8 0.83 −

mp-32450 Orthorhombic VBr2O 5.43 49.3 0.79 −

mp-27848 Orthorhombic TiIN 5.37 47.8 0.79 −

mp-505531 Tetragonal FeS 5.33 47.2 0.81 −

mp-18717 Cubic SrVO3 5.30 48.6 0.83 3.14
mp-694 Trigonal VSe2 5.22 44.8 0.80 −

mp-765892 Monoclinic MnCoO4 5.21 45.2 0.81 −

mp-617 Trigonal PtO2 5.17 43.4 0.79 −

TABLE II. Comparison of AL between cubic single crystals and triclinic crystalline compounds. The Zener anisotropy index
A is also included for comparison to AL for the cubic crystals.

Cubic A AL Triclinic AL

Cu 3.21 0.69 CuSO4 · 5H2O 0.32
K 6.71 1.73 KH3C2O4 · 2H2O 1.06
Na 7.48 1.76 NaHC2O4 · H2O 1.07
Li 15.76 2.25 LiHC2O4 · H2O 1.37

The anisotropy index AL allows comparisons between very different materials from various
symmetry groups as illustrated in Table I. As an additional example, a comparison between cubic
single crystals and triclinic crystalline compounds is shown in Table II.

The values in Table II were calculated from experimentally measured single-crystal elastic con-
stants.28 The triclinic compounds CuSO45 ·H2O, KH3C2O4 ·2H2O, NaHC2O4 ·H2O, LiHC2O4 ·H2O
each have one of the cubic crystallite constituents Cu, K, Na, and Li. Increasing levels of anisotropy are
present in Cu, K, Na, and Li, which correlates with increasing levels of anisotropy in the corresponding
triclinic compounds.

IV. CONCLUSION

The anisotropy index AL, defined in Eq. (8), provides an absolute measure of anisotropy in
crystalline materials. AL is an improvement to previous measures A and AC because it is valid for all
of the crystallite symmetries. Conceptually, AL is closely related to AU . However, AL differs from AU

in that it is an absolute distance measure between CV and CR.
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SUPPLEMENTARY MATERIAL

See supplementary material for (1) A Matlab function anisotropy.m that calculates AL from
21 elastic constant inputs. Symmetry relations for higher symmetry than triclinic is included. (2) A
tabulation of the anisotropy measures, AL, AU , and AC , is given for 2,176 inorganic crystal compounds
where the elastic constants were generated by first-principle calculations based on density functional
theory.26 The table corresponds with the data that is illustrated in Fig. 1.
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