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This paper reports a research study that investigated buckling of stiffened rectangular isotropic plates 

elastically restrained along all the edges (CCCC) under uniaxial in-plane load, using the work principle approach. 

The stiffeners were assumed to be rigidly connected to the plate. Analyses for critical buckling of stiffened plates 

were carried out by varying parameters, such as the number of stiffeners, stiffness properties and aspect ratios. 

The study involved a theoretical derivation of a peculiar shape function by applying the boundary conditions of 

the plate on Taylor Maclaurin’s displacement function and substituted on buckling equation derived to obtain 

buckling solutions. The present solutions were validated using a trigonometric function in the energy method 

from previous works. Coefficients, K, were compared for various numbers of stiffeners and the maximum 

percentage difference obtained within the range of aspect ratios of 1.0 to 2.0 is shown in Figs 2 - 7. A number of 

numerical examples were presented to demonstrate the accuracy and convergence of the current solutions. 

 

Key words: buckling, governing equation, polynomial function, uniaxially stiffened plate, work principle 

method. 

 

1. Introduction 

 
Stiffened plates are a critical class of structural elements widely used in aerospace, marine, nuclear, 

mechanical and structural engineering (Zhang and Lin [1]). Research in stiffened plate construction has 

gained attention in recent years as a result of its economic and structural benefits. The advantage of 

stiffening a plate lies in achieving an economical, lightweight design. A number of methods have been 

suggested from literature for the prediction of the global buckling load of stiffened plates. 

A numerical approach such as the conventional finite element method is a versatile method and has 

been widely used in the study of stiffened plates to obtain approximate solutions as in Guo and Harik [2], 

Wang and Yuan [3].The FEM is computationally efficient for predicting buckling coefficients irrespective of 

boundary conditions, stiffeners shapes and orientation. However, it requires great computational efforts and 
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lengthy simulation time, due to the large number of finite units involved. Bisagni and Vescovini [4] 

presented an analytical formulation for local buckling and post-buckling analysis of stiffened laminated 

panels and noted that the FEM procedure is somewhat slowed down by the mesh generation time. In recent 

work, Deng et al. [5] noted that in the design of stiffened system that it is not efficient to employ the FEM 

during the preliminary design stage, since the dimensions of the stiffened panels and stiffeners are not 

finalized to be optimally designed. Hence, the need for analytical formulations which gives exact solutions. 

The analytical solutions for buckling are presented in [4, 6-9]. A number of researchers have used 

both single and double Fourier series as displacement functions to evaluate the values of buckling 

coefficients for stiffened systems, but no theoretical solutions exist for more complicated boundary 

conditions of stiffened plates as in Nildem [10], Bisagni and Vescovini [4]. Analytical methods such as the 

energy method from literature covered only few cases of edge supports. Most researchers have applied a 

trigonometric shape function in analyzing stiffened plates with all edges simply supported. However, it is 

difficult to apply the trigonometric shape function in analyzing stiffened plates with complex boundary 

conditions.  

ANSI/AISC 360-16 [11] recommended elastic and inelastic analyses as two approaches to the direct 

analysis method in solving stability problems. Hence, the main objective of this work is to present solutions 

for  buckling analysis of stiffened rectangular isotropic plates elastically restrained along all the edges using 

the work principle and polynomial function intended for design of stiffened systems in accordance with 

AASHTO [12] specifications. 

  

2. Governing equation 

 
The stiffened plate with all edges clamped and having a stiffener (s) running in longitudinal direction 

is shown in Fig.1. In this study, stiffeners are considered as line continuum. 

 

 
 

a):  Plate with one longitudinal stiffener  b):  Plate with two longitudinal stiffeners   
 

Fig.1.Stiffened plates with all edges clamped under in - plane load. 

 

The equation presented in Ventsel and Krauthammer [9] that describes the behaviour of a thin elastic 

plate under in - plane load along the x – coordinate based on Kirchhoff’s and Venant hypothesis can be 

written as 
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From the principles of the theory of elasticity, the governing equation for a linear continuum on a 

plate element is derived as 
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ci is the distance of the stiffeners from the edge y = 0, b and h are the width and thickness of the plate, 

respectively. 

Applying super position principle, Eqs (2.1) and (2.2) are added to give 

 

     .  
n4 4 4 2 4 2

i
x i x4 2 2 4 2 4 2

i 0 y ci

w w w w w A w
D 2 N EI N 0

bhx x y y x b x x 

        
        

         
 . (2.3) 

 

Expressing the independent coordinates whose length in the x and y directions are a and b in the 

form of non-dimensional coordinates R and Q, yields 

 

 ;   Q ,y bQ 0 1  
  

(2.4) 

 

 ,       .x aR 0 R 1     (2.5) 

 

 As in Timoshenko and Gere [6], let the aspect ratio be represented as 

 

 aP
b

 ,       that is      a=Pb. (2.6) 

 

 Applying Eqs (2.4)- (2.6) in Eq.(2.3) and expanding we obtain 
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where; 

 

  i
i

EI

Db
   = ratio of bending stiffness rigidity of stiffeners to the plate, 

 

  i
i

A

bh
    = ratio of cross-sectional area of the stiffeners to the plate. 

 

2.1. Work principle 

 

For the combined action of work done by the compressive and resistive force on the stiffened system 

through a distance w, applied in Eq.(2.7) as in [13], we get 
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where: w is the deflection function, and equals AH; "ei" is the introduced error, “i” is the number of points on 

the continuum. Integrating Eq.(2.8) twice with respect to R and Q and minimizing, we obtain 
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. (2.9) 

 

Equation (2.9) is the buckling equation for a rectangular plate stiffened longitudinally. 

 

2.2. Displacement function for CCCC stiffened plate 

 

A formulated polynomial shape function for rectangular plates from Taylor-McLaurin’s series was 

introduced in the work of Ibearugbulem et al. [13, 14] for solution of rectangular thin isotropic plates 

subjected to in-plane loading. The displacement function which satisfies Eq.(2.9) and approximately 

describes the deflection of the stiffened plate under in-plane loading is given as 
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By expanding Eq.(2.10) we get25-term finite series, for m = n=4 
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Boundary conditions along the R – direction 
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Boundary conditions along the Q – direction 
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By applying Eqs (2.12) - (2.15) for all edged clamped system in Eq.(2.11) we get 
 

  2 3 4 2 3 4w A R 2R R Q 2Q Q     .  (2.15) 
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3. Formation of stability equation for CCCC stiffened plate 
 

The numerical formulations for the stiffened systems arrangements shown in Fig.1 were carried out 

for the case of one stiffener, two stiffeners and three stiffeners. 

 

3.1. Case of one stiffener 

 

Consider Fig.1a, the stiffener divides the plate into two equal parts. 

 

For The Stiffener /Rib: when there is only one stiffener for  ;  , 1 Q 1 1 R 1     we have; 
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For The Plate Element: We have; 
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Substituting Eqs (3.2) - (3.7) into Eq.(2.9), yielded 
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3.2. Case of two stiffeners 

 

As shown in Fig.1b,  and  1 2C C are the distances of the stiffeners from the edge y =0. 

Stiffeners are assumed to be symmetrical, hence 
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Following the same procedure in section (3.1), we obtain the equations as follows 
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Substituting Eqs (3.14), (3.15) and Eqs (3.4) - (3.7) into Eq.(2.9), gave 
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3.3. Case of three stiffeners 

 

For the case of three stiffeners, stiffeners will divide the plate into four equal parts 
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Following the same procedure as above, we obtain 
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4. Results and discussion 
 

Polynomial functions have been successfully applied in analytical methods for the study of thin 

plates [14 - 16]. However, this study presented buckling analysis for CCCC stiffened plates using the 

polynomial function and the general solution can be written as 
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where K is the buckling coefficients from the polynomial function for different numbers of stiffeners. 

Ibearugbulem et al. [14] presented total energy functional from Ritz Method for buckling analysis of 

thin rectangular plates. Applying energy functional for stiffeners given in Iyengar [16] and solving gave 

analytical solution in Eq.(4.2) 
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By applying the trigonometric function from Iyengar [16] for CCCC boundary conditions as given in 

Eq.(4.3) into Eq.(4.2), we obtained buckling solutions for the various numbers of stiffeners in Eqs (4.4) – 

(4.6) 
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Three stiffeners 
 

    
/
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 (4.6) 

 

The general solution of the trigonometric shape function is written as 
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Comparing the buckling coefficients K of the present study which made use of the polynomial 

function in work principle with KT  from an analytical solution that used a trigonometric function, shows 

good agreement. The average percentage difference is 0.446% for 0.1 ≤ P ≤ 2.0 for the CCCC boundary 

conditions. Figure 2 shows good convergence for the case of one longitudinal stiffener dividing the plate into 

two equal parts having, γ = 5, δ = 0.05. The average percentage difference for the case of two stiffeners is –

0.006 with γ =10, δ = 0.10 as shown in Fig.3 

 

 
 

Fig.2. Buckling coefficients vs aspect ratio for CCCC stiffened plate for γ = 5, δ =0.05. 
 

 
 

Fig.3. Buckling coefficients vs aspect ratio for CCCC stiffened plate for γ = 10, δ =0.1. 
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 x, y – Cartesian coordinates in the horizontal and vertical direction, respectively 

 
      i  – ratio of bending stiffness rigidity of stiffeners to the plate 

 
     i δ  – ratio of cross-sectional area of the stiffeners to the plate 
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