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Abstract 

Hot-rolled and cold-formed structural steel tubular members of elliptical cross-section 

have recently been introduced into the construction sector. However, there is currently 

limited knowledge of their structural behaviour and stability, and comprehensive design 

guidance is not yet available. This paper examines the elastic buckling response of 

elliptical hollow sections in compression, which has been shown to be intermediate 

between that of circular hollow sections and flat plates. The transition between these 

two boundaries is dependant upon both the aspect ratio and relative thickness of the 

section. Based on the results of numerical and analytical studies, formulae to accurately 

predict the elastic buckling stress of elliptical tubes have been proposed, and 

shortcomings of existing expressions have been highlighted. Length effects have also 

been investigated. The findings have been employed to derive slenderness parameters in 

a system of cross-section classification for elliptical hollow sections, and form the basis 

for the development of effective section properties for slender elliptical tubes. 
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1. Introduction 

The use of structural tubes of elliptical form dates back to the mid-nineteenth century. 

In the initial designs of the Britannia Bridge developed in 1845, elliptical sections were 

considered for the compression flange of the main box girder [1, 2], whilst the primary 

arched compression elements of the Royal Albert Bridge, designed by Brunel and 

constructed in 1859, were of elliptical form and fabricated from wrought iron plates [3]. 

Elliptical hollow sections (EHS) are now available as hot-rolled and cold-formed 

structural members and have recently begun to appear in steel construction. Recent 

examples include several canopies and buildings, such as the coach station at Terminal 

3 and the main building at Terminal 5 of Heathrow Airport in London [4] and the main 

building at Terminal 4 of Barajas Airport in Madrid (Figure 1) [5], as well as bridges, 

such as the Highland Society Bridge in Braemar, Scotland [6]. From an architectural 

perspective, these new sections offer an interesting and unusual appearance, whilst from 

the structural standpoint, they possess differing flexural rigidities about each of the 

principal axes (allowing the sections to be orientated to most efficiently resist the 

applied loading) as well as high torsional stiffness. 

 

In this paper the elastic buckling of elliptical tubes is examined, and following a review 

of previous investigations carried out on EHS, analytical and numerical studies are 

presented. A simple analytical model has been developed to describe the boundary 
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behaviour (CHS and flat plates) and intermediate behaviour of elliptical sections. The 

model provides insight into the transitional behaviour of an EHS between the two 

boundaries and explains the role and significance of the key geometrical parameters – 

aspect ratio, relative thickness and length. A supporting numerical study, using the finite 

element package ABAQUS, has also been performed. Based on the findings of the 

numerical and analytical investigations, and towards the establishment of efficient 

structural design rules, formulae to accurately predict the elastic buckling stress of 

compressed EHS of varying proportions are presented. The resulting formulae have 

been utilised to define slenderness measures within an established system of cross-

section classification for EHS, which was developed in [7], and form the basis for the 

development of effective section properties for slender elliptical tubes. 

 

2. Background 

The earliest investigations into the buckling response of compressed non-circular 

hollow sections (NCHS) were conducted in the second half of the twentieth century 

using analytical methods. The first study, performed by Marguerre in 1951 [8], focussed 

on cylindrical shells of varying curvature defined by Fourier polynomial terms, the 

simplest geometry of which were described through Eq. (1). 
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where r is the radius of curvature at the point s along the curved length of the section, ξ 

is the eccentricity of the section, L0 is the perimeter of the section and r0 is the radius of 

a circular section with the same perimeter. Marguerre showed that a NCHS defined by 

Eq. (1) was of comparable shape to an ellipse provided 0 ≤ ξ ≤ 1. For ξ = 0, Eq. (1) 

exactly represents a circular hollow section (CHS), whilst for ξ = 1, the maximum 

radius of curvature of the NCHS is equal to infinity and the aspect ratio of the section 
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(ratio between the major and minor axes lengths) is equal to 2.06. With the restriction 

that 0 ≤ ξ ≤ 1, the NCHS described by Eq. (1) have generally been referred to in 

previous research as oval hollow sections (OHS). Marguerre [8] obtained the elastic 

buckling stresses and the buckled mode shapes of OHS defined by Eq. (1), by means of 

an assumed deflection function. The maximum deflection was found to be close to, but 

not at, the point of maximum radius of curvature. Exactly at the point of maximum 

radius of curvature, the deflection was zero. In 1962, Kempner [9] examined the 

buckling response of OHS using a different deflection function to Marguerre and 

concluded that the elastic buckling stress could be accurately predicted as the buckling 

stress of a circular hollow section (CHS) with a radius equal to the maximum radius of 

curvature of the OHS and that the solution was a lower bound. The maximum deflection 

was found to occur at the point of maximum radius of curvature, contrary to 

Marguerre’s results. The effect of length on the buckling behaviour of OHS tubes with 

clamped ends was studied by Feinstein et al. [10] who observed noticeable deviations in 

elastic buckling stress from the case of tubes of infinite length. 

 

In 1964, Kempner and Chen [11] analysed the post-buckling behaviour of OHS, finding 

that the higher the aspect ratio of the OHS, the more stable the post-buckling behaviour 

(approaching a plate-like response) and, the lower the aspect ratio, the more unstable the 

post-buckling behaviour (approaching a CHS shell-like response). It was also found that 

the smaller the ratio between the radius r0 and the thickness t, the less stable the post-

buckling behaviour. Kempner and Chen [12] later showed that load carrying capacities 

above the bifurcation load would be attained for OHS with high aspect ratios, due to the 

redistribution of stresses to the stiff major axis regions of high curvature of the section.  
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The buckling and initial post-buckling behaviour of elliptical hollow sections was first 

studied by Hutchinson [13] in 1968. Hutchinson concluded that Kempner’s proposal 

whereby the elastic buckling stress of an OHS could be accurately predicted using the 

classical CHS formulation with an equivalent radius equal to the maximum radius of 

curvature of the OHS, may also be applied to EHS, provided the shell is sufficiently 

thin. Hutchinson also found EHS to generally have unstable post-buckling behaviour 

with the consequence of high imperfection sensitivity, which was contradictory to the 

findings of Kempner and Chen [12] for OHS. However, upon extending his study to 

OHS, Hutchinson [13] found this disparity to be related not to the differences in 

geometry between the considered oval and ellipse, but to the choice of deflection 

function used in the two analytical studies, and asserted that Kempner and Chen’s 

deflection function was not suitable for examining the initial post-buckling region. In 

the same year, Kempner and Chen [14] extended their previous work [12] and 

concluded that for OHS with small eccentricities, imperfection sensitivity was indeed 

high, whilst for larger eccentricities post-buckling behaviour was stable, loads in excess 

of the elastic buckling load could be attained and sensitivity to imperfections was lower. 

 

In 1971, Tennyson et al. [15] carried out physical tests to assess the buckling behaviour 

of EHS with aspect ratios between 1 and 2. The tests confirmed both Hutchinson’s 

conclusions [13] regarding the high imperfection sensitivity of elliptical shells of aspect 

ratio close to unity and Kempner and Chen’s conclusions [14] concerning the 

attainment of loads beyond the elastic buckling load for EHS with larger aspect ratios.  

In 1976, Tvergaard [16] showed that the extra load carrying capacity above the 

bifurcation load that had been predicted by Kempner and Chen [12, 14] and 

substantiated by the tests of Tennyson [15] may not achieved when elastic-plastic 

material behaviour is considered, due to premature yielding of the major axis regions. 
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Tvergaard [16] also found that high aspect ratio elastic-plastic OHS were moderately 

imperfection sensitive, whilst the lower the aspect ratio, the greater the imperfection 

sensitivity. 

 

With the emergence of steel EHS of structural proportions, a number of recent studies 

have been performed. Following preliminary experimental and numerical investigations 

[17, 18], extensive studies of EHS under axial compression and bending were carried 

out by Chan and Gardner [19, 20] and a system of cross-section slenderness limits was 

established [7]. For compressive loading, these studies have confirmed that Kempner’s 

approach of basing the elastic buckling load of an EHS on that of a CHS with a radius 

equal to the maximum radius of curvature of the ellipse is acceptable [19, 21]. However, 

it is shown later in this paper that this approach becomes overly conservative for many 

geometries, and simple formulae to more accurately predict the buckling stress of EHS 

are presented. 

 

3. Boundary behaviour of EHS 

Elliptical hollow sections are geometrically defined by the length of the two principal 

axes - the major (2a) and minor (2b) axes – as given by Eq. (2). 
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When both axes are of equal length, the section has an aspect ratio of unity and becomes 

a CHS, whilst when the minor axis length is negligible in comparison to the major axis 

length, the aspect ratio approaches infinity, and the case of two parallel plates results 

(Fig. 2). Therefore, the elastic buckling stress for an EHS should be a function of the 

aspect ratio and be bounded by the elastic buckling stress of a CHS (when the aspect 
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ratio is equal to unity) and the elastic buckling stress of a flat plate (when the aspect 

ratio approaches infinity). 

 

The elastic buckling stress of a CHS, found independently by Lorenz (1908), 

Timoshenko (1910) and Southwell (1914) [22], is given by Eq. (3). 
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where r and t are the radius of curvature and thickness of the CHS, respectively, and E 

and  are the Young’s modulus and Poisson’s ratio of the material. The elastic local 

buckling stress of a CHS also depends on the length of the tube, due to the influence of 

the boundary conditions. The greater the length of the tube, the lower the buckling 

stress. The elastic buckling stress of a CHS, including length effects, is given in 

Eurocode 3 Part 1.6 [23] by Eq. (4). 
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where Cx is a coefficient defined by the relative length of the CHS: for medium-length 

cylinders Cx = 1, whilst for short cylinders Cx is greater than 1 and for long cylinders Cx 

is less that 1. Based on the classifications proposed Eurocode 3 Part 1.6, all practical 

structural steel tubes would be regarded as either medium-length or long cylinders. 

 

The elastic buckling stress of a compressed flat plate, found by Bryan (1891) [24], is 

given by Eq. (5). 
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where w is the plate width, t is the plate thickness and K is a buckling coefficient 

dependant on the aspect ratio and the boundary conditions of the plate. 

 

For EHS, much previous research has been based on the proposal of Kempner [9], 

which was later confirmed by Hutchinson [13], that the elastic buckling stress in 

compression may be taken as that of a CHS with a radius equal to the maximum radius 

of curvature in the elliptical section, given by Eq. (6). 
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The assumed elastic buckling stress of a compressed EHS is therefore given by Eq. (7).  
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In the initial design guidance for EHS developed by the steel producer, Corus [25], it 

was proposed that the equivalent radius for cross-section classification could be taken as 

Eq. (8), resulting in the elastic buckling stress of Eq. (9). 
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For an EHS with an aspect ratio of unity, Eqs. (7) and (9) provide the same result, 

which is equal to that of Eq. (3) and that of Eq. (4) with Cx = 1. Therefore, both 

equations fit the CHS bound. However, for an EHS of high aspect ratio, the elastic 

buckling stress of the EHS should tend to that of a flat plate, which neither Eq. (7) nor 

Eq. (9) predict. A formulation for the elastic buckling stress of an EHS that complies 

with both boundaries (CHS and plates) is therefore sought. Defining the equivalent 
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diameter of an EHS DEq,EHS as the diameter of a CHS with the same elastic buckling 

stress, and the relative equivalent diameter as the ratio between this equivalent diameter 

DEq,EHS and the major axis dimension (2a) of the EHS, leads to Eqs (10) and (11) for the 

CHS and plate boundaries, respectively: 
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From Eqs (10) and (11) it may be observed that the equivalent diameter is a function of 

both the aspect ratio a/b and relative thickness t/2a. The relative equivalent diameters 

based on Kempner’s assumption, Eq. (6), and Corus’ proposal, Eq. (8), are given by Eqs 

(12) and (13) respectively; clearly neither of these expressions reflect the plate boundary 

given by Eq. (11). 
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4. Simple analytical model representing the buckling of CHS, flat plates and EHS 

In this section, a simple analytical model that yields the exact classical elastic buckling 

stress of a CHS (Eq. (3)) as well as the wavelength of the longitudinal buckles is 

introduced. The proposed model is also applied to flat plates, obtaining an approximate 

solution for the elastic buckling stress, and finally the model is extended to EHS, 

providing an insight into their intermediate buckling response.  
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4.1 Simply model for representing the axis-symmetrical buckling of a compressed CHS 

When a CHS tube buckles in an axis-symmetrical mode, its deformed shape is such that 

all points at a given section have the same inwards or outwards displacement. Hence, 

knowledge of the displacements of all points along any longitudinal section allows the 

full deflected shape of the tube to be defined. In the buckled state (Fig. 3), the inclined 

nature of the longitudinal compressive load P results in a radial deviation force Fd given 

by Eq. (14), where forces and displacements in the outward directions are positive. 

II

d
PyF   (14) 

where P is the longitudinal compressive load acting on a differential element of area (t × 

ds), Fd is the radial deviation force acting on a unit area (ds × dL), t is the thickness of 

the tube, ds and dL are defined in Fig. 3 and y is the function that describes the 

deflected shape of the tube. 

 

This deviation force Fd is resisted by two mechanisms: the flexural response of the 

longitudinal strips and the axial response of the transverse rings, both of which are 

illustrated in Fig. 3. The transverse rings with an outward displacement are in tension 

whereas those with an inward displacement are in compression. Buckling of a CHS tube 

can therefore be represented by a single longitudinal strip with a series of transverse 

springs corresponding to the rings. The stiffnesses of these two structural elements, the 

longitudinal strips kstrips and the transverse CHS rings kCHS, are given by Eqs. (15) and 

(16), respectively. kstrips is a flexural stiffness per unit width, whilst kCHS is an axial 

stiffness per unit area. 
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The condition that the total deviation force must be resisted by both elements, gives rise 

to the differential equation that governs the buckling of a CHS tube in the axis-

symmetrical mode: 
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By setting P = t, substituting in the stiffness expressions from Eqs (15) and (16) and 

re-arranging, we obtain: 
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The solution to this homogeneous differential equation is of the form y(x)=e
zx

 and the 

roots z are given by: 
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For an infinity long tube (i.e. when a tube buckles without being affected by the end 

boundary conditions), the solution must be of constant period and no hyperbolic 

functions can appear. Therefore, the square root in the numerator of Eq. (20) must be 

zero, and the solution y(x) is a linear combination of the functions sin(-zix) and cos(-

zix). This square root becomes zero when the stress  is equal to the classical elastic 
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buckling stress of a CHS CHS given by Eq. (3). At this stress, the roots z from Eq. (20) 

are equal to: 

i
rt
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z

4 2
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And the half wavelength of the buckles Lw,CHS must satisfy: 
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which is equal to the classical solution [22]. 

 

The model can be also used to identify when non-axis-symmetrical buckling modes 

(e.g. chessboard buckling) would be anticipated. The required radial load qcrit,ring to 

cause a ring to buckle with n waves may be determined from Eq. (24), as shown in [26]. 

)1n(
r

t

)1(12

E
q 2

3

2ring,crit











  (24) 

As described earlier, when a compressed CHS tube buckles, part of the deviation force 

is resisted by the rings; these rings act in tension when their deflection is outwards and 

in compression when their deflection is inwards. Provided the rings are stiff enough to 

avoid buckling under the compressive deviation forces, the mode of buckling of the 

tube will be axis-symmetrical; if this is not the case, the buckling mode will be non-

axis-symmetrical. 
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The elastic buckling stress of a CHS tube (given by Eq. (3)), and hence the inward 

deviation force, are proportional to t/r. However, the required radial load to cause ring 

buckling is proportional to (t/r)
3
 (see Eq. (24)). Therefore, when t/r is large, resistance to 

ring buckling will be high in relation to the inward deviation force, and tube buckling 

will be in the axis-symmetrical mode. Conversely, when t/r is small, a non-axis-

symmetrical mode would be expected, and furthermore, the smaller the t/r ratio, the 

larger the number of circumferential buckles n that would result. It has already been 

established that stocky CHS tubes buckle in an axis-symmetrical mode whilst slender 

tubes exhibit a non-axis-symmetrical response [22], but the model described herein 

provides a simple explanation for this behaviour. 

 

4.2 Application of the proposed model to the buckling of flat plates under compression 

The previous model can be also applied to the buckling of flat plates despite there being 

no symmetry in the transverse direction (Fig. 4), as is the case in the buckling of a CHS, 

though the approach is a simplification of the problem. For the case of flat plates, there 

are two response mechanisms: the flexural response of the longitudinal strips and the 

flexural response of the transverse strips. 

 

When a uniform load q is applied to a transverse strip (of flexural rigidity EIPlate) with 

fixed ends, the displacements yPlate along the length x are given by Eq. (25). The ends of 

the transverse strip are considered as fixed since this reflects the high rotational restraint 

provided by the stiff, high curvature regions of elliptical sections with high aspect 

ratios. 
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Since the stiffness of the transverse strips (defined as the ratio of the applied load to the 

deflection at a given section) is not uniform across the plate width w, an average 

stiffness kAv,Plate can be obtained as: 
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In this case the differential equation becomes: 
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Following the same approach and assumptions as for CHS, the elastic buckling stress 

and buckling half-wavelength can be obtained as: 

2

2Plate,Approx
w

t

)1(12

E524










  (28) 

w606.0w
452

L
4Plate,Approx,w




  (29) 

Considering the simplicity and approximate nature of the approach, the accuracy of the 

result is good, being only 22% below the classical elastic buckling stress of a flat plate 

with fixed edges, which may be obtained from Eq. (5) with K = 6.97 [26]. To yield the 

exact solution, the stiffness of the transverse strips kEx,plate would be: 
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And the buckling half-wavelength Lw,Ex,Plate would be: 
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4.3 Extension of the proposed model to the buckling of a compressed EHS 

Applying the simple model to the elastic buckling of an EHS in compression, the 

following differential equation is obtained: 

 IV

stripsEHS

II ykykPy   (32) 

where kEHS is the stiffness of the transverse EHS rings, which is bounded by Eq. (16) for 

CHS and Eq. (30) for flat plates. 

 

Following the same approach as for CHS and flat plates, the elastic buckling stress and 

buckling half wavelengths of EHS can be obtained as: 
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Eqs. (33) and (34) have been obtained by imposing a deflected shape for the buckled 

geometry in the simple model given by y(x)=Asin(πx/Lw,EHS). On this basis, the 

proportion of the total deviation force resisted by the transverse EHS rings can be 

obtained – the result is given in Eq. (35). 
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The contribution of the transverse EHS rings is therefore equal to the contribution of the 

longitudinal strips, regardless of both the aspect ratio and the relative thickness. Hence, 

by eliminating kEHS from Eqs. (33) and (34), it is obtained that the elastic critical stress 

is given by: 













 


2

EHS,w

2

EHS,Approx
tL

EI
2  (36) 

The elastic buckling stress of an EHS Approx,EHS may therefore be approximated as 

twice the Euler buckling stress of the longitudinal strips, with a buckling length equal to 

Lw,EHS. 

 

5. Numerical modelling 

In order to investigate how the equivalent diameter of an EHS varies with aspect ratio 

a/b and relative thickness t/2a, numerical solutions for elastic buckling loads for a set of 

EHS have been obtained by means of the finite element modelling package ABAQUS. 

 

5.1 Description of the models 

FE models were developed with a fixed major axis dimension of 400 mm and a fixed 

length of 1000 mm. Nine variations of the minor axis dimension were taken: 400 

(CHS), 300, 200, 135, 100, 65, 40, 20 and 0 mm (plate). Ten variations of thickness 

were considered: 40, 32, 25, 20, 16, 10, 8, 5, 2 and 0.1 mm. This provided aspect ratios 

a/b equal to 1.00, 1.33, 2.00, 2.96, 4.00, 6.15, 10.00, 20.00 and infinity, as well as 

relative thicknesses t/2a equal to 0.100, 0.080, 0.0625, 0.050, 0.040, 0.025, 0.020, 

0.0125, 0.005 and 0.00025 (i.e. ranging between 1/10 and 1/4000). The major and 

minor axis dimensions relate to the external surface of the EHS, and the ABAQUS 

‘offset’ command [27] was used in order to define the centreline (mid-thickness) of the 
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sections. In all the models, there were 100 elements in the circumferential direction and 

100 elements in the longitudinal direction, totalling 10000 elements. The basic element 

employed was a quadrilateral, stress/displacement shell element S4R, with reduced 

integration, a large-strain formulation and six degrees of freedom per node [27]. These 

elements allow transverse shear deformation and use thick shell theory when the shell 

thickness is large, but become discrete Kirchhoff thin shell elements as the thickness 

decreases. In order to assess the influence of shear deformation, some of the results 

were replicated using the STRI3 element, which is a triangular, stress/displacement 

shell element that employs thin shell theory. The elastic material properties of structural 

steel (E = 210000 N/mm
2
 and  = 0.3) were employed for all models. 

 

Boundary conditions were applied to model fixed ends. These were achieved by 

restraining all displacements and rotations at the base of the tubes, and all degrees of 

freedom except vertical displacement at the loaded end of the tubes, where compressive 

loading was uniformly distributed. 

 

5.2 Results from the numerical models 

The elastic buckling loads corresponding to the first mode of buckling obtained from 

the numerical models are presented in Table 1. The results are analysed in Section 6. 

 

6. Analysis of results 

6.1 Comparison between FE and Kempner-based results 

The relative equivalent diameters obtained from the FE models and by means of Eq. (3) 

have been presented in Fig. 5, together with the relative equivalent diameters obtained 

from Kempner’s assumption (Eq. (12)) and the from the Corus proposal for EHS 
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classification (Eq. (13)). Although the Corus proposal was not developed specifically to 

reflect the critical buckling stress of an EHS, it has been considered in this study for 

comparison purposes. The comparisons show that the equivalent diameter based on 

Kempner’s assumption fits the numerical results well for very thin tubes (more slender 

than the practical range produced), whilst the equivalent diameter based on Corus’s 

EHS classification fits the numerical results well for very stocky tubes (stockier than the 

practical range produced). 

 

Figs 6 and 7 show the ratios between the elastic buckling stresses obtained based on the 

equivalent diameters of Kempner and Corus and that obtained from the FE models. 

Kempner’s assumption consistently leads to conservative predictions, with errors 

between 14 and 24% for the current commercial range (a/b = 2 and t/2a ratios between 

1/50 and 1/16) [25]. Corus’ proposal results in unconservative predictions with errors 

between 7 and 21% for commercial geometries. The higher the aspect ratio, the greater 

the errors associated with both existing proposals. 

 

6.2 Interpretation of the buckling response mechanisms of compressed EHS tubes  

Both the aspect ratio a/b and relative thickness t/2a define the manner of buckling of an 

EHS. In Section 4.3, and in particular through Eq. (33), it was shown that the local 

buckling response of an EHS is governed by the stiffness of both the longitudinal and 

transverse elements. The longitudinal stiffness is simply defined by the flexural stiffness 

of the longitudinal strips since there is no curvature in the longitudinal direction. 

However, the transverse stiffness kEHS is influenced by both the flexural and membrane 

response of the transverse EHS rings. The longitudinal and transverse flexural 

stiffnesses are both proportional to the cube of the thickness (see Eqs (15), (26) and 

(30)), whereas the membrane stiffness is proportional to the thickness (see Eq. (16)). 
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The stiffness of the transverse EHS rings, which was determined by means of 

substituting the numerically obtained elastic buckling stresses into Eq. (33), has been 

plotted in Fig. 8. The ratio between the total (flexural plus membrane) transverse 

stiffness of the EHS rings and the transverse flexural stiffness of a plate has been 

illustrated in Fig. 9. The results indicate that the smaller the relative thickness t/2a, the 

larger the ratio between the total transverse stiffness of the EHS and the transverse 

flexural stiffness of a plate, and therefore the higher the contribution of the membrane 

component. Also, as the aspect ratio a/b of the section increases, the contribution of the 

membrane component reduces, and the total transverse stiffness of an EHS approaches 

the flexural stiffness of a flat plate (Eq. (30)). For high aspect ratios, the relative 

equivalent diameter reaches a plateau (Eq. (11) and Fig. 5), the level of which is 

governed by the relative thickness of the section. The higher the relative thickness, the 

smaller the aspect ratio required to reach plate-like behaviour (Figs 5 and 8). 

 

The ratio of the transverse plate stiffness kEx,plate to the stiffness of the transverse CHS 

rings kCHS can be obtained by substituting r = a into Eq. (16) and w = 2a into Eq. (30), 

resulting in: 

2

2
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t

)1(
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
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




  (37) 

For the range of relative thickness considered in this study (1/4000 ≤ t/2a ≤ 1/10), this 

ratio (Eq. (37)) is bounded between 1.7×10
-6

 and 0.27. For the commercial range of the 

relative thicknesses (approximately 1/50 ≤ t/2a ≤ 1/16) [25], this ratio lies between 0.01 

and 0.11, indicating that the transverse membrane stiffness of a CHS is more significant 

than the transverse flexural stiffness of a plate. 
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6.3 Half-wavelength of longitudinal buckles 

The half-wavelengths of the longitudinal buckles have been directly measured from the 

FE models and plotted in Fig. 10. These measurements are approximate, since they have 

been determined simply by means of counting the number of elements per buckling 

half-wave. Also, for the models with t/2a = 1/4000, results were influenced by the mesh 

density (i.e. the adopted mesh density was too coarse). Mesh refinement was found to 

alter the half-wavelength of the longitudinal buckles but not the elastic buckling stress. 

The results show that the higher the relative thickness t/2a, the longer the half-

wavelengths of the longitudinal buckles (Fig. 10). All studied CHS buckled in non-axis-

symmetrical modes, in which the buckling half-wavelengths are longer than those with 

axis-symmetrical modes. For relative thicknesses less than or equal to 1/16, there is a 

transition of buckling mode type from CHS-like modes to plate-like modes between the 

studied aspect ratios of 1 and 4/3, as described in Section 7. Beyond this transition point 

(i.e. a/b greater than approximately 4/3), the larger the aspect ratio, the longer the half-

wavelengths of the longitudinal buckles (see Fig. 10), whilst for aspect ratios below the 

transition point, the reverse is true. For stocky sections with relative thickness larger 

than 1/16, this transition point is found at higher aspect ratios (see Fig. 10). The plateau 

corresponding to the buckling half-wavelengths of flat plates with fixed edges 

(approximately equal to 0.70w) may be clearly seen in Fig. 10. 

 

The ratio between the half-wavelengths of the longitudinal buckles observed from the 

FE models and those obtained from the simple analytical model of Eq. (34), which is 

based on the assumption of an axis-symmetrical buckling mode, has been plotted in Fig. 

11. Although the analytical model has been shown to accurately predict the elastic 
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buckling stress (Sections 4.1 and 4.2), Fig. 11 shows that the half-wavelength of the 

longitudinal buckles is less well predicted.  

 

6.4 The plate bound 

For high aspect ratios, the elastic buckling stress obtained from the FE models does not 

tend to the critical stress of a fixed plate given by Eq. (5), since shear deformation 

influences the results. In this sub-section, the level of influence of this effect is 

examined. Two cases have been investigated. In Case (1), shear deformation is 

considered (as in Section 5) and the length of the plate is varied with L/w ranging 

between 0.4 and 7.5. Case (2) is the same as Case (1) except that shear deformation is 

not considered. The results of Case (2) converge to the classical buckling stress given 

by Eq. (5) with K = 6.97 (for long plates). The influence of shear can be assessed by 

comparing the results of Cases (1) and (2), which have been plotted in Fig. 12 for L/w 

larger than 2. For ratios of L/w less than 2, the influence of the shear deformation 

depends on the length of the tubes, and the shorter the tubes, the higher the influence of 

the shear deformation. From Fig. 12 it may be observed that, as expected, the influence 

of shear is greater as the relative thickness increases and for low relative thickness, 

shear deformation has no effect. An expression for determining the elastic buckling 

stress for the plate bound, allowing for shear deformation (based on the proposed curves 

from Fig. 12) is given by Eq. (40). 

 

7. Transition between CHS and plate buckling modes 

For EHS with increasing aspect ratio a/b, there is a transition from CHS-like buckling 

modes to plate-like buckling modes. From Fig. 10, it may be observed that this 

transition is not gradual since the half-wavelengths of the longitudinal buckles change 
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rapidly for aspect ratios close to unity and converge to the half-wavelength of the plate 

bound for high aspect ratios. In this section, the transition between the two responses – 

CHS-like and plate-like buckling modes – is investigated. Two relative thicknesses t/2a 

are considered – 1/50 and 1/16 – representing the slenderness extremities of the 

practical range of produced EHS. 

 

For EHS of any aspect ratio and relative thickness, both CHS-like and plate-like 

buckling modes are possible, though one or other may not appear until a number of 

higher buckling modes have been considered. CHS-like buckling modes are defined as 

those where the transverse waves spread all around the perimeter of the section (shown 

for EHS 400×350×8 in Fig. 13(a)), whilst plate-like buckling modes are characterised 

by buckling waves occurring predominantly in the minor axis regions of the section 

(shown for the same EHS in Fig. 13(b)). For the example shown in Fig. 13, the lowest 

buckling mode is the plate-like mode (Fig. 13(b)), whilst the CHS-like response shown 

in Fig. 13(a) appears as a higher buckling mode. 

 

In general, the lowest buckling modes for EHS with low aspect ratios are CHS-like 

modes, whereas the lowest buckling modes for EHS with high aspect ratios are plate-

like modes. Fig. 14 illustrates the transitional behaviour with aspect ratio for the two 

relative thicknesses considered. The transition point is defined as the aspect ratio at 

which the lowest buckling mode changes from a CHS-like response to a plate-like 

response, at which point there is no sudden variation in buckling load, but the buckling 

wavelength alters significantly due to the difference in mode. From Fig. 14, it may be 

seen that these points occur at aspect ratios of approximately 1.05 for t/2a = 1/50 and 

1.19 for t/2a = 1/16, and it may be inferred that the smaller the relative thickness, the 
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lower the aspect ratio of the transition point. For the practical range of relative 

thicknesses of EHS, the transition point occurs at an aspect ratio of less than 1.2. 

 

 8. Length effects 

The local elastic buckling loads of CHS and EHS are influenced by member length. 

Eurocode 3 Part 1-6 [23] accounts for length effects in CHS through the Cx factor that 

appears in Eq. (4). For medium and long CHS tubes, Cx is given by Eq. (38), where the 

2a is the diameter of the CHS and L is the length. 
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In order to investigate length effects in EHS, models of three times the length (L/2a = 

7.5) of those studied in Section 5 have been analysed. The elastic buckling loads for 

three aspect ratios (1.00, 1.33 and 2.00) have been presented in Table 2. In Fig. 15, the 

buckling loads of the shorter EHS (L/2a = 2.5) have been normalised by those for the 

longer EHS (L/2a = 7.5). A solid line representing the ratio of Cx factors for the two 

lengths (i.e. Cx for L/2a = 2.5 divided by Cx for L/2a = 7.5) as given by Eurocode 3 Part 

1.6 has been added to Fig. 15. Within the commercial range, this line may be seen to 

closely match the FE results for a/b = 1. Two further dashed lines, representing the 

proposals of the authors for a/b = 1.33 and 2.00 have also been added to Fig. 15. The 

results clearly indicate that the higher the aspect ratio, the smaller the effect of length on 

the elastic buckling stress. The proposals for Cx,EHS factors for all aspect ratios, based on 

the Cx factors for CHS from Eurocode 3 Part 1.6, are given by Eq. (44). 
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9. Proposed formulations 

It is proposed that the elastic buckling stress of an EHS under compression may be 

determined from Eq. (39).  

 
*

PlateEHS,x

EHS,Eq
2EHS

C
D

t2

)1(3

E



  (39) 

where 
*
Plate is the elastic buckling stress of a flat plate with the same boundary 

conditions at the loaded ends as the EHS and taking into consideration shear 

deformation (i.e. Mindlin plates [28,29]). This may be approximated by: 
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where w is the width of the plate (w = 2a), K
* 

is the buckling coefficient for all plate 

edges fixed [26] that can be approximated from Eq. (41), and φSD is a reduction factor 

that accounts for shear deformation (Eq. (42)). K
*
 may be conservatively taken as 6.97. 
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Consequently, the relative equivalent diameter for the plate boundary, which was given 

by Eq. (11), can be improved by including the influence of shear deformation, as given 

by: 
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The length effect factor Cx,EHS for use in Eq. (39) was analysed in Section 8, and may be 

determined from Eq. (44) based on the Cx factor given by Eurocode 3 Part 1-6 for CHS 

(Eq. (38)).  
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The proposal for the equivalent relative diameter arises from consideration of the results 

shown in Fig. 5, where it may be observed that (1) for small aspect ratios, the relative 

equivalent diameter is approximately linearly proportional to the aspect ratio, and that 

(2) the smaller the relative thickness, the higher the slope of the lines. Therefore, a 

simple expression with the following form is proposed: 
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where the f values are obtained from Eq. (46), which provides a conservative 

approximation of the results of the FE models (see Fig. 16).  
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Elastic buckling stresses for EHS have been estimated using three different approaches: 

(1) the authors’ proposal given by Eqs (39) to (46), (2) Kempner’s assumption (Eq. 

(12)) including the length effect (Eq. (44)), and (3) a modified version of Kempner’s 

approach (Eq. (12)) that includes the length effect (Eq. (44)), but is also bounded by the 

plate buckling expression of Eq. (40). The predicted elastic buckling stresses given by 

the three different approaches have been compared with the numerically generated 

results in Fig. 17. 
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For the full range of aspect ratios (Fig. 17 (a)), the proposed formula yields maximum 

disparities from the numerical results of less than 17%, which are markedly lower than 

the 90% obtained from Kempner’s assumption. Furthermore, the proposed formula (as 

with Kempner’s approach) consistently provides lower bound solutions. The modified 

Kempner approach whereby the plate bound is also considered in evaluating the elastic 

buckling stress yields disparities of up to 33%, representing a marked improvement over 

Kempner’s original approach. For the more practical range of geometries (a/b < 4 and 

t/2a < 1/16) (Fig. 17 (b)), the proposed formula yields maximum disparities from the 

numerical results of less than 13%, compared to 39% and 31% for the original and 

modified Kempner approaches, respectively. For slender sections within the practical 

range of geometries (a/b < 4 and t/2a < 1/50) (Fig. 17 (c)), which are most susceptible to 

local buckling, the proposed formula yields maximum disparities from the numerical 

results of less than 6%, compared to the 22% obtained from the original and modified 

Kempner approaches. The proposed approach for determining elastic buckling loads for 

compressed EHS is simple and yields accurate and conservative results over a wide 

range of geometries. 

 

10. Application of the findings to cross-section classification 

Cross-section classification represents a fundamental feature of metallic structural 

design, whereby cross-sections are placed into discrete behavioural classes based on 

their local buckling response. The two keys features of the classification system are the 

slenderness parameters (measures of local cross-sectional slenderness) and slenderness 

limits (to mark the boundaries between the classes). For CHS, the basic slenderness 

parameter adopted in Eurocode 3 is D/t
2
, where D and t are the diameter and thickness 

of the CHS, respectively and  = (235/y)
0.5

 where y is the material yield strength. For 
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the cross-section classification of EHS, it has recently been proposed [7] that the 

slenderness parameter for compression be taken as De/t
2
, where De is defined on the 

basis of Kempner’s assumption as 2a
2
/b. This has been found to yield conservative 

results in comparison to CHS, and therefore allows the CHS slenderness limits to also 

be applied to EHS. However, for greater structural efficiency, and to reduce the need for 

the lengthy calculations associated with slender (Class 4) cross-sections, it is proposed 

herein that De be taken equal to DEq,EHS determined from Eq. (45), with the coefficient f 

from Eq. (46). 

 

A comparison of CHS and EHS test data in compression is shown in Fig. 18. For the 

EHS, the results are plotted on the basis of the Kempner equivalent diameter (2a
2
/b) and 

the proposed equivalent diameter (from Eq. (45)). Regression curves have been added 

for the three data sets. These clearly indicate that both slenderness parameters for EHS 

are conservative in comparison to CHS, but the proposed equivalent diameter yields 

closer agreement between the two section types, and is therefore more accurate and 

appropriate for design. On this basis, it is recommended that EHS may be classified in 

compression using CHS slenderness limits and the equivalent diameter from Eq. (45). 

 

11. Conclusions 

Tubular members of elliptical cross-section have recently been introduced into the 

construction market, offering a new alternative to structural engineers and architects. As 

part of the development of structural design rules for EHS, this paper has focused on 

both the explanation and the accurate prediction of their elastic buckling response, being 

intermediate between that of circular sections and flat plates. The transition between 

these two boundaries is dependant upon both the aspect ratio and relative thickness of 

the section; a simple analytical model has been developed to explain how these two 
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parameters influence the longitudinal and transverse stiffnesses of the section and 

thereby control the structural behaviour (buckling mode and wavelength) and elastic 

buckling stress of elliptical tubes. Based on numerical results, a simple yet accurate 

approach to determine the elastic buckling stress of compressed EHS has been 

proposed. This approach offers significant improvements in the prediction of elastic 

buckling stresses over existing approaches. The proposed formula for the equivalent 

diameter has also been incorporated into a slenderness parameter for the cross-section 

classification of EHS. The validity and benefit of this inclusion have been shown 

through comparisons with available test results. 
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Tables 

Table 1. Results of models with L/2a = 2.5. Elastic buckling loads. 

Table 2. Results of models with L/2a = 7.5. Elastic buckling loads. 
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Table 1: Results of models with L/2a = 2.5. Elastic buckling loads. 

 

Major and minor axis Elastic buckling loads of the modelled EHS (MN) 

2a (mm) 2b (mm) t=0.1 mm t=2 mm t=5 mm t=8 mm t=10 mm t=16 mm t=20 mm t=25 mm t=32 mm t=40 mm 

400 400 8.04×10
-3

 3.22 19.96 49.92 77.38 190.66 297.07 473.90 720.07 1066.30 

400 300 5.44×10
-3

 2.19 14.00 36.50 57.62 151.35 239.44 375.57 588.40 898.21 

400 200 3.20×10
-3

 1.31 8.49 22.44 35.68 95.37 150.31 232.76 386.68 628.64 

400 135 1.98×10
-3

 0.82 5.44 14.55 23.34 60.42 96.14 157.95 282.87 488.37 

400 100 1.42×10
-3

 0.60 4.02 10.82 17.01 45.29 76.03 131.48 246.72 439.65 

400 65 8.79×10
-4

 0.38 2.61 6.72 10.96 34.59 62.28 113.85 223.38 409.10 

400 40 5.40×10
-4

 0.24 1.61 4.78 8.49 30.62 57.41 108.02 216.55 401.48 

400 20 2.69×10
-4

 0.13 1.07 3.91 7.41 29.06 55.71 106.43 215.75 402.42 

400 0 7.14×10
-6

 0.06 0.89 3.63 7.06 28.38 54.51 103.81 208.52 383.86 
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Table 2: Results of models with L/2a = 7.5. Elastic buckling loads. 

 

Major and minor axis Elastic buckling loads of the modelled EHS (MN) 

2a (mm) 2b (mm) t=2 mm t=5 mm t=8 mm t=10 mm t=16 mm t=20 mm t=25 mm t=32 mm t=40 mm 

400 400 3.11 18.64 44.80 64.25 152.16 229.21 351.04 570.97 894.22 

400 300 2.19 13.92 36.23 55.24 132.18 204.49 315.86 518.98 820.66 

400 200 1.30 8.44 22.28 35.44 92.40 143.55 225.04 374.78 605.71 
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a) 

 

b) 

 

Fig. 1. Terminal 4 of Barajas Airport in Madrid, Spain [5].  a) EHS columns to support 

the roof structure and b) Connection detail at base of columns 
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Fig. 2: Transition between plate, EHS and CHS geometry 



Cite this paper as: Ruiz-Teran AM, Gardner L, 2008, Elastic buckling of elliptical tubes, Thin-Walled 
Structures, Vol:46, ISSN:0263-8231, Pages:1304-1318 [DOI: 10.1016/j.tws.2008.01.036] 

37 

 

Fig. 3: Simple model for the axis-symmetrical buckling of CHS. a) Elements 

contributing to the structural response, b) Simple model, c) Link between longitudinal 

and transverse elements 
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Fig. 4: Simple model for the buckling of plates with fixed edges: a) Elements 

contributing to the structural response, b) Simple model, c) Link between longitudinal 

and transverse elements 
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Fig. 5. Relative equivalent diameters versus aspect ratio 
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Fig. 6. Ratio between the elastic buckling load obtained with Kempner assumption and 

that obtained by FE versus the aspect ratio of the EHS 
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Fig. 7. Ratio between the elastic buckling load obtained with Corus assumption and that 

obtained by FE versus the aspect ratio of the EHS 
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Fig. 8. Transverse stiffness of the EHS. 



Cite this paper as: Ruiz-Teran AM, Gardner L, 2008, Elastic buckling of elliptical tubes, Thin-Walled 
Structures, Vol:46, ISSN:0263-8231, Pages:1304-1318 [DOI: 10.1016/j.tws.2008.01.036] 

43 

 

Fig. 9. Ratio between the EHS and plate transverse stiffness 
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Fig. 10. Lengths of the longitudinal half-waves of EHS. 
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Fig. 11. Ratio between the numerical and the analytical longitudinal half-wavelength of 

EHS 
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Fig. 12. Effect of the shear deformation on the elastic buckling stress of plates (L/w ≥ 2) 
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Fig. 13. Types of buckling modes for EHS 400×350×8. a) CHS-like b) Plate-like. 
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Fig. 14. Transition between CHS-like and plate-like buckling modes. 
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Fig. 15. Influence of length on elastic buckling load of EHS 
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Fig. 16. f factor for simple formula for determining the relative equivalent diameter of 

EHS. 
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Fig. 17. Accuracy of the proposal for estimating the elastic buckling stress of EHS. a) 

For the full range of the study (t/2a ≤ 1/10). b) For a practical range (a/b ≤ 4 and t/2a ≤ 

1/16). c) For slender sections (a/b ≤ 4 and t/2a ≤ 1/50) 
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Fig. 18. Comparison of proposed and Kempner equivalent diameters employed in EHS 

slenderness parameters 
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