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Abstract

Storage systems are a critical component of the 3-tier web applications in-
creasingly deployed to cloud computing platforms. Elasticity is the cloud’s most
marketable attribute, and in order to achieve this for storage systems automatic
control is required to achieve self-management.

This work investigates partition-demand aware control, demonstrating ex-
perimentally that this information can be turned to control able to consider the
structure of the workload it is observing, rather than assuming it evenly dis-
tributed across the keyspace. This enables fine-grained load-balancing, leading
to a reduction in cloud infrastructure rented by a self-managing storage system.

Experimental results with the (Dynamo based) Voldemort key-value store
demonstrate the functionality of this control mechanism for pathological exam-
ples, and lead the way for future work or integration with more sophisticated
storage control systems.
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Chapter 1

Introduction

Storage systems are a critical component of the 3-tier web applications increas-
ingly deployed to cloud computing platforms. Elasticity is the cloud’s most mar-
ketable attribute, and in order to achieve this for storage systems automatic
control is required to achieve self-management.

This work investigates partition-demand aware control, demonstrating ex-
perimentally that this information can be turned to control able to consider the
structure of the workload it is observing, rather than assuming it evenly dis-
tributed across the keyspace. This dichotomy is illustrated by Figure 1.1. This
enables fine-grained load-balancing, leading to a reduction in cloud infrastruc-
ture rented by a self-managing storage system.

Motivation for cloud storage research

Elasticity is a key selling point for cloud computing. Paying only for what you
need, and being able to immediately shrink or grow your rented infrastructure
according to changes in demand, is very attractive to companies whose appli-
cations have unstable loads, such as new applications which may “go viral” and
see huge increases in popularity during a short period of time.

While IaaS platforms provide utility-model infrastructure rental, this en-
ables but does not achieve the system elasticity needed to take advantage of
it. Dynamic resource management is required to adapt the consumed resources
according to demand, whether provided by a human overseer or the system
itself. Self-managing systems are able to monitor themselves and respond to
change, achieving goals such as fault-tolerance, consistent performance, or cost
optimisation, all without human intervention. Such systems may respond faster
than human operators, cost less to employ in achieving always-on monitoring,
and promise to manage complex systems beyond the understanding of human
operators.

Three-tier web applications are the focus of much industrial and academic
attention, comprising the vanguard of cloud adopters and being central to
many new business ventures. These applications typically require state persis-
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Uniform workload Non-uniform workload
(smaller overall)

Figure 1.1: Uniform and non-uniform partition-load histogram stacks, where
each block is a data partition’s access rate, and the stack’s total height is the
system workload.

tence, to retain user data or other information to present to site visitors. These
applications must scale with demand, and in doing so each of the tiers must
also scale. Such applications provide a number of features making their con-
trol useful and interesting. They are are constrained by infrastructure rental
costs, data transfer costs, and may be governed by contractual constraints in
the form of SLA, dictating a required quality of service such as the average or
percentile-based latency.

The storage tier of an application is particularly tricky, as aside from the
well-known issues of consistency, partitioning, fault-tolerance and concurrency
control, which we do not address herein, the state-transfer required when
changing the storage cluster size complicates its control. This data transfer has
two profound effects on the storage service: it worsens its performance, and it
delays the onset of benefits from scaling.

Despite these complexities, human managers are reluctant to surrender
control of their systems to automatic controllers without confidence that they
are safe and effective – reliably reducing their operating costs without violating
their service level agreements. However, existing systems have been received
with scepticism [1]. In order to exploit the benefit of elastic scaling offered
by cloud computing, we need to investigate mechanisms for building systems
which autonomously manage their own resource consumption.
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Contributions

Past work (section 3) has considered methods for determining the resources
which should be made available to a storage system, but entrusts the system
with the task of efficiently utilising those resources.

In this work we present a control mechanism for solving this second prob-
lem, of how to allocate data to storage nodes, so that performance will meet
service-levels without money being wasted on over-provisioning due to unbal-
anced server load. This approach may be of use to storage systems, or to control
agents seeking to make more informed decisions about their target system.

The contribution of this thesis is an investigation of the control of elastic
storage where uniform load is not assumed. A control mechanism is presented
which determines how to position data in the storage system based on demand
or performance associated with the stored data.

The greedy-heuristic approach to solving the bin-packing problem this presents
was previously published by [2]. This work reproduces this part of their work
in relation to a different storage system, the Voldemort eventually-consistent
key-value store.

Results

Our results, presented in Section 6, indicate that fine-grained workload moni-
toring does indeed improve controller responsiveness by decreasing the amount
of data which needs to be moved to improve performance, and may reduce the
service’s consumed resources relative to a naïve uniform-load assuming con-
troller. Although incomplete and inconclusive, the results are promising, and
we suggest avenues for further experimentation which time did not permit.

Context

This work was carried out under the guidance of Ahmad Al-Shishtawy and As-
sociate Professor Vladimir Vlassov, who have related publications and ongoing
research on self-management and automatic control for storage and other ser-
vices [3][4].
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Chapter 2

Cloud storage characteristics

This section introduces concepts relevant to the use and management of elastic
cloud storage services.

2.1 Cloud services: compute, content-delivery, storage

We may begin by differentiating storage from other cloud services such as com-
pute and content delivery networks. Compute nodes are stateless, and as such
can be made to scale horizontally. This can be seen in production with Ama-
zon EC2, and the Google AppEngine and Heroku PaaS platforms. It is also
addressed in [7] which presents a feedback controller for elastically scaling
the size of an Apache Tomcat server cluster. Issues largely relate to available
APIs, and to deriving appropriate feedback control logic in initial works. Such
is helpful, but not sufficient, for controlling cloud storage systems.

CDN content delivery systems are also storage of a sort, but are quite differ-
ent from the storage systems we consider here in that they are write-only and
not cluster-local. Instead their emphasis is on immutable publication, the dis-
semination of a specific stored object to clients with good data locality, to save
network bandwidth and reduce response times. They act as a caching, rather
than state persistence service. That said, some of these concepts may still be
transferable for provisioning the caching layer’s consumed resources.

The key difference setting apart storage, as noted by [2], is the location of
specific data items on specific servers: not all servers can service a request to
read or write that item. Issues such as replication, consistency, query routing
and performance constraints make controlling storage a tricky proposition.

With the rise of web-scale computing, championed by the likes of Amazon,
Google, Facebook and Twitter, system engineers have increasingly found that
traditional database systems are difficult to use with this new form of traffic.
Rather than transaction processing with the ACID guarantees, focus has shifted
to user-experience in terms of response-time and service availability. Further-
more, the social web causes data to interact in quite different ways: a user is
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no longer interested in only their own data, leading to a natural partitioning
scheme where their data is all co-located and easy to perform arbitrary SQL join
operations and the like, but rather they want to see other user’s data, Facebook
being an example. with applications querying data in quite different ways from
before many users and quite different data consistency [5] provides a survey
of cloud storage systems; additionally a more hands-on reader may find [6] of
interest.

2.2 Quality of Service

In order to keep users happy with a system it is typical to place real-time con-
straints on its performance: SLAs, comprising SLOs. Menasce’s article [8] pro-
vides a good introduction to quality of service concepts. For more on user sat-
isfaction see [9] and [10]. User experience is also a motivation for Amazon’s
Dynamo work [11], where choice of percentile as the SLO metric is driven
by a desire to provide a good service to (almost) all customers. Google and Mi-
crosoft have presented jointly on the impact of response time on user behaviour
for their search engines [12].

2.3 Elasticity

In much the same way as elasticity provides tangible business benefits to a con-
sumer such as cost-cutting, it is probable that business policy rather than tech-
nical decisions will drive controller behaviour. For example, a service provider
might not require their controller to always follow the demand curve; rather
only being interested in provisioning for spikes, or cost savings associated with
scaling down according to diurnal usage patterns. Whether and to what extent
service level violations are acceptable to the client and service provider are pol-
icy decisions, and it may be useful to consider this before designing controllers
which assume certain behaviours are always desirable. For example, a service
provider utilising additional resources to avoid all violations will have higher
operating overheads than one which is more sloppy, allows some violations,
but reduces its server count and saves money. This should then be seen in the
prices and SLAs they offer.

2.4 Common traffic patterns

Application workloads should be considered case-by-case, though general pat-
terns have emerged for web applications which are useful in controller de-
sign and evaluation. We will consider three workload models, linear change
is assumed to represent ordinary growth or decline in popularity; exponential
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growth is seen in the so-called “flash-crowd” effect of short-term surges in de-
mand; and cyclic workload variations are captured by the “diurnal pattern” of
daytime and night-time usage.

2.4.1 Diurnal patterns: predictable cyclic usage

A diurnal traffic pattern is one where daytime usage is regularly greater than
that at night. This pattern has been found in measurement papers to apply to
particular web applications: Duarte et al found it in “blogosphere” activity [13],
and Veloso et al [14] for live streaming video. It has been seen, however, that
the global nature of the internet can skew this expected pattern, as in the case
of DNS servers [15], so should be assumed carefully, and preferably measured.

As this pattern is by definition cyclic, it is possible to predict and adjust
provisioning for the day and night periods based on expected demand for the
respective diurnal phases. Given a simple day and night pattern, the system
may simply choose to switch between two known configurations, one for day-
time and one for night-time. However, while the shape of the change in demand
is predictable, the amount of demand in the respective phases may change over
time, requiring updating of the two configurations.

2.4.2 Flash crowds: viral popularity growth

A common pattern since the advent of online social media, such as Twitter
and Facebook, is that successful new websites or applications may experience
exponential growth in popularity over a short period of time. This is not a
new phenomenon, previously it was known as the “Slashdot effect”, taking
its name from the popular technology news site, where websites accustomed
to small numbers of visitors, in many cases running on a single web-server,
would receive a massive surge in demand following being linked to in an article,
prompting thousands of Slashdot readers to visit the site while the news item
is fresh. Web 2.0’s focus on user content has resulted in the creation of more
websites providing a similar service to Slashdot, and so the effect is now if
anything more widespread.

While a detailed analysis of the business and monetisation implications of
this behaviour are best left to business analysts, it seems to be widely assumed
that this is desirable behaviour for new internet companies. At worst, as might
be considered by sites hoping to maintain steady and reliable operation, it
might be seen as analogous to a natural disaster: something undesirable but
necessary to have contingencies for during infrastructure design or planning.

This traffic pattern is problematic as it sees server workload quickly rise
from their typical range, for which they will likely have been optimised to keep
operating costs low, to a higher order of magnitude of traffic which is beyond
their capacity to service as desired or dictated by their SLOs. The consequences
of failing to provide good service to users was discussed in section 2.2, though
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it may be further noted that in this case many of the visitors are new users, who
may never return if the page does not load and work well enough capture their
interest in the site’s offered product or service on this first visit.

2.5 Data partitioning and replication

Storage systems are expected to provide a number of guarantees regarding the
data they hold. These include durability: the notion of not losing data due to
system failures, and availability: the notion of data being available within a
bounded response time for some proportion of all data requests.

Both durability and availability are addressed in storage systems through
replication, the practice of holding identical copies of stored data on multi-
ple nodes. This introduces hardware redundancy to the system and making
it far less likely that hardware failure will cause data-loss, and enables load-
balancing between replicas to improve availability.

Finite data-capacity is a constraining factor on replication; each storage
has a finitely large hard disk or system memory to store data. If each node
holds all of the system’s data, then the storage system inherits this limited data-
capacity. While providing a simple replication and load-balancing model, this
upper bound on stored data is not desirable. Data partitioning solves this prob-
lem by dividing the space of possible stored items into subsets, or partitions.
Each stored item is deterministically assigned to a partition in a system-specific
fashion. Examples include partitioning by database table, by primary-key or
key range, or by segment of a ring onto which values of a hash function are
mapped, such as consistent hashing [16, 11]. Having divided, or partitioned,
stored files, each storage node will hold one or more data partitions (subsets).
Queries for this data are then routed to the subset of storage nodes holding
replicas of this partition of data.

Fundamental results in distributed computing unfortunately complicate the
replication of data in a distributed storage system, with such issues as unreli-
able failure-detection, distributed consensus for update operations, and dis-
tributed data consistency. We assume the reader is already familiar with these
topics, else suggest [17, 18, 19] as reference texts.

The consistency model of a given storage system is important to consider
here, as it places theoretical rather than API limitations on possible actuation
mechanisms. In particular consider stores offering strong consistency: here an
increase in replication degree for a partition would actually worsen its perfor-
mance (as may be verified by experimenting with the Paxos [20] algorithm,
or pursuing its literature). This contrasts with eventually-consistent key-value
stores, where reads from different replicas may produce different results, or
different versions, depending on the adopted concurrency control mechanism
([21]) , but offer vastly superior performance.

In this work, we consider partitioning and replication as a means of achiev-
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ing greater availability, and take for granted durability and consistency, assum-
ing that they will be addressed by the storage system, and that aside from
different systems posing different constraints on the controller, the approach
we present here is not in conflict with these points; indeed it may provide a
means of improving performance even for strongly consistent stores. Due to
time constraints these points have not been pursued further in this work.

2.6 Data migration

Data migration is an expensive but necessary part of elastic storage control.
While we want to be able to change the number of nodes, doing so means
copying data from other nodes which are already serving user requests, and
perhaps other disturbances to the cluster while migrating or repartitioning.
This additional work hampers the system’s ability to serve its clients in the
short-term, but once complete its performance should be improved. Finding
an efficient manner to determine which state to transfer, and trading its copy
duration for additional server workload, is a key issue in storage controller
design.

Different systems will require different kinds of data migration. For exam-
ple, a storage system where each node holds the entire data-set will be able
to have new nodes access data in parallel from all nodes, spreading the load
evenly and not hurting performance for some users more than others. This is
atypical however; partitioned data is more common, and will result in a subset
of nodes being able to provide the data a new node will host. If these nodes are
overloaded, the additional work will be unwelcome, but may be necessary to
improve the performance of those files in the long-term.

An additional concern is which data to transfer. Systems making use of
consistent hashing may move seemingly arbitrary data when the cluster’s nodes
change. Other systems, such as 3.2, target the items generating heavy load for
the system, and move or replicate those items only. By reducing the amount of
data transferred they are able to achieve big performance improvements in a
small time at a lower performance overhead. They must still worry about how
fast to copy the files however, as it will disturb the system’s performance.

Aqueduct [22] is a control system for SLA aware data migration in live
production systems. It throttles data transfer rates with a feedback controller,
striking a balance between transfer duration and SLO impact. While appealing,
it is not clear how compatible it would be with this problem, as the target sys-
tem may already be violating SLO, making the controller’s task to escape this
state and return to safety as soon as possible, but without doing excessive addi-
tional damage to SLA. In this case we should optimise the total SLO violations,
which will involve the duration of our SLO-violation period and the worsening
of the number of SLO violations brought about by our data transfer. Lim’s pa-
per denotes as further work the investigation of rebalancing controller policy,
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though [23] Figure 9 provides a measurement comparison of the extremes and
one static coefficient based compromise. Flash-crowds are an example of traffic
which could lead to this situation.

Diurnal traffic patterns do not require a fast response, so less bandwidth
can be allocated, but it is sensible to still complete rebalancing as soon as pos-
sible without causing violations, so that the controller remains responsive, not
blocked by long duration rebalancing operations. Considering both flash-crowd
traffic changes and diurnal patterns, it appears that a desirable goal for the re-
balancing controller is to minimise both the number of SLO violations, and
duration of rebalancing.
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Chapter 3

Related work

In this section we review two prior systems addressing the automatic control
of elastic cloud storage, (3.1, 3.2), and discuss relevant papers on machine
learning and architectural approaches to such a system. Our focus here is the
published systems, as their ideas and limitations provide the motivation and in-
spiration for our prototype partition-aware rebalancing mechanism, presented
in section 5. In particular the approach taken by the two systems to workload
partitioning, monitoring, and load balancing should be carefully weighed.

3.1 Feedback control of HDFS in the cloud

In [23] Lim, Babu and Chase describe an integral controller for 3-tier web appli-
cations deployed on IaaS platforms, where the number of provisioned nodes is
minimised to save money, but SLO violations due to under-provisioning should
be avoided. Their work focuses on the storage tier, addressing the issues of dis-
crete actuators, actuator lag, and measurement noise generated by actuation.

Response time is the reference input or desired output, and is obtained by
transducing CPU utilisation, which was found to correlate with response time
for this application. Its beneficial measurement properties make it preferable to
response time as a measured output for the system – it’s easy to measure, and
has a relatively stable signal. The controller takes sensor readings by RPC to the
HDFS leader (Namenode), which collates views of the cluster’s CPU utilisation
from readings piggybacked onto the storage nodes’ heartbeat signals used in
failure detection.

While the controller makes several assumptions about the target system,
the most important is that of load-balancing and replica management: the con-
troller allocates resources according to observed demand, and the target system
is responsible for putting them to good use. Uniform load is not assumed by the
controller, but is adopted for the prototype evaluation due to the inability of the
HDFS rebalancing mechanism used to balance load across files.

Actuation is on two variables: the size of the cluster, and a bandwidth lim-
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iter on HDFS’s rebalancing mechanism. Each of these actuation points has its
own controller. They operate concurrently, with a mutual exclusion relationship
presented in the paper as a state-machine. The cluster size controller waits for
its previous transaction to complete (finish rebalancing) before making further
control decisions. This approach is taken to prevent oscillation due to actuator
lag and sensor noise: the state transfer required to change cluster size intro-
duces additional system load (sensor noise), and additionally the controller
must consider pending resizing operations before requesting further changes
(actuator lag).

Controlling cluster size

Cluster size is controlled by an integral controller utilising dynamic hysteresis
and a workload model connecting sensed CPU utilisation to system response
times. Hysteresis is used to address the issue of cluster size changes having fixed
amounts – we cannot add half of a server. The paper’s extension of this, “pro-
portional thresholding” (3.1 of [23]), addresses the disturbance input stem-
ming from changes in cluster size. That is, the measured output is relative to
a single node, while the required control input at any time is a function of the
control error and the cluster size, since adding a single node to clusters of size
10 and 1000 will see quite different reductions in per-node CPU utilisation.
This highlights an additional concern in selecting measurement attributes, es-
pecially when scaling to or collecting for a single node in distributed systems
rather than considering more abstract system-wide work units and capacities.

Controlling state transfer rate

The second controller allocates bandwidth to HDFS for rebalancing its data lay-
out amongst cluster nodes. It trades actuator lag (the duration of rebalancing)
for service disruption (the deterioration of response time induced by the rebal-
ancing work). Rebalancing quickly adds significant load to the system, worsen-
ing SLO violations. Slow transfers, as in Dynamo [11], increases actuator lag,
making the controller less responsive, and diminishes or removes its ability to
respond to fast changes in traffic such as flash-crowds or short-duration spikes.
This is discussed further in section 2.6.

3.2 The SCADS Director

The Berkeley SCADS system [24] is a “Web 2.0” storage system with a num-
ber of novel design goals, aiming to ease the burden of optimisation on the
developer as an application scales. For our purposes it can be considered an
eventually-consistent key-value store, as presented in [2]. The SCADS Director
is an experimental elastic storage controller which manages both the provi-
sioning of resources and the layout of data (partitioning) for load balancing.
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The work focuses on upper-percentile response time guarantees, which can be
seen in some of its design choices where expensive options such as additional
replication are taken. However, as stated these are not compulsory, can be set
by policy, and the paper contributes a number of ideas we found useful in this
study.

Measurement by performance model

Upper-percentile response-time has a high variance, making it unsuitable for
use as a measured input in control. Instead, the controller observes the system’s
workload, and uses a performance model of the storage system to detect when
a workload is likely to violate SLOs. Based on this estimation of “overloaded”
and “underloaded” servers, an action policy set is executed against the servers
to rebalance load by migrating data to underloaded or new servers, and remove
unused servers.

Replicating for upper-percentile latency

An additional aspect of this work is the focus on upper-percentile SLOs, which
motivates two expensive replication decisions. Each user request is performed
by multiple nodes (without quorum) so that if one server experiences an upper-
percentile causing glitch in its performance, the other replica is likely to still re-
turn a result in good time. Furthermore, nodes are provisioned but not utilised
by the storage system, idling until the controller decides to include them in the
storage group. This undoubtedly speeds up adding nodes to the cluster, making
the controller more responsive and better able to prevent violations, but as the
idle server must still be rented, it is responsiveness at a price. One might also
wonder why not utilise the idle node, and make the controller more sensitive
to changes in workload level. Whether either model is effective in responding
to flash-crowd spikes is something akin to preparing for a lightning strike: it de-
pends on the performance model of the storage service, and on the magnitude
of the spike.

Controlling data partitioning

Data migration is harmful to performance, as discussed in 3.1. In SCADS the
controller adopts the responsibility of rebalancing the storage system’s data
layout, and it does so by copying as little as possible. By monitoring the demand
for particular file partitions the controller is able to identify popular partitions
and increase their replication, or move them to empty servers.

This migration entails two complications: optimising the location of data
on the fewest server resources is computationally complex, in fact mapping to
the classic NP-hard bin-packing problem, and once a plan has somehow been
devised it may need to be changed due to changes in system workload.
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The optimisation problem is addressed with a greedy heuristic approach,
through the Action policy set, which maintains a reasonably efficient data lay-
out while keeping the amount of data transferred small (general approximation
algorithms might completely change the data layout; having an existing posi-
tion for items in bins and wanting to move as few as possible is an additional
complication).

Changes in workload are addressed by planning migration actions, queue-
ing them, then executing them in order until changes are observed and a new
plan is devised. The presented policy set schedules scale-up actions before
scale-down actions, meaning that the removal of under-loaded servers may
be delayed until later when spikes in demand are observed for certain files,
requiring quick replication or relocation.

In summary, key concepts from this work were taking control of data layout,
reducing the amount of migrated data through partitioning or grouping stored
objects, the framing of replica layout as a bin-packing optimisation problem,
the use of Action policy sets rather than feedback control, and the use of a
performance model to avoid measurement noise.

3.3 State-space storage control

[3] presents the difficulties in modelling a target system, or its “identification”,
for making control decisions based on past sensor input and control output. It
explains that building analytical models for complex computer systems, such
as storage, is prohibitively difficult, and that past work has largely involved
the black-box empirical approach of measuring the real system’s response in
various configuration states. Empirically modelling a system can also be diffi-
cult, for high-dimensionality complex systems, though approaches to this will
be referred to in 3.4.

The contributions of the paper are a cloud storage control simulator, and
an evaluation of the state-space control model in this simulator. State-space
control makes use of regression techniques to determine controller parameters,
such as gain, from empirical system data. We believe this to bear similarities
with machine learning approaches, which we discuss next.

3.4 Machine and Reinforcement Learning

Bodík et al argued in [1] that while machine learning is a sound approach
to self-management, existing systems had not made use of the necessary tech-
niques to make controllers which could handle real applications.

In another paper Bodík [25] addresses the issue of model learning in live
production systems. It suggests the training and refinement of performance
models based on real data at real scale, rather than training with static data or
replaying traces. A contribution of the work is a controller which achieves this
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without exposing the system to excessive SLA violations. It is written with web
2.0 data-centre (cloud) systems in mind, though the ideas are of general inter-
est. An interesting observation made by the paper is that small-scale systems
are insufficient for training a resource controller, as bottlenecks and workloads
behave differently when scaling crosses to new orders-of-magnitude.

Vengerov [26] describes a reinforcement learning controller managing the
positioning of files in hierarchical storage, in the sense of making decisions
on caching and cache-eviction at multiple tiers (hard disk, ram). Interesting
insights are presented on storage system usage and workloads, though they
should be taken cautiously, as some are not cited or substantiated by measure-
ment, and may be derived from systems differing from those in production to-
day. Two clear contributions are made: a framework for applying policy-based
control to hierarchical file storage, and a reinforcement learning algorithm for
optimising policy coefficients.

While we do not pursue these ideas further in this work, machine learning
appears to be a topic to watch in relation to autonomic control. We believe our
own work could adopt system identification techniques discussed herein, or
could provide one actuation mechanism controlled by such a learning control
agent.

3.5 Load shedding

Typically peer-to-peer storage research has assumed uniform load on data items
as in [27], though there has been some investigation of applying distributed
system load shedding techniques in DHTs [28] [29].

3.6 Architecture, methodology, and surveys

Three works in particular were found useful during the early stages of this
work: Kramer and Magee’s architecture paper [30], Tesauro’s multi-agent sys-
tems discussion of autonomic computing [31], and Al-Shishtawy’s methodol-
ogy for self-management paper [32]. Between them an overview of system con-
trol can be formed, unifying approaches from across computer science rather
than focussing on the application of control theory.

Additionally, the YCSB paper [5] introduces a measurement framework for
cloud storage systems, as well as providing a good overview of available storage
systems and their design-space.
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Chapter 4

Elements of Elastic Storage
Control

This section introduces relevant concepts from control theory and distributed
computing pertinent to the automatic control of cloud storage systems. Control
Systems Engineering is a rich field in its own right, and this does not aim to pro-
vide a comprehensive introduction. Instead we refer the reader to Hellerstein’s
text on control for computer systems [33].

4.1 Control theory terminology

When we discuss control, we refer to the observation and manipulation of a
system’s state to maintain a desired behaviour. Examples of controllers include
cruise control for cars, temperature regulators for ovens, and thermostats for
heating systems. In each of these systems there are clear things to observe, such
as velocity or temperature, and to change when those observations differ from
what is desired, such as engine or heating element power. There are three main
components to determine when designing a controller: how to sense the sys-
tem’s state, how to actuate change in the system, and how to derive appropriate
changes to the system from the sensor data.

We begin by introducing some terminology, based on that of Hellerstein et
al [33].

Target system
The system or device managed by the controller.

Controller
The device we are designing, which determines how to set the control
input to achieve the desired measured output.

Measured output
A measurable characteristic of the target system, such as CPU utilisation
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or response time. Relates to management goals via control error. Also
“sensor input”

Desired output
The desired value of measured output, for example 50ms response-time
or 60% CPU load. Also termed “reference input” or “setpoint”. Relates to
target system behaviour via control error.

Control error
The measured output’s offset from the desired output (converted by the
transducer, if applicable).

Control input
A dynamically adjustable target system parameter which affects its mea-
sured output. For example the number of server replicas in acting as a
website’s front-end.

Transducer
A mechanism for converting the measured output to a form comparable
with the desired output. For example, a controller might enforce response
time by measuring CPU load. This notion of correlated indirect measure-
ment is discussed elsewhere.

Measurement noise
Distorting effects on the measured output, also termed “sensor noise” or
“noise input”.

Disturbance input
Changes affecting how the control input relates to (effects) the measured
output.

4.2 Issues in system measurement

Being able to assess the current state of the system is essential to any controller.
However, measurement is no simple task. Aside from the typical concerns of se-
lecting what to measure, how to instrument it, how measurement will interfere
with behaviour, noise, precision and resolution.

In order to control a target system we must obtain a measured output to
base control decisions on. Measurement is a complicated science in its own
right, further complicated here by distributed systems properties. This section
briefly discusses some of these concerns and how they might affect controller
design.
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4.2.1 Selecting a metric

Here it is necessary to consider which metrics can be obtained from the target
system or its components, an appropriate collation approach, and the effects of
distribution and scale on these measurements. As a system grows some mea-
surements will become too expensive, or their results may suffer from increas-
ing error and noise due to delays or failures.

A system’s measured output may be something obvious, such as response
time, or it may be indirectly measured from another property such as request
count and transduced to a response time estimate using a system performance
model.

This transduced measurement approach was adopted in the SCADS Direc-
tor (3.2) due to the high variance of sampled 99th percentile response time,
making stable control problematic. Signal filtering could be applicable here,
but may slow a controller’s response to sudden change such as flash crowds
(2.4.2).

In collecting measurements it is likely that statistical aggregates of many
samples will be used to represent the current state of the system, or its con-
stituent parts. The scalability of these measurements varies, for example cu-
mulative mean appears to be easier to collect at large scale than percentile
readings which require histograms rather than a single figure to be stored.

4.2.2 Granularity

An important consideration in measuring a large system’s behaviour is how
much information we would like, or need, and how much we are willing to pay
for it in terms of performance. Below we present a number of granularities, or
resolutions, at which we might be interested in the performance and behaviour
of a cloud storage system.

Granularity should not be confused with precision, which is a complex topic
often omitted from systems research, also in this study. [34] is suggested for an
introduction to measurement error analysis.

System load

A simple count of get and put requests made to the storage service as a whole.
This could be useful if the performance model is simple, as in [2]. However,
it would not capture the distribution of those requests across the nodes in the
cluster; uniform load distribution is assumed, and may not be the case.

Node load

Here the access to each storage node would be tracked, to determine when
the cluster contains nodes which are overloaded and violating their SLOs, or
which have low utilisation and are candidates for removal. However, it does

19



not provide information about the stored objects or partitions responsible for
their experienced workload, for example a very frequently accessed item.

Stored object load

By monitoring the demand for individual stored objects, the controller can
make informed decisions about the distribution of data on the storage clus-
ter, and which individual items are hot and require replication. However, as the
number of files in the system rises, this information can become expensive to
collect.

Partition load

By monitoring the access to data partitions (key ranges or arbitrary groups of
objects) the controller and system can reduce the overhead of monitoring and
reasoning about the system’s data access.

Two examples are the reduction in stored measurement results from 1-
per-file to 1-per-partition, and a smaller number of items to organise when
bin-packing. However, this does mean that precision in identifying hot stored
objects is lost, meaning that more data than necessary will be replicated.

4.2.3 Measurement locality and distribution

Having obtained measurements at individual nodes, they may be collated at a
central point, or shared between nodes in a peer-to-peer fashion.

Viewing global system state is problematic, and distributed aggregates and
analytics for example are a topic of research in their own right. Other related
topics include distributed state, deadlock, and failure detection.

It may be that one observation is sufficient, for example we might take
a single node’s performance as representative for the whole cluster if uniform
loading is assumed. This may be improved by looking at several nodes, enabling
averaging to remove noise from the readings. Care should be taken in using
a single aggregate however, as significant information may be lost, such as
demand spikes at a single node.

Central measurement collation

A typical measurement model is to have a central node responsible for collat-
ing and interpreting measurements from the nodes in a system. As with many
distributed computing problems this is a sensible starting point, but introduces
a central point of failure and bottleneck for scaling which must be addressed
later.

An advantage of this approach is that the central node can establish a
canonical global snapshot, which it may forward to control logic which makes
decisions about the system.
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Implementations range from ad-hoc central database connections, to com-
munication systems such as Chukwa [35] and to high-end stream-processing
solutions. Examples of this approach are seen in the control systems discussed
in Sections 3.2 and 3.1, which respectively make use of a MySQL database and
the group leader as central collection points.

As the cluster grows it will become prohibitively expensive to track metrics
such as average CPU utilisation across the cluster, essentially a global system
view - one of the hard problems in distributed computing. While it remains
possible to obtain measurements from the cluster, decentralising them, or tak-
ing partial rather than complete system views, may change the stability and
semantics of the sensor readings when compared with a centralised reading for
a smaller cluster.

Two clear opportunities to make use of this in storage control are a front-
end load balancer coerced into data collection, and a dedicated measurement
component. A dedicated central measurement component would collect read-
ings from measurement agents in a push or pull fashion, requiring either group
membership or coordination of measurement component location. Where the
storage is accessed through a front-end load balancer, it will be possible to ob-
tain information about the client requests being made to the system. This could
be a simple request count, or a detailed analysis of the operations and accessed
data.

Centralised control is a simple and often adopted distributed systems archi-
tecture. Its scalability is limited, and it presents a single-point-of-failure, but it
is also a simple and pragmatic starting point, and often sufficient for production
systems when carefully used.

System front-end metrics

Having already identified a front-end load balancer as a possible collection
point, we might ask why not measure the system’s utilisation at the front-end,
rather than instrumenting individual storage nodes. Indeed, this may be effec-
tive for a number of metrics, and should not be ruled out, though will place ad-
ditional load on a system component which should operate very quickly. Given
that load balancers may also be replicated, this does not rule out distributed
measurement concerns entirely.

Real-time constraints and meaning of global measurement

While there will be a delay between any measurement and its use, these are of-
ten imperceptibly small and ignorable; in distributed settings however there is
concurrency of like measurements at different nodes to consider in addition to
the delay in their collection and use. When looking at an assembled collection
of measurements from the system, it is highly improbable (at best) that they
were taken at the same moment in time.
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This does not become much of a problem when a system is taking measure-
ments in the order of several seconds or greater; naive best-effort measure-
ments will work well enough. However, as the time period for measuring re-
duces, the demands on the freshness and consistency will increase, and greater
care need be taken in instrumenting, collecting, and interpreting the readings.
For example, does it make any sense to measure 1ns intervals if results are to
be collated over an unstable 100ms network connection?

4.3 Control decision models

Having obtained sensor data indicative of the target system’s current state,
there are numerous ways to decide whether and how to change its behaviour.
These range from simple conditional logic statements, to simple or complex
mathematical models, economic models, and AI techniques.

4.3.1 Policy control

To a computer programmer, this is the most obvious approach to solving the
control problem. Conditional statements will be used to set conditions for the
execution of control actions. Many such decisions may need to be enumerated,
and it is unlikely that all situations will be covered [36].

4.3.2 Goal based control

In this model a controller is told to maintain a certain system state, but not how
to achieve it. Deriving plans of action to maintain certain system constraints are
the task of the controller. This is the level at which we would intuitively place
SLA goals, though when considering the financial implications of violations, we
lead in to a more general notion of utility.

4.3.3 Utility functions

The most general control objective is a utility function, the notion of assigning
financial value to various system states, and assigning controllers with the task
of maximising the utility of their target systems. To achieve this it may make its
own decisions regarding both goals, and actions taken. However, utility can be
difficult to assign in a meaningful fashion to systems, making the adoption of
this model problematic.

4.3.4 Determining a suitable response value

A critical issue in control is determining how much to change the control input
by. In some systems we might have a readily available equation to determine
the control input, whether from the control error or some other measurement.
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This might be the case for well-studied physical phenomena, power electronics,
and computer systems with appropriate analytical models, such as those using
queuing theory to connect response-time, throughput and queue-size.

In other systems, particularly complex computer and software systems, we
may find our application’s performance model to be complex, analytical ap-
proaches to be insufficiently accurate or overly complex and brittle, and require
another approach.

Machine learning, reinforcement learning in particular, offers techniques
for inducing function approximations from observed data, and has been applied
and argued for [1][25][26] in storage system applications.

4.3.5 Three-layer control architecture

In [30] Kramer and Magee propose an architectural model for self-management
inspired by Gat’s 3-layer robotic control architecture [37]. Their aim is to bring
benefits from developments in AI and robotics to the self-managing systems
domain. The model identifies three layers of activity in a controller: control,
sequencing, and deliberation.

These layers provide a familiar abstraction, enabling lower layers to be con-
cerned about system specifics and implementation details, and higher layers to
be concerned with more general concepts such as goals and constraints on
emergent system behaviour. The control layer is responsible with system in-
teractions: sensing and actuation. Sequencing receives sensor data and sends
control signals back to the control layer’s actuators, as directed by pre-compiled
plans. There is a further interaction between the control and deliberation lay-
ers, where the deliberation layer receives system state, and sends revised con-
trol plans to the sequencing layer.

Here plans may be some functional input for the sequencer, such as an
optimal layout it should reconfigure the system to achieve, or could comprise
reconfiguration or replacement of the sequencer, as for new control loop coef-
ficients or new action policy sets.

Examples include route planning, replica location optimisation, buffer re-
gion sizes for control or hysteresis, or the switch from one set of action control
policies to another more suited to the current state. The retraining and refine-
ment of performance and decision models would also fit in this layer; training
from data may be expensive, but here we see that the sequence layer may con-
tinue to operate with the previously provided models until reconfigured by the
deliberation layer, once they are ready.

The aim of this approach is to help in reasoning and understanding a con-
troller’s interactions with the system under control, and its own self-updating
mechanisms necessary to provide autonomous control for a dynamic system.
It is believed that this will help structure the controller in a modular fashion,
easing design and implementation.
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An example of this model in storage control can be found in the migra-
tion component of the SCADS Director. Their controller’s heuristics for replica
movement can be considered as the deliberation layer, the action executor its
sequencing layer, and SCADS and EC2 interfaces encapsulated by its control
layer. In this case there is a clear similarity between a robot driving from A to
B and encountering a change in the environment which requires a new plan,
and the partitioning migration plan, which is expected to complete a number
of steps then be replaced by a new sequence of actions, particularly in the case
that a significant workload change occurs: a flash-crowd is to the storage cluster
what a rock falling from the sky might be to the exploring robot.

4.4 Actuation in elastic storage

Having identified that our system requires change to maintain its good be-
haviour, we must take actions effecting that change.

In section 4.3 we outlined models for making control decisions; here we
will focus on available actuators in storage systems, and confounding problems
they may present.

4.4.1 Number of nodes

Add nodes to the cluster when system utilisation is high, remove nodes when
utilisation is low. This is the most general actuator, being the fundamental unit
of control in horizontal scalability.

4.4.2 Data layout

Stored objects (or partitions) may be moved between storage nodes, or to new
nodes, by the controller, to achieve a layout with optimal node utilisation. Fur-
ther constraints include the total amount of of data to be stored (especially
for in-memory stores), and moving as few data as possible to achieve the de-
sired layout. Figure 4.1 illustrates rebalancing data partitions, or key ranges,
between an overloaded and underloaded server.

4.4.3 Data repartitioning

Assuming that the system’s data is partitioned, either in arbitrary bins or keyspace
ranges, the controller could repartition the system data. When working on par-
titions rather than individual stored objects, the controller may need to repar-
tition the stored data.

A situation where this would be useful is upon discovering that a partition
is receiving so much demand that it cannot be held within a single server. If
demand is for a single key, then only replication can improve its performance,
though repartitioning could isolate the hot key from other keys, allowing the
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Figure 4.1: Rebalancing non-uniformly distributed partition workload between
two storage nodes

performance of other keys to improve by moving them to other servers. In the
case that the partition’s load is spread across multiple keys performance can
be improved by cutting the partition into smaller pieces and sending them to
distinct servers.

One desirable property for the system’s data partitions is that popular stored
objects occupy small partitions, to reduce the cost of replication. A contradic-
tory requirement is that the system have few partitions, to keep associated
overheads tractable.

4.4.4 Slow data migration decomposition and sequencing

Storage control is reliant on network state transfer, an inherently slow process
for large data. In order to control with a slow actuator we attempt to invoke
it in such a way that it is interruptible in case we need to revise our control
decisions due to a change in workload. In the absence of an abortable transfer
mechanism, the transfer can be split into actions and serialised (sequenced) by
the controller.

In order to decide how to sequence migration actions, the controller faces
four optimisation tasks: maximise performance, minimise servers, minimise
data transfer, and maximise effect/time of the sequence.

Maximising performance, minimising servers: bin packing

Maximising performance and minimising servers is simply the bin-packing prob-
lem, ensuring server workload is well-balance at the granularity of data parti-
tions.
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Minimising data-transfer

Minimising data transfer reduces disruption to the service. We might find a
new layout that removes one server, but if lots of partitions need to be moved
to reach it, we may decide it is not worthwhile due to the service level disrup-
tion incurred. Furthermore it is the constraint that all bins in the bin-packing
problem are not equivalent, having found a layout, it is necessary to match bins
to existing server states, minimising the overall distance (difference) from their
current state to the planned layout, where this difference maps to required data
transfer.

Maximising plan time-effectiveness

Having identified a target layout, including storage node allocations, we want
to decide how to order data transfer actions so that performance gains are
achieved close to the start of the process. This is both to make the controller
responsive to step increases in workload, and because workload may change,
not undoing the worth of our work, but makes it less important. For exam-
ple, a traffic surge to one key might arrive while we are rebalancing a slightly
overloaded server.

This extra planning is an additional computationally hard problem. How-
ever, if we take any route without considering the intermediary steps we may
transition between many less optimal data layouts, worsening performance fur-
ther, before reaching a more optimal one. This is additionally problematic if the
controller needs to abort and re-plan the repartitioning (cf. Gat 3-layer’s delib-
eration layer), as the repartitioning work done so will have worsened short-
term performance and carried no long-term gain.

A simple approach is to prioritise scaling-out actions over scaling-down ac-
tions, and to act on the busiest data first. In the aforementioned case if we had
moved a busy partition away from the overloaded server first, its performance
situation would be resolved before we are forced to switch our efforts to deal-
ing with the other, more severe, overloading elsewhere. If on the other hand
we had been consolidating under-utilised nodes first, the slightly overloaded
server’s problem would not have been resolved.

Computational cost (complexity)

Having identified three optimisation problems, we might wonder how to solve
them. Finding global optimal solutions to each with anytime online algorithms
would be complicated and perhaps too slow, but is a direction worthy of further
research with constraint programming.

A simpler approach is the SCADS Director’s action scheduling approach
(3.2) using an action policy set: the heuristic conditionals they present resem-
ble greedy gradient descent; they may not find a global optimum number of
servers, but they will improve performance, and are computationally cheap.
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4.4.5 Unreliable actuators

In [23] we read that actuators do not always respond as expected. In this par-
ticular case, the HDFS rebalancer does not make good use of assigned rebalanc-
ing bandwidth greater than 3MB/s. Given the complexity of distributed storage
systems, it is not unreasonable to expect that system actuation points may be
unreliable, or operate correctly within a limited range. Whether appropriate,
and whether the functionality can be fixed, should be considered case-by-case
and verified by measurement.

We do not revisit this issue, as the complex actuator used in our evaluation
did not present unexpected behaviour. However, we do suggest its optimisation
as a future work, which could result in or expose existing unreliable behaviour.
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Chapter 5

Building a partition-aware
storage controller

This section documents the design of our partition-workload aware elastic stor-
age controller, and its prototype implementation for controlling the Voldemort
eventually-consistent key-value store. It begins by introducing Voldemort, then
describes our controller in terms of measurement, control decisions, and actu-
ation.

Figure 5.1 outlines our system. Conceptually, the Executor, Collector and
Planner operate concurrently and communicate by message passing.

Storage 
service Collector

Planner

Partition 
workloads

Executor

Imbalanced 
nodes

Rebalancing 
software

Data
movement

New 
cluster 
layout

Partition access 
measurements

Figure 5.1: Cloud storage control prototype overview
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We refer the reader to 4.3 for a more detailed discussion of control models.
For this work, we adopt a simple action policy set controller approach, as our
focus is on measurement and actuation techniques rather than system identifi-
cation, modelling, or decision-making.

5.1 Storage service: Voldemort eventually consistent key-
value store

Voldemort is an open-source implementation of Amazon’s Dynamo eventually-
consistent key-value store. It is produced and used by LinkedIn, an online social
network, to serve data with performance and efficiency requirements beyond
the reach of conventional database systems.

As the topic of this work is not specific to this one storage system, rather
than presenting it in detail we refer the interested reader to the Dynamo paper
[11], and the project website[38]1.

Our choice of Voldemort as a prototype component places important con-
straints on the abilities of our controller, as would be true with any store. The
issues we consider most significant are discussed below.

5.1.1 Partitioning

The system’s keyspace partitioning (discussed in 2.5) is fixed in advance, and
cannot be changed (for each particular storage table). While their range is pre-
determined and fixed, the location of partitions may change during operation.
Partitions can be moved, and Voldemort provides a "rebalancing" tool which
intends to safely migrate data from one partitioning layout to another. The tool
may either be given the current configuration, or retrieve it from the running
cluster. The target layout is provided by the user as an XML file.

5.1.2 Replication

Replica locations cannot be fixed, so must be disabled else will incur additional
load which we cannot control. This is unfortunate as it is a vastly unrealis-
tic constraint to place on a distributed filesystem, sacrificing availability and
durability of data. Partition layout optimisation with deterministic but non-
configurable replication is deferred to future work. Here, instead, replication
and quorum sizes are set to 1.

5.1.3 Data migration

As seen in the SCADS and HDFS controller papers, the migration of data is
problematic for at least two reasons: it hurts performance, and it can block fur-

1http://www.project-voldemort.com accessed June 2012
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ther controller action. Below we will consider three ideas: the effect of a single
blocking repartitioning transaction on the controller, the impact of rollback or
abort semantics, and the benefits, difficulties, and performance compromises
of decomposing the repartitioning into smaller steps. The approach taken by
SCADS was discussed in 3.2.

The following approaches were considered for the Voldemort rebalancing
software. A first, simple approach is to determine the new partition layout to
move to, and perform the repartitioning in one blocking uninterruptible oper-
ation. While the repartitioning is performed, the controller is unable to take
further action.

It is interesting to consider aborting the repartitioning operation: in Volde-
mort it is made safe, with rollback semantics. Such functionality is good for
maintaining consistency, but bad for our control situation, as we may have to
wait for rollback to complete before we may try our new, revised plan, which
may occur several times meaning we never get anywhere.

A more suitable approach is that taken by the SCADS Director, which is to
determine the new partition layout it wants, then schedule small-step actions
which will lead it to that desired layout. These steps are executed one at a time,
each potentially blocking and non-interruptible as before, but of a much shorter
duration. This is reminiscent of the 3-layer control model: a layer of higher-
reasoning decides on a new partition layout, and provides the lower layers
with a plan of how to get there. If the lower layers detect that the workload
has changed significantly they will report back to the higher layer, asking it to
revise the plan.

This does not mean to say that producing such a plan is trivial. The SCADS
Director’s model predictive control, or action policy set approach, sidesteps a
number of optimisation issues, by jumping directly from layout to actions to
take to maintain an optimal state. If we are instead to consider the best path
from our current layout to a new optimal layout, with several intermediary
steps, we should consider whether these intermediary steps are more optimal
than the first layout, since we may abort and re-plan prior to reaching our
optimal layout.

Another issue with decomposing the repartitioning is we may lose perfor-
mance optimisations provided by the repartitioning system: Voldemort offers
a number of parallel and concurrent transfer configuration parameters which
may function less effectively if a small number of partitions are to be moved in
a single step.

In the case that a vast change in workload is detected, the rebalancing
process can be aborted (by cancelling remaining queued asynchronous jobs
which enact repartitioning) and new control decisions made using the partially
repartitioned, but consistent and operational, layout.

In this work we adopt single-step refinement of the cluster, without parallel
transfers.
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5.2 Sensing: measuring system performance

The Collector component polls registered instrumentation agents for sensor
data, receiving a histogram of partitions and their request count since the last
pull request. The specifics of this are described in 6.2.2.

Other metrics could be taken in the place of request counting. Indeed, this
model holds for our simple in-memory get-only experimental situation, but
when a full storage system is involved this will no longer be the case. Also,
file size is taken as uniform across the store. This is unrealistic, and as network
interfaces are found to be the current system bottleneck we believe it worth-
while to consider the required bandwidth, or file size, or transfer time as an
alternative weight metric for partition workload. Having introduced unequal
file sizes the bandwidth associated with each request will vary, and our sim-
ple request counting performance model will likely break down. A tricky issue
here is not tracking which key in a partition is being accessed. Probabilistic
techniques may enable the construction of an approximate analytical model,
though state-space control and machine learning techniques may also provide
interesting avenues of investigation. A simpler approach would be to simply
monitor response times, though previous works (3.2) have found this to be
unstable and discouraged its use.

5.3 Making control decisions

Having obtained measurements of the performance for particular partitions,
we must decide how to change the storage system to improve its performance
and efficiency.

Here we adopt the SCADS Director approach of queuing actions to perform
until new information is received, at which point we re-plan and replace the
command queue. Conceptually this fits the 3-layer model of sequencing and
deliberation of 4.3.5. We sequence actions which will improve performance
based on the current layout and usage, but we deliberate changes in workload
and revise the action sequence.

5.3.1 Planning and deliberation: reacting to workload changes

The deliberation component of our controller is the most conceptually inter-
esting, offering two divergent approaches. Two approaches present themselves
for repartitioning the cluster to rebalance workload. Both make use of partition-
workload measurement information, but their optimality and computation times
are quite different.
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Optimal partition arrangement by constraint-programming

By addressing the bin-packing problem head-on we can obtain the most optimal
solution, and so the fewest number of servers, for our revised cluster. However,
this form of computation can be time-consuming, slowing controller response,
and is heavily dependent on the number of data partitions.

Additionally, as discussed in 4.4.4, once an optimal packing of partitions
into bins has been devised, the bins must be fitted to servers in such a way that
state transfer is minimised. This further optimisation problem exacerbates the
initial concern about computational complexity and execution time. It may be
that the proper approach is to modify the bin-packing constraints (such as in
[39]) to find a solution resembling the current layout, but this is left for future
work. It is suggested that Gecode, a C++ constraint programming framework,
would be a good choice of tool to investigate this approach.

Action-set heuristic optimisation

For our prototype, we eschew the matter of computational cost by making di-
rect use of search heuristics in our conditional logic to achieve greedy gradient-
descent. This approach mimics that of the SCADS Director (3.2).

If a cluster node has a workload corresponding to an SLO violation, accord-
ing to its performance model, the controller adds the node to a set of nodes to
be considered for rebalancing, with an associated weight indicating how high
its workload is. The performance model is currently a predetermined model
shared by all nodes. Having considered all nodes, the weighted set of nodes
requiring rebalancing is sorted and queued for rebalancing, heaviest first.

The deliberation layer here produces two node lists: overloaded and under-
utilised nodes. These are passed to the execution agent, which uses its action
policy set to determine how to move data partitions so that overloaded nodes
can be relieved, and underloaded nodes given work or removed.

Nodes which are under-loaded according to the performance-model are
added to a second set, of nodes which should be assigned files during rebal-
ancing, or should have their data coalesced and some of them de-provisioned
to save money. This concludes the sensing feature of the controller.

5.3.2 Executor: enacting sequenced plans

Having identified that a server needs to shed some of its workload, we must
select partitions to move based on its workload and our performance model
(presented in 6.3), and to where they should be moved. Our approach is sim-
ply to move the hottest partitions first, hoping to quickly improve performance
with minimal data-transfer. Each operation is executed independently; we run
the Voldemort rebalancing tool with single partition movement operations. Par-
allelisation of these operations, to achieve latency hiding, is left as future work.
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Our sequencing agent, the Executor, plays the role of consumer in a Producer-
Consumer relationship with the Planner. The Executor operates concurrently is
a process, A separate process (thread) is responsible for consuming nodes from
the rebalancing queue. This rebalancing process schedules one-step schema
migrations to be processed by the Voldemort rebalancing tool, according to the
following logic. This is achieved by generating a new cluster configuration file
with this one change made, and executing the Voldemort rebalancing tool.

For the most overloaded node, n:
p = most requested partition held by n
if p’s workload can be accommodated by an underutilised node

then move p to the busiest node with sufficient capacity
else move p to an empty node

return updated n to the rebalancing queue if necessary

For small data partitions on unloaded servers this will take a few seconds.
The latency of these operations in a loaded system will be seen during experi-
mentation.

While we do not currently implement such behaviour, this queue makes
it possible for the controller to abort the scheduled actions and replace them
with a new plan, based on new measurements, without needing to delve into
the details of Voldemort’s rebalancing system. That said, the current system
works by scheduling a series of asynchronous data movement tasks, much the
same as we do here. We leave as a further work an investigation of whether
this rebalancer can be optimised with our partitioned-workload information,
or other ideas presented herein.

5.3.3 Shrinking the cluster

While we have addressed scaling-up to meet demand, we have not yet imple-
mented scaling-down to save money. We may extend the described sequencing
agent to remove unused nodes from the storage cluster.

We adopt a simple approach making use of the existing rebalancing thread.
To improve a node’s performance we remove some of its data. To remove a
node from the cluster we must remove all of its data. As these are quite similar,
we may re-use the existing rebalancing thread, by extending its logic to cover
downsizing when it is not busy scaling up the cluster or adjusting its partition
distribution to maintain SLOs. When the rebalancing thread finds that no nodes
are overloaded it considers instead whether it may remove nodes from the
cluster. In this case it looks at the under-loaded nodes data structure, selects
the node with the least workload, and attempts to move its partitions to others.
Once all of its data has been removed the node can be removed from the cluster.
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5.4 Actuation: moving data

Our controller’s actuation mechanism is moving data on the storage cluster. It
produces a cluster configuration detailing which servers will hold which data
partition, and sends this plan to Voldemort’s rebalancing tool which moves par-
titions to match the new plan.

Voldemort provides a rebalancing tool, which takes a new cluster configu-
ration file defining the member nodes and partitions they shall hold, and deter-
mines a plan of asynchronous jobs to safely transfer the partition and its data
from the current node to its new location.

Currently an unused server is still running but allocated no partitions, so
plays no part in serving requests. To enable real elasticity we should add and
remove cluster servers based on their usage: remove when empty, add when the
cluster is too small to provide a more optimal partition location plan. Rather
than complicate our controller, we opt here to leave this management of clus-
ter size for an additional controller, and rely on ours to redress imbalances in
workload with the resources it sees currently available. It could request that
another manager add additional resources, but delays in adding such resources
mean that it must still wait for them to come online before using them in this
form of partition location planning.

5.5 Implementation details: languages and communi-
cation protocol

The controller was implemented in Ruby (http://ruby-lang.org), with
threads and shared-memory communication. Ruby’s GIL (global interpreter
lock) is problematic here, preventing parallel thread execution. JRuby (http:
//jruby.org) offers one solution to this problem, though reimplementation
in Erlang or Java may be preferable to achieve greater scalability through par-
allel execution of the concurrent processes, and better interoperability support.

The storage service, Voldemort, is a Java application, as is the chosen load
generator. Instrumentation was consequently carried out in Java, making use
of available concurrency libraries.

Java to Ruby communication is performed by serialising data structures to
YAML strings and transmitting them, UTF-8 encoded, over a TCP pipe.

At https://github.com/nruth/controldemort full source-code is avail-
able, including the instrumented Voldemort and YCSB, our controller, and as-
sorted measurement scripts.
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Chapter 6

Evaluating partition-workload
aware storage control

In this section we present the experimental results for our partition-workload
aware controller for the Voldemort storage system. We begin with a discus-
sion of the chosen measurements, then describe our experimental method and
results.

6.1 Measurement goals

In order to evaluate our control mechanism’s effectiveness at load balancing we
seek to capture the dynamic behaviour of the target system as it experiences
changes in workload. In order to visualise this, we will record 99th percentile
response time, and a representation of the workload the system is experiencing
– in these results its completion rate. Behaviour here in its simplest form is
response time, the key SLA metric.

Having integrated the controller and instrumented the target system, it
should be operated under fair conditions to demonstrate that the controller
does disrupt steady-state operation with irrational behaviour. A suitable exper-
iment here would be to evaluate its behaviour under a generated workload with
uniformly random key accesses. This workload could then be varied by either
a step or steady increase in overall arrival rate to approximate the flash-crowd
and diurnal traffic patterns respectively.

While further measurements to verify the controller’s behaviour could be
included, the prototype’s purpose is to demonstrate the disadvantage of assum-
ing key-load uniformity. As such, we instead seek evaluation of the controller
under pathological workloads which demonstrate the difference. In particular,
the case where overall load is constant, but shifts from a uniform distribution
to being concentrated on on a subset of partitions.
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6.2 Experimental method

This section briefly surveys measurement tools for cloud storage systems, the
method adopted herein, and a second version of the controller devised for com-
parison with one assuming uniform load.

6.2.1 Measurement software

The main requirement of the chosen software is multiphasic workload genera-
tion. Without this, we cannot produce diurnal patterns or flashcrowd spikes as
discussed in section 2.4. Three evaluation tools have been seen in closely re-
lated literature: the EStoreSim simulator [3], YCSB [5] and Cloudstone [40].

Cloudstone is a benchmark for deployment environments, to compare the
performance of different cloud configurations and server stacks (including load
balancing proxies and caching layers). While its interest is in measuring value-
for-money, or cost-per-user, rather than throughput or latency, the specifics of
SLA violations and dynamic workloads or traffic shapes are left for future work.
Furthermore, while the stock benchmark utilises relational databases for persis-
tence, in [23] section 4.1, we learn that their evaluation is based on a modified
build of Cloudstone where HDFS has been added to the application. Cloud-
stone’s chosen load generator, Faban, is of interest in its own right, as a means
of providing probabilistic workloads with varying workload phases.

YCSB is a stress-testing benchmark for cloud storage services, general enough
to use with eventually consistent key-value stores rather than only SQL storage.
While the tool does not itself provide a means to evaluate traffic patterns dis-
cussed in section 2.4, it is possible to coordinate parallel workload generators
1 to achieve this effect. We will discuss this more in 6.2.3.

However, it remains unclear overall how to define or replay dynamic work-
load patterns or traces against an application, rather than performing constant
throughput latency measurements, or saturation testing. Two load generation
tools have been found to support mixed workloads with probabilistic client ac-
tivity, and dynamic load generation: Faban2 (used by Cloudstone), and Tsung3.

Tsung is a distributed load generator which can be extended with drivers to
measure arbitrary network services. Client sessions are highly configurable, for
example the client’s course of action can be probabilistically determined, and
arbitrary think-times included in their actions, simulating real user behaviour.
Moreover, it offers a convenient format for specifying arrival rate phases, which
is ideal for our measurement of a storage system’s elastic response to changes

1https://github.com/brianfrankcooper/YCSB/wiki/
Running-a-Workload-in-Parallel accessed June 2012

2http://www.opensparc.net/sunsource/faban/www/1.0/docs/howdoi/
loadvariation.html accessed June 2012

3 http://tsung.erlang-projects.org/user_manual.html 6.4 “Defining the load
progression” accessed June 2012
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in traffic. However, there is no bundled driver for Voldemort, and Tsung drivers
are written in Erlang, which makes integration with Voldemort’s Java client
more complex. Furthermore, its measurements may be unsuitable for the de-
sired analysis: Tsung obtains cumulative means and maximal values with 10
second measurement intervals4, limiting the statistical analysis and graphs which
can be produced.

While workload generators supporting configurable workload phases such
as Faban, Tsung, and jMeter are appealing, integrating any measurement tool
entails an engineering overhead. In this work we adopt YCSB, due to its ex-
isting integration with the target system, Voldemort, and prior work by our
group with this configuration. Given our measurement approach, described in
6.2.2, its lack of workload phases turns out to be unimportant. However, in the
interest of avoiding measurement and instrumentation bias, we delegate the
utilisation of alternative measurement software as future work.

6.2.2 Instrumenting Voldemort

Here we describe how the Voldemort storage system was modified to obtain
sensor input for our controller, and experimental data for producing graphs
and the like.

Our approach is a variation of ongoing work in the group by Ahmad Al-
Shishtawy, where a central controller pulling data from measurement clients
embedded in the storage client library. Instrumenting the client is reasonable,
as we are considering storage for a 3-tier web application, so our clients are the
second tier, the application layer’s client library, rather than a human consumer
outside of the data-centre. The client library is already “smart”, as it knows how
to route requests for a given key to a storage server holding that data. In the
case that dumb clients are used, a front-end server can adopt this role in much
the same way that it adopts the responsibility of routing.

More concretely, our measurement clients consist of a thread performing
a receive-reply loop to respond to the controller’s pull requests, threadsafe
data structures for recording workload information, and instrumentation of the
client software to record the required information.

The controller periodically polls the measurement clients for measurements,
sending each, in parallel, a message requesting their current data. Upon receiv-
ing this request, the measurement client replies with their current data and
resets their measurement data, ready for the new time-window. In our imple-
mentation the measurement data is serialised to a platform independent UTF-8
encoded JSON string, though if found to be a bottleneck this could be optimised
to a byte-protocol or other serialisation format.

Having received a set of measurement samples, the controller merges them
into a single result: its current view of the system. This view is then used by the

4http://tsung.erlang-projects.org/user_manual.html 7.3 accessed June 2012

39

http://tsung.erlang-projects.org/user_manual.html


controller as its sensor input, and logged to disk for experimental analysis.

6.2.3 Measuring the system

Having selected a measurement framework (6.2.1) and instrumented the stor-
age system (6.2.2), we consider the specifics of generating a characteristic
workload on the system.

Firstly, and once only for the target data store, we pre-populate the store
with data. Having done so, we disable the “warmup” code-path, allowing us
to pass the number of records to the Voldemort YCSB performance tool’s key
generators, ensuring requests are on populated keys, without repeating data in-
sertion or even growing the data-set size beyond the amount which fits entirely
in memory, complicating matters by introducing multiple storage tiers.

Two load generating nodes were executed against the storage cluster in a
4-server configuration, to find the saturation point of the individual load gen-
erators for all get-request workloads. Having identified a maximum number of
operations per second, in our case 9k, a lower number is taken as a reliable
maximum throughput per load generator, we chose 8k.

For a desired throughput, such as 30k operations per second, we determine
how many load generators are required such that no generator exceeds this
maximum of 8k operations per second. The load generators are then launched
in parallel with an even split of the desired overall throughput, and results are
collected from the controller after execution completes. Early samples are dis-
carded to allay BDB cache-warming and the unsynchronised start-up of load
generation. It should be noted that because measurement is taken at the con-
troller, we do not need to time-synchronise measurements received from the
load generating nodes. While there may be an error involved with time-window
alignment in the different samples collected by the controller, we assume this
to be negligible.

Having collected measurement logs from the controller, they may be anal-
ysed as desired, in our case by scripted format conversion and graph plotting
with Ruby and gnuplot.

6.2.4 Evaluation system hardware

Storage nodes were hosted on a 5-node cluster, each node having 4x3.4GHz
Intel Xeon, 8GB RAM, Debian Linux 2.6.32-5-686-bigmem, 100Mbps Ethernet,
and being located on the same network switch. A 6th node in the cluster has
the same configuration, but 2 rather than 4 cores, and was used to host the
controller.

Load generators were provisioned from campus workstations (outside of
term-time, so unused), Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHz with
Gigabit Ethernet.
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Future work includes repeating these experiments on a cloud platform, to
consider higher scalability, and real cloud actuation delays.

6.2.5 Alternate controller: uniform load

For this experiment our controller operates with a modified executor algorithm,
rather than optimising the layout of partitions by their workload, it will intro-
duce new nodes to the cluster and allocate them arbitrary partitions from nodes
which have numerically many partitions.

The key notion here is the assumption that each partition will be equally
busy, so load-balancing may be achieved by ensuring that each storage node
holds a roughly equal number of partitions. This is in contrast to the proposed
controller, which may opt to position a very popular partition on a server by
itself, and position all other partitions on a single server if they are infrequently
accessed.

6.3 Profiling a single Voldemort node

In order to make control decisions based on the number of requests arriving
at a node, or whether any given node can meet the demand for a particular
partition, we must obtain a workload model for our deployed system.
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Figure 6.1: Throughput-latency characteristic for one of our Voldemort server
nodes; uniformly keyed get requests

Figure 6.1 shows that a node’s response time increases with throughput
up to a point, then its throughput remains fixed and response times increase,
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as the system is saturated and queuing dominates completion time. Having
reached a similar throughput figure when generating load with this hardware
configuration, it is believed that the 100Mbit NIC is the bottleneck. However,
we are not particularly interested in where the bottleneck occurs, only that
it does, thus providing the degrading performance we need to exercise our
controller.

6.3.1 Instrumentation limitation

Figure 6.1 also demonstrates a limitation of our current instrumentation: op-
erations per second count completions rather than arrival rate, meaning that
queuing requests are not counted, and the characteristic produced indicates
that performance degrades at about 6k completions per second, but does not
reveal how arrival rate and response time are related. Unfortunately, time was
not available to remedy this shortcoming, and when considering the follow-
ing results it should be kept in mind that the when response times increase,
the arrival rate exceeds the throughput, so the stacked histograms indicate the
completed rather than actual load the system is experiencing.

6.4 Results
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Figure 6.2: Uniformly-distributed diurnal workload increase
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To demonstrate that our controller functions sensibly under expected oper-
ating conditions, we present in Figure 6.2 its control of a 2-node starting cluster
scaling up to meet increasing (uniformly distributed) demand fashioned after
the diurnal traffic pattern (2.4.1).

Our graphs present a time progression with two valuable insights into the
system behaviour: its response time, and the amount of work it is completing
per second (completion rate, or workload – see 6.3.1). The 99th percentile is
a good response time metric, as presented by Amazon’s Dynamo [11], and fo-
cussed on by the SCADS Director (3.2). However, it can be difficult to measure
in a distributed setting. Each of our measurement agents records its own 99th
percentile response time for each time window, but having collected them we
need to take an aggregate value; how to do this is not mathematically obvious,
and for expedience we opted to take the maximum value (worst-case) for our
graphs.

Workload is displayed as a stacked-histogram, where each block’s height
represents the number of requests made to a single partition. The height of
each stack shows the system’s total throughput for the given time window.
In a uniform workload all partition blocks the same height, as illustrated by
Figure 1.1.

Having established its basic functionality, we move on to the more interest-
ing question of whether it exhibits any measurable benefit over a uniform-load
assuming controller (which we consider analogous to “better than random”).
To demonstrate the significance of partition loading we present the response
of both controllers in two scenarios: their response to a large step-increase in
demand for a single key, and their response to a shift from uniform to skewed
(mostly single-key) workload where the total workload remains constant.

Both controllers will realise that there is a problem with the system’s perfor-
mance, the difference is in how they react. The "uniform-load" controller will
introduce an additional storage node, and steal partitions from other nodes,
maintaining the approximate invariant that all storage nodes hold the same
number of partitions.

6.4.1 Single-key step increase response

Here the system is put under a steady uniformly-distributed load, and after
some time this is suddenly increased by 8k target throughput, by introducing
two additional load generators, each aiming for a throughput of 4k.

Figure 6.4 shows the response of the controller making use of partition load
information to rebalance, while Figure 6.3 is the response of the controller per-
forming uniform-load assuming partition stealing to rebalance the overloaded
cluster.

We see that both controllers recover to reasonable response times, with no
significant difference between them. However, two other important differences
indicate that the partition-load aware controller performs better: it takes half
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Figure 6.3: Uniform-workload controller reacting to 12k step increase in target
throughput to a single key
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Figure 6.4: Partition-load aware controller reacting to 12k step increase in tar-
get throughput to a single key
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the time to stabilise, and (not shown in the graph) it uses 3 rather than 5 nodes
to serve the increased load.

It is inevitable that both controllers exhibit a worsening of response time
after stabilising, as the hot partition in the new workload is too busy to be
supported by a single server, which is the best we can offer it with this system’s
available actuators – increasing its replication, or splitting the partition, would
be preferable.

This result lends credence to the claim that storage controllers using fine-
grained workload information, such as partition request counts, are able to
rebalance more quickly, with less service disturbance, by moving only the data
necessary to stabilise performance, resulting in fewer service level violations.
Furthermore, it demonstrates that by adopting a workload based bin-packing
approach we may provide good response times with fewer machines rented
from the cloud provider, saving money.

6.4.2 Constant overall workload with shift from uniform to skewed
key access

Figures 6.5 and 6.6 show the controllers’ responses to a constant target work-
load, where the distribution of key accesses shifts from uniform to skewed to-
wards a single key after 3 minutes. The response times achieved by both con-
trollers degrade, though the partition-aware controller again beats the uniform-
load assuming controller, this time by half a second. Moreover, its completion
rate is higher. While arguably insignificant in these results, these differences
may become important at greater scale.

The uniform-load controller is operating on 4 nodes before the access pat-
tern shift occurs, hence its faster stabilisation than in Figure 6.3. Indeed, the
uniform-load controller makes use of all 5, and does not realise that it cannot
improve performance by adding more, so without this upper bound would con-
tinue to over-provision in the attempt to reduce the imbalance caused by the
one overloaded partition. In contrast, the partition-load aware controller uses
a total of 4 storage nodes, and stabilises upon realising it cannot improve the
situation of any of the overloaded nodes due to the workloads of the partitions
they hold.

To conclude, we have seen that the partition-load aware controller again
achieved marginally superior 99th percentile response times, made use of fewer
storage nodes, and detected that it could make no further improvements to the
situation, thus stabilising. The uniform-load controller stabilised only because
it ran out of available servers, having utilised all 5 of them.
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Figure 6.5: Uniform-workload controller response to key access shift, 5 storage
nodes used
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Figure 6.6: Partition-load aware controller response to key access shift, 4 stor-
age nodes used
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6.5 Further work

The most immediately obvious limitation of this evaluation is that it was not
performed on a cloud platform – servers were statically provisioned and always
running, but idle when not part of the cluster. As such, there were no spin up
or down delays to their addition to meet demand. Arguably this is a matter to
be dealt with by another control component, which would use this component
to advise on where and when to move data optimally. Furthermore, rented
infrastructure is equivalent to its owned counterpart, but still it seems more
appropriate to evaluate a cloud storage controller in the cloud.

That matter covered, other avenues of investigation presented themselves,
but were not be pursued due to time constraints.

6.5.1 Reproduction of results with alternative load generator

A shortcoming of these results is the treatment of queueing. Throughput is not
clearly differentiated or defined, with the taken completion rate measurements
not being representative of the more interesting arrival rate figures. Moreover,
the measurement software appears to limit its generated client pool based on
the observed throughput, resulting in difficulties in representing the correlation
between partition load and performance degradation. As discussed in 6.2.1
other softwares are available, and Tsung in particular is known to produce
measurements with better control and measurement of queueing concepts such
as arrival rate, completion, and failed requests.

6.5.2 Scaling down

The current controller implementations are incomplete in that they scale out,
but not in again. While our experiments have considered pathological situa-
tions where this did not matter, other interesting scenarios and more general
experimentation require that the controller be able to redress load when empty
servers are not available, and also empty out and decommission nodes when
workload drops.

6.5.3 Voldemort rebalancer tuning

A possible application of this work which has not been investigated is using our
partition workload information to optimise of Voldemort’s rebalancing mecha-
nism, either by changing its internal decision-making process, or by batching
independent transfer operations together to achieve transmission parallelism
and latency-hiding.
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6.5.4 Non-uniform file size

In the presented results, a fixed file-size of 1KB is taken for all keys. This may be
true of some applications, but does not seem reasonable as a general assump-
tion, in particular since network interfaces were found to be the saturating
system component for storage nodes. It would be of interest to investigate the
controller’s performance with larger fixed file sizes, and with varied file-sizes.
This was discussed previously in 5.2.

6.5.5 Fluctuating access patterns

While we have moved beyond uniformly distributed key-access in our experi-
ments, we did not assess the controller’s ability to react to and maintain stability
in the face of sharp changes or fluctuating workloads, such as traffic surges for
a key occurring while the controller is rebalancing to handle a previous, but
now moot, shift in key popularity.

This also relates to file-size, or the total stored data size, as when actuation
slows down it will become more important to take small steps or be able to
interrupt rebalancing in order to revise plans and effect changes appropriate to
the new situation.

Another interesting workload would be one consisting of skewed key ac-
cess, but where the skew towards particular keys changes frequently. From a
lesser resolution this would constitute uniform random key access, so such a
controller would remain stable and perform reasonably under such load. Our
current controller would prove unstable, and worsen rather than improve per-
formance, due to the high observed cost of rebalancing, which would happen
each time key popularity changed.

6.5.6 Integration with elastic node provisioning controller

Here a fixed pool of 5 servers were available, acting as an upper bound on the
resources available. This limited both the range of loads the servers could be
subjected to, and the number of nodes the uniform-load controller could over-
provision. Operating this controller in tandem with a controller manipulating
the cluster size, such as the Duke HDFS controller of Section 3.1, would lead
to new and interesting evaluation scenarios, and a more complete system.
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Chapter 7

Discussion and further work

In this work we have investigated the thesis that assuming uniformly-distributed
key access is harmful to cloud storage control.

Our results demonstrate that skewed workloads, particularly those for an
individual key, as has been the case for stored media relating to popular news
stories, may be better managed by automatic controllers taking into account
the dissimilar spread of demand for their data partitions.

We have presented contrasting approaches to make decisions with this in-
formation: one of fast-to-execute greedy-heuristic decisions, and one of a global
optimisation process using a constraint solving system to solve this bin-packing
problem. Furthermore, we have presented a simple method for collecting partition-
workload information, and provided experimental results for controlling the
Voldemort key-value storage system with the greedy-heuristic approach.

7.1 Future directions

In addition to the immediate practical extensions to our results discussed in
section 6.5, we here suggest less system-specific directions for future work, or
more general experimental situations with another storage system.

7.1.1 Strongly-consistent storage optimisation

While the presented evaluation is for a store without replication, the notion of
improving performance without increasing replication seems to be a good fit
for strongly consistent storage systems. It would be interesting to integrate the
controller with such a store, though it would be necessary to have full control
over the system’s replica positions – this issue prevented such experimentation
with Voldemort.
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7.1.2 Replication-degree control for non-uniform loads

With information about the distribution of load across objects or partitions,
we can increase or decrease their replication factor. That is, when we notice
a partition is busy, we can tell the storage system to increase its replication,
or when partitions see little access we may reduce their replication, if some
benefit such as storage capacity or fewest distinct nodes were to improve.

However, for this actuation to be effective, the storage system would need to
effectively rebalance the replica positions across the storage nodes. This would
work best if it knew not to place hot replicas on the same server such that
their utilisation exceeds their capacity. Once we assume this behaviour, we may
ask why the storage system would monitor this information, unless it already
re-partitions its data based on demand.

Another possible situation is less desirable: that replicas will be placed with-
out considering their utilisation, and load will not be balanced across the clus-
ter. Here however the storage service’s query semantics are important. Round-
robin load balancing will result in the described imbalance, but if nodes serve
requests by taking them from a message queue, or similar producer-consumer
model, then load balancing may be achieved through the query mechanism,
assuming enough replicas of hot partitions, and storage node resources have
been provisioned.

7.1.3 Partition resizing and layout optimisation for non-uniform
loads

This extends from the partition arrangement approaches of sections 5.3.1 and
5.3.1 by resizing partitions in order to isolate hot items and coalesce cold items,
further reducing costly network transfers and easing the burden of layout opti-
misation for many items.

It is believed that this could be implemented for measurement on top of
the SCADS Director or HDFS, but this is left for future work. Voldemort cur-
rently blocks this level of control without significant middleware engineering,
as storage partitions are fixed.

7.1.4 Controller SLA modelling

Having observed that any low-expenditure oriented storage controller is likely
to violate its service levels to some extent during certain traffic scenarios, it
would be useful to see a study of framework developed for characterising con-
trollers responses to determine suitable SLAs for usual and unusual traffic, so
that controllers reacting as reasonably as can be expected are not excessively
penalised in exceptional circumstances.
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7.1.5 Global optimisation of partition layout and distance from
current layout

Our controller has adopted the greedy local-search heuristic approach to the
partition workload bin-packing problem, as in the SCADS Director 3.2. A con-
trasting approach is to find a globally optimal configuration of storage parti-
tions, ensuring the fewest possible servers are utilised. However, the current
location of items and the desire to minimise transferred data places additional
constraints on the bin-packing problem, requiring novel model extensions to
presenters such as that provided as a case-study for the Gecode constraint pro-
gramming system in [39].

Given the computational complexity and cost of global optimisation, even
with state-of-the-art constraint-programming techniques, we suggest such a
mechanism be placed in the planning or deliberation layer, and not block the
regular less-optimal controller execution. It might be considered analogous to
memory or object garbage collection, or hard disk defragmentation, which are
known to be beneficial or required, but are expensive operations which we tend
to avoid or schedule to not block real work. This might prove useful, for exam-
ple in determining which servers can be removed at day and night, preceding
or following the diurnal phase change.

7.2 Conclusion

Our results have shown that partition-load aware control offers benefits over
uniform-load assuming control in certain situations. We believe the uniform-
load assumption to be a very real problem in systems design and evaluation,
and have provided initial experimental results supporting this. We have ap-
plied concepts from state-of-the-art research to address workloads with non-
uniformly distributed key access, enabling us to improve our system’s perfor-
mance recovery under step changes in workload, and to save money by re-
quiring fewer storage nodes to service a given non-uniform workload by bin-
packing serviceable demand.

Practically, we see integration with other controllers through fuzzy logic or
other multi-agent mechanisms may enable greater cost-savings in cloud stor-
age systems while preserving performance, maintaining service levels. Further-
more, our work as offering a model for how a storage system may allocate
added resources, when they are presented by a resource controller interested
only in provisioning discrete machines in response to demand, rather than the
particulars of how the system uses them.

While we have not demonstrated that the approach is generally superior,
or generally applicable, we believe our results demonstrate that a there is a
significant difference between the approaches, and the direction is worthy of
further investigation.
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