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Elastic consequences of a single plastic event :

a step towards the microscopic modeling of the flow of yield stress fluids.
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2 Laboratoire de Physico-Chimie Macromoléculaire, UMR CNRS 7615,
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With the eventual aim of describing flowing elasto-plastic materials, we focus on the elementary
brick of such a flow, a plastic event, and compute the long-range perturbation it elastically induces
in a medium submitted to a global shear strain. We characterize the effect of a nearby wall on this
perturbation, and quantify the importance of finite size effects. Although for the sake of simplicity
most of our explicit formulae deal with a 2D situation, our statements hold for 3D situations as well.

PACS numbers: 46.25.Cc ; 83.10.Ff ; 83.60.La

I. INTRODUCTION

An increasing body of experiments on macroscopic flow
of various complex systems evidence spatially heteroge-
neous behaviour. We focus here on the (large) sub-class
of such systems that display a macroscopic yield stress
(among which foams, suspensions, emulsions, colloidal
glasses,...). Typically these systems flow homogeneously
at large stress/shear rate, whereas at intermediate shear
rate they may exhibit spatial coexistence between a flow-
ing and a frozen region [1, 2, 3, 4, 5] or intermittent het-
erogeneous flow [2]. To this point, there is little insight as
to whether the mechanisms leading to such macroscopic
behaviours are generic or dependent on the specific mi-
croscopic structure of the fluid and the corresponding
interactions.
A general class of “elasto-plastic” models has been

put forward to apprehend those macroscopic behaviour,
which was first applied to seismologic modelisation [6].
In these models, the medium first responds elastically to
a global forcing (either stress or strain). The deforma-
tion or stress can then locally induce a rearrangement
or plastic event, if a local threshold is reached. Such a
plastic event locally relaxes a stress that is elastically re-
distributed in the medium, and can trigger other local
events. In this picture, the macroscopic flow is the out-
come of the collectively organized sequence of local rear-
rangements. Although this mesoscopic description seems
very reasonable, many questions remain to be answered
for this scenario to be operational. First, what is (are) the
basic plastic event(s), and how can it (they) be identified
in a given flowing complex material ? Second, what is
the constitutive (dynamic) equation that describes such
a single plastic event under a local forcing ? Third, how
does such an ”event”, locally relaxing stress, perturb the
surrounding medium ? The answer to this last question
is obviously linked to the nature of the plastic event.
As to the first two questions, i.e. the nature and the

description of the plastic event, various convincing pic-
tures have been proposed in the literature. In a pioneer-

ing work, Bulatov and Argon introduced a phenomeno-
logical description of a single plastic event, which allowed
them to describe many properties of macroscopic plastic
flows [7, 8, 9]. In their simulation, the unit cell can un-
dergo several fixed plastic deformations specific to their
hexagonal geometry. Later, on the basis of molecular
simulations of a Lennard Jones glass under imposed shear
stress [10], and building on earlier works by Spaepen and
Argon, Falk and Langer introduced the notion of shear
transformation zone (STZ), which described a local lim-
ited zone where rearrangements occur. The occurrence
of very localized plastic events is most easily evidenced
in foams [5], where they take the form of T1 rearrange-
ments. Langer [11] then constructed an analytical ”mean
field” elasto-plastic model, introducing STZ as zones with
a plastic tensorial deformation. More recently, Baret et.
al. [12], and Braun [13] performed numerical simula-
tions on lattices, in which a plastic event consists in a
local scalar displacement occurring when the local stress
reaches a yield stress. Thus, within a very general class of
elasto-plastic model, the notion and the description of a
plastic event is now well documented and clarified. How-
ever, a clear description of the consequences of a localized
plastic event on the stress distribution in the material
(third question) still needs to be constructed.

This is the purpose of the present paper : using a
rather general description for a localized plastic event, we
compute the long-range elastic perturbation that such an
event induces in an elastic material. We characterize its
symmetry and amplitude, as well as the way it is mod-
ified if the event occurs close to a solid boundary. An
a priori counter-intuitive result which emerges from our
calculations, is the crucial role played by finite size effects
in the modeling of flowing elasto-plastic materials. We
limit ourselves here to the study of the elastic effects of
a single event, and leave for a later report the analysis of
the collective organization of the plastic events when the
material is flowing.

The paper is organized as follows. In section II we
specify the general “elasto-plastic” model that we use: we
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assume that the medium is homogeneous and isotropic,
as well as incompressible for simplicity. In section III we
consider an infinite geometry, and describe a local plastic
event induced by shearing and the full characterization
of the perturbation it elastically induces. In this case
there is no difference between a forcing at imposed stress
or imposed strain. In section IV, we focus on finite size
geometries, where the system is bounded by solid walls.
First, we describe how a wall attenuates the perturbation
induced by an event occurring in its vicinity. Secondly,
we explicit how in a finite size medium, the perturbation
depends on the global forcing. We calculate the average
stress relaxation induced by an event at imposed strain,
and give explicit formulae to compute the corresponding
stress field relaxation everywhere. In section V, we con-
clude and briefly highlight important consequences for
the modeling of flowing systems.

II. ELASTO-PLASTIC MODEL

We assume, following many of the previously quoted
studies, that the displacements and deformations are
given by the simple superimposition of a plastic flow (the
localized plastic events) and an elastic distortion of the
medium. We further assume that the medium is homo-
geneous, isotropic, and linearly elastic. In addition, we
focus for simplicity on the incompressible case (the com-
pressible case can be studied following the same lines),
so that the elastic properties of the medium are fully de-
scribed by the shear modulus µ.
Denoting u(r) the total displacement vector at position

r, the strain tensor is given by ǫ = 1

2
(∇u+(∇u)t). From

our hypotheses, this total strain is the sum of an elastic
strain and a plastic strain (non-zero only at the locus of
plastic events):

ǫ = ǫ
pl + ǫ

el (1)

Incompressibility corresponds to :

∇.u = 0 (2)

With the hypotheses of linear elasticity and incom-
pressibility, the total stress tensor is s = −p1+ σ where
p is the pressure and σ verifies :

σ = 2µǫel = 2µǫ− 2µǫpl (3)

As we have in mind the slow flow of pasty materials
we neglect inertial effects so that mechanical equilibrium
simply requires :

∇.(σ − p1) = 0 (4)

We consider the classical situation where an applied shear
(either imposed deformation or stress) induces elastic
loading of the material, up to the point where it triggers
a single localized plastic event. The consequent state of
the medium in response to the applied forcing is here the

sum of a purely elastic response to the forcing (denoted
with superscripts 0) and of the perturbation induced by
the occurrence of the plastic event (denoted with super-
scripts 1).
With these notations :

ǫ = ǫ
0 + ǫ

1

ǫ
el = ǫ

el0 + ǫ
el1 ; ǫ

pl = ǫ
pl1

σ = σ
0 + σ

1 (5)

where ǫ
pl1 describes the localized plastic event. To go

any further we need to pay attention to the boundary
conditions imposed on those fields, which brings us to
specify the global geometry of the system. We start be-
low with an infinite medium, before addressing finite-size
effects in section IV.

III. INFINITE MEDIUM

We start with the limit case of an infinite medium,
where a driving at infinity imposes either an applied shear
strain or an applied shear stress. The purely elastic re-
sponse ǫ

el0 is homogeneous. Let us then focus on the
perturbation 1 generated by a plastic event described by
ǫ
pl. If the system is stress driven, the boundary condition
for the induced perturbation is:

σ1(∞) → 0 (6)

whereas for a strain controlled system, the boundary con-
dition reads :

u1(∞) → 0 (7)

Equations (2), (3) and (4) can then be reformulated in
a well defined problem for the perturbation field:

∇.u1 = 0

∇.(2µǫ1 − p1I) = 2µ∇.ǫpl (8)

which must be solved either with either (6) or (7).
Obviously the problem at hand is directly related to

the response of a purely elastic (incompressible, isotropic,
homogeneous) system to a punctual force. Let a force f

act on the medium at the position r′. The displacement
field u at position r created by this force is given by:

∇.u = 0

∇.(2µǫ − pI) + fδ(r) = 0 (9)

The solution of this system, that actually satisfies simul-
taneously both types of boundary condition (σ(∞) → 0
and u(∞) → 0), is the Oseen tensor which is most eas-
ily dealt with in reciprocal space (we use hats to denote
Fourier transforms):

û(q) = Ô(q).f
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FIG. 1: The medium is sheared in the y direction at constant
strain γ. the infinite system of section III corresponds to
H → ∞, U → ∞ and U

H
= γ/2

with:

Ô(q) =
1

µq2
(1−

qq

q2
)

(10)

With this tool we can construct the solution to the
system (8). This solution is clearly also independent of
the specific boundary condition (6) or (7), and can be
simply written:

û1(q) = 2µÔ(q).(iq.ǫ̂pl) (11)

At this point, no assumption has been made on the
nature of the plastic event (fully described here by the

localized ǫ
pl(r), or equivalently by ǫ̂pl(q)). Therefore

this expression gives in a very general form the dis-
placement field induced by a plastic strain in an infinite
medium (for both type of boundary conditions). By
derivation and using (3) one easily obtains a similar
formula in reciprocal space for the stress perturbation
σ1. Both relations lead in real space to expressions for
the propagators for displacement and stress respectively.
Rather than producing these formulae in a formal
general context we specify to a given geometry first.

A. Plastic events with a simple shear symmetry in

2D

To pursue analytically without dealing with opaque
tensorial formulae, we now make the simplifying assump-
tion that the local plastic event has the symmetry of the
global forcing which we chose to be that of simple shear.
We further focus on the two dimensional case : the
H → ∞ limit of Fig. 1. We stress however that most
our conclusions are also valid for the 3D situation (see
comments further).
With the hypothesis above, the plastic deformation

tensor corresponds to simple shear ǫplxy = ǫplyx , and

ǫplxx, ǫ
pl
yy are neglected. Expression (11) becomes:

û1
x(q) = 2µ(Ôxx.iqy + Ôxy.iqx)ǫ̂

pl
xy

û1
y(q) = 2µ(Ôxy.iqy + Ôyy.iqx)ǫ̂

pl
xy

(12)

For a localized plastic event ǫplxy = ǫ0a
2δ(r) (i.e. of

typical amplitude ǫ0 and microscopic spatial extent a2),
the perturbation displacement described by (12) is anal-
ogous to the displacement induced by a set of two dipoles
of forces (F, 2a) as represented on figure 2, with F = aµǫ0
(or more precisely its limit for a → 0 with aF = µǫ0a

2

kept constant).
The shear stress perturbation corresponding to (12)

can be obtained using (3), and reads :

σ̂1
xy = 2µ2(q2yÔxx + q2xÔyy + 2qxqyÔxy)ǫ̂

pl
xy

− 2µǫ̂plxy (13)

Somewhat similar formulae can be obtained for σxx and
σyy but we will in the following mostly focus on the shear
stress.
We define formally the propagators P∞, G∞ that de-

scribe the consequences in terms of displacement and
elastic shear stress of a single plastic event in an infinite
medium by:

u1(r) =

∫
dr′P∞(r− r′)ǫplxy(r

′) (14)

σ1
xy(r) = 2µ

∫
dr′G∞(r− r′)ǫplxy(r

′) (15)

Practically, the propagator for the displacement field can
be derived from equation Eq. (12) either with the Fourier
Transform or by derivation in real space of the Oseen ten-
sor. The propagator for the shear stress is then deduced
from linear elasticity.

F

a

y

x

FIG. 2: The perturbation due to a localized plastic shear is
equivalent to the perturbation due to a set of two dipoles of
forces with F = aµǫ0.
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FIG. 3: Perturbation of the shear stress field for a plastic
event occurring at the origin in a medium submitted to a
shear strain or stress.

In the present two-dimensional geometry, explicit for-
mulae in reciprocal and real space are:

Ĝ∞ = −4
q2xq

2
y

q4
(16)

G∞(r, θ) =
1

π

2

r2
cos(4θ) (17)

Hence, in a system forced with a symmetry of simple
shear, the perturbation of the shear stress due to a local-
ized plastic event is of quadrupolar symmetry (see Fig. 3)
and decreases with a power law 1

r2 in two dimensions (in
three dimensional systems, the quadrupolar symmetry is
conserved and the power law is 1

r3 ).

B. Global effect of a plastic event :

We now consider more global effects of the same local-
ized plastic event ǫ̂plxy(r

′) = a2ǫ0δ(r
′), namely quantities

integrated over a whole layer (of constant y). The fol-
lowing integral rules are easily derived from the previous
calculations:

∫ +∞

−∞

σ1
xy(x, y)dx = 0

∫ +∞

−∞

u1
x(x, y)dx = Sign(y)a2ǫ0

∫ +∞

−∞

u1
y(x, y)dx = 0 (18)

The first equation states that the shear stress resulting
from the plastic event is redistributed in such a way that
the integrated stress on every layer is unchanged, i.e.
there is no net release of stress over a layer, and con-
sequently no change in the net force applied from above
on the system! The second relation indicates that the av-
erage horizontal displacement in a (horizontal) layer de-
pends only on whether it is above or below the event (but

not on its distance to the event), while the third equa-
tion expresses that the average vertical displacement over
a layer is zero. For simple shear in three dimensions, sim-
ilar equations hold for quantities integrated over planes
perpendicular to the loading displacement gradient.

C. Relation to other studies

Let us now compare the results we have obtained at the
end of section A, for the displacement and stress fields
induced by a single localized plastic event of simple shear
symmetry, to related studies in the literature.
First, our results can be compared with the full analyt-

ical description of an elasto-plastic inclusion in an elastic
matrix by Eshelby [14]. In that study, plastic shear strain
occurs only within the finite-sized inclusion which yields
a perturbation of the shear stress around the inclusion.
Whatever the explicit shape of the inclusion, the long-
range behaviour of that perturbation is strictly identical
to the equivalent for the 3D case of expression (14)(as we
have checked).
To study collective effects, Baret et al. [12] simu-

lated elements with local yield stresses on a 2D-lattice
(semi-periodic boundary conditions). In contrast with
the present study, they modeled the plastic event by a
simple scalar displacement. As a check, we computed the
plastic strain tensor corresponding to such a local event
in expression (11), and calculated the corresponding per-
turbed shear stress. This yields a perturbation of dipolar
symmetry, consistent with the propagator that they nu-
merically evaluated on their lattice. This provides a val-
idation of our procedure, but mostly underlines that the
nature and symmetry of the elementary plastic event se-
riously affect the propagator describing its consequences,
and therefore potentially the collective interplay of such
events and the resulting macroscopic flow behaviour. We
believe that the form of plastic event used in the present
study is more suited for the actual description of the flow
of elastoplastic materials.
Kabla and Debrégeas [15] performed an explicit nu-

merical simulation of a two dimensional foam under shear
strain. In their quasi-static procedure, at each step the
length of the film is minimized at constant bubble vol-
ume. They mimic ’T1’ event by reorganizing sets of four
bubbles when film length decreases below a critical value.
They studied the stress rearrangements following such
T1 events in their simulation. Averaging over many such
events, they found that statistically these stress perturba-
tions have a quadrupolar symmetry ( with a slight tilt of
the axes with respect to those of the macroscopic shear
(x,y), probably due to a structuration of the foam by
the flow into a slightly non-isotropic medium). They ob-
served that this stress field coincides with that generated
in an elastic medium by a set of dipoles with the orien-
tation of the global forcing. What is remarkable is that
the outcome of their cellular simulation is very consistent
with the outcome of the (elastic) continuum approach fol-
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FIG. 4: A shear strain 2U

H
is applied to a two dimensional

elasto-plastic medium. A plastic event occurs at position r′

and is here represented by a square, and we seek for the elastic
deformation of the rest of the medium that will add up on the
elastic loading symbolized by the parallelograms.

lowed here.
To describe the deformation of plastic amorphous ma-

terials, Langer has introduced the concept of introduces
shear transformation zones (STZ). In [11], he studies the
response of a 2D material to an applied deviatoric stress.
The plastic strain tensor is described without any as-
sumption on its orientation. The results in that paper
suggest that for a plastic strain tensor with the symme-
try of the forcing, the deviatoric stress induced by the
STZ is of quadrupolar symmetry, with a power law de-
crease 1

r4 . Within our model, we find for such an event
also a quadrupolar symmetry but a power law decrease
of 1

r2 , and do not understand this discrepancy.
We now turn to the most important part of our paper,

namely the effect of the finite-size geometry on the stress
distortion due to a localized event.

IV. FINITE MEDIUM

As in the analysis above, we consider here localized
plastic events with the symmetry of the forcing (simple
shear), equivalent to a set of two dipoles of forces. There-
fore the propagator for such a plastic event can in princi-
ple be viewed as the sum of the propagators for the four
forces, which brings us back to considerations pertaining
to the Green’s function for the effect of a single force on
the elastic finite medium.
We focus on the case of an imposed shear strain rep-

resented on figure 4, where two solid walls adhering per-
fectly to the medium are shifted horizontally.
Therefore the boundary condition for the total dis-

placement field is:

u(x,±H/2) = ±U (19)

We proceed with the same decomposition as in the infi-
nite medium case. The displacement field is the sum of

x

y d

r

r’

FIG. 5: The plastic event occurs at the vicinity of the wall :
|r− r′| ≫ d. The quadrupolar symmetry of the plastic event
is assumed not to be affected by the presence of the wall.

the homogeneous elastic loading and of the perturbation
due to the plastic event (again we denote by u1, σ1 the
displacement and deviatoric stress tensor induced by the
plastic event). The boundary condition for the perturba-
tion in the imposed strain regime is:

u1(x,±H/2) = 0 (20)

The total response of the elasto-plastic medium is then :

ux(x, y) =
2Uy

H
+ u1

x

uy(x, y) = u1
y

σxy(x, y) =
2µU

H
+ σ1

xy(x, y)

(21)

A. Wall effects

We show here that the perturbation due to a plastic
event occurring in the vicinity of a wall is more rapidly
damped than the perturbation due to an elastic event
occurring in the bulk.
To be precise, a plastic event is considered to occur in

the vicinity of the bottom wall (located at yw = −H/2) if
it occurs at a position r′ much closer to the wall than the
point r where the perturbation is calculated. This con-
dition requires |H/2 + y′| ≪ |r− r′|, with the notations
defined on Figure 5. We also focus here on situations
where the second (top) wall is too far to play a role, that
is |r− r′| ≪ |y′ −H/2|, so that our approach in this sub-
section practically deals with a semi-infinite geometry.
Again, the effect of a plastic event is equivalent to the

sum of that of the four forces represented on Fig. 5.
Hence, we first study the displacement field induced by
a single force F at position r′ in the vicinity of the wall.
The displacement field due to a punctual force F at

r′ in a semi infinite medium is the sum of the displace-
ment field due to the punctual force and an image with
respect to the wall in an infinite medium. This com-
plex image is such that the displacement field it induces
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FIG. 6: The displacement field due to a punctual force F

in a semi infinite plane at a position r′ is the sum of the
displacement field the same force would induce at r′ in an in-
finite medium, and that induced by its image with respect to
the wall also in an infinite medium. The image consists of a
punctual force −F, two dipoles of forces of strength 2dFx and
−2dFy respectively, and two dipoles of potential. The result-
ing asymptotic long range behaviour is that of a quadrupole
of strength 2dFx.

exactly cancel out on the wall the displacement gener-
ated by the punctual force. Its structure is depicted in
Fig. 6 and recalled below [16]. The location of the im-
age is the symmetric of the pole r′ with respect to the
wall. This image is the sum of a punctual force −F, two
dipoles of forces (2dex, Fxey) and (2dey, Fyey), and two
dipoles of potential (2dex, Fxd/µ) and (2dey,−Fyd/µ)
where d = |y′ +H/2| is the distance between the event
and the wall. The analytical expression for the corre-
sponding Green function is given in [16]. Its long-range
behaviour, |r− r′| ≫ d, is dictated by the dipoles of
forces in Figure 6, yielding a displacement field that
scales a 1

|r−r′| .

Returning to the effect of a plastic event, where the
source is now a set of dipoles as in Figure 2, one could
expect a similar cancellation of the first order terms, and
thus a far-field displacement scaling as 1

|r−r′|2 . However

inspection of the structure of the image show that such is
not the case (see Figure 7): the dipole of horizontal forces
is duplicated in its direct image, and the set of dipoles
of vertical forces it generates yield a dipole of strength
4aF . The contributions of the (original) dipole of verti-
cal forces are weaker due to cancelations. Altogether one
is left with a dominant term that has the same geometry
than in an infinite medium (and a similar 1/r decay for
the displacement) with an amplitude twice as strong. We
have analytically checked that the stress decay is consis-
tent with the above picture, as for a localized event close
to the wall we obtain a propagator that is directly related
to its equivalent in the absence of the wall Eq. (17) :

Gwall(r, θ) = 2G∞(r, θ)(1 +O(d/r)) (22)

where clearly x − x′ = r cos(θ) , y − y′ = r sin(θ). This
picture is also consistent with numerical calculations of
the propagator for an event next to the wall in a finite

x

y

F

Im

Im = ...

d

d

a

FIG. 7: The displacement field due to two force dipoles in a
semi infinite plane is the sum of (i) the displacement field it
would induce in an infinite medium and (ii) the displacement
field due to its image with respect to the wall. This image
can be constructed by summing those of the four forces. The
contributions represented here (not at scale) are the direct
images (solid arrows, all of amplitude F ) and the induced
force dipoles (dashed arrows, of amplitude 2(d−a)F and 2(d+
a)F for the top and bottom one, of amplitude 2dF for the
two others). Inspection shows that the net dominant long-
range behaviour is that of a quadrupole twice as strong as
the original one
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FIG. 8: Perturbation of the shear stress field for a plastic
event (plastic deformation of amplitude ǫ0 = 1) occurring
next to the top wall.

geometry, which yields the picture in Fig. 8 (calculation
to be described in subsection IVB below).

B. Propagator in a finite thickness medium

In this subsection, we turn to a medium of finite thick-
ness H . We focus again on an imposed strain situation,
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FIG. 9: A periodic array of plastic events at position x′ +
kL, y′.

and therefore on the problem corresponding to the sys-
tem of equation (8) together with the no displacement
boundary conditions (20). We indicate ways of calculat-
ing the propagator in this geometry but mostly empha-
size consequences of a single event on integral quantities.

1. Finite H, Infinite L

A first method to treat the case of a medium of finite
thickness and infinite length, consists in the systematic
construction of a series of images so as to cancel the dis-
placements on both walls.
In the previous subsection we reported the explicit

structure of the image of a punctual force needed to can-
cel the displacement due to this force on one of the walls.
The image with respect to the wall at H/2, unfortunately
creates a displacement at the wall −H/2, so that its own
image with respect to the wall −H/2 has to be consid-
ered, and this process has to be repeated for every image.
Thus formally two infinite sums of images are required
to express the displacement for a punctual force within
two walls. Following this strategy, Pozrikidis [16] per-
formed a full analytical calculation of the deformation
field induced by a point force.
Formally, the perturbation due to a plastic event can

then be deduced by adding up the consequences of each
of the four forces it consists of. This leads to expressions
that although exact are heavy to deal with and some-
what opaque. We therefore turn to other methods in
the following, focusing on a geometry periodic in the x
direction.

2. Finite H, L Periodic : first method

We now focus on a system of thickness H and of fi-
nite extent L in the x direction, and consider periodic
boundary conditions in that direction. This is equiva-
lent to analyzing in an unbounded geometry the effect
of a periodic array of plastic events of a given ampli-
tude at positions (x′ + kL, y′) with k ∈ Z (Figure 9), or
formally ǫ̂plxy(r) = a2ǫ0

∑
k∈Z

δ(r − (r′ + kLx)). The re-

sulting displacement field u1 can then be viewed as the
sum of the displacement field induced by a similar peri-
odic array of plastic events in an infinitely thick medium

u∞ and of a correction term vH due to the finite size H .
u1 = u∞ + vH is a function of x− x′, y and y′.
The displacement field u∞ induced by the periodic ar-

ray of plastic events in an infinite medium can be ex-
pressed using the propagator for a single event (14) :

u∞(x, y) = a2ǫ0
∑
k∈Z

P∞(x− x′ − kL, y′) (23)

Given its periodicity in the x direction, this expression
can be formally decomposed in Fourier series:

u∞(x, y) = U∞
0 (y) +

∞∑
n=1

(U∞
cn(y) cos(2nπx/L)

+ U∞
sn(y) sin(2nπx/L) )

(24)

From equation (18), the components of the zeroth-mode
vector function are:

U∞
0x(y) = Sign (y − y′)a2ǫ0/L

U∞
0y (y) = 0 (25)

The correction displacement field vH is the solution of
incompressible linear elasticity with no source (i.e. the
set of equations (3,4) with no plasticity) but with the
boundary conditions required to grant that u1 is zero on
the walls:

vH(x,±H/2) + u∞(x,±H/2) = 0 (26)

vH is thus also periodic and can be written :

vH(x, y) = VH
0 (y) +

∞∑
n=1

(VH
cn(y) cos(2nπx/L)

+ VH
sn(y) sin(2nπx/L) )

where the functions VH
cn, VH

sn can be calculated inde-
pendently (i.e mode by mode) with the boundary con-
ditions: VH

cn(±H/2) = −U∞
cn(±H/2), VH

sn(±H/2) =
−U∞

sn(±H/2). We skip the full calculation in this subsec-
tion (which can be performed e.g. as in the low Reynolds
number hydrodynamic study in [17]), as we display in the
next subsection an exact expression of the displacement
calculated in a framework that is more amenable to nu-
merical simulation.
Instead we focus here on the zeroth mode VH

0 (y).
From equations (25) and (26), its components are simply:

V H
0x (y) = −2a2ǫ0

y

HL

V H
0y (y) = 0. (27)

This suffices to deduce consequences of the plastic
event in terms of integrals over constant y lines:

∫ L/2

−L/2

u1dx = L(VH
0 (y) +U∞

0 (y))



8

so that
∫ L/2

−L/2

u1
x(x, y)dx = −2(a2ǫ0

y

H
) + Sign(y − y′)a2ǫ0

∫ L/2

−L/2

u1
y(x, y)dx = 0

Then, linear elasticity implies that the overall variation
of the force on the top plate due to the plastic event is:

δF =

∫ L/2

−L/2

σxy
1dx = −2

µǫ0a
2

H
(28)

The corresponding drop of the average shear stress in the
medium is obviously δ〈σ〉 = δF/L.
This exact expression shows that a single plastic event

(of a given fixed amplitude ǫ0a
2) results in the release

of the net force exerted by the medium on the walls by
a quantity scaling as 1

H . Remarkably, this quantity is
independent on the position of the event in the medium.
A corollary is that a finite density of plastic events φ,
will relax this total force by an amount ∼ (φHL)δF ,
corresponding to a relaxation of the average stress δ〈σ〉 =
δF/L independent of the size of the system.
Note that the integrals over a period L calculated

above for the consequences of a periodic array of plas-
tic events, are equal to the integrals over x from −∞ to
+∞ in a finiteH infinite L geometry for the consequences
of a single plastic event. For example, in the latter ge-

ometry δF =
∫∞

−∞ σxy
1dx = −2µǫ0a

2

H , which clarifies in

what sense equation (18) obtained in the previous section
for an infinite medium corresponds to the limit H → ∞.
The global relaxation due to a single plastic event is con-
sequently directly related to the finite size of the system.
An alternative derivation of this finite-size dependence

of the force (or average stress) relaxation is proposed in
appendix A, which yields a somewhat complementary
physical insight.

3. Finite H, L Periodic : second method

Although we aim to focus in this paper on the quali-
tative aspects presented previously, we propose here an
explicit formula for the stress perturbation induced by
a localized plastic event in a finite size geometry. The
actual expression is presented in reciprocal space, which
may appear at first somewhat cumbersome, but turns
out to be convenient in numerical calculations. For sake
of readability, we provide here only the principles of
this two step derivation and the resulting formulae, the
details of the calculations being presented in appendix B.

First step: we formally extend the actual system
(0 < y < H , and L periodic along x) by the follow-
ing two operations: first an antisymmetric image sys-
tem is constructed that extends to −H < y < 0, then
the 2H thick resulting system is repeated periodically
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−0.04
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0.04
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0.08

FIG. 10: Perturbation of the shear stress field for a plastic
event (plastic deformation of amplitude ǫ0a

2 = 1) occurring
in the vicinity the wall. The discretization corresponds to
H/a = L/a = 32

in the y direction. If the plastic strain in the orig-
inal system is ǫpl(x, y), our construction yields a sys-
tem without walls that is 2H periodic in the y direc-
tion, with in the upper half period H > y > 0 a plas-
tic strain ǫpl∗(x, y) = ǫpl(x, y), and in the lower half
−H < y < 0 an antisymmetric image plastic strain
ǫpl∗(x, y) = −ǫpl(x,−y). This construction ensures that
the overall displacement generated by these strains has
an x component that is symmetric by reflection by the
planes y = 0 and y = H , and an y component that is
antisymmetric in the same operations. We have there-
fore generated a solution that satisfies the condition of a
zero y component of the displacement on the y = 0 and
y = H planes (loci of the walls in the original system).
Second step: We now want to cancel the remaining dis-

placements along x without modifying the above result,
and without adding sources in the system 0 < y < H .
This can be achieved by adding on the planes y = 0
and y = H appropriate force fields fx directed along x
(again asymmetric and 2H periodic along y). Given the
symmetry and periodicity of the system it is clear that
the y displacement on the walls is not modified by this
addition.
When this is achieved, we have in the upper half 0 <

y < H , a solution to (8) that satisfies the no displacement
boundary condition on the walls (20). The corresponding
stress field can be expressed in Fourier series :

σ1(x, y) =
∑

m,n∈Z

eipmxeiqnyσ̂∗(m,n)

with pm = 2πm
L and qn = 2πn

2H . It is the sum of the term
directly generated by the plastic strains ǫ̂∗ and that due
to the added force fields:

σ̂∗(m,n) = 2µ{Ĝ∞(m,n)ǫ̂pl∗(m,n)

+
1

2
(ipmÔxy(m,n) + iqnÔxx(m,n))f̂x(m,n)}

σ̂∗(0, 0) = 0 (29)
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The propagator G∞ and the Oseen tensor O are the di-
rect counterparts for periodic systems of those defined
in section III. Of course the force field fx in the above
expression is itself proportional to the plastic strain; the
corresponding formulae are given in appendix B.
Inverting back to real space allows to compute numer-

ically the response to a localized event. We have checked
that for a large system the stress created by a plastic
event far from the walls according to this formula is close
to that obtained analytically in section III for an infinite
medium. Similarly, for an event directly neighbour to
the wall, we recover the results of subsection IVA for a
semi-infinite medium. Fig. 10 represents an intermediate
situation : the event occurs in the vicinity of the wall.

V. CONCLUSIONS AND PERSPECTIVES

Starting from a general elasto-plastic model, we have
computed in different 2D geometries the modification of
the shear stress resulting from a localized plastic event
with a symmetry of simple shear. We have first calcu-
lated the corresponding perturbation in an infinite sys-
tem forced with a symmetry of shear. The stress field
is of quadrupolar symmetry and decreases with a power
law 1

r2 in two dimensions. Then, we showed that the
stress field perturbation due to a plastic event occurring
close to a wall has a modified near field structure but de-
cays far away with the same law and pattern, although
with an amplitude twice as large. Eventually, we have
proposed two ways of calculating the perturbation of the
stress field due to a plastic event occurring in a finite
medium. The first one allowed us to demonstrate in a
simple way that a plastic event of a given strain ampli-
tude relaxes the average stress by an amount which is
independent of its position (i.e. distance to the walls)
and inversely proportional to the size of the system. The
second one allowed us to derive explicit expressions that
permits calculation of the whole stress field in a finite-size
geometry.
The extension of our results to a three dimensional

situation is rather straightforward, and the qualitative

statements are obviously similar. Also we have focused
on a scalar description of plastic strain and induced
stress, but the same steps can be taken if one seeks to de-
scribe the whole tensorial stress field generated by plas-
tic events of arbitrary symmetry. Eventually, we have
focused in section IV on a situation where the walls were
kept fixed during the plastic event. The extension of our
results to situations where the force on the plates is kept
fixed is immediate: one simply needs to add to our so-
lution a simple shear displacement (corresponding to a
stress −δF/L with the notations of section IV).

This study is meant to be a first step towards the
modeling of the flow of an elasto-plastic material. The
next one consists in plugging in a plastic law that de-
scribes the onset and evolution of the localized plastic
events. Coupling such a local plastic behavior to the
long-range elasticity described here should yield interest-
ing collective behaviours and hopefully insights in the
flow mechanisms. For such an endeavour our quantifica-
tion of finite-size effects is important for the steady-state
average balance between the stress released by the plas-
tic events and that imposed by the elastic loading. Also
the geometry and decay law of the elastic perturbation
is to be considered when addressing the emergence of
a collective/cooperative organization at low shear rates.
Important questions regarding possible spatial and tem-
poral heterogeneities in such flows ([2, 3, 4, 5, 15] could
be addressed at the light of the present results:
- We have shown that a localized plastic event relaxes
the average stress but also modifies the stress pattern on
all the lines of the system decreasing the stress of some
elements but increasing that of others. Does this allow
shear banding with a limited zone flowing in coexistence
with a non flowing region ?
- The average stress released during an event of given
strain amplitude is independent of the position of the
event in the medium, and is the same on all lines. Yet
the geometry of the propagator is clearly modified by the
proximity of a wall. Do these elements favor a localiza-
tion of the flow at the wall ?
These questions will be addressed in a forthcoming pub-
lication.
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APPENDIX A: FINITE SIZE EFFECTS.

We propose an alternative simple approach which gives
a different physical insight into the effects of finite size ev-
idenced subsection IVB. The following argument holds
equally for an infinite L → ∞ geometry or for an L pe-
riodic medium, and is here presented for the latter. We
consider a plastic event occurring at (x′, y′) described by
ǫplxy(x, y) = ǫoa

2δ(x− x′, y− y′) (and its repeated images
along x due to the L periodicity). The stress perturba-
tion is:

σ1
xy(x, y) =

∫ L/2

−L/2

dx1

∫ H/2

−H/2

dy1 G
HL(x− x1, y, y1)ǫ

pl
xy(x1, y1)

(A1)
which actually defines the propagator GHL for the
present periodic medium. The corresponding force re-
lease on the bottom of a layer at height y is

δF =

∫ L/2

−L/2

dx σ1
xy(x, y) = a2ǫ0

∫ L/2

−L/2

dx GHL(x− x′, y, y′)

(A2)
We remark that this can be rewritten

δF =

∫ L/2

−L/2

dx1

∫ H/2

−H/2

dy1 G
HL(x − x1, y, y1)(ǫ0a

2δ(y1 − y′))

(A3)
which means (see (A1)) that the variation of the inte-
grated stress over a layer at height y (δF ) induced by an
event occurring at position x′, y′, is equal to the stress
variation at a site (x′, y) induced by a continuous sum of
events on a layer y′.
Representing these events by pairs of dipoles, the sum

reduces to that of the x components as the y components
cancel out upon summation on the line, so that we are
looking for the stress generated at (x′, y) by the two lines
of forces at y′ − a and y′ + a depicted on Figure 11.
The displacement field resulting from each of these sums
separately are easily calculated and depicted on the right
of Figure 11. For example the second one is the solution
of the following problem: on each side of the plane y =
y′−a, the medium is purely elastic, with no displacement
at the walls, and at y = y′−a a continuous displacement
and a jump in the stress of amplitude µǫ0a.
The total effect of the continuous line of events is the

displacement field presented on the left of Figure 12. The
slopes of the profile for y > y′ + a, and y < y′ − a are

the same, and correspond to δF = −2µǫ0a
2

H , as derived
differently in the main text, see equation (28). Remark-
ably, this value, which corresponds to the force release on

y’+a

y

x

x’y

y’

y’−a

FIG. 11: Left: a continuous line of events at height y′ is
equivalent, using the representation of Figure 2 for a single
event, to two lines of horizontal forces at y′ + a and y′ −
a. Right: displacement profiles resulting from the sum of
negative forces at y′ − a (left), and from the sum of positive
forces at height y′ + a (right).

the top wall, is independent of the position of the plastic
event.

y

x

U U

y
y’+a

y’−a

−U −U

FIG. 12: Left : displacement profile due to the line of events
at y′ (obtained by summing the two profiles of Fig. 11 right),
and schematic description of the elastic loading. Right: total
response to the global forcing and a line of plastic event (a
homogeneous fracture), obtained by summing the two profiles
on the left.

We remark that the deformation profile obtained
here is very similar to the one obtained by Kabla and
Debrégeas in their explicit simulation of a shear foam [15]
(which in their case was the line average consequences of
a single local event, equivalent to the present local con-
sequence of a line of events according to the argument
below (A3)).
As a follow-up along the same picture, the cumulative

displacement after loading plus a continuous line of plas-
tic events is represented on the right of Figure 12 : the
total shear in the system is then the homogeneous shear
due to the forcing minus the shear release due to the
plastic events.

APPENDIX B: STRESS FIELD INDUCED BY A

PLASTIC DEFORMATION IN A FINITE

MEDIUM

In this appendix we provide the explicit derivation of
the stress field change due to a plastic activity in a finite
system, follow the strategy outlined in subsection IVB.3.
The aim is to obtain the response of the system depicted
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on figure 9 to a strain solicitation ǫpl(x, y) with ”stick”
boundary conditions on the wall similar to 20. For this
calculation we choose to take the origin of the y axis on
the bottom wall so that the walls (and thus the boundary
conditions) are at y = 0 and y = H .

x
y

x’,y’

H

x’−L,y’ x’+L,y’

L

H

x’,H−y’ x’+L,H−y’x’−L,H−y’

FIG. 13: Auxiliary system corresponding to the real system
of figure 9: it is periodic in both direction and symmetric in
the y direction. The driving plastic strain field ǫpl∗ is anti-
symmetric.

a. Geometry of the auxiliary system- To solve this
problem, an auxiliary system with no walls is con-
structed. Its geometry is that of the original system,
symmetrized with respect to y = 0, and periodized along
y. The new system has thus a period L in the x di-
rection, and a period 2H in the y direction, see Fig.
13. Fields in this new system are described by stars.
The symmetry with respect to the plane y = 0 is made
in such a way that the plastic strain is antisymmetric
ǫpl∗(x,−y) = −ǫpl∗(x, y), which is equivalent in the force
dipole representations to having the force fields in the
lower half to be the symmetric of that in the upper part
F

∗(x, y) = F
∗(x,−y). The symmetry and periodicity of

the problem ensures that the displacement field u∗ gen-
erated by this plastic strain satisfies verify by symmetry
and periodicity :

u∗
y(x, 0) = 0;u∗

y(x,H) = 0 (B1)

b. Response to a plastic event- This new elastic
system is submitted to a plastic strain ǫpl∗(x, y) =
ǫpl(x, y) if y > 0, and ǫpl∗(x, y) = −ǫpl(x,−y) if y < 0.
For reasons explained in the text (section IVB.3), a force
field f∗

x is added at the location of the walls in the real
system, to cancel the displacements ux(x, 0) and ux(x,H)
created by the plastic strains.

f∗
x(x, y) = f∗

0 (x)δ(y) + f∗
H(x)δ(y −H) (B2)

This ”no displacement on planes y = 0 and y = H” con-
dition is implemented in reciprocal space. We introduce
notations for the Fourier series:

u
∗(x, y) =

∑
m,n∈Z

ei
2πmx

L ei
2πny

2H û
∗(m,n)

û
∗(m,n) =

1

2HL

∫
dxdy u∗(x, y) e−i 2πmx

L e−i 2πny

2H

pm =
2πm

L
; qn =

2πn

2H
; q2 = p2m + q2n

(B3)

From our calculations for an infinite medium in section
III, it is logical to write the total displacement using
propagators for plastic events and the Oseen propagator
for simple forces:

û
∗(m,n) = P̂

∞(m,n)ǫ̂pl∗(m,n)

+ Ô(m,n)f̂x(m,n) (B4)

The equations for P
∞ and the Oseen tensor O in the

present representation (Fourier series) are formally ex-
actly similar to those obtained in (9) and (14) in terms
of Fourier transforms (with qx → pm and qy → qn).

The condition u∗(x, 0) = 0;u∗(x,H) = 0 allows to

compute f̂∗
x(m,n).

f̂∗
x(m,n) =

∑
1

2i
q4 p

′
n(q

2
m − p′2n )ǫ̂

pl∗(m,n′)∑
1

p′2
n

µq4

,

for odd n

f̂∗
x(m,n) =

∑
2

2i
q4 p

′
n(q

2
m − p′2n )ǫ̂

pl∗(m,n′)∑
2

p′2
n

µq4

,

for even n and m 6= 0

f̂∗
x(0, n) = 0 for even n

∑
1
describes the sum over odd values of n′, and

∑
2
the

sum over even values of n′.
The shear stress in this geometry can then be derived
from the displacement field:

σ̂∗(m,n) = 2µ(
1

2
(ipmû∗

y(m,n)+iqnû
∗
x(m,n)−ǫ̂pl∗(m,n))

(B5)
For symmetry reasons, σ̂∗(0, 0) = 0.

c. Back to the real system - The displacement field
u∗(x,y) that we have constructed and computed satisfies
the elasticity equations for H > y > 0 with the plastic
strain ǫpl(x, y) as only source in that area, and verifies
the boundary conditions u∗(x, 0) = 0 and u∗(x,H) = 0.
It is therefore the solution to our initial problem for the
real system: for H > y > 0, u1(x,y) = u∗(x,y), and
σ1(x, y) = σ∗(x, y). Hence, the expression of the stress
as given in Equation (29).


