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ELASTIC CONSTANTS OF β-HMX AND TANTALUM,  EQUATIONS OF  STATE
OF SUPERCRITICAL FLUIDS  AND FLUID MIXTURES AND THERMAL

TRANSPORT DETERMINATIONS*

Joseph. M. Zaug
Lawrence Livermore National Laboratory, University of California,

P.O. Box 808, L-282, Livermore, California 94551

Ultrasonic sound speed measurements via Impulsive Stimulated Light Scattering
(ISLS) were made in single crystals of β-HMX and tantalum over an extended range
of temperatures. Elastic constants are consequently determined for β-HMX. Sound
speeds are calculated for tantalum, from known elastic constants, and compare
favorably with the results presented here. ISLS time-domain fits of tantalum records
allowed for thermal diffusion determinations and, correspondingly, thermal
conductivity. Measurements of the speed of sound and of the thermal diffusivities of
fluid oxygen up to pressures of 13  GPa and at several temperatures are presented.
Between 0.1 and 13  GPa the fluid's density increases by a factor of three. Thermal
diffusivities rise slowly over this range, and are substantially smaller than those
previously measured for the solid β-phase. Additional sound speed measurements
were made along the 250° C isotherm in a 1:1 molar ratio mixture of liquid oxygen
and nitrogen. These experiments demonstrate the versatility and potential
application of a new laboratory within the U. S.  DOD and DOE complex.1

I. INTRODUCTION  

Experiments at very high pressures provide insight
into a realm of chemical and material properties that are
significantly different from those encountered under
ambient conditions. Such studies extend and test the
theoretical framework which permits progress from
properties at the atomic and molecular level to
macroscopic behavior, constitute a potential source of
novel materials and new tools for chemical
transformation and are important adjuncts to progress in
other disciplines. There is no question that an improved
general knowledge of electronic, physical, and chemical
behavior of relevant constituent materials at high
density is required, for example, for a less fragmented
description of the processes that precede and direct
exothermic chemical reactions. The same arguments are
routinely made with regard to the structure and
evolution of the major planets2 and the deep interior of
the Earth.

Dynamical simulation based on approximate Born-
Oppenheimer potentials plays a large and increasingly
important role in chemistry and in the biological and
materials sciences. More generally, knowledge of an
effective interatomic potential function underlies any
effort to predict or rationalize the properties of solids
and liquids. Particularly in systems associated with
experimentally difficult temperatures or pressures, such
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as prevail in the deep interiors of the Earth and giant
planets, dynamical simulation based on computed
potentials seems at present the most promising
predictive resource. While there exists an extensive
body of experimental techniques and experience on
computational methods appropriate to ambient
conditions, the regime of strong repulsive interactions
at very high densities has not been as extensively
investigated.3-10 The experiments discussed here are
aimed both at enlarging the family of properties
conveniently measured at high pressure and,
principally, at providing the data appropriate to a
critical test of the theory of the internuclear potential
in simple substances at high density.

II. ELASTIC CONSTANTS AND THERMAL
DIFFUSIVITY AS GUIDES TO THEORY

A.     ELASTIC  CONSTANTS

Crystallographic investigation of the high
pressure equation of state of solids has been the
principal experimental probe into interatomic and
intermolecular forces in condensed phases in the
region of strong repulsive interactions. Two-body
central-force potentials, on occasion augmented by the
Axilrod-Teller three-body interaction,11 have success-
fully reproduced the equation of state of a number of
highly symmetrical solids. However, theoretical
estimates8,9 of three-body exchange interactions
predict a significant deviation from purely pair
repulsive potentials even at distances corresponding
to moderate pressures. It has been argued8 that the



many-body exchange interaction, however essential i t
may be to an adequate general description of systems at
high density, plays a relatively small role in those
deformations that preserve the high site symmetry of
simple crystal structures, and so minimize the distortion
of atomic or molecular wave functions. It then follows
that an approach to the interaction energy that
reproduces the pressure-density relation of a crystal
cannot be transferred with confidence to less
symmetrical situations.

In contrast to hydrostatic pressure, long-wave
acoustic phonons alter the local crystal symmetry, thus
the prediction of their velocities (parameterized in the
elastic constants) constitutes a more searching test of an
empirical potential or computational approach. A good
example of this difference is seen in the Decker model of
NaCl. This model has been so successful in reproducing
the experimental equation of state that it has been
recommended for use as a pressure standard.12,13

However, the central pair potential on which it is based
is intrinsically incapable of reproducing the large
deviations from the Cauchy relations14 exhibited by the
elastic constants.15 In consequence, it may be assumed
that the model will also fail to reproduce the phonon
dispersion relations and the thermodynamic and
transport properties of the crystal.

In the general attempt to define a useful potential, a
complete set of elastic constants of a highly
compressible crystal, determined over a considerable
range of nearest-neighbor distances, provides an optimal
basis for the confrontation of computational approaches
with experiment.

B.    THERMAL DIFFUSIVITY

The theory of thermal transport in insulators, and
its pressure dependence, has ranged from calculations
based on fairly realistic microscopic models16,17 to
qualitative rationalizations based on the Debye-
Gr�neisen model.18-20 Within the context of the latter, a
knowledge of the volume dependence of force constants
(derived from the pressure dependence of the elastic
constants) permits the calculation of the individual
mode Gr�neisen parameters of a lattice-dynamical model,
and thus an evaluation of the pressure dependence and
anisotropy of the thermal diffusivity. This may then be
compared with the experimentally derived quantities.

The extension of either microscopic or
phenomenological theory to extreme conditions requires
data on at least a few simple systems over an extended
range of densities. In conjunction with a theory based
on interatomic potentials, the experimental determination
of thermal transport provides another manner of proving
computational progress.

III. EXPERIMENTAL TECHNIQUE

A.    SAMPLE PREPARATIONS   

1. β  -HMX    

Single crystals of β-HMX (~5 mm long x ~2 mm
thick) were mounted with beeswax on a glass carrier
substrate and coarsely ground using 1  µm alumina
slurry on either silk (better) or non-woven textile
(ÒTexmetÓ, less well) cloths. This combination of
coarse abrasive and hard-surface cloth is selected to
flatten the gross plane of polish parallel to the glued-
down, rear reference face of the crystal. At the
conclusion of 1 µm polishing, a substantial pit density
remains. Similar fine grinding on hard cloth with 0.3
µm alumina eliminates the pit density readily, again
with surprising removal rate and good surface flatness.
A brief final polish on a relatively hard cloth (ÒOP-
chemÓ) using a colloidal silica dramatically improves
the quality of the surface. Care must be taken to rinse
the silica buildup out of the colloid. This final stage
tends to round edges significantly and canÕt be carried
out more than about 30 seconds. The application of
heat (< 100û C) easily removed samples from the
substrate. Isopropanol was used to remove the wax. To
prevent chemical etching of samples exposure to
isopropanol was kept to a minimum.

2.    SUPERCRITICAL O        2       AND N        2      -O        2    

Merrill-Bassett type Diamond anvil cells
(DACÕs) were loaded with 99.999% fluid oxygen and
99.9% 1:1 molar mixture of nitrogen + oxygen at one
atmosphere, sealed and subsequently brought to high
pressure. It was found in previous work on
supercritical water at high temperature that gold could
be used to prevent oxidation of the gasket. In addition,
the high reflectivity of the gold measurably reduces the
propensity of soot formation when the pulsed
excitation beams clip the gasket. Gold-lined 316
stainless steel  and Inconel¨ X-750 gaskets were used
to laterally confine the supercritical fluids. Producing
gold lined rhenium gaskets was extremely difficult. The
gold would fill into open rhenium cracks and reduce
the friction required to lock a gasket around a confined
sample. For high temperature work, the DAC sat inside
a resistively heated vacuum oven. The temperature
gradient around the DAC frame at 500° C was 8° C. The
gradient within the sample region would be
considerably less.

3.    TANTALUM

The primary challenge in polishing very thin
samples of tantalum is the difficulty in affixing the parts
to a carrier substrate. Under load the samples will
disbond from the fixative. A number of waxes and glues
were experimented with before settling on "Crystal
Bond¨" by Universal. The samples were waxed onto a
35 mm diameter glass plate 10 mm thick. Grinding was
done by hand, using 30 µm aluminum oxide for heavy
stock removal, then 9 µm aluminum oxide to prepare
the surface for fine polishing. Polishing was done on a
"73 Gugolz" pitch lap using "Nalco¨ 2360" colloidal
silica. Soaking the parts in acetone dissolved the



Crystal Bond,¨ allowing the parts to be removed
without additional stress.

B.     DETERMINATION OF VELOCITIES AND
THERMAL DIFFUSIVITIES   

The optical technique is discussed in general in
Refs (21-22) and specifically in the context of the DAC
in Refs. (23-25). Briefly, two successive "excitation"
pulses, (30 µJ, 60  µm diameter, 100 ps duration) are
selected from the output train of a Q-switched (500 Hz),
mode-locked Nd:YAG laser and recombined in the
sample at an angle 2θ, but otherwise coincident in space
and time. Interference establishes a periodic distribution
of intensity and, in a sample that absorbs in the near
infrared, a (spatially) periodic variation in the
temperature and pressure ensues. The coupling between
laser light and the excited material modes is such that
the local temperature rise remains "impulsive." The
associated thermal pressure launches counter-
propagating acoustic waves. The acoustic wavelength,
d, in this case equal to the period of the optical grating,
may be expressed in terms of the excitation wavelength,
λE =1.064µm, and θ as

                                 
d A

E                                (1)= =λ
λ

θ2sin

In an arbitrary crystallographic direction in an
elastically anisotropic crystal, one quasi-longitudinal
and two quasi-transverse waves are excited. The
impulsively excited acoustic waves induce a temporally
and spatially periodic variation in the index of refraction

of the sample. A third pulse (5 µJ, 20 µm diameter, 80
ps duration) selected from the same Q-switched
envelope as the excitation pulses is frequency doubled
(λP = 0.532 µm) and delayed by a combination of time
of flight and mode lock pulse selection to generate the
"probe." Observation of the intensity of the Bragg
scattering of the probe, by the acoustic or
thermoacoustic grating, as a function of probe delay
serves to determine the frequency (ν), and hence the
adiabatic velocity (c = dν) of the acoustic waves.

In practice, grating spacings are determined by
making the same measurement on a piece of glass with a
known speed of sound and which gives a strong,
stable signal suitable for a calibrant. The glass was in
turn calibrated against water and fused silica.26-28 The
velocity is typically determined with a precision of
±0.2%.

An example time-domain record for a single crystal
of β-HMX is shown in Figure 1a. The quasi-
longitudinal mode and one quasi-shear mode (most
likely the more intense horizontal component) can be
observed in the Fourier transform of this record (Figure
1b). If the samples(s) are rotated it is possible to
measure velocities as a function of crystallographic
direction (Figure 2) and hence deduce the individual
elastic constants of the crystal. In the case where
samples are not transparent in the near infrared, the
bulk waves are probed using a cw argon+ laser
reflected off of the sample surface.
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FIGURE 1. a) ISLS TIME-DOMAIN SPECTRA OF β-HMX AND b) CORRESPONDING POWER SPECTRUM AT 24.12ûC.
THE ACOUSTIC WAVELENGTH IS 1.55 µm. IN THE FREQUENCY-DOMAIN PLOT PEAK #1 IS REPRESENTATIVE OF THE
THERMOACOUSTICLY COUPLED QUASI-SHEAR WAVE, PROBABLY HORIZONTALLY POLARIZED, PEAK #2 IS THE
ELECTROSTRICTIVELY COUPLED QUASI-LONGITUDINAL WAVE, PEAK #3 IS THE THERMOACOUSTICLY COUPLED
QUASI-LONGITUDINAL WAVE, AND PEAK #4 IS THE RESULT OF HARMONIC MIXING OR ADDITION OF PEAKS TWO
AND THREE. IN THIS EXAMPLE THE QUASI-LONGITUDINAL VELOCITY, REGARDLESS OF THE OPTICAL COUPLING
MECHANISM, IS 3.302 km/sec AND THE QUASI-SHEAR VELOCITY IS 1.595 km/sec.



FIGURE 2. a) ISLS DATA SHOWING THE VARIATION IN THE SPEED OF SOUND AS THE ACOUSTIC WAVE VECTOR
IS ROTATED WITHIN A (010) CRYSTAL OF β−HMX AT ROOM PRESSURE AND TWO DIFFERENT TEMPERATURES, 24û C
FILLED SQUARES & 107û C FILLED CIRCLES. BOTH THE QUASI-LONGITUDINAL (FIGURE 2a) AND THE QUASI-
TRANSVERSE (FIGURE 2b) BRANCHES ARE SHOWN. THE LINES ARE THE RESULT OF ADJUSTING THE THIRTEEN
ELASTIC CONSTANTS TO FIT THE DATA. THE THICKER LINES IN 2b) REPRESENT THE HORIZONTALLY POLARIZED
SHEAR WAVES WHILE THIN LINES REPRESENT THE VERTICALLY POLARIZED SHEAR WAVES.

In an absorbing medium, when the acoustic
disturbance propagates beyond the area illuminated by
the probe a spatially periodic distribution of
temperature and hence index of refraction remains. This
grating decays exponentially by thermal diffusion. The
strength of the diffracted cw probe beam is recorded by
an oscilloscope attached to a photomultiplier tube. The
characteristic thermal decay time, τ th, in a medium of
density ρ, specific heat at constant pressure cp, and
thermal conductivity κ , is given by

                                 

τ
ρ

π κ π
th

p

th

c d d

D
= =

2

2

2

24 4
                       (2)

with Dth = κ  / ρ cp where Dth is the thermal diffusivity. The
scattered intensity is proportional to the square of the
amplitude, thus the signal decays as exp (-2t  /  τ th). If d i s
sufficiently small so that conduction normal to the plane
of the sample is unimportant a plot of the inverse
relaxation time versus d  

Ð2 will be linear. On the time
scale displayed in Figure 3a scattering by the thermal
grating appears as a time-independent contribution to
the intensity. Here the decay of the thermal grating at
longer times is apparent where it is shown for several
different values of the grating period. A plot of τ th

-1

versus d  

Ð2, shown in Figure 3b, yields a straight line
through the origin with slope equal to 8π2Dth.
Determination of the anisotropy of thermal diffusivity i s
a simple matter of rotating the crystal in order to produce
the thermal grating along different directions.

C.     DETERMINATION OF PRESSURES   

Pressure determinations were made by monitoring
the wavelength of the fluorescence (excited by a He-Cd
laser or by the 488-nm Ar+ laser line) of ruby chips
which surround or are embedded in the sample. Rubies
after grinding to tens of microns have residual strains
which are often large enough to offset pressure
measurements by  ~0.05 GPa, and occasionally as much
as 0.2 GPa. Annealing at ~1000û C for several hours
decreases both the magnitude and frequency of these
deviations yet it is still common to find rubies which
differ reproducibly by the equivalent of 0.02 GPa. The
most precise work completed has been on the melting
curve of O2, in which the relative wavelengths of rubies
were recorded at 0  GPa and the high-pressure results
corrected by the same amounts. The reference rubies at 0
GPa were kept in the same temperature controlled
housing as were the samples, because wavelength shifts
equivalent to 0.01 GPa are generated by temperature
differences of 0.5° C and in order to match as closely as
possible the two spectral line shapes. With hydrostatic
samples one can measure pressures with a precision of
slightly better than 0.01 GPa. A dispersion of 4.08 x 10-3

�/bin resulted from the combination of a 750 bin CCD
camera and a 1/4 m monochromator. (1200 grooves/mm
grating.)
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FIGURE 3. a) β-OXYGEN AT 6.40 GPa and 29û C.43 THE THERMAL GRATING DECAYS EXPONENTIALLY WITH TIME-
CONSTANT PROPORTIONAL TO THE SQUARE OF THE GRATING PERIOD, d. TRACES ARE SHOWN FOR GRATINGS OF
PERIOD 4.24, 3.05, AND 2.14 µm. b) THE INVERSE TIME-CONSTANT PLOTTED AGAINST THE INVERSE SQUARE OF THE
GRATING PERIOD FOR THE DATA SHOWN IN FIGURE 3a. THE STRAIGHT LINE PASSING THROUGH THE ORIGIN IS
INDICATIVE OF ONE-DIMENSIONAL HEAT FLOW; THE MEASURED THERMAL DIFFUSIVITY IS 3.49X10-7m2/s.

D.     DETERMINATION  OF  CRYSTAL  ORIENTATIONS   

Two β-HMX crystals were x-ray oriented on an
Enraf-Nonius CAD4 diffractometer at room temperature.
Graphite monochromatized, Mo-Kα radiation was used.
The power was set to 50  kV and 26  mA. Crystals were
aligned so that the beam was always contained within
the sample. The direct orientation matrix was determined
from 12 Bragg reflections, with 2θ ranging from 8
degrees to 25 degrees. The cell was checked against
literature values and was found to agree within
experimental error. Each crystal alignment was
completed in about 4 hours. The normalized direct
orientation matrix (crystallographic axis magnitudes
along the laboratory x, y, and z coordinates) and the
plane normal to the axis of rotation corresponding to the
data plotted in Figure 2 are provided in Table 1. Sound
speed measurements were made by rotating samples
about the laboratory x-axis. The approximate (001)
orientation of a single crystal of tantalum was made by x-
ray precession photography.

TABLE 1. NORMALIZED ORIENTATION MATRIX
AND PLANE NORMAL TO AXIS OF  ROTATION

          x            y           z
a -0.025608 0.98949 0.14230
b 0.99934 0.029686 0.020789
c 0.01858 -0.07771 -0.9968
        a         b         c
2.7973e-02 9.9934e-01 2.3037e-02

IV. EXPERIMENTAL RESULTS & DISCUSSION

A.     DETERMINATION OF ELASTIC CONSTANTS
FROM MEASURED VELOCITIES   

1. β  -HMX    

For monoclinic crystals with symmetry axis b, the
13 elastic constants are defined with reference to three
orthogonal axes i3, i2, i1, where i3 correspond to the c-
axis, the respective b-axis, and their mutually
perpendicular axis, a*-axis. The velocity V of an
acoustic wave with direction cosines yi in a crystal of
density ρ is given by29

                           A Vij − =ρ 2 0I ,                     (2)

where I is the identity matrix, and A is

    

A y c y c y c y y c
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Along certain symmetry directions, or for crystals of
high symmetry, Eq. 3 factors such that the velocity of an
acoustic wave is dependent on only one elastic
constant, and thus a single velocity measurement
constrains a specific elastic constant.30 However, in the
case of monoclinic materials, the number of such
directions is restricted. For propagation along the b-axis
(that is, y1=0, y2=1, y3=0), the equation reduces to

        
c V c V c V c22

2
44

2
66

2
46

2 0−( ) −( ) −( ) −[ ] =ρ ρ ρ
      (4)
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which yields a compressional velocity V2
 = c

22
/ρ and a

quadratic in three elastic constants whose roots are the
two shear velocities. For propagation in the a-direction,
c66 is similarly determined from a single shear velocity
and for propagation in the c-direction, c44 is the sole
elastic constant that determines the velocity of a shear
wave. In all other propagation directions, velocities are
determined by a minimum of three, though usually more,
elastic constants, in various combinations.

An iterative, non-linear, least-squares simplex
algorithm31 was used to find the set of elastic constants
that optimally fits measured compressional velocities.
Initial room temperature fits were weighted to an
experimentally determined bulk modulus of 12.50 GPa.
The high temperature density was calculated using a
volume expansion value of 162.5 µm/m/K for which
∆T=83° C. With only two samples available, of similar
orientations, the number of elastic constants that
contribute to the observed sound speeds is limited (i.e.,
c11, c15, c33, c35, and c55). For similar reasons the shear
speeds were not fit. However, there is a tendency for
agreement. (see Figure 2b.) Velocity residuals, based on
this fit, follow an approximately normal distribution
with a root-mean-square misfit of 7  ±1 m/s. The resulting
elastic constants and their 2σ (95% confidence)
uncertainties are summarized in Table 2. The misfit does
not represent a unique and global minima. Obtaining
data within two additional crystal orientations would
serve to over-determine the elastic constant values.

TABLE 2. ELASTIC CONSTANTS IN UNITS OF GPa.
ARROWS POINT TO THE 107û C FIT RESULTS. K AND G
ARE THE RESPECTIVE ADIABATIC AGGREGATE BULK
AND SHEAR MODULUS  (VOIGT UPPER LIMITS).

C11 20.8 
➞

 

18.7 (0.3) C35    0.1  
➞ 

 

0.1 (0.1)
C12  4.0  

➞ 
 

3.8 C44   2.9   
➞ 

 

2.7
C13 13.0 

➞ 
 

12.0 C46   3.0   
➞ 

 

2.9
C15  0.6  

➞ 
 

0.4 (0.1) C55   6.6   
➞ 

 

6.1 (0.2)
C22 26.9 

➞ 
 

25.8 C66    3.8  
➞ 

 

3.5
C23  6.6  

➞ 
 

6.5 K 12.51➞ 11.67
C25 -1.5  

➞ 
 

-1.4 G  5.43 ➞ 5.00
C33 17.6 

➞
 

16.1 (0.2) density (g/cc) 1.903 ➞1.877

2.    TANTALUM     

At ambient pressure, in metals or other materials
which are not transparent in the near infrared,  parallel-
polarized pulses will excite not bulk acoustic waves but
Rayleigh waves, and very strong coherent scattering
from the surface corrugation is observed.32 The time
domain records of tantalum indicate that the relaxation
time of the thermal grating is less than the time required
for the damping of the acoustic wave. The following
form32, I = (Athe-t/τ Ð Aace-γ t cos ωt)2, gives a good account
of the scattered intensity, I as a function of probe delay t.
Here Ath is the amplitude of the thermal grating, Aac i s
the amplitude of the acoustic grating, ω the circular
acoustic frequency (ω = 2πf), and γ the temporal acoustic
absorption coefficient. The thermal and acoustic

parameters are determined by making least-squares
parameter adjustments to fit ISLS time-domain records.
Care has been taken to account for the effects of
geometric runout of the probe beam. The thermal decay
time, determined from ISLS records, in tantalum at 26° C
increased by 5.5% to 9.0 ns at 396° C. The acoustic
wavelength was 1.52 µm. The corresponding thermal
diffusivity changed from 2.49 x  10-4 to 2.63 x  10-4

 m2/s,
and using literature data for the density and specific heat
at constant pressure it is determined that the thermal
conductivity changes from  58.9 to 63.3 ±1.4 W/m/K.

FIGURE 4. ISLS SURFACE WAVE DATA, ON A SINGLE
CRYSTAL OF Ta, SHOWING THE VELOCITY DEPEND-
ENCE ON CRYSTALLOGRAPHIC DIRECTION AND
TEMPERATURE. THE SOLID LINES REPRESENT CALC-
ULATIONS BASED ON PREVIOUSLY PUBLISHED
ELASTIC CONSTANT DATA.

In Figure 4, the temperature and orientational
dependence of the surface acoustic wave velocities on a
approximately (100) tantalum crystal are plotted. The c44

elastic constant is known up to 2,727° C.33 The c11 and
c22 constants and density of tantalum are known up to
500° C.34 This data was used to calculate surface wave
velocities given an exact (100) sample orientation. The
work presented here simply demonstrates the utility of
the technique and the opportunity to produce more
accurate determinations of both elastic constants and
equations of state of opaque materials.  Electrical
heating of tantalum will permit optical determinations of
the three elastic constants up to the melting point,
3,017° C. Determining the EOS using DACÕs i s
currently underway. ISLS can also be utilized to study
higher symmetry materials (i.e., Pu) for which more
traditional techniques, such as resonant ultrasound
spectroscopy, produce ambiguous results.35

B.     DETERMINATION OF EQUATIONS OF STATE
FROM MEASURED VELOCITIES   

Measurements of the speed of sound in supercritical
oxygen have been made along two isotherms of 30° and
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FIGURE 5. a) ISLS SOUND SPEED DATA AND CORRESPONDING CALCULATIONS FOR OXYGEN AND 1:1 MOLAR
RATIO OF FLUID OXYGEN TO NITROGEN. b) EXAMPLE OF THE LAW OF CORRESPONDING STATES FOR O2 AND N2.
THE N2 DATA40 ARE REDUCED BY THE CRITICAL PRESSURE, TEMPERATURE AND DENSITY AND COMPARED
AGAINST THE ISLS O2 DATA AT 30û C. THE DASHED LINE IS A MOLECULAR DYNAMIC RESULT USING A STANDARD
POTENTIAL.38 FOR O2 A CP AT LOW PRESSURE, WHERE REASONABLY KNOWN, WAS USED TO START THE
INTEGRATION NECESSARY TO GENERATE THE SOUND SPEEDS.

200° C, and in a 1:1 molar mixture of N2 + O2 along a
250° C isotherm. (see Figure 5a.) Each oxygen isotherm
was followed up to near the freezing points (5.9 and
12GPa). Starting with known values of density, ρ, and
specific heat, CP, the thermodynamic equation of state i s
calculated by recursive numerical integration of
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where P, co, α, T, and V are respectively the pressure,
zero frequency sound speed, thermal expansion
coefficient, absolute temperature, and specific volume. In
this work, initial values of ρ and CP were taken from the
EOS of Wagner et al.36

An overview of previous work on oxygen is given
by Wagner and Schmidt (W&S).36 These authors have
generated a thermodynamic potential based on
experimental densities up to 0.08 GPa and at 130° C up
to 0.03 GPa. In addition, they used combined density
and heat capacities measured to 30° C and 0.03 GPa.
Other data, not used by Wagner and Schmidt, are those
of Tsiklis and Kulikova,37 who measured densities to 1
GPa and 400°  C. The latter were used above 0.2 GPa by
Belonoshko and Saxena (B&S)38 to constrain a molecular
dynamics simulation (based on an exponential-6
potential) which was in turn used to construct a P-V-T
surface. A Shock Hugoniot for the 1:1 fluid mixture
provides  P-V-E data between 9.89 and 24.0 GPa.39

The data presented here are currently insufficient to
make a ÒpositiveÓ determination of the equation of state
of O2 or the mixture. The high-pressure sound speed data,
especially at higher temperatures, do not extend to the

lower pressures at which values for Cp and ρ, are known.
Further, the small variations in speed of sound
concomitant, with the experimentally useful range of
temperatures used here are small enough to be
confounded with the uncertainties in the measurements
of pressure. Consequently, several approximations have
been made to yield a reasonably accurate EOS. The
results are then compared with other data.

The assumptions made are that the sound speeds are
linear in T over the stated range, that the W&S EOS
correctly predicts the speeds up to 0.5 GPa, and that the
form of the interpolating function is suitable to the task.
At pressures higher than 0.7GPa the speeds are assumed
to vary linearly between 30 and 200° C, and an artificial
data set is calculated at 6 temperatures from 30° C to
100° C, based on the previous fits at the two stated end
temperatures. Each isotherm is then fit individually,
with the fits forced to conform to the W&S EOS for
pressures between 0.02 and 0.05 GPa. The result is a
velocity field in P and T in which the velocities are
linear interpolations in T above 0.7 GPa, fairing into the
W&S EOS below that. The usual equations are then
iteratively solved to obtain the densities, heat
capacities, entropies, etc. The results are reasonable, the
densities increasing monotonically while remaining
below those of the β phase. The heat capacities, CP are
fairly constant in pressure, varying by at most 5% for
each isotherm. They undergo several oscillations with
increasing pressure which probably derive from the
cross-over of dc/dT from a positive to a negative value at
0.5 g/cm3.

At 30° C the O2 densities determined here are 8%
higher than the B&S results up to 0.5 GPa, then cross at
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FIGURE 6. a) THERMAL DIFFUSIVITY OF OXYGEN AND b) CORRESPONDING THERMAL CONDUCTIVITY AT 30û C.
CROSSES REPRESENT β-OXYGEN DATA AT 6.13 GPa AND 29û C. THE STATED PRESSURES CORRESPOND TO THE FLUID.

about 1.5 GPa and are then uniformly lower than B&S,
by 10% at 6GPa. B&S densities are, however, always
less than that of the solid, β phase. Given reasonable
values of CP (at 0.5 GPa), either from W&S results or
those determined here, the speeds of sound inferred from
the B&S EOS are uniformly low by about 10% (see
Figure 5b). In comparison, this discrepancy is due to
their higher compressibilities below ~4 GPa and higher
densities above 2 GPa. In order to make their speeds of
sound agree (approximately) with results here at 30° C i t
is necessary to assume an initial CP at 0.5GPa of 9.2
J/K/mole at 30° C which is about 5 times lower than
expected.

Speeds of sound were measured at 30° C and 1.5
GPa at frequencies of 1.3, 0.77 and 0.27 GHz. Velocities
matched to within the uncertainties, i.e. ±0.2% for the
higher frequency and ±0.5% for the two lowest. The
ISLS velocities fair nicely into those of the W&S model
and are lower than the extrapolation of W&S. More
dispersion may exist at lower frequencies.

Between 22° C and 122° C the fluid β-phase
boundary is well fit by the straight line P(GPa) =
0.0270 T(° C) + 5.153 with a two σ uncertainty on the
slope of 10-4 GPa/° C. Each point of equilibrium was
established by a visual observation of the simultaneous
presence of both phases. Among observations, the
volume of solid varied from approximately 5 to 95% of
the sample; no correlation was apparent between the
deviations of the data from the fit and the fraction of
solid. Since one expects that any impurities will be
concentrated in the fluid, this fact suggests strongly that
impurities had no significant effect on the measurements.

The measured oxygen velocities fit well to the

form ΣAilnPi
 with i={0...4}. The 30° ➞  200° C fit

parameters are A0=2.0438➞1.8665, A1=0.7764➞0.8462,
A2=0.1040➞0.140, A3=0.0078 ➞  -0.0020, and A4=0.0010
➞ -0.0016. In such fits the data were supplemented by
points at lower pressures generated from the W&S EOS.
Additionally, the curve at 30° C was constrained to lie
along the 200° C isotherm above 7  GPa. N2-O2 fit
parameters from 1.3 to 6.5 GPa at 250° C are A0=2.0058,
A1=0.4490, A2=0.8424, A3= -0.2605, and A4= -0.0015.
A 1:1 molar ratio of N2-O2 at 25° C forms δ-N2 at
approximately 4.3 GPa41 which accounts for the
significant increase in velocity observed at 7.1 GPa. The
calculated points in Figure 5a were derived from an
accurate EOS for exp-6 type fluids42 based on HSMA
integral equation theory and Monte Carlo calculations.

According to simple theories, substances should
behave the same when all variables are suitably scaled
and the critical parameters are the most common scaling
factors chosen. Figure 5b shows Mills et al. Ð25.5° C
data, which is equivalent to oxygen at 30° C when
scaling by the critical temperatures. The N2 sound
speeds are reduced using critical pressures and densities.
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Since O2 and N2 have the exact same compressibility
factor (PcVc/RTc = 0.292), and the no dipole moment, i t
may not be too much of a surprise that the sound speeds
correlate well with the empirical law of corresponding
states. This result suggests that N2 and O2 molecules are
approximately spherical up to 2.2 GPa.
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C.     DETERMINATION OF THERMAL TRANSPORT
PROPERTIES   

Thermal diffusion measurements were made in
supercritical oxygen (Figure 6a) up to 10  GPa and
converted to thermal conductivity (Figure 6b) using
CPÕs derived by extending the W&S EOS to ISLS
integrated sound speeds along the 30° C isotherm.
When plotted against density the diffusivity is seen to
have a minimum near 0.5 g/cm3. This seems to mark a
changeover from the behavior of a gas, where the
diffusivity decreases with pressure, to that of a liquid.
Interestingly, 0.5 g/cm3 is where the sound speed
derivative changes from a positive (as in a saturated gas)
to a negative value. The low density data appears to
slightly overpredict the ISLS results. Measurements of
α, CP and ρ at higher pressures would perhaps help to
resolve the difference.

V. SUMMARY

This paper represents a sample of continuing work
on materials of immediate interest to the detonation
physics community. Direct determination of the
thermodynamic EOS (P,V,T) from measured temperatures,
pressures and very accurate sound speeds, especially on
supercritical fluid mixtures, will have a significant and
positive impact on our ability to scientifically predict
detonation energetics. The necessity for accurate
density measurements, on relevant materials at higher
pressures and temperatures, creates the opportunitiy for
future collaborations. Isothermal compliance requires
knowledge of CP(P,T).
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