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Abstract. The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends
sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular
network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for
the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the
predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium
theory. The theory predictions are in good agreement with the experimental and numerical simulation
results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the
interface between elastic solids with randomly rough surfaces is studied. We present results for such high
contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized
fluid at the interface. The theoretical predictions are compared to experimental data for a simple model
system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber
plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device.
For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary
contact, to the theory prediction.

1 Introduction

The influence of surface roughness on fluid flow at the in-
terface between solids in stationary or sliding contact is a
topic of great importance both in nature and technology.
Technological applications include leakage of seals, mixed
lubrication, and removal of water from the tire-road foot-
print. In nature, fluid removal (squeeze-out) is important
for adhesion and grip between the tree frog or gecko adhe-
sive toe pads and the countersurface during raining, and
for cell adhesion.

Almost all surfaces in nature and most surfaces of
interest in tribology have roughness on many different
length scales, sometimes extending from atomic distances
(∼ 1 nm) to the macroscopic size of the system which
could be of order ∼ 1 cm. Often the roughness is fractal-
like so that when a small region is magnified (in general
with different magnification in the parallel and orthogonal
directions) it “looks the same” as the unmagnified surface.

Most objects produced in engineering have some par-
ticular macroscopic shape characterized by a radius of
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curvature (which may vary over the surface of the solid)
e.g., the radius R of a cylinder in a combustion engine.
In this case the surface may appear perfectly smooth to
the naked eye, but at short enough length scale, in gen-
eral much smaller than R, the surface will exhibit strong
irregularities (surface roughness). The surface roughness
power spectrum C(q) of such a surface will exhibit a roll-
off wavelength λ0 ≪ R (related to the roll-off wave vec-
tor q0 = 2π/λ0) and will appear smooth (except for the
macroscopic curvature R) on length scales much longer
than λ0. In this case, when studying the fluid flow be-
tween two macroscopic solids, one may homogenize the
microscopic fluid dynamics occurring at the interface, re-
sulting in effective fluid flow equations describing the av-
erage fluid flow on length scales much larger than λ0, and
which can be used to study, e.g., the lubrication of the
cylinder in an engine. This approach of eliminating or in-
tegrating out short length scale degrees of freedom to ob-
tain effective equations of motion which describe the long
distance (or slow) behavior is a very general and power-
ful concept often used in physics, and is employed in the
study presented below.
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In the context of fluid flow at the interface between
closely spaced solids with surface roughness, Patir and
Cheng [1, 2] have shown how the Navier-Stokes equations
of fluid dynamics can be reduced to effective equations
of motion involving locally averaged fluid pressure and
flow velocities. In the effective equation the so-called flow
factors occur, which are functions of the locally averaged
interfacial separation ū. The authors showed how the flow
factors can be determined by solving numerically the fluid
flow in small rectangular units with linear size of order
of (or larger than) the roll-off wavelength λ0 introduced
above, and by averaging over several realizations. How-
ever, with the present speed (and memory) limitations of
computers fully converged solutions using this approach
can only take into account roughness over two or at most
three decades in length scale. In addition, Patir and Cheng
did not include the long-range elastic deformations of the
solid walls in the analysis. Later studies have attempted
to include elastic deformation using asperity contact me-
chanics models as pioneered by Greenwood-Williamson
(GW) [3], but it is now known that this theory (and other
asperity contact models [4]) does not accurately describe
contact mechanics because of the neglect of the long-range
elastic coupling between the asperity contact regions [5,6].
In particular, the relation between the average interfacial
separation ū and the squeezing pressure p, which is very
important for the fluid flow problem, is not accurately de-
scribed by the GW model [7–9].

The paper by Patir and Cheng was followed by many
other studies of how to eliminate or integrate out the sur-
face roughness in fluid flow problems (see, e.g., the work
by Sahlin et al. [10]). Most of these theories involve solving
numerically the fluid flow in rectangular interfacial units
and, just as in the Patir and Cheng approach, cannot in-
clude roughness on more than ∼ 2 decades in length scale.
In addition, in some of the studies the measured rough-
ness topography must be “processed” in a non-trivial way
in order to obey periodic boundary conditions (which is
necessary for the Fast Fourier Transform method used in
some of these studies).

Tripp [11] has presented an analytical derivation of the
flow factors for the case where the separation between the
surfaces is so large that no direct solid-solid contact oc-
curs. He obtained the flow factors to first order in 〈h2〉/ū2,
where 〈h2〉 is the ensemble average of the square of the
roughness amplitude and ū is the average surface separa-
tion. The result of Tripp has recently been generalized to
include elastic deformations of the solids [12,13].

In this paper, the study of fluid squeeze-out from the
region between two elastic solids with randomly rough sur-
faces is presented. We focus on such high contact pres-
sures that after long enough contact time the area of real
contact percolates resulting in pockets of confined, pres-
surized, fluid at the interface. The Bruggeman effective
medium theory and the Persson contact mechanics theory
are employed to calculate the interfacial fluid conductivity
tensor. For anisotropic surface roughness the Bruggeman
effective medium theory predicts that the contact area
percolates when A/A0 = γ/(1+γ), where γ is the Peklenik

number (the ratio between the decay length of the height-
height correlation function along the two principle direc-
tions) and A/A0 is the relative contact area (A0 is the
nominal or apparent contact area). The main aim of the
present work is to verify the theory predictions through
the comparison with the results of molecular dynamics
(MD) simulations and experiments. MD calculations have
been carried out both for isotropic and anisotropic surface
roughness, while the experiments consider only the sur-
faces with isotropic statistical properties (where γ = 1).
The paper outline is as follows. The theoretical approach
and its application to the fluid squeeze-out are described
in sects. 2–4 and 5, respectively. Sections 6 and 7 present
simulations and experiments. In sect. 8 we apply the the-
ory to the breakloose (or static) friction for prefillable sy-
ringes. The work is closed by the concluding sect. 9.

2 Anisotropic surface roughness

Many surfaces of practical importance have roughness
with isotropic statistical properties, e.g., sandblasted sur-
faces or surfaces coated with particles typically bound by a
resin to an otherwise flat surface, e.g., sandpaper surfaces.
However, some surfaces of engineering interest have sur-
face roughness with anisotropic statistical properties, e.g.,
surfaces which have been polished or grinded in one direc-
tion. The surface anisotropy is usually characterized by a
single number, the so-called Peklenik number γ, which is
the ratio between the decay length ξx and ξy of the height-
height correlation function 〈h(x, y)h(0, 0)〉 along the x-
and y-directions, respectively, i.e. γ = ξx/ξy. Here it has
been assumed that the x-axis is oriented along one of the
principal directions of the anisotropic surface roughness.

Let us define the 2×2 matrix (we use polar coordinates
so that the wave vector q = q(cosφ, sinφ)) [13]

D(q) =

∫

dφ C(q)qq/q2

∫

dφ C(q)
, (1)

where the surface roughness power spectrum [14]

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉e−iq·x, (2)

where 〈...〉 stands for ensemble average, and h(x) is the
height profile. For roughness with isotropic statistical
properties, C(q) will only depend on q = |q| and in this
case D(q) will be diagonal with D11 = D22 = 1/2.

We will assume most of the time that D(q) is indepen-
dent of q and in this case (1) is equivalent to

D =

∫

d2q C(q)qq/q2

∫

d2q C(q)
. (3)

In this case, in the coordinate system where D is diagonal
the flow conductivity matrix (defined below) σeff will be
diagonal too. Note that TrD = D11 + D22 = 1, and in
the coordinate system where D is diagonal we can write
D11 = 1/(1 + γ) and D22 = γ/(1 + γ), where γ = ξx/ξy
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is the Peklenik number. Note that D11(1/γ) = D22(γ).
If D(q) (see (1)) depends on q we may still define (in the
coordinate system where D(q) is diagonal) γ = −1+1/D11

as before, but the xy-coordinate system where D(q) is
diagonal may depend on q (in which case the rotation
angle, ψ(q), of the x-axis relative to some fixed axis, is
important information too, see ref. [13]). In this case γ
will depend on q and we will refer to γ(q) as the Peklenik
function (and ψ(q) as the Peklenik angle function). Note
that since D(q) is a symmetric tensor and since TrD =
1, the D-matrix has only two independent components.
Thus, it is fully defined by the Peklenik function γ(q) and
the Peklenik angle function ψ(q). In this paper we will
assume that γ(q) and ψ(q) are constant.

3 Fluid flow between solids with random

surface roughness

Consider two elastic solids with randomly rough surfaces.
Even if the solids are squeezed in contact, because of the
surface roughness there will in general be non-contact re-
gions at the interface and, if the squeezing force is not
too large, there will exist non-contact channels from one
side to the other side of the nominal contact region. We
consider now fluid flow at the interface between the solids.
We assume that the fluid is Newtonian and that the fluid
velocity field v(x, t) satisfies the Navier-Stokes equation

∂v

∂t
+ v · ∇v = −

1

ρ
∇p + ν∇2v,

where ν = η/ρ is the kinetic viscosity and ρ is the mass
density. For simplicity we will also assume an incompress-
ible fluid so that

∇ · v = 0.

We assume that the non-linear term v · ∇v can be
neglected (this corresponds to small inertia and small
Reynolds number), which is usually the case in fluid flow
between narrowly spaced solid walls. For simplicity we as-
sume the lower solid to be rigid with a flat surface, while
the upper solid is elastic with a rough surface, see fig. 1.
We introduce a coordinate system xyz with the xy-plane
in the surface of the lower solid and the z-axis pointing to-
wards the upper solid. Consider now squeezing the solids
together in a fluid. Let u(x, y, t) be the separation between
the solid walls and assume that the slope |∇u| ≪ 1. We
also assume that u/L ≪ 1, where L is the linear size of the
nominal contact region. In this case one expects that the
fluid velocity varies slowly with the coordinates x and y as
compared to the variation in the orthogonal direction z.
Assuming also a slow time dependence, the Navier-Stokes
equation is reduced to

η
∂2v

∂z2
= ∇p. (4)

Here and in what follows v = (vx, vy), x = (x, y) and ∇ =
(∂x, ∂y) are two-dimensional vectors. Note that vz ≈ 0 and

Fig. 1. An elastic solid (block) with a rough surface is squeezed
(pressure p0) in a fluid against a rigid solid (substrate) with a
flat surface.

that p(x) is independent of z to a good approximation.
From (4) one can obtain the fluid flow vector

J = −
u3(x)

12η
∇p. (5)

Assuming an incompressible fluid mass conservation de-
mands that

∂u(x, t)

∂t
+ ∇ · J = 0, (6)

where the interfacial separation u(x, t) is the volume of
fluid per unit area. In this last equation we have allowed
for a slow time dependence of u(x, t) as would be the case,
e.g., during fluid squeeze-out from the interfacial region
between two solids.

The fluid flow at the interface between contacting
solids with surface roughness on many length scales is
a very complex problem, in particular at high squeezing
pressures where a network of flow channels with rapidly
varying width and height may prevail at the interface.
This is illustrated in fig. 2, which shows the contact area
(black) between two elastic solids with randomly rough
surfaces. At high enough pressure the contact area will
percolate, which will have a drastic influence on the in-
terfacial fluid flow properties. Percolation corresponds to
the moment when the narrowest channel disappears as a
result of squeezing. It is also visible that for anisotropic
roughness percolation occurs later in the direction of the
roughness elongation (which is vertical in fig. 2).

Equations (5) and (6) describe the fluid flow at the
interface between contacting solids with rough surfaces.
One can show that after eliminating all the surface rough-
ness components, the fluid current (given by (5)) takes the
form

J̄ = −σeff∇p̄, (7)

where p̄ is the fluid pressure averaged over different real-
izations of the rough surface. The flow conductivity σeff(ū)
is in general (for anisotropic surface roughness) a 2×2 ma-
trix. The ensemble average of (6) gives

∂ū(x, t)

∂t
+ ∇ · J̄ = 0. (8)

Substituting (7) in (8) gives

∂ū(x, t)

∂t
= ∇ · (σeff∇p̄) . (9)
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Fig. 2. (Color online) A snapshot of the contact before per-
colation in the x-direction (which is horizontal) for anisotropic
roughness with Peklenik number 5/7. Red line indicates a fluid
flow stream line. It is visible that fluid is able to flow from the
left to the right part of the figure (or vice-versa) due to the
presence of a narrow channel at some region of the contact.
Inset presents the magnification of this region.

4 Fluid flow conductivity σeff

As was mentioned above, the fluid flow at the interface be-
tween contacting randomly rough surfaces requires taking
into account the presence of the network of many inter-
connected flow channels. In a macroscopic approach this
can be achieved through the use of the pressure flow fac-
tor. Here we have employed the 2D Bruggeman effective
medium theory [15–18] to calculate (approximately) the
pressure flow factor (see also appendix B).

For an anisotropic system, the effective medium flow
conductivity σeff is a 2 × 2 matrix. Let us introduce a xy
coordinate system and choose the x-axis along a principal
axis of the D-matrix. In this case we can consider σeff

as a scalar which within the Bruggeman effective medium
theory satisfies the relation:

1

σeff

=

∫

du P (u)
1 + γ

γσeff + σ(u)
, (10)

where P (u) is the probability distribution of interfacial
separations, and where

σ(u) =
u3

12η0

. (11)

Fluid flow along the y-axis is given by a similar equation
with γ replaced with 1/γ. The probability distribution
P (u) of interfacial separations has been derived in ref. [21].
Here we note that P (u) has a delta function at the origin
u = 0 with the weight determined by the area of real
contact:

P (u) =
A

A0

δ(u) + Pc(u), (12)
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Fig. 3. (Color online) The pressure flow factor φp as a function
of the average interfacial separation ū, for anisotropic surfaces
with the Peklenik numbers γ = 1/2, 1 and 2. In all cases the
angular average power spectrum is of the type shown in fig. 4
with H = 0.9 and the root-mean-square roughness hrms =
10 µm.

where Pc(u) is a continuous (finite) function of u. Substi-
tuting this in (10) gives

1

σeff

=
A

A0

1 + γ

γσeff

+

∫

du Pc(u)
1 + γ

γσeff + σ(u)
. (13)

This equation is easy to solve by iteration.
In fig. 3 the pressure flow factor φp = 12η0σeff/ū3 as

a function of the average interfacial separation ū is dis-
played for anisotropic surfaces with the Peklenik numbers
γ = 1/2, 1 and 2 (see also below). Note that φp = 0
for ū < ūc, where ūc is the average interfacial separation
where the area of real contact percolates in the direction
orthogonal to the fluid flow. In the Bruggeman effective
medium theory this occurs when the area of real contact
equals A/A0 = γ/(γ + 1). Thus for γ = 1/2, 1 and 2 the
contact area percolates (so that no fluid flow occurs along
the considered direction) when A/A0 = 1/3, 1/2 and 2/3,
respectively. This explains why φp vanishes at much larger
(average) interfacial separation (and hence smaller contact
area) for γ = 1/2 as compared to γ = 2.

In obtaining the results presented below we have used
the Persson contact mechanics theory for the contact area
A and the probability distribution P (u) (see refs. [19–21]).
This theory depends on the elastic energy Uel stored in the
asperity contact regions and in this paper we use the sim-
plest version for Uel (see ref. [5]), where the γ-parameter
(not the Peklenik number) = 1. Comparison of the theory
predictions with numerical simulations for small systems
have shown that γ ≈ 0.45 gives the best agreement be-
tween theory and the (numerical) experiments. However,
using γ = 0.45 (or γ �= 1 in general) results in much
longer computational time, with relatively small numeri-
cal changes as compared to using γ = 1.

For large (average) surface separation ū eqs. (5) and
(6) can be solved exactly to leading order in 〈h2〉/ū2

(where 〈h2〉 is the mean of the square of the surface rough-
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ness amplitude h(x, y), where we have assumed 〈h〉 =
0) [11,13]

φp = 1 +
3〈h2〉

ū2
(1 − 3D).

In appendix A we show that the Bruggeman effective
medium theory gives the same expression for φp to leading
order in 〈h2〉/ū2 if we identify the γ-parameter in the ef-
fective medium theory with the Peklenik γ defined by the
D-matrix (see sect. 2). This result shows that the parame-
ter γ in the effective medium theory, which was introduced
in a phenomenological way (as the ratio between the prin-
ciple axis of an elliptic inclusion) in the effective medium
theory (see ref. [13]), is indeed determined by the eigen-
values of the D-matrix as discussed in sect. 2. This is a
very important result and completes the theory for σeff

developed in ref. [13].

5 Fluid squeeze-out

Let us squeeze a rectangular rubber block (height d,
width (x-direction) 2a and infinite length (y-direction))
against a substrate in a fluid. Assume that we can ne-
glect the macroscopic deformations of the rubber block in
response to the (macroscopically) non-uniform fluid pres-
sure (which requires d ≪ a) [22, 23]. In this case ū(x, t)
will only depend on time t. For this case from (9) we get

dū

dt
−

ū3φp(ū)

12η

∂2p̄

∂x2
= 0.

It follows from this equation above that the fluid pressure
is parabolic

p̄(x, t) =
3

2
pfluid(t)

(

1 −
x2

a2

)

,

where 2a is the width of the contact region (x-direction)
and pfluid(t) the average fluid pressure in the nominal con-
tact region. Combining the two equations above gives

dū

dt
= −

ū3φp(ū)

4ηa2
pfluid(t). (14)

If p0 is the applied pressure acting on the top surface of
the block, we have

pfluid(t) = p0 − pcont(t), (15)

where pcont is the (locally, or ensemble averaged) asperity
contact pressure. If the pressure p0 is so small that for all
times ū ≫ hrms, then in this case φp(ū) ≈ 1. For ū ≫ hrms

we also have [7]

pcont ≈ βE∗exp

(

−
ū

u0

)

, (16)

where E∗ = E/(1 − ν2) (here E is the Young’s modulus
and ν the Poisson ratio), and u0 = hrms/α. The parame-
ters α and β depend on the fractal properties of the rough
surface [7].
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Fig. 4. (Color online) The logarithm (with 10 as basis) of
angular average power spectrum as a function of the logarithm
of the wave vector. For qr < q < q1, with the roll-off wave vector
qr = 104m−1 and the cut-off wave vector q1 = 108m−1, the
surface is self-affine fractal with the Hurst exponent H = 0.9.
The low wave vector cut-off q0 = 103m−1 and hrms = 10 µm.

At high enough squeezing pressures and after long
enough time, the interfacial separation will be smaller
than hrms, so that the asymptotic relation (16) will no
longer hold. In this case the relation pcont(ū) can be cal-
culated using the equations given in ref. [8]. Substituting
(15) in (14) and measuring pressure in unit of p0, sepa-
ration in unit of hrms and time in unit of the relaxation
time

τ =
4ηa2u0

h3
rmsp0

=
4ηa2

αh2
rmsp0

, (17)

one obtains

dū

dt
≈ −α−1φp(ū)ū3(1 − pcont), (18)

where α = hrms/u0. In order to study the squeeze-out over
a large time period, t0 < t < t1, it is convenient to write
t = t0e

μ (0 < μ < μ1 with μ1 = ln(t1/t0)). In this case
(18) takes the form

dū

dμ
≈ −α−1tφp(ū)ū3(1 − pcont). (19)

This equation, together with the relation pcont(ū), consti-
tutes two equations for two unknowns (ū and pcont) which
can be easily solved by numerical integration.

We have studied the influence of percolation on the
fluid squeeze-out for an elastic solid with randomly rough
surface squeezed against a rigid flat surface in a fluid with
the viscosity η = 12 Pa s. In most of the studies the rough
surface has the power spectrum shown in fig. 4 with the
root-mean-square roughness hrms = 10 μm and the large
wave vector cut-off q1 = 108 m−1. We also present some
results for another surface with q1 = 107 m−1. The elastic
block has rectangular shape with the width 2a = 1.84 cm
(x-direction) and infinite length (y-direction), and the
squeezing pressure p0 = 2 MPa. The rubber has the
Young’s modulus E = 3 MPa and Poisson ratio ν = 0.5.
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Fig. 5. (Color online) The logarithm (with 10 as basis) of the
average surface separation as a function of the logarithm of the
squeeze-out time. Calculations are for the Peklenik numbers
γ = 0.5, 1 and 2. The pink curve is the result with the fluid
pressure flow factor φp = 1. For a thin rectangular rubber
block (width 2a = 1.84 cm) with fractal-like surface roughness
with the root-mean-square roughness amplitude hrms = 10 µm
and the large wave vector cut off q1 = 108 m−1 (see fig. 4),
squeezed against a flat rigid surface.

Figure 3 displays the pressure flow factor φp as a func-
tion of the average interfacial separation ū, for anisotropic
surfaces with the Peklenik numbers γ = 1/2, 1 and 2. Note
that the flow factor and the viscosity η enter the equation
for the fluid squeeze-out as φp/η. Thus, φp > 1 has the
same effect as decreasing the viscosity and hence speeds-
up the squeeze-out. For γ = 2 we have φp > 1 except
when the average interfacial separation ū becomes so small
that the contact area is close to the percolation threshold
where φp will vanish. Thus, at least for low squeezing pres-
sures, where the interfacial separation never becomes so
small that the area of real contact percolates, the fluid
squeeze-out is enhanced by anisotropic roughness when
the “groves” are in the direction of fluid flow. In a similar
way, γ < 1 is equivalent to increased viscosity, and slower
fluid squeeze-out. However, these results are only valid for
the line-contact geometry. For a circular or square contact
area any roughness will speed up the squeeze-out. For an
elliptic contact area with the groves oriented along one
of the ellipse axis, the squeeze-out may be enhanced or
slowed down depending on the ratio between the ellipse
axis, and the value of the Peklenik number.

Figure 5 shows the logarithm of the average surface
separation ū as a function of the logarithm of the squeeze-
out time t for the Peklenik numbers γ = 0.5, 1 and 2. Note
that in all cases the squeeze-out time is the same but the
final surface separation is the largest for γ = 0.5. The rea-
son is that for this γ the contact area percolates (in the x-
direction) for A/A0 = 1/3, so that already when the area
of real contact reaches this value fluid will be confined in
the non-contact area and the rubber cannot come closer to
the substrate as the fluid is essentially incompressible. For
γ = 2 the contact area percolates for A/A0 = 2/3 which
will occur at much smaller (average) surface separation
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Fig. 6. (Color online) The relative area of real contact A/A0

as a function of the logarithm (with 10 as basis) of the squeeze-
out time. Calculations are for the Peklenik numbers γ = 0.5,
1 and 2 and the same parameters as in fig. 5.
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Fig. 7. (Color online) The nominal contact pressure pcon as a
function of the logarithm (with 10 as basis) of the squeeze-out
time calculated for the Peklenik numbers γ = 0.5, 1 and 2.
The pink curve is the result with the fluid pressure flow factor
φp = 1.

than when γ = 1/2. In fig. 5 we also show the average in-
terfacial separation for perfectly smooth surfaces and for
the case where φp = 1 (which we refer to as the average-
separation theory [23]), where the influence of the surface
roughness is not included in the fluid flow equation. In
this case limiting (for large time) average separation ū(∞)
is determined by the roughness alone independent of the
fluid.

The time dependencies of the relative area of real con-
tact A/A0 for the same systems as studied in fig. 5 are
presented in fig. 6. For γ = 1/2, 1 and 2 the contact area
saturates at A/A0 = 1/3, 1/2 and 2/3 but the squeeze-out
time is the same in all cases.

Figure 7 plots the nominal contact pressure pcon as a
function of the logarithm of the squeeze-out time for the
same systems as studied in fig. 5. The applied squeezing
pressure p0 = 2 MPa is higher than the (nominal) contact
pressure pcon and the difference p0 −pcon is carried by the
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Fig. 8. (Color online) The logarithm (with 10 as basis) of the
pressure flow factors φp as a function of the logarithm of the
average interfacial separation ū for isotropic surfaces (γ = 1).
In all the cases the angular average power spectrum is of the
type shown in fig. 4 with H = 0.9 and hrms = 10 µm and
with the cut-off wave vector q1 = 108 m−1 (red curve) and
q1 = 107 m−1 (green curve).

fluid. Note that for t > 1017 s the contact pressure is con-
stant but smaller than p0 because some of the external
load is carried by the (pressurized) fluid confined in the
non-contact surface regions. The calculation with φp = 1
does not account for the percolation of the contact area,
so no pressurized confined fluid regions occur at the in-
terface in this approximation, and after long enough time
the full load is carried by the area of real contact. Note
also that with φp = 1 the squeeze-out occurs faster since
the high resistance to fluid interfacial flow which occurs
close to the percolation threshold (because of the narrow
flow channels) is absent in this approximation.

Let us now study the influence of changes in the sur-
face roughness power spectra on the squeeze-out. Figure 8
displays the logarithm of the pressure flow factors φp as a
function of the logarithm of the average interfacial sepa-
ration ū, for a surface with isotropic roughness (Peklenik
number γ = 1) for two values of the cut-off wave vec-
tor q1 = 108 m−1 (red curve) and q1 = 107 m−1 (green
curve) in the power spectrum. Note that removing one
decade of the shortest wavelength roughness has no influ-
ence on the pressure flow factor for large interfacial separa-
tion because this region of fluid squeeze-out is dominated
by the long-wavelength large-amplitude roughness compo-
nents. However, the shortest-wavelength roughness is very
important for small interfacial surface separations (which
require high squeezing pressures and long enough contact
time). Thus, removing short wavelength roughness moves
the surface-area percolation threshold to larger interfacial
separation.

The dependence of the logarithm of the average surface
separation on the logarithm of the squeeze-out time for the
two surfaces studied in fig. 8 is shown in fig. 9. Note that
including more short wavelength surface roughness results
after a long contact time in a smaller (average) surface
separation, which is expected as more fluid flow channels
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Fig. 9. (Color online) The logarithm (with 10 as basis) of the
average surface separation as a function of the logarithm of the
squeeze-out time. Calculations are for the Peklenik number γ =
1. For a thin rectangular rubber block (width 2a = 1.84 cm)
with fractal-like surface roughness with the root-mean-square
roughness amplitude hrms = 10 µm and the large wave vector
cut off q1 = 108 m−1 (see fig. 4) (lower (red) curve) and q1 =
107 m−1 (upper (green) curve), squeezed against a flat rigid
surface.

(which can be observed only at high magnification) exist
in this case. However, for “short” time the squeeze-out is
identical for both surfaces, as is indeed expected because
in this region of “large” surface separation the squeeze-out
is dominated by the long wavelength roughness, which is
the same in both cases.

6 Computer simulation of percolation

After the description of the theoretical approach, let us
present the numerical simulation technique and results.
Classical MD simulations have been carried out to verify
the Bruggeman effective medium theory prediction that
the contact area percolates when A/A0 = γ/(1 + γ).

The model consists of an elastic block with a flat bot-
tom surface which is brought into contact with a randomly
rough rigid substrate. The latter (see fig. 10) contains
Nx × Ny = 512 × 512 atoms which occupy the sites of a
square lattice in the xy-plane with the lattice constant of
a = 2.6 Å. Self-affine fractal topography with Hurst expo-
nent value of H = 0.8 and the power spectrum analogous
to the displayed in fig. 4 have been used. The isotropic ran-
domly rough surface profile of the substrate was obtained
using the procedure described in ref. [14], based on the
adding plane waves with random phases. The anisotropic
roughness was generated by stretching the isotropic one in
one direction (corresponding to the vertical or y-direction
in the contact pictures below) accordingly to the specified
value of the Peklenik number. In the present study the
values of Peklenik number equal to 1.0, 5/6, 5/7, 5/8 and
1/2 are used.

When two elastic solids with rough surfaces come into
contact, the elastic deformations perpendicular to the con-
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Fig. 10. (Color online) Randomly rough substrate with the
hrms = 10 Å used in the MD simulations. In the figure atoms
have rescaled z-coordinates with the factor of 5. The roughness
is isotropic, i.e. Peklenik number γ = 1.0. The snapshot is
produced with Visual Molecular Dynamics software [24].

tacting plane extend into the solids a characteristic length
λ that could be as large as the contacting plane’s lateral
size L. Therefore, in order to properly capture the me-
chanical response of the solids within the contact region,
the elastic properties of the material have to be considered
up to a distance L in the normal direction to the contact-
ing plane. In our model this is achieved through the use
of a “smart-block” coarse-graining approach [25], which
allows to drastically accelerate computations of a contact
mechanics problem by reducing the number of dynamical
variables without significant loss of accuracy.

In the original implementation [25] smart-block atoms
are placed on the sites of a simple cubic lattice, and cou-
pled with springs to their nearest neighbors. Full resolu-
tion down to the atomic level is maintained at the in-
terface. The coarse graining is applied to the upper lay-
ers starting from the third one from the bottom (first)
layer, and it involves merging together a box made of
mx × my × mz particles. The three integers mx, my and
mz are called merging factors along the three axes. The
equilibrium position of each new “super-particle” is in the
center of mass of the group of particles merged together.
Its mass is mx my mz times the mass of the original parti-
cles, so that the density does not change. Along the direc-
tion of merging the new spring constants for elongation
and bending are redefined to guarantee identical elastic
response to the original fully atomistic block.

In our model, the bottom layer of the elastic smart-
block (or simply block for brevity) consists of an array of
512 × 512 atoms which form a simple square lattice with
lattice constant a = 2.6 Å. Periodic boundary conditions
are applied in the xy-plane. The mass of a block atom is
197 amu, the Young modulus of the block is E = 250 GPa
and its Poisson ratio is ν = 1/4. Smart-block thickness is
equal to 1350.7 Å, which is slightly larger than its lateral
dimensions Lx = Ly = Nxa = 1331.2 Å. The elastic slab
consists of 12 atomic layers, and merging factors of 2 (in
all 3 directions) are used for all layers, except the 6’th and
the 11’th. The block contains 615780 atoms, and the total
number of atoms involved in the simulations is 877924.

The atoms at the block-substrate interface interact via
a repulsive potential U(r) = 4ε (r0/r)

12
, where r is the

interatomic distance and the parameter ε corresponds to
the binding energy between two atoms at the separation
r = 21/6r0. In our calculations the values r0 = 3.28 Å and
ε = 18.6 meV are used. Zero temperature is maintained
during the simulations using a Langevin thermostat [26]
which allows to exclude the influence of the thermal noise
on the results, and the equations of motion have been
integrated using Verlet’s method [26,27] with a time step
of Δt = 1 fs. In the present study the squeezing process
proceeds as follows. The upper surface of the smart-block
is moved towards the substrate at a constant velocity of
v = 5 m/s with the block being compressed as its bottom
layer approaches the substrate.

We have checked that the level of coarse-graining does
lead to converged results, i.e., making a slower coarse-
graining as one proceeds into the block away from the
interface results in negligible changes in the results. The
elastic waves emitted from the interface are damped out
by small viscous damping acting on the “atoms” in the
block. We have also checked that this damping and the
speed with which the solids are brought together are both
small enough not to influence the results presented below.

In the context of the present study, the most impor-
tant output from the simulations is the ratio A/A0 of the
real contact area A to the apparent one A0, and, in par-
ticular, that value Aperc/A0 at which percolation occurs.
We note that there is no unique way how to define contact
at the atomistic level [28], but this is not important in the
present context as we are only interested in the contact
area at the point where the contact area percolates, and
this quantity is not sensible to the way the contact area is
defined (see below). The quantity A/A0 is defined using
a procedure analogous to the calculation of the proba-
bility distribution of interfacial separations [21]. For each
substrate atom the distance along the z-direction to the
neighboring block atom is computed, and if this distance
is less than some specific value h0, the substrate atom is
marked and considered to be in contact with the block. As
was ascertained in ref. [21], h0 ≈ 4 Å for the mentioned
parameters of the interatomic potential, and in the cur-
rent calculations we also used the values of 5 Å and 6 Å for
comparison. The ratio A/A0 is computed by dividing the
number of atoms being in contact to the total number of
substrate atoms.

The moment of percolation of the contact area is de-
fined using visual inspection of contact pictures, some of
which are shown in figs. 2, 11 and 12, where a pixel corre-
sponds to a substrate atom. Black pixels reflect atoms in
contact, while white pixels correspond to atoms located
farther than 4 Å from the corresponding nearest block
atoms. Figure 11 presents the evolution of the contact
area of the block squeezed against a randomly rough sub-
strate with isotropic statistical properties (Peklenik num-
ber γ = 1). The contact area percolates (along both the
x- and y-directions) for A/A0 ≈ 0.48. In fig. 12 similar
pictures for a substrate with anisotropic statistical prop-
erties (Peklenik number γ = 1/2) are displayed. In this
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Fig. 11. Contact pictures for an elastic block with a flat surface
squeezed against a hard, randomly rough surface with isotropic
statistical properties (Peklenik number γ = 1). The contact
area percolates (along both the x and y-directions) for A/A0 ≈

0.48.

Fig. 12. Contact pictures for an elastic block with a flat sur-
face squeezed against a hard, randomly rough surface with
anisotropic statistical properties (Peklenik number γ = 1/2).
The contact area percolates in the x-direction when A/A0 ≈

0.27 and in the y-direction when A/A0 ≈ 0.54.

case the contact area percolates in the x-direction when
A/A0 ≈ 0.27 and in the y-direction when A/A0 ≈ 0.54.

In fig. 13 we show the results for the (relative) con-
tact area at percolation, Aperc/A0, as a function of the
Peklenik number γ. All the values of h0 give the sim-
ilar trends. However, on average percolation occurs for
larger value of A/A0 when bigger h0 is used. Note the rel-
atively large spread in the results of the simulations, and
that in the numerical experiments the percolation tends
to occur at slightly smaller contact area than predicted
by the effective medium theory. We believe that both ef-
fects are mainly due to the small size of the considered
simulation cell, while the theory is for an infinite system.
Accordingly to experimental [29, 30] and theoretical in-
vestigations [31–34], finite size effects can be observed in

 0.6  1  1.4  1.8
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

γ

A
p

e
rc
 /
A

0

γ/(1+γ)

1/

Fig. 13. (Color online) The relative contact area at percola-
tion, Aperc/A0, as a function of the Peklenik number γ. The
square and circular symbols are obtained from two numerical
simulations using surfaces generated with different seeds for
the random number generator. The solid line is the prediction
of the Bruggeman effective medium theory and the dashed line
is the solid line shifted by 0.07 towards lower relative contact
area. Contact between the solids is assumed to occur when the
interfacial separation becomes smaller than 4 Å (red symbols),
5 Å (blue symbols) and 6 Å (black symbols).

systems which have properties dependent on the percola-
tion of a quantity, defined by a geometrical combination
of small constituent blocks. These effects are usually man-
ifested in two ways. First, there may be oscillations of the
measured quantities [31], such as density of clusters. It is
expected that such oscillations reflect the fluctuations in
the distribution of the size of constituent blocks in the fi-
nite system. They appear whenever the average is taken
over a finite number of samples, and decay as this number
is increased. The second finite size effect is a shift of the
percolation threshold average [29,32,33], and it was shown
that for a smaller system percolation occurs earlier than
for a larger one. Therefore, data scattering in fig. 13 can
be attributed to the first type of finite size effects, which is
caused by fluctuations in the topography of the substrate
from sample to sample. A small discrepancy between nu-
merical and analytical results may be due to the second
type of the finite size effects.

7 Experimental investigation of percolation

The Bruggeman effective medium theory predicts that for
randomly rough surfaces, with isotropic statistical prop-
erties, the contact area percolates at A/A0 = 0.5. In an
effort to directly measure the contact area at a fixed (but
relevant) magnification, we have performed experiments
using an instrumented cantilever based load platform with
an in situ microscope that images through a polished glass
disk. This apparatus is described in more detail in ref. [35].
Schematically this setup is shown in fig. 14. The rough
elastomeric block is loaded against the smooth (nearly per-
fectly smooth in comparison) glass surface and a digital
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Fig. 14. A schematic of the optical in situ loading experi-
ment. A randomly rough elastomer sample is loaded against
a polished glass window. Directly beneath the contact is a
10× microscope objective focused on the contacting surface
of the glass window. The rubber is backed by a stainless steel
plate. External load is transmitted from a hemispherical probe
through the steel back plate to insure a uniform, moment-
free pressure distribution across the glass-rubber contact. The
spherical probe is attached to a cantilever based force trans-
ducer instrumented by a capacitance probe to resolve exter-
nally applied load (FN) and tip displacement.

image of the contact is collected through the microscope
system, which is built below the contact.

The randomly rough elastomeric sample (filled natural
rubber) has a measured apparent area of contact that is
4.3 mm×4.1 mm, and a thickness of 2.6 mm. The smooth
side of the elastomeric sample was adhered to 0.3 mm
thick stainless-steel backing plate that is used to trans-
mit the normal load from a spherical pin. This produces a
nearly uniform pressure and moment free pressure distri-
bution across the contact area, because the point contact
on the stainless steel plate is located at the centroid. The
cantilever based force transducer uses capacitive probes
that have been shown to provide experimental uncertain-
ties in force of better than 1 mN. The loading assembly
is attached to a piezoelectric positioning stage, and all of
the loading phases of the experiment were performed by
ramping the piezo at 1 μm/s (the actual rate of deforma-
tion of the contact is the difference between the loading
displacement and the cantilever deflection).

The microscope objective was centered directly below
the rubber sample and the optical axis was aligned normal
to the polished glass surface; the focal plane of the image
was at the contacting surface of the glass disk. The par-
ticular objective used for these experiments was 10×, and
when coupled to the 5 megapixel detector gives a size of
each pixel at ∼ 350 nm×350 nm. This imaging procedure
reveals areas that are in contact (at this magnification) as
dark, and areas that are not in contact as bright. Interest-
ingly, the illumination scheme also produces a long range
interference pattern for those areas that are within ap-
proximately 5 μm of separation. Figure 15a) shows a rep-

Fig. 15. a) An example image of the contacting surfaces where
the dark areas represent contact, the lighter areas represent-
ing non-contact and the higher order interference fringes are
caused by constructive and destructive interference of light re-
flected from the glass and rubber surfaces. b) Contact pictures
for the randomly rough elastomer squeezed against the flat,
hard, polished glass disc for various A/A0.

resentative image during contact with appropriate scale
bars, and the various regions identified.

A pattern of contacting areas during a loading exper-
iment is show in fig. 15b). During this experiment the ra-
tio of the real area of contact to apparent area of contact
varied from approximately 0.2 to 0.9. Note that, in accor-
dance with the theory, the area of real contact percolate at
or very close to A/A0 = 0.5. The externally applied loads
reach approximately 7 N, where the adhesion force and
dead weight load were not measured. The loading profile
contained periods of loading ramps and stationary holds.
Each image from the experiment was analyzed using an
imaging processing algorithm [35], and the ratio of the real
area of contact to the apparent area of contact is plotted
versus the externally applied load in fig. 16.

We have studied the surface topography of the rub-
ber surface using AFM and line-scan methods. From the
height profile we have calculated the surface roughness
power spectrum. In fig. 17 we show the logarithm of the
surface roughness power spectrum as a function of the
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Fig. 16. (Color online) The ratio of the real area of contact to
the apparent area of contact (relative area of contact, A/A0)
is plotted versus the externally applied load. Each data point
represents a processed image. During loading the piezo stage
(which is mounted to the force transducer/loading assembly)
was ramped at 1 µm/s (the actual rate of deformation of the
contact is the difference between the loading displacement and
the cantilever deflection). After each loading phase there was
a hold phase which allowed for relaxation of the contact for
approximately 30 seconds. This loading and hold sequence was
repeated until the relative area of contact steadied at a value
near 0.85.
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Fig. 17. (Color online) The logarithm (with 10 as basis) of
the surface roughness power spectrum as a function of the log-
arithm of the wave vector for the rubber surface used in the
study reported on in fig. 16. The green line is a fit to the exper-
imental data and is the power spectrum of a surface with the
root-mean-square (rms) roughness amplitude hrms = 2.65 µm
and rms slope 0.47 and total surface area Atot = 1.2A0.

logarithm of the wave vector for the rubber surface used
in the study reported on in fig. 16. The green line is
a fit to the experimental data and corresponds to sur-
face with the root-mean-square (rms) roughness ampli-
tude hrms = 2.65 μm and rms slope 0.47 and total surface
area Atot = 1.2A0.
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Fig. 18. (Color online) The normalized contact area A/A0 as
a function of the squeezing pressure p0. The red symbols are
the experimental data from fig. 16 and the green and blue solid
lines the theory prediction using the Persson contact mechanics
theory (in vacuum) including adhesion and without adhesion,
respectively.

In fig. 18 we compare the measured relation between
A/A0 and the nominal squeezing pressure p0 = F/A0 with
the prediction of the Persson contact mechanics theory
including adhesion (green curve) [36] and without adhe-
sion (blue curve) [19]. In the calculation we have used the
power spectrum shown in fig. 17 and the elastic modulus
E = 4.5 MPa (the shear modulus was measured in 10%
strain to be 1.5 MPa and we assume the Poisson ratio
ν = 0.5). In the calculation including adhesion we have
used the work of adhesion γ0 = 0.08 J/m2 which is close
to what is expected for (filled) natural rubber in contact
with glass for a very slowly closing crack. Good agreement
prevails when adhesion is included in the analysis, while
neglecting the adhesion results in too small contact area.

For A/A0 > 0.5 one would perhaps expect some dif-
ference between the experiment and the theory since the
air in the non-contact regions will be sealed off (trapped)
from the surrounding atmosphere when the contact area
percolates. Thus, as the squeezing pressure increases, the
air in the sealed non-contact region will be compressed and
carry some part of the external load. The theory has been
developed for contact in vacuum, but it would in principle
be easy to extend the theory to include (in a mean-field
way) the influence of trapped gas on the contact mechan-
ics, but this is beyond the present study. However, the in-
fluence of the trapped air seams anyway very small in the
present case, maybe it has enough time to diffuse into the
rubber. If the experiment is repeated in a low-viscosity
fluid (in order for fluid squeeze-out to have a negligible
influence on the experiment) one would expect the con-
tact area to saturate at the percolation value A/A0 ≈ 0.5,
because the contact pressure (in the present experiment
involving rubber) is too small to compress the fluid. We
plan to perform experiments for rubber in contact with a
flat glass surface in water to test this theory prediction.

In fig. 19 we show the calculated normalized contact
area A/A0 and the normalized effective interfacial bind-
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Fig. 19. (Color online) The calculated normalized contact area
A/A0 (red lines) and the normalized effective interfacial bind-
ing energy (per unit area) γeff/γ0 (blue lines) as a function of
the logarithm (with 10 as basis) of the magnification. Results
are shown for several squeezing pressure p0/pmax = 0.2, 0.4,
0.6, 0.8 and 1, where pmax = 0.4 MPa is the maximal squeez-
ing pressures. The vertical line denotes the magnification ζexp

corresponding to the resolution of the experiments.

ing energy (per unit area) γeff/γ0 as a function of the
logarithm of the magnification. Results are shown for
several squeezing pressures p0/pmax = 0.2, 0.4, 0.6, 0.8
and 1, where pmax = 0.4 MPa is the maximal squeezing
pressures. The vertical line shows the magnification ζexp

(ζexpq0 = 2π/λexp where λexp is the experimental resolu-
tion of order ∼ 1 μm) at which the experiment reported
on above was performed. Note that already at this mag-
nification the contact area has almost reached its plateau
value, and increasing the magnification does only result in
a very small change in the contact area. This is a result
of the adhesion, which pulls the surfaces into nearly com-
plete contact in the asperity contact regions observed at
the magnification ζexp. In contrast, in the absence of adhe-
sion the (apparent) contact area decreases monotonically
with increasing magnification.

8 Application to prefillable syringes

Syringes are the most common prefilled parenteral drug
delivery systems, in which a rubber plunger stopper is ac-
tionated to expel the injectable liquid drug from a cylindri-
cal glass or polymer barrel (see fig. 20). Low, uniform and
stable gliding forces values of the plunger stopper are crit-
ical to patient comfort and healthcare professional conve-
nience in manual use of prefillable syringes; when syringes
are used in conjunctions with self-administration devices
(autoinjectors) gliding performance is even more criti-
cal [37]. The plunger stopper need to ensure also the con-
tainer integrity or sealing, to ensure no drug dose changes
and maintain sterility. This is particularly important for
the prefilled syringes where the drug can be stored in the
device for several years before use. Traditionally the in-
ner surface of the syringe is lubricated by a high viscosity

Fig. 20. A syringe consists of a cylindrical glass or polymer
barrel with a rubber plunger stopper with ribs to seal the fluid.

Fig. 21. (Color online) The force as a function of displace-
ment of the rubber stopper for various time of stationary con-
tact. Note that the breakloose force increases with the time
of stationary contact due to squeeze-out of the high viscosity
lubricant fluid (silicon oil). Note also that the kinetic friction
force decreases with the time of stationary contact which prob-
ably is due to viscoelastic relaxation of the rubber which lowers
the contact pressure and changes the shape of the rubber rib
contact region.

silicone oil (viscosity η ≈ 0.35–10 Pa s) to ensure good de-
vice’s gliding performance. The nominal contact pressure
between the ribs of the stopper and the glass barrel is a
critical parameter for sealing and reaches very high values,
of order ∼ 1 MPa. Nevertheless, the silicon oil is squeezed
out from the glass-barrel interface very slowly because of
its high viscosity. This squeeze-out causes a continuous
increase of the static friction before a syringe is used, as
shown in fig. 21. In some cases this may result in such a
high breakloose force that hinders the device functionality
during the injection. It is therefore of great importance to
understand the exact origin and nature of the breakloose
friction.

In the application to syringes, the system consists of
round or flat ribs in contact with the syringe’s barrel sur-
face. The contact can be described as a rectangular region
of width w ≈ 1 mm (x-direction) and of infinite length
(because of the circular nature of the contact region) (y-
direction). In the present study we will assume that the
Hertzian contact formed at the interface between the ribs
and the barrel is nominally flat, i.e., we neglect the macro-
scopic curvature of the barrels and the ribs, and the de-
formations of the rubber ribs which result from the fluid
pressure buildup which is highest at the center of the con-
tact region. The latter results in a bending of the bottom
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Fig. 22. (Color online) The logarithm (with 10 as basis) of the
(average) separation between the surfaces as a function of the
logarithm of time. For a rectangular contact region of width
w = 0.7 mm and for the smooth and the rough surfaces. The
nominal squeezing pressure p = 1 MPa and the rubber elastic
modulus E = 3 MPa. The solid lines are obtained using the
full theory (effective medium theory for the fluid pressure flow
factor) while the dashed line is obtained using the average-
separation theory (where the pressure flow factor is unity).
Results are shown for the “smooth” and “rough” surfaces (see
text), and for fluid viscosity η = 1 and 10 Pa s.
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Fig. 23. (Color online) The relative contact area A/A0 (where
A0 is the nominal contact area) as a function of the logarithm
(with 10 as basis) of time. For a rectangular contact region of
width w = 0.7 mm and for the smooth and the rough surfaces.
The nominal squeezing pressure p = 1 MPa and the rubber
elastic modulus E = 3 MPa. The results have been obtained
using the full theory (effective medium theory for the fluid
pressure flow factor).

surface of the rubber cylinder inwards at the center, giv-
ing rise to slower squeeze-out. Thus, the squeeze-out prob-
lem we study will result in a lower bound for the actual
squeeze-out time.

The assumption that the surfaces in the contact region
are flat and parallel implies that the separation ū(t) is
a function only of time. For this case, for the cylinder
geometry (rectangular contact region) we have derived the
basic equations determining ū(t) in sect. 5.

We have performed calculations for two different values
of fluid viscosity, namely η = 1 and 10 Pa s (as is typical
for the silicon oils used to lubricate the surfaces) and for
two surface roughness cases which we refer to as smooth
and rough. The surface power spectra of both surfaces
correspond to self-affine fractal surfaces with the fractal
dimension Df = 2 as measured for the rubber stopper sur-
faces. The surface roughness power spectra had a similar
form as in fig. 4 but with different slope and with q0 = qr

and q1 = 3× 108 m−1. For the rough surface q0 = 3× 103

and the root-mean-square roughness 50 μm while for the
smooth surface q0 = 3 × 104 and the root-mean-square
roughness 5 μm. The calculated power spectrum for most
rubber stoppers was very similar to what we used in our
model calculations.

Figure 22 plots the logarithm of the (average) sep-
aration between the surfaces as a function of the loga-
rithm of time. The results are for a nominal contact area
with the width w = 0.7 mm squeezed against the smooth
and the rough surfaces. The nominal squeezing pressure
p = 1 MPa and the rubber elastic modulus E = 3 MPa.
The solid lines are obtained using the full theory (effective
medium theory for the fluid pressure flow factor) while the
dashed line is produced using the average-separation the-
ory (where the pressure flow factor is unity) [23]. Note
the slow squeeze-out: even after ∼ 108 s (about 3 years)
the fluid film thickness is decreasing with time. Complete
squeeze-out would result in the separation indicated by
the dashed lines for large time and will never occur for
the rough surfaces due to confinement (trapping) of fluid
at sealed-off regions on the surface. That is, some “cavi-
ties” will be filled with fluid which cannot leak-out due to
the “walls” resulting from the rubber-substrate contact.

In fig. 23 we show the relative contact area A/A0

(where A0 is the nominal contact area) as a function of
the logarithm of time. The results have been obtained us-
ing the full theory (effective medium theory for the fluid
pressure flow factor).

The start-up or breakloose friction will depend sensi-
tively on the squeeze-out dynamics and in a first approx-
imation (at least for small start-up velocities) one may
assume that it is proportional to the area of real contact
shown in fig. 23.

We have measured the start up (or breakloose) fric-
tion force and the kinetic friction force as a function of
the logarithm of the waiting time for glass syringes, see
figs. 21 and 24. To generate these data, syringes were filled
with water, and the syringe’s barrel-rubber stopper sys-
tem were assembled as follows: (a) for short storage times
(< 100 s) the systems were assembled manually, and (b)
for long storage time all systems were assembled in a vac-
uum placement unit. At different time points, 5 syringes
were actionated in an automatic compression bench at
fixed speed, the force needed to initiate and sustain the
movement of the plunger were recorded.

It is interesting to note that as the time approaches
zero the start-up friction values approach the kinetic fric-
tion values (not shown). This is of course expected because
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Fig. 24. (Color online) Red curves: The measured static (or
breakloose) friction force as a function of the logarithm (with
10 as basis) of the waiting time for syringes with glass tube
and for driving velocities 50 mm/min and 380 mm/min. Blue
curves: the calculated relative contact area A/A0 times 5.5 N
(lower curve), and times 9 N (upper curve) as a function of the
waiting time.

after a very short waiting time the fluid film thickness will
be similar to during the insertion move.

Figure 24 shows the measured static (or breakloose)
friction force as a function of the logarithm of the waiting
time for syringes with glass tube and driving velocities
v = 380 mm/min and 50 mm/min (red curves). The blue
curves are the calculated relative contact area A/A0 (from
fig. 23, smooth, η = 10 Pa s) times 9 Newton (upper curve)
and times 5.5 Newton (lower curve), as a function of the
waiting time. The prefactors 9 N and 5.5 N were chosen
to get a good agreement with the measured data for t <
106 s. Assuming that the friction force is proportional to
the contact area A, we can write

Fs(t) = σfA(t) = σfA0 × (A(t)/A0),

where σf is the frictional shear stress in the area of real
contact. Thus we have σfA0 ≈ 9 N for v = 380 mm/min
and σfA0 ≈ 5.5 N for v = 50 mm/min. The nomi-
nal contact area is estimated as A0 = 3 × 2πRw where
R ≈ 3.5 mm is the radius and w ≈ 1 mm the width of
the nominal rubber-glass (circular) contact region. Thus,
A0 ≈ 6.6 × 10−5 m2 giving σf ≈ 1.36 × 105 Pa at v =
380 mm/min and σf ≈ 0.83 × 105 Pa at v = 50 mm/min.
This is in good agreement with the measured frictional
shear stress of surfaces lubricated by long-chain silicon
oil at contact pressures of order ∼ 1 MPa. Thus, fric-
tional shear stress studies of confined fluids (including
high-viscosity silicon oil) using the Surface Forces Appa-
ratus (SFA) [38,39], and other experiments [40], and MD
calculations [41], at nominal pressures of order a few MPa,
resulting in a (nearly) universal expression for the effective
viscosity [38,39,41]

ηeff ≈ Bγ̇−n,

where, if ηeff is measured in Pa s, B ≈ 5×104 and n ≈ 0.9.
The shear rate γ̇ = v/d, where v is the sliding velocity and

d the film thickness. Thus the frictional shear stress

σf = ηeff γ̇ ≈ Bγ̇0.1 ≈ B(v/d)0.1.

According to Surface Forces Apparatus (SFA) measure-
ments (see refs. [38,39]) at the contact pressure ∼ 1 MPa
the trapped silicon oil film is of order d ≈ 3 nm. Us-
ing the equation above gives σf ≈ 2.1 × 105 Pa for v =
380 mm/min and σf ≈ 1.7 × 105 Pa for v = 50 mm/min.
The calculated frictional shear stresses σf are remarkable
close to what we deduce from the experimental data for
the glass-rubber case. The ratio between the calculated
shear stresses 9/5.5 ≈ 1.6 is larger than expected from
the theory (380/50)0.1 ≈ 1.22. We note that in the SFA
measurements [38,39], at the nominal squeezing pressures
2.2 MPa and 3.7 MPa the thickness of the trapped sili-
con oil film was 2.8 and 2.0 nm (corresponding to 4 and 3
monolayers), respectively. In the syringe applications the
nominal pressure is a little smaller (about 1 MPa) and
one may therefore expect a slightly thicker film (maybe
5 monolayers rather than 4 or 3) and perhaps slightly
smaller shear stress than calculated above, which would
be in accordance with the observations above.

The measured breakloose friction force does not ex-
hibit a saturation for t > 106 s as expected if the time-
dependence of the friction just depends on the time-
dependence of the area of real contact. Thus, for t > 106 s
the friction in fact increases faster than at earlier times,
see fig. 24. This indicates that not only the contact area,
but also the frictional shear stress σf in the area of real
contact, increases with time, at least for very large time.
This may be due to a dewetting transition in the area
of real contact or due to a decrease in the thickness of
the trapped silicon oil film, say from 4 to 3 monolayers.
Such layering transitions have been studied both theoreti-
cally and experimentally [42], and are thermally activated
process and may be characterized by very long relaxation
times if the barrier for the nucleation of the squeeze-out
of a monolayer is high enough.

In the experiments it was also observed that the sus-
taining or kinetic friction forces decreased continuously
with the time of stationary contact which we attribute
to viscoelastic relaxation in the rubber which reduces the
contact pressure. This “softening” of the rubber with in-
creasing time will also influence the the time-evolution of
the area of real contact.

9 Summary and conclusion

In the present work, a phenomenological theory for the
fluid flow at the interface between contacting randomly
rough surfaces with anisotropic statistical properties has
been described. The theory utilizes the concept of the pres-
sure flow factor, and it has been shown that this quantity
significantly depends on the statistical properties of the
rough surface, characterized by the Peklenik number γ.
The developed theory also allowed to analyze the influ-
ence of the roughness anisotropy on the evolution of the
average surface separation, relative area of contact and
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the nominal contact pressure during squeezing of a rub-
ber block with rough surface against a substrate in a fluid.
The influence of changes in the surface roughness power
spectrum on squeezing has also been revealed. The the-
ory predictions for the percolation threshold of the con-
tact area have been verified using MD simulations and
squeezing experiments. The MD results show reasonably
good agreement with the Bruggeman effective medium
theory prediction A/A0 = γ/(1 + γ). The experiments
for the isotropic surfaces corroborate theoretical results
for the percolation threshold, and also indicate that af-
ter the percolation is reached the trapped air may in-
fluence the squeezing process. This phenomenon requires
further investigations, where numerical and experimental
techniques can be employed to study the squeeze-out of
the considered system in a fluid. Finally, we have consid-
ered fluid squeeze-out in the context of prefilled syringes,
where removal of the lubricant fluid between the ribs of
the rubber plunger stopper and the glass barrel, results in
a breakloose (or static) friction which increases continu-
ously with the time of stationary contact. We have shown
that this process is quite complex and may involve ther-
mally activated events (e.g., the nucleation of squeeze-out
of monolayer films or dewetting processes), characterized
by very long (of order several month) relaxation times.
This topic requires further studies where the interface is
probed at the nanometer scale.

This work, as part of the European Science Foundation EU-
ROCORES Program FANAS, was supported from funds by the
DFG and the EC Sixth Framework Program, under contract
N ERAS-CT-2003-980409.

Appendix A. Effective medium theory

According to the effective medium theory, the effective
flow conductivity σeff is determined by

〈

(1 + γ)σeff

γσeff + σ(u)

〉

= 1, (A.1)

where σ(u) = u3/(12η), where u = u(x) is the interfacial
separation. We have defined

〈f(u)〉 =

∫

du P (u)f(u),

where P (u) is the distribution of interfacial separations.
Let ū = 〈u〉 be the average interfacial separation. We write
u = ū + δu and σ̄ = ū3/(12η). Thus, we get

σ − σ̄

σ̄
=

δσ

σ̄
=

(ū + δu)3 − ū3

ū3

= 3ǫ + 3ǫ2 + ǫ3, (A.2)

where ǫ = δu/ū. We can rewrite (A.1) as

σ̄

σeff

= (1 + γ)

〈

(

γ
σeff

σ̄
+ 1 +

δσ

σ̄

)

−1
〉

. (A.3)

If we introduce y = σeff/σ̄ and use (A.2), we get

1

y
= (1 + γ)

〈

1

γy + 1 + 3ǫ + 3ǫ2 + ǫ3

〉

or
1

y
=

1 + γ

γy + 1

〈

1

1 + 3ǫ+3ǫ2+ǫ3

γy+1

〉

.

Thus
1

y
+ γ = (1 + γ)

〈

1

1 + 3ǫ+3ǫ2+ǫ3

γy+1

〉

. (A.4)

We assume ǫ = δu/ū ≪ 1. When ǫ = 0 we have y = 1. For
nonzero but small ǫ we write y = 1+δ so that 1/y ≈ 1−δ.
Thus, to lowest order in ǫ we can write (A.4) as

1 + γ − δ = (1 + γ)

〈

1

1 + 3ǫ+3ǫ2+ǫ3

γ+1

〉

= (1 + γ)

〈

1 −
3ǫ + 3ǫ2 + ǫ3

γ + 1
+

(

3ǫ

1 + γ

)2
〉

=
3(γ − 2)

1 + γ
〈ǫ2〉.

Thus, to first order in 〈ǫ2〉

y = 1 +
3(γ − 2)

1 + γ
〈ǫ2〉

or

σeff = σ̄

(

1 +
3(γ − 2)

1 + γ

〈δu2〉

ū2

)

.

Now, for large separation 〈δu2〉 = 〈h2〉 = h2
rms. Thus, in

this case

σeff = σ̄

(

1 +
3(γ − 2)

1 + γ

〈h2〉

ū2

)

. (A.5)

However, this limiting case can be studied directly
from Reynolds equation using perturbation theory which
gives [11,13]

σeff = σ̄

(

1 +
3〈h2〉

ū2
(1 − 3D)

)

, (A.6)

where

D =

∫

d2q C(q)qq/q2

∫

d2q C(q)
.

Note that TrD = D11 + D22 = 1. In a coordinate sys-
tem where D is diagonal, we write D11 = 1/(1 + γ) and
D22 = γ/(1 + γ). Substituting D = 1/(1 + γ) in (A.6)
gives the same expression (A.5) as derived from the effec-
tive medium theory. In the effective medium theory γ was
introduced phenomenologically as the ratio between the
axis of an elliptic inclusion, but the present theory shows
how γ can be obtained from the matrix D involving only
the surface roughness power spectrum. Note that replac-
ing γ with 1/γ in (A.5) gives the result obtained using
(A.6) with the other eigenvalue γ/(1+γ) of the D-matrix.
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Appendix B. Critical junction theory for

anisotropic surfaces

In earlier publications one of the present authors has
studied fluid flow at interfaces using the so-called criti-
cal junction theory [18,43]. This theory is highly accurate
at high enough contact pressures. Thus for surfaces with
isotropic roughness, when the interfacial separation be-
comes so small that the fluid flow factor becomes of order
∼ 0.01, which is typically the case in applications to seals,
then the effective medium theory and the critical junction
theory gives nearly the same result. However, the critical
junction theory is much simpler to implement and require
much shorter computational time even for high squeez-
ing pressures where the contact area nearly percolate. For
this latter case the effective medium theory easily becomes
unstable. Here we will show how the critical junction the-
ory can be generalized to anisotropic surfaces. Let us first
briefly describe this theory in the context of leak rate of
seals.

Consider the fluid leakage through a rubber seal, from
a high fluid pressure Pa region, to a low fluid pressure
Pb region. Assume for simplicity that the nominal contact
region between the rubber and the hard countersurface is
rectangular with area L × L. Now, let us study the con-
tact between the two solids as we change the magnifica-
tion ζ. We define ζ = L/λ, where λ is the resolution. We
study how the apparent contact area, A(ζ), between the
two solids depends on the magnification ζ. At the lowest
magnification we cannot observe any surface roughness,
and the contact between the solids appears to be com-
plete i.e., A(1) = A0. As we increase the magnification
we will observe some interfacial roughness, and the (ap-
parent) contact area will decrease. At high enough mag-
nification, say ζ = ζc, a percolating path of non-contact
area will be observed for the first time. The most nar-
row constriction along the percolation path, which we de-
note as the critical constriction, will have the lateral size
λc = L/ζc and the surface separation at this point is de-
noted by uc = u1(ζc), and is given by the Persson contact
mechanics theory. As we continue to increase the magnifi-
cation we will find more percolating channels between the
surfaces, but these will have more narrow constrictions
than the first channel which appears at ζ = ζc, and as a
first approximation we will neglect the contribution to the
leak rate from these channels.

In the critical junction theory the leak rate is obtained
by assuming that all the leakage occurs through the criti-
cal percolation channel, and that the whole pressure drop
ΔP = Pa − Pb occurs over the critical constriction (of
length (in the fluid flow direction) λx and width λy, with
λx = λy = λc ≈ L/ζc and height uc = u1(ζc)). Thus,
for an incompressible Newtonian fluid, the volume-flow
per unit time through the critical constriction will be
(Poiseuille flow)

Q̇ ≈
u3

c

12η
ΔP, (B.1)

(a) (b)

x
y

λy

λx

critical
junction

Fig. 25. The critical junction for (a) isotropic roughness and
(b) anisotropic roughness (schematic).

where η is the fluid viscosity. In deriving this equation we
have assumed laminar flow and that uc ≪ λc, which is
always satisfied in practice.

To complete the theory we must calculate the separa-
tion uc of the surfaces at the critical constriction. We first
determine the critical magnification ζc by assuming that
the apparent relative contact area at this point (where
the non-contact area percolate) is given by the Brugge-
man effective medium theory: A(ζc)/A0 = 0.5. Knowing
the critical magnification ζc, the separation uc = u1(ζc)
at the critical junction can be obtained using the Persson
contact mechanics theory.

The leak rate can also be expressed in terms of the flow
factor φp. First note that the ensemble averaged current in
the x-direction J̄x = −(ū3φp/12η)dp̄/dx or since dp̄/dx =
−ΔP/L we get the leak rate

Q̇ = JxL =
ū3

12η
φpΔP. (B.2)

Comparing (B.1) and (B.2) gives

φp =

(

u1(ζc)

ū

)3

.

For an anisotropic system φp is a tensor but in an ap-
propriately chosen coordinate system it is diagonal. We
calculate can φp also for anisotropic surfaces using the
critical junction theory as follows. First, we assume that
the non-contact area percolate at the magnification where
the contact area A/A0 = γ/(1 + γ) as predicted by the
Bruggeman effective medium theory. Secondly, we assume
that the critical junction is rectangular in the xy-plane
(see fig. 25) with the length (in the flow direction) width
ratio λx/λy = γ. In this case the fluid flow rate through
the critical junction will be

Q̇ ≈
u3

c

12η
λy

ΔP

λx
=

u3
c

12η

ΔP

γ
, (B.3)

Comparing this with (B.2) gives

φp =
1

γ

(

u1(ζc)

ū

)3

. (B.4)

In fig. 26 we compare the prediction of the critical junc-
tion theory (dashed curves) with the effective medium
theory prediction (solid curves). We show results for a
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Fig. 26. The logarithm (with 10 as basis) of the pressure flow
factor φp as a function of the logarithm of the average inter-
facial separation ū, for anisotropic surfaces with the Peklenik
numbers γ = 0.5, 1 and 2. The solid lines are the prediction
of the effective medium theory and the dashed line the critical
junction theory prediction (see text for details). In all cases the
angular average power spectrum shown in fig. 4 with H = 0.9
and the root-mean-square roughness hrms = 10 µm.

surface with isotropic roughness (γ = 1) and for two sur-
faces with anisotropic roughness with the Peklenik num-
bers γ = 0.5 and γ = 2. Remarkably, for small separation
(or large contact pressures) the two theories give nearly
the same result in all cases. The critical junction theory
can even be applied to the case where the Peklenik func-
tion depends on the magnification (see sect. 2). In this
case one should use in the theory the Peklenik number
γ = γ(ζc) for the magnification ζc where the non-contact
area first percolate. Thus, ζc is determined by the condi-
tion A(ζ)/A0 = γ(ζ)/(1 + γ(ζ)). The orientation of the
coordinate system in which φp is diagonal is then deter-
mined by the Peklenik angle ψ(ζc).
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