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Abstract

This paper describes a method for registering de-

formable 3D objects. When an object such as a hand de-

forms, the deformation of the local shape is small, whereas

the global shape deforms to a greater extent in many cases.

Therefore, the local shape can be used as a feature for

matching corresponding points. Instead of using a descrip-

tor of the local shape, we introduce the convolution of the

error between corresponding points for each vertex of a 3D

mesh model. This approach is analogous to window match-

ing in 2D image registration. Since the proposed method

computes the convolution for every vertex in a model, it

incorporates dense feature matching as opposed to sparse

matching based on certain feature descriptors. Through ex-

periments, we show that the convolution is useful for finding

corresponding points and evaluate the accuracy of the reg-

istration.

1. Introduction

Recently, fast range scanners [16, 23, 10, 13] have been

developed that can capture range scans of a moving object

in real time. To analyze the motion of the object, matching

corresponding points between range scans is important. In

particular, the registration of range scans is interesting if the

object deforms in a non-rigid manner.

When an object deforms, the deformation of the local

shape tends to be small whereas the global shape deforms to

a greater extent in many cases. For example, when a hand

deforms by bending the fingers, the global shape deforms

quite markedly because the joints are flexible; however, the

deformation of the local shape at each point on the surface

is small, except near the joints. The local shape is therefore,

nearly invariant and can be used as a feature for matching

corresponding points.

In order to use the local shape for matching correspond-

ing points, several studies [9, 11, 6, 20, 5] have proposed

feature descriptors for the local 3D shape. These descrip-

tors are used for sparse feature points and for rigid registra-

tion. The descriptors are also used for deformable registra-

tion [2, 18]; however, finding feature points is problematic

in many cases because salient features may not be detected

and the correspondence between feature points may not be

found in all cases. Another approach using local shapes

is the piecewise iterative closest point (ICP) method [4, 8]

that assumes a range scan as a set of several piecewise rigid

parts. Since the number of parts is small, the degrees of

freedom are not sufficient for general deformable motion.

Since the motion of each vertex is different in deformable

registration, the local shape should be used for all vertices.

Sparse feature points are, therefore, used for initial registra-

tion to find rough correspondences.

Thus, instead of using a descriptor of the local shape, we

introduce the convolution of the error between the corre-

sponding points for every vertex in a 3D mesh model. This

approach is analogous to window matching in 2D image

registration. Window matching is commonly used to find

corresponding points when an image deforms in a non-rigid

manner, for example, in the case of computing optical flow.

Since the proposed method computes the convolution for

every vertex in a model, it incorporates dense feature match-

ing in contrast to the sparse matching based on certain fea-

ture descriptors.

Several methods for deformable registration [1, 4, 19,

18, 2, 12, 7, 21] have been proposed thus far. Some meth-

ods estimate the position of every vertex after deformation,

while others [1, 21] estimate the rigid transformation, in-

cluding rotation and translation, of every vertex in the mesh.
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These methods extend the ICP method [3] for a deformable

mesh. The reason that ICP-based methods are often used

and are successful in accurate rigid registration, is that they

use dense vertices in a model for registration. Therefore, we

propose a method for non-rigid registration that introduces

dense local features into the ICP framework, instead of us-

ing sparse feature points. Since rotation and translation of

each vertex is required for analyzing the motion of an ob-

ject, the proposed method estimates both these parameters

by minimizing the convolved error between corresponding

points.

This paper is organized as follows. The formulation of

the elastic convolved ICP is described in Section 2. The de-

tailed implementation of the solution is explained in Section

3. The experiments on the proposed method and an evalu-

ation of the accuracy of the model are discussed in Section

4. Finally, conclusions are presented in Section 5.

2. Elastic Convolved ICP

In this section, we describe a method of finding the cor-

respondence between two range scans for each vertex. Let

us consider the situation of finding corresponding points be-

tween the two range scans shown in Fig. 1. In this paper, the

proposed method finds the corresponding points along the

line of sight of the camera, a technique commonly used dur-

ing the iterations in variants of the ICP-based method [17].

An ICP-based method estimates the rigid transformation

T = [R t], where R is the rotation matrix and t the transla-

tion vector, by minimizing the distance of the corresponding

points as follows [14]:

T = arg min
T

∑

i

(ni · (Txi − yi))
2
, (1)

where xi is a vertex in range scan 1, yi is the correspond-

ing point, and ni is the normal vector at yi. xi and yi are

represented in a homogeneous coordinate system.

In the proposed deformable registration, the rigid trans-

formation is computed for each vertex xi by adding a

smoothness constraint to the transformation of neighboring

vertices. The error E to be minimized is represented by

E = Ed + Es, where Ed is the data term, in which T in

Eq.1 is replaced by the rigid transformation Ti for each ver-

tex xi, and Es is the regularization term expressed as [1]:

Es =
∑

i

∑

j∈Ω

‖λij ◦ (Ti − Tj)‖
2
F , (2)

where ‖ · ‖F is the Frobenius norm of a matrix, λij is a

weight matrix of the smoothness term, and ◦ indicates the
element-wise multiplication of two matrices.

In the formulation in Eq.2, the local shape of the range

scan is not preserved and it deforms like paper. Since find-

ing the correspondence along the line of sight does not con-

sider the local shape, a shift in the correspondence occurs if

line of sight xi
yi

xj yj

Range scan 1

Range scan 2

Ω(i)

ni

Figure 1. The corresponding point yi for each vertex xi in range

scan 1 is found along the line of sight. To compute the trans-

formation Ti for xi, the convolution of the error is computed by

considering the neighborhood Ω(i) of xi.

the object moves in a direction perpendicular to the line of

sight. To consider the local shape, we introduce the convo-

lution of the difference between the corresponding points,

which is analogous to window matching in methods used

for stereo matching and optical flow. Hence, the data term

becomes:

Ed =
∑

i

∑

j∈Ω(i)

γij (nj · (Tixj − yj))
2
, (3)

where Ω(i) is the neighborhood of vertex xi, and γij is the

weight. To estimate the transformation Ti of vertex xi, the

neighboring vertices xj are used to compute the error.

3. Implementation

3.1. Minimizing the Error E

Since the minimization of E is nonlinear, the transfor-

mation Ti for each vertex is computed iteratively. First,

the initial transformation is given by the user and the cor-

responding points yi for each vertex xi are found along the

line of sight. Next, the error E is minimized by using the

given correspondence. The proposed method iterates, alter-

natively finding correspondences and minimizing the error

until convergence.

In each iteration, the transformation is updated as fol-

lows [15]:

T
(k+1)
i = ∆Ti

[

T
(k)
i

0 0 0 1

]

, (4)

where T
(k)
i is the transformation in the k-th iteration and

∆Ti is the updating parameter in the (k + 1)-th iteration.
By assuming that the rotation of ∆Ti is small, elements of
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∆Ti are given by

∆Ti =

⎡

⎣

1 −c3i c2i t1i

c3i 1 −c1i t2i

−c2i c1i 1 t3i

⎤

⎦ , (5)

where c1i, c2i, and c3i are rotation parameters, and t1i, t2i,

and t3i are translation parameters.

Let mi = [c1i c2i c3i t1i t2i t3i]
T and δ =

[mT
1 . . .mT

i . . .mT
N ]T , where N is the number of vertices.

Since the error given by Eq.2 and Eq.3 can be modified to

take the following form

E =
L

∑

l

(qlδ − rl)
2
, (6)

where ql and rl are a 1 × 6N vector and a scalar, respec-

tively, and L is the number of constraints, the least squares
solution of the updating vector δ is given by solving the fol-
lowing linear equation:

Qδ = r, (7)

where the l-th rows of Q and r are ql and rl, respectively.

3.2. Solving the Linear Equation

The data term in Eq.3 is modified as

nj ·
(

T
(k+1)
i xj − yj

)

= nT
j

⎡

⎣

0 x′
3j −x′

2j 1 0 0
−x′

3j 0 x′
1j 0 1 0

x′
2j −x′

1j 0 0 0 1

⎤

⎦mi

+nT
j (T

(k)
i xj − yj)

= Aijmi − aij (8)

where [x′
1j x′

2j x′
3j ]

T = T
(k)
i xj , andAij and aij are a 1×6

vector and a scalar, respectively. Thus, each combination of

vertex xi and its neighbor xj gives one constraint that the

6i-th to (6i+5)-th columns of ql are γijAij and rl = γijaij .

Similarly, the Frobenius norm in Eq.2 is modified as

∥

∥

∥

∥

λij ◦

(

∆Ti

[

T
(k)
i

0 0 0 1

]

− ∆Tj

[

T
(k)
j

0 0 0 1

])∥

∥

∥

∥

2

F

= ‖λij ◦ (Bimi + bi − Bjmj − bj)‖
2
, (9)

where Bi and Bj are 12 × 6 matrices, and bi and bj are

12 × 1 vectors. λij is a 12 × 1 vector that lists the ele-
ments of λij . Further details of Bi and bi are given in the

Appendix. From the definition of the Frobenius norm, each

regularization term gives 12 constraints that each element

of Eq.9 is zero.

The size of Q is L × 6N . If the number of neighbors
of xi is M , L = 13MN . Since N and M are 1K∼30K

and 10∼300, respectively, in the experiments Q is quite a

large, yet sparse, matrix. Eq.7 can be solved by applying

Cholesky factorization to the associated normal equations

QT Qδ = QT r. (10)

Some sparse linear solvers such as TAUCS [22] can solve

the system efficiently. However, the system can be rank de-

ficient and the solution is not always unique. To determine a

unique solution in such cases, we add µI toQT Q according

to the Levenberg-Marquardt algorithm, where µ is a damp-
ing parameter and I is an identity matrix.
Furthermore, since creating Q and computing QT Q are

time-consuming processes, we implemented an OpenMP-

based parallel process for computing each row of Q and

QT Q using a multicore CPU.

3.3. Defining the Neighborhood Ω

In this paper, we define neighboring vertices, xj , of ver-

tex xi by the geodesic distance between xi and xj . Since

we assume that a range scan can be represented as a mesh

model, the geodesic distance dij is approximated by the

shortest path of the mesh edges from xi to xj , which is

computed by the Floyd-Warshall algorithm. If the distance

is smaller than the thresholdD, j is a member of Ω(i). The
complexity of the algorithm is O(N3), but we can reduce
the computational cost by omitting the computation if the

distance between two vertices is larger than the threshold

D, since we only need the neighboring vertices within D.

3.4. Weighting Schemes

The weights γij and λij are determined for discarding

an incorrect correspondence and adjusting the strength of

the regularization term, respectively. Initially, both weights

depend on the distance dij between xi and xj . The weight

wneigh is based on the Gaussian distribution as follows:

wneigh = exp(−d2
ij/2D2). (11)

Weight γij for the data term depends on the distance dxy

between xi and yi to remove an outlier from the corre-

spondence. Using the thresholdDxy , weight wxy is defined

based on the Tukey weight function:

wxy =

{

(1 − (dxy/Dxy)2)2 |dxy| < Dxy

0 otherwise
(12)

The weight for the data term is given by

γij = wneighwxy. (13)

With regards weight λij for the regularization term, we

use a weight that depends on the direction with respect to

the vector xj −xi. If the surface of an object is oblique and
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line of sight

xi

yi

yj

Range scan 1
Range scan 2
ni

xj

xj’ ’xi

Figure 2. Where the surface of an object is oblique and nearly

parallel to the line of sight, the vertices after deformation based on

the correspondences are x′

i and x′

j , which are much closer to each

other than vertices xi and xj . The deforming mesh model tends

to shrink due to the definition of the data term defined in Eq.1.

nearly parallel to the line of sight as shown in Fig. 2, the

deforming mesh model tends to shrink due the definition of

the data term defined in Eq.1. The vertices after deforma-

tion based on the correspondences are x′
i and x′

j , which are

much closer to each other than vertices xi and xj . There-

fore, we impose a large weight along the vector xj − xi to

avoid shrinkage.

This affects the translation elements in Eq.2. If the 4-th

column vector inside the Frobenius norm is τ , the coordi-

nate is rotated with respect to the vector v1 =
xj−xi

‖xj−xi‖
by

Mτ = [v1 v2 v3]
T τ , (14)

where v2 and v3 are unit vectors perpendicular to v1 as

shown in Fig. 3. Instead of evaluating the error ‖τ‖2, the

weighted error is given by

‖WλMτ‖
2
, (15)

where Wλ = diag(wλ1, wλ2, wλ3). We set wλ1 = 10 and
wλ2 = wλ3 = 1 in the experiments to avoid shrinkage.
Finally, the weight vector λij of the regularization term is

given by

λij = w0wneigh[1 1 1 1 1 1 1 1 1 wλ1 wλ2 wλ3]
T , (16)

where w0 is the weight relative to the data term and w0 = 1
in this paper.

4. Experiments

In the experiments, we scaled the models so that the

width of the bounding box is 1.0 in solving the linear equa-

tion, and fixed w0 = 1. Since the object sizes are about
100.0∼200.0 in the experiments, we chose D = 5.0 and
Dxy = 10.0, which were also scaled to build the equation.
We used an Intel Core i7 940 processor, with 4 CPU cores

with hyper-threading and 12GB memory. In this paper, a

range scan sequence is captured by a fast range finder [23].

xi

xj

normal vector

v1

v2

v3
Range scan 1

Figure 3. The weight for the translation elements is computed in

the coordinate system with respect to the vector v1 = xj −xi. v3

is perpendicular to the normal vector at xi.

4.1. Simulation with an artificial model

We created an artificial mesh model of a planar object,

which is slightly bent in the middle, as illustrated by the red

model in Fig. 4. Next, we shifted the model 10.0 units along

the X-axis, while keeping the width of the model as 100.0.

The resulting model is illustrated by the blue model in Fig.

4. The line of sight is along the Z-axis. In this simulation,

the red model is registered to the blue one.

We compared the proposed method with a deformable

registration method without convolution. The data term for

this method is given by

Ed =
∑

i

γi (ni · (Tixi − yi))
2
, (17)

while the regularization term is the same as for the proposed

method.

Fig. 5 shows the motion vector for each vertex as es-

timated by the two methods after four iterations. ’×’ in-
dicates the vertex position in the red model. The motion

vector created by the proposed method is depicted by the

red line, while the green line gives the result for the method

without convolution. The RMS errors are 0.92 in the pro-

posed method and 7.48 in the method without convolution.

The only local shape feature in this model is the crease in

the middle. The proposed method successfully found an ac-

curate correspondence by using the local feature; however,

the correct correspondence was not found by the method

without convolution because the local shape was not taken

into consideration.

4.2. Simulation with a range scan

Next, we manually deformed a range scan and tested the

registration between two range scans before and after defor-

mation. The red model in Fig. 6 is the original range scan,

which is registered to the deformed model depicted by the

blue model. Since the motion vector is relatively small, this

situation can be regarded as the initial registration roughly

estimated by matching sparse features.
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XY

Z

Figure 4. The red model is an artificial planar model that is slightly

bent in the middle. The width of the model is 100.0. The blue

model is the corresponding one after shifting 10.0 units along the

X-axis.

−60 −40 −20 0 20 40 60
−1

0

1

2

3

4

5

6

7

X−axis

Z
−

a
x
is

Figure 5. The motion vector for each vertex is estimated by the two

methods. ’×’ indicates the vertex position in the red model in Fig.
4. The motion vector created by the proposed method is depicted

by the red line, while the green line gives the result by the method

without convolution.

Figure 6. The red model is the original range scan, which is regis-

tered to the deformed model depicted by the blue model.

We compared the proposed method with the method

without convolution. The registered results after 30 itera-

tions by the two methods are shown in Fig. 7. The red

(a) the proposed method

(b) method without convolution
Figure 7. The registered results after 30 iterations by the two meth-

ods: the red models in (a) and (b) are the results by the proposed

method and the method without convolution, respectively. The

blue model shows the target of the registration.

models in (a) and (b) are the results by the proposed method

and the method without convolution, respectively. The pro-

posed method succeeded in registering all fingers, while the

method without convolution failed to fit them.

Fig. 8 shows the RMS error of the position of the ver-

tices with respect to the iteration. Since the deformation was

done manually, the ground truth of the correspondence was

known. ’◦’ indicates the results of the proposed method,
while ’×’ denotes the results of the method without convo-
lution. In this experiment, the unit of distance is the mil-

limeter. The RMS error of the proposed method was re-

duced to less than 1mm. However, the error of the method

without convolution was not reduced. This shows that al-

though the method without convolution minimized the dis-

tance of the corresponding points, it was a local minimum

and the method was unable to find the correct correspon-

dence.

A problem with the proposed method is its slow con-

vergence due to the relatively large number of parameters.

Consequently, many iterations are needed if the initial regis-

tration is not good. This is one of the issues to be considered

in future work.
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Figure 8. The RMS error of the position of the vertices with respect

to the iteration: ’◦’ indicates the results of the proposed method,
while ’×’ denotes the results of the method without convolution.
The unit of distance is the millimeter in this experiment.

4.3. Registration with a range scan sequence

Finally, we tested the proposed method with a range scan

sequence of a moving hand. In this test, we registered the

first frame to the other frames sequentially. By assuming

that the motion of the hand is slow, the registered result of a

frame is used as the initial registration of the next frame.

The number of frames is 300. Since the first frame has

29,834 vertices, the number of parameters is 179,004. The

number of correspondences in each iteration is 2,031,564 if

correspondences exist for all j ∈ Ω(i). Thus, the average
number of members of Ω(i) is 68.1. In our implementation,
the maximum size of memory used is about 4.5GB. The

computational time for each iteration is about 190 seconds.

Due to the time limitation, the number of iterations for each

frame is four in this experiment.

Fig. 9 shows the frames of the registration results. The

top figure is the first frame to be registered. In the other

three figures, the red models are the deformed models from

the first frame while the blue ones are the target range

scans. The proposed method successfully registered the

range scans for almost all the frames even with a large de-

formation of the fingers. In some frames, the convergence

was imperfect due to insufficient iterations, for example, the

finger tips in frame 50.

Fig. 10 shows another result of registering the first frame

(a) to the rest of the sequence. (b), (c) and (d) are three of

525 frames in the sequence. In the similar manner, the red

models are the deformed models from the first frame while

the blue ones are the target range scans.

(a) Frame 0

(b) Frame 50

(c) Frame 120

(d) Frame 270
Figure 9. The top figure shows the first frame to be registered. In

the other three figures, the red models are the deformed models

from the first frame, while the blue ones are the target range scans.
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(a) Frame 0

(b) Frame 10

(c) Frame 200

(d) Frame 450
Figure 10. Another result of registering the first frame to the rest

of the sequence: the red models are the deformed models from the

first frame, while the blue ones are the target range scans.

5. Conclusion

In this paper, we have presented a method for elastic

registration of deformable objects. To introduce the local

shape around each vertex into the ICP framework, we have

proposed an elastic convolved ICP that minimizes the con-

volved error between the corresponding points. In other

words, the proposed method is a vertex-wise ICP with a

smoothness constraint. Utilizing the dense local shape con-

tributes to improving the accuracy of registration as shown

in the experiments. On the other hand, the proposed method

has certain limitations. For example, the correspondence of

vertices may not be unique if the registration of the local

shape is ambiguous. In such cases, texture information on

the surface is necessary for finding the correct correspon-

dence. In future work, we aim to combine shape and tex-

ture information to improve the accuracy and robustness of

registration.

Appendix

The elements of Bi and bi in Eq.9 are given by Eq.18,

where Tuv is the element at the u-th row and v-th column of
T

(k)
i , and vuv is the element at the u-th row and v-th column
ofM .
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