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INTRODUCTION

For many years, the ability of insects to produce aerodynamic forces

in excess of conventional steady-state aerodynamics has attracted

considerable interest because it links aerial performance with the

temporal distribution of lift and drag production (Dickinson et al.,

1999). The majority of experimental studies using either robotic

wings (e.g. Birch and Dickinson, 2003; Maybury and Lehmann,

2004; Sane and Dickinson, 2001) or computational approaches (e.g.

Bos et al., 2008; Liu and Kawachi, 1998; Miller and Peskin, 2005;

Ramamurti and Sandberg, 2002; Ramamurti and Sandberg, 2007;

Sun and Lan, 2004; Wang et al., 2003) have thus focused on how

insects employ unsteady aerodynamic mechanisms to enhance lift

production during manoeuvring flight. Many previous studies on

flapping insect wings have relied on the assumption that the wings

of insects operate as rigid, non-deformable flat plates (Combes and

Daniel, 2003a; Ho et al., 2003; Shyy, 2008; Vanella et al., 2009).

However, similar to wing deformation in birds and bats, and unlike

rigid plates, many insect wings undergo severe flexing and bending

within a single stroke cycle, which may alter aerodynamic force

production (Ennos, 1989; Rüppell, 1989).

Recently, Zhao et al. showed that as flexibility of robotic insect

wings increases, its ability to generate forces monotonically

decreases, whereas the lift-to-drag ratio remains approximately

constant (Zhao et al., 2009). Their study further suggests that

modulation of the trailing edge flexibility affects leading edge

vorticity, thus providing a tool for manoeuvring control in insects.

Numerical models on flapping flight in hover flies, by contrast,

suggest that deformable wings produce approximately 10% more

lift than rigid wings at approximately 5% reduced aerodynamic

power requirements for flight (Du and Sun, 2010). Vanella et al.

showed similar results for a chordwise-deforming two-dimensional

wing blade (Vanella et al., 2009). According to their calculations,

wing deformation increases the lift-to-drag ratio by up to 28%

compared with a rigid blade. The recent work by Young and co-

workers highlighted the impact of wing deformation on aerodynamic

performance and power output in flying locusts (Young et al., 2009).

Ennos was one of the first researchers to suggest that wing torsion

at the stroke reversals of Diptera is primarily due to inertial forces

occurring during the wings’ acceleration and deceleration phases,

and not to aerodynamic forces (Ennos, 1988; Ennos, 1989).

However, robotic wing approaches and numerical modelling of these

forces later demonstrated that lift and drag may peak during the

stroke reversals and not during the translational part of the wing

stroke (Dickinson et al., 1999). Combes and Daniel (Combes and

Daniel, 2003a) showed that the prediction of the wing’s dynamic

shape change is thus essential for developing a comprehensive

understanding of insect flight because instantaneous wing shape

determines the direction and magnitude of fluid dynamic forces

during wing flapping (Du and Sun, 2010; Shyy et al., 2008; Zhao

et al., 2009).

Besides the various force components produced by flapping

wings, wing deformation depends on the wing’s primary structural
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SUMMARY

During flight, the wings of many insects undergo considerable shape changes in spanwise and chordwise directions. We

determined the origin of spanwise wing deformation by combining measurements on segmental wing stiffness of the blowfly

Calliphora vicina in the ventral and dorsal directions with numerical modelling of instantaneous aerodynamic and inertial forces

within the stroke cycle using a two-dimensional unsteady blade elementary approach. We completed this approach by an

experimental study on the wing’s rotational axis during stroke reversal. The wing’s local flexural stiffness ranges from 30 to

40nNm2 near the root, whereas the distal wing parts are highly compliant (0.6 to 2.2nNm2). Local bending moments during wing

flapping peak near the wing root at the beginning of each half stroke due to both aerodynamic and inertial forces, producing a

maximum wing tip deflection of up to 46deg. Blowfly wings store up to 2.30J elastic potential energy that converts into a mean

wing deformation power of 27.3W. This value equates to approximately 5.9 and 2.3% of the inertial and aerodynamic power

requirements for flight in this animal, respectively. Wing elasticity measurements suggest that approximately 20% or 0.46J of

elastic potential energy cannot be recovered within each half stroke. Local strain energy increases from tip to root, matching the

distribution of the wing’s elastic protein resilin, whereas local strain energy density varies little in the spanwise direction. This

study demonstrates a source of mechanical energy loss in fly flight owing to spanwise wing bending at the stroke reversals, even

in cases in which aerodynamic power exceeds inertial power. Despite lower stiffness estimates, our findings are widely consistent

with previous stiffness measurements on insect wings but highlight the relationship between local flexural stiffness, wing

deformation power and energy expenditure in flapping insect wings.
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properties: the spanwise stiffness and the chordwise flexibility. The

leading edge of most insect wings is composed of a stiff structure

with a three-dimensional relief, providing high rigidity in the

spanwise direction (Combes and Daniel, 2003b). Thus, the flexural

stiffness along the span, which is the overall bending stiffness of

the wing, is one to two orders of magnitude greater than along the

wing chord (Combes and Daniel, 2003b). Under aerodynamic

loading, the wing’s camber may change according to the wing’s

vein pattern, the veins’ curvature and the joints between cross and

longitudinal veins (Wootton, 1991). These three-dimensional

skeletal networks of relatively stiff veins are interconnected through

thin membranous and flexible cuticle cells (Hepburn and Chandler,

1976; Neville, 1960; Pfau, 1986). Because precise data about the

local material properties of insect wings are rare, previous finite

element approaches modelled the stiffness of the wing, i.e. the

Young’s modulus, equivalent to chitin, and simply used a stiffness

constant for the entire wing surface (Kesel et al., 1998; Smith, 1996).

More recent studies have shown that wing stiffness can broadly

vary between insect species and also throughout the wing surface,

because elastic proteins such as resilin occupy key positions in the

wing vein joints (Gorb, 1999; Haas et al., 2000a; Haas et al., 2000b).

For example, the spatial variation in spanwise flexural stiffness covers

approximately three orders of magnitude, ranging from approximately

10–6Nm2 in lacewings, Hemerobius, to 10–3Nm2 in the tobacco moth

Manduca sexta. Steppan (Steppan, 2000) determined mean flexural

stiffness over increasingly larger sections of dried Papilionoidea

butterfly wings and found a flexural stiffness of 2.3�l0–8 to

1.49�10–6Nm2, and Wootton and co-workers (Wootton et al., 2000)

measured deflections in three isolated sections of the locust rear wing.

Combes and Daniel refined these measurements and determined the

spatial pattern of flexural stiffness in 16 insect species from six orders

by applying point forces on the wing in the spanwise and chordwise

directions (Combes and Daniel, 2003b). In all tested species, spanwise

flexural stiffness varied from 10–4 to 10–6Nm2 whereas chordwise

flexural stiffness ranged between 10–5 and 10–7Nm2. The latter

measurements also confirmed the dorso-ventral asymmetry in wing

stiffness, as noted in previous studies (Ennos, 1988; Steppan, 2000;

Wootton, 1993; Wootton et al., 2000).

In this study, we investigate the relative significance of

aerodynamic and inertial forces during wing flapping for spanwise

wing bending in the blowfly Calliphora vicina (Fig.1). For this

purpose, we measured wing mass and flexural stiffness of fly wings

and numerically modelled the vertical and horizontal components

of aerodynamic and inertial forces: lift and drag due to wing

translation, wing rotation and Magnus force; and wing inertia due

to the acceleration and deceleration of wing mass and added mass

in each half stroke. The forces were derived by inserting a generic

kinematic pattern for wing motion of flies and an experimental

estimate for the wings’ rotational axes into equations of a quasi-

steady elementary blade approach published previously (Walker,

2002). We subsequently calculated and compared the displacement

of discrete wing blades due to each force component and eventually

evaluated to what degree potential energy stored during wing flexing

may contribute to elastic energy recycling within the stroke cycle.

MATERIALS AND METHODS

Wing mass distribution

Inertial reaction forces during flapping motion depend on both wing

acceleration and the distribution of wing mass. We estimated the

spanwise mass distribution by cutting nine vein-dependent wing

blade elements from freshly killed male Calliphora vicina Robineau-

Desvoidy 1830 and using a UMX2 balance (Mettler Toledo, Inc.,

Columbus, OH, USA) with 0.1g precision. Thereafter, we

converted these estimates into masses for blades with equal width

(0.936mm), yielding 93.0, 46.6, 23.8, 17.4, 18.3, 12.8, 11.0, 9.80

and 6.34g at distances from the wing root of 0.47, 1.40, 2.34, 3.27,

4.21, 5.21, 6.08, 7.02 and 7.95mm, respectively (N10 wings;

Fig.1K). The first moment of mass (normalized form) (Ellington,

1984a) was 43.5 (0.022), 65.3 (0.032), 55.8 (0.028), 57.0 (0.028),

77.1 (0.038), 65.6 (0.033), 66.7 (0.033), 68.8 (0.034) and 50.4gmm

(0.025) for the nine blades. The centre of mass of each blade is

most relevant for vertical inertia during wing rotation. We thus

measured wing mass distribution chordwise, cutting the wings into

seven stripes, parallel to the leading edge. Chordwise centre of mass

is closely scattered around the rotational wing axis at a distance of

approximately –48.1, –96.2, –144, –144, –96.2, –48.1, –96.2, –96.2

and 144m, respectively, where negative (positive) values indicate

locations between the leading (trailing) wing edge and the rotational

axis (Fig.1K). The relative distance between the leading wing edge

and the rotational axis and normalized to wing chord [i.e. xr in

Walker (Walker, 2002)] is 0.25, 0.25, 0.23, 0.21, 0.21, 0.23, 0.24,

0.25 and 0.18mm for the nine blades from wing base to tip. Because

of the evaporation of hemolymph from the blade elements, we

corrected the mass of all blades by a constant factor to match the

sum of all blades to the mass of an intact wing. Total wing mass

was approximately 239±67g (mean ± s.d., N10 wings), and mean

wing length and mean chord were approximately 8.42 and 3.01mm,

respectively. Mean wing area of each blade element was 1.81, 2.90,

3.16, 3.38, 3.38, 3.16, 2.81, 2.54 and 1.76mm2, and the first moment

of area (normalized form) (Ellington, 1984a) was 0.85 (0.004), 4.06

(0.019), 7.39 (0.035), 11.1 (0.053), 14.2 (0.068), 16.3 (0.078), 17.1

(0.082), 17.8 (0.085) and 14.0mm3 (0.067), respectively.

Flexible stiffness measurements

To derive spanwise bending stiffness of the intact fly wing, we

mounted the fresh wing with wax on a holder and applied a line

load (metal wedge) to the wing via a glass spring at seven vein-

dependent distances from the wing hinge (1.32, 2.51, 3.51, 4.70,

5.31, 6.11 and 7.30mm; Fig.1J). To avoid dry-out effects, the time

between wing cutting and wax sealing was short and typically not

longer than 1–2min. Total experimental time was approximately

30min. The strip load displaced the wing downward by up to 0.8mm

with linearly increasing magnitude, maintained the maximum

deflection for 10s and then returned to its initial position. The wedge

was then advanced to a new spanwise position and another

measurement was initiated. To avoid dynamic effects due to viscous

changes of the cuticle, displacement velocity was set to

approximately 130ms–1 (quasi-static conditions). While bending

the wing, we recorded the displacement of both the wing and the

glass spring using a fibre optic sensor (Fig.1I). Reference

displacements of the sensor conducted on a solid material

(aluminium) were subsequently subtracted from the measurements

and the spring constant was calculated from the slope between force

and wing displacement. The spring constant of the measurement

system was 150Nm–1 and thus at least three times the spring constant

of the wing. Each experimental run produced up to 400 force and

displacement measures and was conducted on both the ventral and

dorsal wing surface, yielding a total of more than 6000 bending

measures for four fly wings.

We validated our stiffness measurements by mounting a glass

beam (19.7�0.99�0.14mm) with wax to the experimental setup

and conducted a series of measurements similar to the ones we

performed on the fly wings. Data show that the wax did not hamper

the compliance of the beam and did not cause any loss due to creep

F.-O. Lehmann and others
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deformation. The spring constant of the glass beam was

approximately 7Nm–1 and the Young modulus calculated from this

measure was 68.7GPa. This value is close to the known Young

modulus of glass (72GPa) and suggests that our measurements were

within approximately 5% accuracy.

Wing elasticity and energy loss

Wing elasticity (elastic efficiency, ) is the ratio between unloading

(EU) and loading (EL) energy during wing bending:

This ratio is related to the resilience in rubber technology because

blowfly wings contain the elastic protein resilin at various locations

of the wing near the root (Andersen and Weis-Fogh, 1964)

(Fig.1L,M). In our stiffness measurements, energy was calculated

from the product between elastic force and displacement (see Fig.4).

The wing’s energy loss is the difference (1–) between maximum

elasticity and the elasticity occurring during maximum wing

deflection. The wing’s elastic force decreases under static deflection

and thus some of the elastic energy cannot be recovered under these

experimental conditions (creep deformation; see Results).

Wing kinematics

Stroke kinematic patterns in flies vary tremendously during

manoeuvring flight because of steering muscle activity. In C. vicina,

  

ε =
EU

EL

 .  (1)

for example, both the activation of the sternobasalar muscle (M.b2)

and phase advance of the first basalare (M.b1) is correlated with a

rostral shift in downstroke kinematics, converting a figure-eight into

an O-shaped wing tip trajectory pattern (Tu and Dickinson, 1996).

Nachtigall reported similar kinematic alterations for the fly Phormia

regina during tethered flight (Nachtigall, 1966). Mean stroke

frequency in tethered C. vicina varies between 127 and 180Hz (mean

158Hz) (Nachtigall and Roth, 1983) and between 120 and 160Hz

(Balint and Dickinson, 2004), whereas slightly smaller values were

found by Ennos for this species when flying freely (117 to 158Hz)

(Ennos, 1989). We confirmed these values by scoring stroke

frequency within the first nine to 29 stroke cycles during unrestrained

take-off behaviour, using a high-speed camera (Phantom V12,

Vision Research, Wayne, NJ, USA). We found that frequency varied

up to 30Hz within a single fly and ranged from 131 to 201Hz

(means) between flies. Mean (±s.d.) frequency was 154±23.3Hz

(N10 C. vicina). Stroke amplitude is also considerably variable in

flies, ranging from 123 to 160deg in C. vicina and from 136 to

180deg in tethered and freely flying Drosophila (Ennos, 1989; Fry

et al., 2003; Lehmann and Dickinson, 1998; Nachtigall and Roth,

1983; Zanker, 1990). It has further been shown that a delay in timing

of wing rotation during the dorsal and ventral stroke reversal may

attenuate force generation (Dickinson et al., 1999; Sane and

Dickinson, 2002) and most insects such as beetles (Coccinella),

dipterans (Calliphora, Tipula and Eristalis) and hymenopterans

(Apis and Bombus) exhibit rather symmetrical wing rotation, in
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Fig.1. Wing deformation, methods and resilin distribution in Calliphora vicina. (A–H) Ventral wing flip in freely flying flies during take-off. The images were

recorded using a Phantom V12 camera and show wing kinematics of two animals (A–D and E–H). Red lines and arrows highlight spanwise wing

deformation in B and wing twisting in D. Image exposure time was 240s. Frames were recorded 50ms (A,E) and 25ms (B,F) prior ventral stroke reversal

(C,G) and 25ms after the reversal (D,H). (I)Experimental setup for measuring flexural stiffness in insect wings. The right wing from a freshly killed blowfly

was attached to a holder and pressed downward with a metal wedge along seven chord lines (dotted red line) using a glass spring. Elastic force and

displacement were measured via a fiber optic sensor. (J)Locations of flexural stiffness measurements. c, chord length. (K)Force calculations using a

numerical approach were performaned on nine equally spaced wing blade elements. The centre of mass of each wing blade (red dot) is located near the

rotational wing axis. w, width of wing blade; mw, wing mass of blade element; r, distance from wing root; R, wing length; RA, rotational axis during stroke

reversal. (L,M)Wing areas containing the rubber-like protein resilin. Map of the resilin distribution (L, red) of right fly wings based on fluorescence

microscopy of four flies. The area outlined in blue indicates the location of the resilin region shown in M.
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which 50% of the change in angle of attack occurs before and after

each stroke reversal, respectively (Ellington, 1984b; Nachtigall,

1966).

We modelled wing kinematics in this study close to the patterns

mentioned above and similar to the patterns used in other

experimental and numerical studies on dipteran flight: 150Hz stroke

frequency, 135deg flapping amplitude in a flat horizontal stroke

plane, symmetrical wing rotation (equal rotational time during

upstroke and downstroke), and an angle of attack at mid stroke of

40 and 20deg during downstroke and upstroke, respectively

(Dickinson et al., 1999; Lehmann and Pick, 2007) (Fig.2). Using

a rotational axis for wing rotation at 28.6% mean wing chord length

(see Rotational wing axis), our kinematic pattern produces a mean

vertical force opposite to gravity of 596N (two wings), supporting

the fly’s body weight within 2.8% accuracy (body mass,

59.1±10.2mg, mean ±s.d., N10 C. vicina). The same kinematic

pattern produces 734N (two wings) with the rotational axis at the

leading edge.

Rotational wing axis

Wing inertia and aerodynamic force production during the stroke

reversals both depend on the location of the wing’s rotational axis

(see above). Previous studies often assumed that this axis runs from

the wing base through the tip of the wing. Because of its significance

for force production in this study, however, we estimated the

rotational axis in tethered flying C. vicina more carefully. During

stroke reversal, translational velocity of the wing is minimal but not

zero, thus estimations of the rotational axis are inherently impaired

by the wing’s translational velocity. We coped with this limit for

the analysis in the following way: we tethered blow flies to a wire

using methods described previously (Lehmann and Dickinson,

1997), clipped the outer approximately 8% of the right wing and

marked the wing at three positions using fluorescent dye (M1–M3,

Fig.3A). Wing motion was subsequently recorded at a capture rate

of 6250Hz with a Phantom V12 high speed video camera, orientated

approximately normal to the longitudinal wing axis during the

ventral stroke reversal (Fig.3A,B). To achieve better temporal

resolution, we numerically interpolated the positions of the three

markers by a factor of approximately 14 and determined the stroke

reversal by the minimum translational velocity of the wing tip

(Fig.3C). The wing’s rotational axis was calculated by scoring the

chordwise distances of two wing blades between the stroke reversal

and time t(d) (downstroke, red, Fig.3D) and between the stroke

reversal and time t(u) (upstroke, black, Fig.3D), with t(d) and t(u)

80s before and after the ventral reversal, respectively. The

minimum distance indicates the rotational axis and is plotted for all

tested animals (N12 flies, 10 stroke cycles each; Fig.3E). The

difference in mean value between the downstroke (39.6% M1–M3)

and upstroke estimates (50.9% M1–M3) reflects the contribution

of wing translation to this analysis, causing overestimations during

the upstroke and underestimations during the downstroke. The mean

of all measures, converted into relative distance of mean wing chord

length (c, 3.01mm), shows that the rotational axis is located 0.286c

behind the leading edge.

Aerodynamic and inertial forces

We derived aerodynamic forces during wing flapping from a

corrected version of a two-dimensional, semi-empirical unsteady

blade element (USBE) model (Walker, 2002). The model covers

all aerodynamic forces produced in a stroke cycle, including added

mass reaction force and Magnus force. For fruit fly kinematics, the

USBE model predicts 6–25% higher mean lift compared with

computational fluid dynamic studies (Sun and Tang, 2002).

Although presented throughout the manuscript, Magnus force is not

considered for lift production and wing bending because it

overestimates the rotational components during the stroke reversals

compared with the forces measured in a three-dimensional robotic

wing (Dickinson et al., 1999; Walker, 2002). The aerodynamic force

coefficients required for USBE modelling were adopted from a data

set measured in a three-dimensional electromechanical fly wing

flapping at a Reynolds number of approximately 140 (Dickinson et

al., 1999). Given the kinematic parameters mentioned above, mean

Reynolds number for C. vicina is approximately 1268. We calculated

instantaneous lift and drag including Magnus and added mass

reaction forces due to fluid acceleration for each blade element and

eventually integrated all forces spanwise to obtain total force during

flapping motion (see the Appendix). Besides aerodynamic force,

inertia is a major source for wing flexing and bending in insects

(Combes and Daniel, 2003a; Ennos, 1988). These forces may simply

be calculated from each wing blade mass element, translational and

rotational wing motion (Maybury and Lehmann, 2004). Vertical

inertia during in-plane flapping results from vertical displacement

of wing mass during the rotational phases. Because the centre of

mass for each blade is close to the wing’s rotational axis, vertical

inertia is small compared with horizontal inertia (Fig.1K). The local

bending moment of the fly wing eventually depends on the product

between the moment arm, i.e. the distance of each blade element

from the wing root, and the component of the vector sum of

F.-O. Lehmann and others
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Fig.2. Kinematic pattern used for numerical modelling. (A)Temporal

changes of stroke angle () for translational wing motion and geometrical

angle of attack () with respect to the vertical. The kinematic pattern

produces a flat wing tip trajectory in the horizontal with asymmetrical angle

of attack during upstroke and downstroke and symmetrical wing rotation at

the stroke reversals. (B,C)Absolute angular velocity and acceleration of the

wing, respectively.
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aerodynamic and inertial forces acting normal to the wing surface

(see Results for illustration of angles). Thus, in a final step, we

derived these components from a set of equations listed in the

Appendix. Although the equations quantify wing deflection

throughout the flapping cycle, we made no attempt to consider these

changes for our calculations of aerodynamic forces (fluid structure

interaction).

Elastic potential energy and strain energy density

Elastic potential energy is the energy stored as a result of deflection

of the elastic wing and was approximated by the work done to deflect

a cantilever beam. We calculated the local elastic potential energy

(EPE) from local deflection () and local flexural stiffness (EI) of

each wing blade at a given distance (r) from the wing root using

the following equation:

EPE(r,t)  1.5EI(r)2(r,t)w–3, (2)

where w is blade width, and subsequently integrated the local value

to determine total elastic energy within the stroke cycle. The local

strain energy density (SED) for each wing blade equals the work

stored in the wing during bending divided by the volume of each

wing blade. We calculated this measure from the ratio between local

bending moment (M), EI, c and wing thickness (h), given by:

Wing thickness was derived from total wing mass and area,

assuming a density for chitin of 1200kgm–3 (Ellington, 1984a). For

the nine blades from root to tip we obtained thicknesses of 42.8,

13.4, 6.28, 4.30, 4.52, 3.36, 3.25, 3.22 and 3.00m, respectively

(Fig.1K). In contrast to EPE, we averaged SED spanwise to obtain

mean SED during wing flapping.

 SED(r ,t) = 1

2 M 2 (r ,t)EI−1(r )c−1(r )h−1(r ) .  (3)

Fluorescence microscopy of resilin

Resilin is a highly elastic protein occurring in various parts of the

flight apparatus of the fly. We determined the distribution of resilin

in wings freshly cut from C. vicina, mounting them on coverslips

in a water-soluble medium (Moviol, Hoechst, Frankfurt, Germany).

Resilin has an autofluorescence at a very narrow band of

wavelengths of approximately 400nm. Thus, resilin in biologically

native structures can be determined without immune labelling

(Andersen and Weis-Fogh, 1964). To enhance resilin visibility, we

observed the fly wings at three wavelengths of a fluorescent

microscope (Zeiss Axioskop, Zeiss, Oberkochen, Germany): green

(excitation 512–546nm, emission 600–640nm), red (excitation

710–775nm, emission 810–890nm) and ultraviolet (excitation

340–380nm, emission 425nm). We recorded images in each of the

three bands of wavelengths using a video camera (Sony 3CCD

camera DXC-950P) and superimposed them as semi-transparent

pictures using Adobe Photoshop (Fig.1L,M).

RESULTS

Elasticity, spring constant and local flexural stiffness

The elastic force of blowfly wings linearly increased with increasing

load applied chordwise until the displacement was constant (t0,

Fig.4A). Under constant load, the elastic force typically decreased

with increasing measurement time due to creep deformation, which

produces a loss in energy due to force and displacement (exponential

decay; upward bending, 8.82s; downward bending, 6.02s; see legend

of Fig.4B,D,E). Creep deformation was close to saturation at the

beginning of the unloading procedure (offset of fit curve; upstroke,

0.828mN; downstroke, 1.52mN; Fig.4D,E). Elasticity for seven

wing blades is plotted in Fig.4F and shows a maximum of 20–23%

loss of elastic energy due to creep deformation under constant

A

M3

0.16 0.32 0.48 0.64 ms

3.0 mm

M1
M2

M3

1.0 mm

0 0.45 0.90 1.35 1.80
0

1

2

3

4

5

6

Time (ms)

T
ra

n
s
la

ti
o
n

a
l
v
e
lo

c
it
y

(m
s

)
–
1

C D

B

E
Stroke reversal

t(d) t(u)

0 0.2 0.4 0.6 0.8 1.0
0

0.04

0.08

0.12

0.16

0.20

Time (ms) Normalized distance from LE

S

Upstroke
Downstroke

LE

TE

N
o
rm

a
liz

e
d

d
is

ta
n
c
e
 (

∆
S

)

1 7 13

0

25

50

75

100

Tested fly

M1 M3

4 10

M1

M3

L
o
c
a

ti
o
n

o
f
a

x
is

(%
)

Mean chord

M1
M2

t0

t1
t2

t3
t4t5

t6

UpstrokeDownstroke

M1
M2

M3

Camera

length

Fig.3. Experimental determination of the rotational wing axis in Calliphora vicina. (A)The right wing tip of intact flies was cut and marked (M1, M2, M3) using

fluorescent dye. During wing flapping of tethered animals, marker positions were recorded before and after the ventral stroke reversal using high-speed

video (images, right). (B)Typical example of wing movement at seven equally spaced times (0.16ms sample period; t0 to t6) during the ventral stroke

reversal. M1 (red) indicates the wing’s leading edge and downstroke is from right to left. (C)Translational mean (±s.d.) wing tip velocity during stroke

reversal. The stroke reversal occurs at minimum velocity. Times t(d) and t(u) indicate half sampling period before and after the ventral reversal, respectively.

(D)Normalized chordwise distance (S) between two wing positions at t(d) and stroke reversal (red), and between stroke reversal and t(u) (black). Minimum

value indicates the wing’s rotational axis. LE, leading wing edge; TE, trailing wing edge. (E)Location of rotational axis between the markers M1 and M3 for

downstroke (red) and upstroke (black). Axis of wing rotation is approximately 28.6% mean wing chord length (3.01mm, shown in A) behind the wing’s

leading edge. Data are means ± s.d., N120 stroke cycles from 12 flies.

THE฀JOURNAL฀OF฀EXPERIMENTAL฀BIOLOGY



2954

bending stress. Mean elasticity was not significantly different

between upward and downward bending (t-test, upward, 0.77±0.14,

N24; downward, 0.80±0.10, N15; P0.45). The same holds for

the blade-wise comparison between both bending directions

(ANOVA, blade at 1.32mm, P0.31; 2.51mm, P0.45; 3.51mm,

P0.83; 4.70mm, P0.88; 5.31mm, P0.53; 6.16mm, P0.27).

Moreover, the elasticity of the wing blades does not significantly

increase with increasing distance from the wing root (linear

regression, y0.82–7.91x, R20.01, P0.51, N39; Fig.4F).

The combined spanwise spring constant decreases with increasing

distance from the wing root (Fig.4G) whereas the combined flexural

stiffness of 124�10–9Nm2 saturates at approximately 4.8mm or

43% wing length. For comparison, this value is approximately eight

times lower than a value previously measured for Calliphora sp. at

70% wing length (Combes and Daniel, 2003b). None of the spring

constants between upward and downward bending were significantly

different in each blade element (t-test, P>0.05 for all blade elements).

Because of thicker veins, the wing root yields an elevated mean

local flexural stiffness of approximately 33.1�10–9 Nm2, whereas

the more distal parts of the wing are relatively compliant, exhibiting

a local flexural stiffness ranging from 0.64�10–9 to 2.29�10–9Nm2

(Fig.4I).

Aerodynamic and inertial forces

The USBE model allowed us to simulate the instantaneous force

components that potentially affect wing bending in flapping C. vicina

wings: the components of aerodynamic forces including added mass

reactions forces (Fig.5A), inertial forces due to acceleration and

deceleration (Fig.5B), and Magnus force, normal to the wing surface

(Fig.5C). Fig.5D–G shows how these forces vary throughout the

stroke cycle. Magnus force points upwards, pulling on the wing in

the direction of lift, whereas inertia mainly acts in the horizontal

(Fig.5D,G). Horizontal wing motion due to translation contributes

approximately 33 times more to maximum horizontal inertia than
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are means ± s.d.

THE฀JOURNAL฀OF฀EXPERIMENTAL฀BIOLOGY



2955Elastic wing deformation in flies

horizontal wing motion due to wing rotation (peak forces;

Fi,h*1.92mN, Fi,h**0.06mN, respectively; Fig.5F) because wing

mass is closely scattered around the wing’s longitudinal axis, and

off-axis masses are thus low (Fig.1K). Vertical inertia due to wing

rotation is always negative and peaks at small values of

approximately –0.07mN (red, Fig.5F). This is of interest, as the

conventional treatment of inertial power ignores the contribution of

horizontal and vertical inertia due to wing rotation (Ellington,

1984c). Averaged throughout the cycle, total absolute aerodynamic

force (Fa,n) and inertia (Fi,n) normal to the wing surface amount to

474 and 235N, respectively, whereas added mass reaction force

(166N) as part of Fa,n amounts to 35.0 and 70.6% of Fa,n and Fi,n,

respectively. Similar values were obtained for the component of

mean Magnus force acting normal to the wing surface

(Fm,n56.8N; 12.0% of mean Fa,n; 24.2% of mean Fi,n).

At the stroke reversals, inertial peaks due to horizontal

translational deceleration and acceleration clearly dominate total

bending force normal to wing chord, outscoring aerodynamic force

approximately 2.24-fold (maximum Fi,n1.92mN; maximum

Fa,n0.86mN). However, the normal components of wing inertia

and lift/drag run counter at the beginning of the stroke reversal and

thus partly cancel each other out (Fig.5G). Normal Magnus force

shows an elaborated time course but is too small to cause significant

bending (Fig.5G; see Materials and methods). Superficially, the data

suggest that maximum bending force in the blowfly is primarily

caused by inertial effects at the stroke reversals and not by

aerodynamic force production. Changes in the shape of the

translational velocity profile during back-and-forth flapping motion

should thus have a predominant effect on the magnitude of wing

bending in flies. However, spanwise wing deformation does not

depend on local forces but on local bending moments and thus on

how the forces are distributed in the spanwise direction during wing

flapping.

Local bending moments

Local bending moments depend on the spanwise distribution of

normal-orientated aerodynamic, inertial and Magnus forces that vary

distinctly throughout wing flapping (Fig.6). Because local forces

and local bending moments are rather similar during upstroke and

downstroke, Fig.6B–H only shows data for the downstroke. As

already mentioned, at the beginning and the end of each half stroke,

during the wing acceleration and deceleration phases, respectively,

inertial forces peak and cause a homogenously distributed spanwise

load on the wing (time bin 0–0.1, Fi,n87.9±16.2N; time bin

0.4–0.5, Fi,n–49.6±7.70N; means ± s.d., N9 wing blades,

downstroke; Fig.6B,F). This effect results from the combined

changes in translational and rotational velocities, although the

contribution of rotational velocities is relatively small (see above,

Fig.1K and Fig. 5F). In contrast to the stroke reversals, inertial forces

are low during wing translational phases and thus do not contribute
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to wing bending moments (Fig.6C–E). Aerodynamic force, by

contrast, increases from root to tip due to the spanwise increase in

translational velocity of the local blades (time bin 0–0.1, Fa,n
49.4 ±27.3N; time bin 0.4–0.5, Fa,n114±56.7N; means ± s.d.,

N9 wing blades, downstroke), producing only minor fluctuations

in local bending moments over time (Fig.6B,E). Aerodynamic-

induced bending, however, peaks at the end of each half stroke when

translational and rotational wing velocity is maximum (Fig.6F). As

already shown in Fig.5, Magnus force, is relatively small and

contributes, if considered, moderately to local bending (time bin

0–0.1, Fm,n–8.06±4.45N; time bin 0.4–0.5, Fm,n8.65±4.78N;

means ± s.d., N9 wing blades, downstroke; Fig.6B,F).

During the wing acceleration phase, aerodynamic/added mass

reaction force and inertia produce local bending moments of up to

approximately 5.81Nm (downstroke) and –4.71Nm (upstroke)

at the wing root, whereas during wing deceleration bending is

significantly smaller (downstroke, 3.41Nm; upstroke, –2.84Nm;

Fig.6G–I). Wing bending thus occurs predominantly at the

beginning of each half stroke, because at the end of each half stroke

aerodynamic and inertial bending moments act in opposite

directions, pulling and pushing on the dorsal (ventral) wing surface

during the downstroke (upstroke), respectively. At this time,

aerodynamic force is apparently slightly more effective for spanwise

wing bending because of the pairing between elevated force and

the long moment arm (Fig.6F). The force balance also suggests that

inertial power is put straight into aerodynamic power instead of wing

deflection power and so elasticity is not required to limit inertial

power requirements at the end of each half stroke (Ellington, 1984c).

The sign changes of spanwise total force further produce negative

and positive bending moments on proximal and distal wing blades

at the stroke reversals as shown in Fig.6G (time bin 0.4–0.5; negative

bending, 0–1.7mm wing length). If the chordwise positions of total

force vectors acting normal to the wing surface differ slightly

between blades, opposing bending moments promote wing twisting.

Surprisingly, we observed wing twisting near the wing root 25ms

after the ventral stroke reversal in freely flying C. vicina (arrow,

Fig.1D).

Wing tip deflection, EPE and SED

Local wing deflection depends on the ratio between local bending

moments and local flexural stiffness (see Eqn A10 in the Appendix).

Consequently, local deflection is elevated near the wing root

because of high bending moments and despite high local stiffness,

and also elevated near the wing tip due to small local stiffness and

despite small bending moments (Fig.7E). During the wing

acceleration phases, local bending is maximum and amounts to

61.7m at the root and 84.7m for a blade near the wing tip, whereas

the wing’s middle parts are less prone to deflection (Fig.7E). The

temporal change in wing tip deflection for two stroke cycles and as

calculated from Eqn A11 is shown in Fig.7B. As already suggested,

this measure indicates that spanwise deformation peaks at the

beginning of the half stroke (dorsal reversal, 46.2deg; ventral

reversal, 43.4deg); the wing is less deformed throughout the

upstroke and downstroke (Fig.7A, middle and right). We found
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comparable wing deformations (approximately 27deg) at the

beginning of the stroke reversal in freely flying C. vicina using high-

speed video recording (Fig.7A, left).

Because of high stiffness near the wing root and elevated bending

moments, most of the EPE during spanwise bending is stored in

the proximal parts of the wing (Fig.7F). Maximum EPE of a local

blade amounts to 0.19J at the beginning of the half stroke (red,

Fig.7F), which is almost completely released during the wing’s

translation phase. By integrating EPE spanwise, we estimated total

EPE as shown in Fig.7C and calculated mean EPE for a full half

stroke (downstroke, mean EPE0.27J; upstroke, mean

EPE0.18J). Local SED is a measure of how much strain energy

is stored during spanwise deformation per unit wing volume. In

contrast to EPE, this measure does not significantly change in the

spanwise direction, despite the massive change in local wing

volume (see Materials and methods). Bending stress is thus

concentrated on the proximal wing part (0–0.1 stroke cycle,

6.92±1.59�103Jm–3; 0.4–0.5 stroke cycle, 2.81±0.55�103Jm–3;

SED mean ± s.d., N8 blades, downstroke; Fig.7G). In this respect,

the distribution of resilin at the proximal end of the wing is of

particular interest. Although elasticity does not necessarily increase

the toughness of the wing, resilin patches might reduce the risk of

breaking near the wing hinge because of a reduction in peak stress

on the rigid parts of the wing during flapping (Fig.1L,M, Fig. 7D).

DISCUSSION

The aim of this study was to evaluate the relative contribution of

aerodynamic and inertial forces to wing bending in the blowfly C.

vicina and to estimate how much elastic potential energy is stored

in a fly wing during flapping motion. Because we restricted our

modelling to cantilever analysis of spanwise deformations, our data

cannot explain complicated chordwise deflection or bending due to
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wing vein hinges (Wootton, 1992). The combination of USBE

modelling, a numerical framework for wing inertia, and stiffness

measurements on fly wings revealed that fly wings might bend

spanwise more than 40deg at the beginning of each half stroke

(Fig.7). We observed smaller but still comparable deformation in

C. vicina taking off freely from a start platform (Figs1 and 7).

Bending moments at the stroke reversals are mainly driven by two

forces: horizontal inertia due to the translational velocity profile of

the wing and aerodynamic forces due to wing rotation. Both forces

produce an increasing local bending moment with decreasing

distance from the wing root, whereas the high local flexural stiffness

at the wing root avoids tremendous deformations of the proximal

blades (Fig.6). In turn, despite small bending moments, wing

deflection of distal wing blades is significant because of the increase

in structural compliance from root to tip (Fig.7).

Wing stiffness

The exponential decay in wing stiffness as shown in Fig.4G is

consistent with previous measurements on insect wings, despite the

different measurement techniques [line vs point measurements in

Combes and Daniel (Combes and Daniel, 2003b; Combes and

Daniel, 2003c)] and bending methods [segmental force application

vs single force application at 70% wing length in Combes and Daniel

(Combes and Daniel, 2003b; Combes and Daniel, 2003c)]. However,

the combined flexural stiffness at 70% wing length of Calliphora

sp. in Combes and Daniel (Combes and Daniel, 2003b; Combes

and Daniel, 2003c) is approximately eight times higher

(approximately 10–6Nm2) than our measurements (1.2�10–7Nm2;

Fig.4H). The origin of this difference is unclear but might result

from dry-out effects in the Combes and Daniel studies. For

comparison, we calculated spanwise bending using the higher

stiffness value by Combes and Daniel. According to our

aerodynamic modelling, the higher stiffness estimate would limit

wing-tip bending to a few degrees, making the wing virtually rigid

during wing flapping and running counter to the spanwise

deformations derived from freely flying blowflies (Figs1 and 7).

The high flexural stiffness near the wing root is consistent with

studies on vein topology (Wootton, 1991; Vanella et al., 2009). In

contrast to the low compliance of the wing root, Wootton suggested

that the high compliance of distal wing parts might serve as a

mechanism for wing protection when the wing hits solid objects

during flapping motion (Wootton, 1992). In this case, high elasticity

at the tip would allow the tip to buckle and rebound without further

damage (Combes and Daniel, 2003c). Wing-tip damage attenuates

aerodynamic performance, yielding two effects: an increase in wing

stroke frequency due to a change in load of the thoracic oscillator

and, potentially, a reduction in the ability to generate a stable leading

edge vortex due to changes in tip vorticity [fruit fly (Bender and

Dickinson, 2006); bumblebee (Hedenström et al., 2001)].

Although the asymmetry for upward and downward bending as

shown in Fig.4D,E apparently supports previous work on wings of

butterflies, the hawkmoth Manduca sexta, and locust hindwings

(Combes and Daniel, 2003b; Steppan, 2000; Wootton et al., 2000),

its structural origin remains unclear, as pointed out by Combes and

Daniel. A possible explanation of this phenomenon might be the

stress-stiffening effect of dipteran wings (Kesel et al., 1998).

According to previous suggestions, stress stiffening may result from

the intrinsic motion of veins and membranes under load (Combes

and Daniel, 2003b). A force pressing on the dorsal wing side might

pull the trailing edge veins further apart, which removes slack in

the membrane, whereas forces on the ventral side of the wing push

the veins together and reduce membrane tension. 

Energy storage and elasticity

It has previously been shown that elastic energy recycling may limit

the energetic expenditure during flapping flight of insects (Casey

and Ellington, 1989; Dickinson and Lighton, 1995; Ellington,

1984c). In the fruit fly Drosophila, for example, a minimum of 10%

elastic storage is required to minimize flight costs during hovering

flight conditions (Dickinson and Lighton, 1995). However, this

calculation ignored wing drag due to three-dimensional unsteady

aerodynamic phenomena, thus the need for elastic storage of kinetic

energy during hovering is presumably less than originally suggested

(Lehmann, 2001). Nevertheless, the storage of kinetic energy due

to elastic wing bending might contribute to the overall energy

balance during wing flapping. We thus found it surprising that the

wing does not gain much energy during its deceleration phases,

because the moments produced by lift/drag and added mass reaction

force partly cancel out wing mass-induced moments (Fig.6). Total

EPE at the end of the upstroke and downstroke (0.9–1.0 and 0.4–0.5

relative time, respectively) is thus relatively small, amounting to

only 0.43 and 0.64J, respectively (Fig.7C). Consequently, the

elastic structures of the wing do not recycle much kinetic energy

gained from a preceding half stroke and thus contribute only slightly

to the recycling of kinetic energy at the stroke reversals.

A higher amount of EPE is stored, by contrast, at the beginning

of each half stroke, up to approximately 1.89J (upstroke) and

2.30J (downstroke), and subsequently released throughout the wing

translation phase. These measurements equate to approximately 2.5

(upstroke) and 3.1 (downstroke) times the mean kinetic energy

required for wing acceleration in the first half of each half stroke

(upstroke, 0.76J; downstroke, 0.74J) (Ellington, 1984c). Because

wing bending delays the sudden acceleration of local wing mass,

spanwise wing deformation might lead to a temporal reduction in

inertial costs at times of maximum energetic expenditures (i.e. wing

acceleration phases) within the stroke cycle. Benefits of elasticity

for force production and muscle dynamics have previously been

described in locomotion (e.g. Biewener and Roberts, 2000;

Lichtwark and Barclay, 2010; Roberts et al., 1997). If we assume

that elastic deformation of the wing helps to distribute instantaneous

flight power requirements more homogenously within the stroke

cycle, this mechanism could lower the peak requirements of flight

muscle force production. Further considering that flight muscle mass

is largely determined by the need to produce peak mechanical power,

elastic wing deformation might help to reduce flight muscle size,

in turn increasing the payload capacity of the flying insect.

Our stiffness measurements, however, suggest that not all

potential energy stored during wing bending is necessarily released.

By estimation of elasticity during constant wing loading, we found

a loss of energy ranging from 20 to 23%, or 77 to 80% elastic

efficiency (Fig.4F). Previous estimates of elastic efficiency of the

locust thorax at normal work conditions indicate similar values:

intact thorax, 86%; empty box, 88%; elastic hinges, 97%; and non-

active muscle, 80% (Andersen and Weis-Fogh, 1964). A more recent

study reports 95% elastic efficiency for resilin (Lv et al., 2010).

Because elastic deformation occurring under static loading certainly

differs from that occurring during high-frequency loading and

unloading cycling in naturally flapping fly wings, it is likely that

the obtained value presents a lower rather than an upper estimate

for elastic loss. A study on the loss factor (1–elastic efficiency) of

an elastic tendon of the locust, for example, suggests that inelasticity

increases with increasing frequency of alternating strain from

approximately 1% at 25Hz to approximately 5% at 100Hz (Jensen

and Weis-Fogh, 1962). Eventually, mean wing deformation power

is the product between elastic efficiency (0.8), mean EPE (228nJ)

F.-O. Lehmann and others
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and stroke frequency (150Hz), and amounts, in C. vicina, to

27.3�10–3mW, averaged over the entire stroke cycle. This value

is relatively small and equates to approximately 5.9% of the inertial

power requirements for wing acceleration (upstroke, 0.46mW;

downstroke, 0.47mW) and approximately 2.3% of aerodynamic

power requirements due to horizontal drag (upstroke, 0.81mW;

downstroke 1.58mW; see Eqns A13–A14 in the Appendix). These

data suggest that the loss in wing deformation power due to wing

elasticity is relatively small (6.83�10–3mW).

CONCLUSIONS

In conclusion, investigations of flapping wing deformation in

insects fuel research on the interference between flight forces and

wing structures, termed fluid–structure interactions (Shyy et al.,

2008). Even small deformations of flapping wings produce a

camber effect that may modulate the production of lift and drag,

and also alter aerodynamic control (Du and Sun, 2010; Walker et

al., 2009; Zhao et al., 2009). Investigations of material properties

and the behaviour of insect wings during cyclic loading are thus

essential for our understanding of how elastic properties shape

neuromuscular wing control, stroke kinematic patterns and

aerodynamic force production to enhance aerodynamic efficiency

in a flying insect. This study contributes to this research via an

estimation of wing deformation power and demonstrates a source

of mechanical energy loss due to spanwise wing bending in fly flight.

The finding that the wing might recover only 80% bending energy

during flapping motion, even in cases where aerodynamic power

exceeds inertial, is not only relevant to understand the biology of

flight but also for engineers who aim to improve aerodynamic

performance and power expenditures of bio-inspired micro-air-

vehicles.

APPENDIX

According to Walker (Walker, 2002) and correcting speed for wing

translation and wing rotation, Magnus force (Fm) may be calculated

by:

where  is the air density, c is the wing chord length, r is the distance

from the wing hinge, � is the angular velocity of wing translation,

�g is the wing’s morphological angle of attack with respect to the

horizontal, and d is the differential. According to Ellington

(Ellington, 1984b) and Lehmann and Pick (Lehmann and Pick,

2007), inertial forces due to translational acceleration of the wing

in the horizontal (F*i,h) are given by:

where mw is the wing mass of each blade element and � is the

angular acceleration. Considering horizontal inertial forces generated

by wing translation and wing rotation, we may modify the above

equation to:

where l is the chordwise distance between the centre of wing mass

of each blade and the rotational axis, and �g is the angular

acceleration during wing rotation. Instantaneous inertial force in the

Fi,h
* (t) = mw (r )r dr

0

R

∫  , (A2)�

Fm (t) =
1

4
ρπ c(r )2 r g dr

0

R

∫  , (A1)��

Fi,h (t) = Fi,h  
* (t) + mw (r )l(r ) g sin αg dr

0

R

∫  ,  (A3)�

vertical direction (Fi,v) depends on the wing’s acceleration around

the longitudinal axis and is thus:

Added mass force (Facc) is an acceleration reaction normal to the

wing surface and may be expressed by the equation:

where v is the blade velocity at 0.75c and normal to wing chord,

and  is the added mass coefficient. Added mass reaction force of

the fluid is already added to lift L and drag D estimates [eqns 6 and

7 in Walker (Walker, 2002); Fig.5A,E]. Instantaneous aerodynamic

force acting normal to the wing surface (Fa,n) equals the product

between the vector sum of lift and drag and the wings’ angular

orientation (g), given by:

Fa,n(t)  L(t)cosg + D(t)sing. (A6)

Similar to the derivations above, we determined inertial forces acting

normal to the wing surface (Fi,n) from the horizontal (Fi,h) and

vertical (Fi,v) inertial components as:

Fi,n(t)  Fi,v(t)cosg + Fi,h(t)sing. (A7)

The Magnus effect acts in the same direction of lift, thus the normal

component of Magnus force (Fm,n) with respect to the wing is:

Fm,n(t)  Fm(t)cosg. (A8)

In Eqns A6–A8, positive forces orientated normally to the wing

surface pull on the dorsal wing surface and negative forces pull on

the ventral surface.

Employing cantilever beam theory, we converted the measured

spring constants of the fly wing into combined flexural stiffness

using:

where k is the spring constant and EI is the mean flexural stiffness

from the wing root to the measured point. Local flexural wing

stiffness was derived by a method in which we considered the

deflection of a blade at r as the difference between the local wing

deflection and deflection caused by wing blades between r and the

wing root. The deflection of a wing blade (; cantilever beam) when

loaded at its end is given by:

where Fn is the force acting at the end of the wing blade. By contrast,

the deflection of the blade end while loading a beam with length

r>dr at r� is given by the following expression:

where EI(r�) is the flexural stiffness at position r–dr. By comparing

the measured deflection at r using Eqn A10 with the deflection

obtained from Eqn A11 at similar load, we obtain the blade

deflection that is caused by the local flexural stiffness. Thus, we

eventually derived the local EI from this deflection difference and

using Eqn A10. We further used Eqn A11 to calculate wing tip

deflection shown in Fig. 7. This measure is unequal to the sum of

all local deflections because wing bending near the root causes larger

wing tip deflection than bending near the wing tip because of the

longer moment arm.

δ(r ) = 1

6 Fnd2r(3r − dr )EI−1(r�) ,  (A11)

Facc (t) =
1

4
ρπ c(r )2 (r )β(r ) dr

0

R

∫  , (A5)�

EI (0 → r ) = 1

3 kr3  , (A9)

δ(r ) = 1

3 Fn (r )r3EI−1(r ) ,  (A10)

Fi,v (t) = mw (r )l(r ) g cosαg dr

0

R

∫  .  (A4)�
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Local bending moment depends on the vector sum of aerodynamic

force, added mass reaction force and inertial force normal to the

wing surface multiplied by its moment arm. We ignored Magnus

force because of previous suggestions (Walker, 2002). Thus local

bending moment (M) is zero at the wing tip and maximum at the

wing root, and equals the integral of all forces from distance r to

the wing tip multiplied by their corresponding moment arms:

Total inertial power for wing motion (Pacc) was derived from the

product between horizontal inertial force due to wing translation

and rotation and the translational velocity of the blade, given by:

In contrast to Ellington’s estimate of mean profile power

requirements and instead of employing a drag coefficient based on

Reynolds number, we estimated total aerodynamic costs (power,

Paero) from translational, blade-wise wing velocity and our

calculations of instantaneous horizontal drag (Eqn A3):

LIST OF SYMBOLS
c wing chord

c mean wing chord

D drag parallel with local stream

E wing loading energy

EI flexural stiffness

EPE elastic potential energy

Fa total aerodynamic force

Facc added mass reaction force

Fa,h horizontal component of total aerodynamic force

Fa,n aerodynamic force normal to wing chord

Fa,v vertical component of total aerodynamic force

Fi total inertia

Fi,h inertia in the horizontal due to wing translation and rotation

F*i,h inertia in the horizontal due to wing translation

F**i,h inertia in the horizontal due to wing rotation

Fi,n total inertia normal to wing chord

Fi,v inertia in the vertical due to wing rotation

Fm Magnus force

Fm,n Magnus force normal to wing chord

Fn total force normal to wing chord (vector sum of Fa,n, Fm,n and

Fi,n)

h wing thickness

k combined wing spring constant from root to r

l distance of mw from rotational axis

L lift normal with local stream

mw wing mass of blade element

M local wing bending moment

n number of wing blade starting at wing root

Pacc total inertial power for wing flapping

Paero total aerodynamic power for wing flapping

r distance from wing root

r� blade position

R wing length

SED strain energy density

t time

v normal velocity of wing element computational

w width of wing blade

 geometrical angle of attack with respect to vertical

g geometrical angle of attack with respect to horizontal

M (r ) = Fn (r � )(r � − r )

r �=r

R

∫ dr �   .  (A12)

Pacc (t ) = Fi,h (r )  r dr

0

R

∫  .   (A13)�

Paero (t ) = Fa,h (r )  r dr

0

R

∫  . (A14)�

�g angular velocity of wing rotation

�g angular acceleration of wing rotation

 added mass coefficient

 wing deflection

 air density

 elasticity

 wing stroke angle

� angular velocity of wing translation

� angular acceleration
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