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summmy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The linearized equations of motion and linearized boundary and continuity 
conditions governing small elastic-gravitational disturbances away from 
equilibrium of an arbitrary, uniformly rotating, self-gravitating, perfectly 
elastic Earth model with an arbitrary initial static stress field are derived. 
The appropriate form of Rayleigh’s variational principle and of the Betti 
reciprocal theorem and the Volterra dislocation relation for such a 
configuration are given. The latter is then used to derive an explicit 
expression for the equivalent body forces to be applied in the absence of a 
seismic dislocation in order to produce a dynamical response of the Earth 
model equivalent to that produced by the dislocation. It is found that if 
the initial static stress in the vicinity of the dislocation is purely hydrostatic, 
then a point tangential displacement dislocation has as an exactly equivalent 
body force the familiar double couple of moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, A, As,. If however 
the hypocentral static stress field has a deviatoric part, then additional 
equivalent body forces must be used properly to model a seismic dis- 
location. The necessary additional equivalent forces are explicitly 
exhibited; theoretically their existence provides a method of estimating 
hypocentral stresses, but the application of any such method is probably 
premature. 

1. Introduction 

Burridge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Knopoff (1964) have derived an explicit expression which gives the 
equivalent body force which must be applied to an elastic medium in the absence of 
a seismic fault dislocation in order to produce a radiated displacement field equivalent 
to that produced by the dislocation. One of their results which has since found a 
great deal of application is the fact that in an isotropic elastic medium, a point 
tangential displacement dislocation of an amount As, over a fault area A, has as an 
exactly equivalent body force a double couple with each couple having a net moment 
p, A, As,, where p, is the rigidity at the source. Burridge & Knopoff (1964) treated 
the case of seismic dislocations in an arbitrary, inhomogeneous, anisotropic, perfectly 
elastic medium, but they did not consider the possibility of an initial static stress 
field existing in the medium. This paper represents for the most part a straight- 
forward extension of their results for the case of a seismic dislocation in an arbitrary, 
uniformly rotating, self-gravitating, perfectly elastic configuration in which there 
exists an initial static stress field at all points. 

t Received in original form 1971 November 29. 
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The linearized equations of motion and the continuity and boundary conditions 
governing an elastic deformation in the presence of an initial static stress have been 
derived and discussed extensively by Biot (1965). An independent and alternative 
derivation of these equations for the case of a self-gravitating configuration is given 
here. The derivation, following Backus (1967), proceeds by a linearization of the 
familiar Eulerian equations expressing the conservation of mass and momentum. 
The linearized partial differential equations thus obtained must be satisfied at all 
interior points of the initial undeformed or reference configuration; the final form is 
completely equivalent to the equations given by Biot (1965). The exact boundary 
and continuity conditions expressed on the deformed boundary of the disturbed 
configuration may also be linearized and expressed as boundary and continuity 
conditions on the corresponding undeformed boundary of the reference configuration. 
It is found that in the presence of an initial static stress, the linearization of the 
normal stress boundary condition leads not to the condition that the normal elastic 
stress be continuous across the undeformed boundary, but rather to the condition 
that the normal components of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnon-symmetric tensor, here called the incremental 
pseudo-stress tensor, be continuous on the undeformed boundary. The linearized 
continuity conditions used here are the same as those derived by Biot (1965). 

The linearized equations of motion and continuity and boundary conditions in the 
reference configuration are then used to derive the extension to the case of an elastic 
configuration with an initial static stress field of several familiar elastodynamic results. 
In particular, Rayleigh's variational principle is given following Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gilbert 
(1967), and is then used to derive the appropriate form of the Betti reciprocal theorem 
which in turn is used to confirm the validity of the Helmholtz reciprocity theorem. 
The Betti reciprocal theorem is then applied to the case of an elastic configuration 
into which there is introduced a fault surface xo across which there is a tangential 
displacement discontinuity. Because of the relative motion of the material on one 
side of the fault surface with respect to the material on the other side, the linearized 
normal stress continuity condition across the fault surface differs from that appropriate 
to a welded boundary. The proper fault surface continuity conditions are utilized 
together with the Betti reciprocal theorem to derive the appropriate extension of the 
fundamental equation of elastodynamic dislocation theory, the Volterra dislocation 
relation. The Volterra dislocation relation is then used to obtain the equivalent body 
forces which should be applied to the elastic configuration in the absence of a seismic 
displacement dislocation in order to produce a dynamical elastic-gravitational dis- 
placement field equivalent to that produced by the dislocation. 

It is shown that in the case of a tangential displacement dislocation fault in an 
isotropic, self-gravitating, elastic Earth model with a purely hydrostatic initial stress, 
the modified version of the Volterra dislocation relation derived here reduces exactly 
to the simpler version valid in the case of zero initial stress. Thus a point tangential 
displacement dislocation with slip-area A. Aso remains dynamically equivalent to a 
double couple equivalent force with moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo A .  Aso so long as the initial static 
stress in the source region is purely hydrostatic. If on the other hand there is a non- 
vanishing deviatoric initial stress in the source region, then additional equivalent 
forces are required to model a point tangential displacement dislocation. These 
additional equivalent forces are explicitly exhibited for an arbitrary deviatoric initial 
stress. Theoretically, the existence of these additional equivalent forces depending on 
the components of the deviatoric initial stress in the source region could allow one to 
determine the magnitude and orientation of the shear stresses at the source of an 
earthquake solely from a consideration of the geometry of the observed radiation 
pattern. 

This paper also represents a correction to work which has been previously pub- 
lished by the author. Dahlen (1968) considered Rayleigh's variational principle for 
a self-gravitating elastic configuration with an initial anisotropic stress field, but 
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Elastic dislocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA359 

since the wrong linearized boundary conditions were employed, some of the expressions 
contained in that paper are faulty. Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1971) attempted to derive the Betti 
reciprocal theorem and the Volterra dislocation relation for a similar situation, but 
once again employed the wrong linearized boundary conditions and that derivation 
is invalid. The errors contained in these two previous papers are corrected in this one. 
Fortunately, none of the final results of either of these two previous papers is affected 
by the modifications noted here. 

2. Equations of motion 

Consider an initial model of the Earth consisting of a self-gravitating, solid, 
elastic continuum occupying a volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV with surface dK Assume that this Earth 
model is initially in a steady-state configuration with a steady angular velocity of 
rotation In about its centre of mass and with a static, in general non-isotropic, 
initial stress field To(r). Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo(r) denote the density and +o(r) denote the gravita- 
tional potential of the body occupying the volume K The equilibrium condition for 
this initial steady-state configuration is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

POV(+O+$) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= V-To (1) 

V2+o = 4~ Gpo. (2) 

(3) 

together with Poisson’s equation 

Here $(r) is the rotational potential due to the centripetal acceleration 

$(r) = -+[n2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2 - (In T)’] 

and G is Newton’s universal constant of gravitation. If one defines an initial hydro- 
static pressure field po(r) and an initial static stress deviator zo(r) by the relations 

po  = -3  trTo 

to = To +PO I (4) 

where I is the second order identity tensor, then equation (1) takes the form 

V P O  + P O  W O  + $1 = v ‘To. ( 5 )  

Now if, beginning at time t = 0, this body is slightly disturbed by a time-dependent 
external body force per unit volume f (r, t), a time-dependent particle displacement 
field s(r , t )  will be set up; this displacement field will change both the volume V ( t )  
and the surface W ( t )  of the body and will be accompanied by perturbations po(r, t )  
in the density, &(r, t) in the gravitational potential, and TE(r, t )  in the stress tensor 
at a fixed location in space. The exact equations governing the motion about the 
equilibrium configuration are 

where D/Dt  is the substantial or Lagrangian time derivative. Neglecting terms of 
second order in the displacement s and subtracting (1) from (6), one obtains 

PO d t 2  s + 2 ~ 0  In x 8, s = V .T,-po V41 -pi V(+o +$) + f. (7) 

It is useful to be able to identify individual material particles in the body V ;  the 
usual Lagrangian convention is to label a material particle r by its location r at time 
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t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. Now To(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  + TE(r, t) is the value of the stress tensor at a fixed location r in 
space. To first order in 8, the value of the stress tensor at the fixed material particle 
denoted by r is given by 

or neglecting the second-order term s *WE, 

To+T = (I+s.V)(To+T,) (8) 

T = TE+s.VT0, (9) 

In the next section it will be shown how the incremental stress T(r, t) at the material 
particle r may be related to the displacement s(r,t) of that particle and of those 
surrounding it. It is therefore convenient to rewrite the linearized equations of 
motion in the form 

(10) PO 8; s + 2 ~ 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn x 8, s = - P O  V41 - p i  V(40 +$)+V .T-V *(s *WO)+f. 

The continuity equation and Poisson's equation may also be linearized. 

The equations (10) may also be written in a form in which the static stress deviator 
to@) appears explicitly. 

Po atz s+ 2Po x 4 s = -Po v41 -P1 V(40 +$I 
- V[S ' P O  V(4o +$)I + V .T+ V[S *(V *to)]-V .(s 'Vto) + f. (12) 

The set of equations (11) combined with the equations of motion in either the 
form (10) or (12) must be satisfied at all interior points r of the undeformed or 
reference configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. All the time dependent first-order quantities s(r, t), 
41(r, t) ,  t) ,  f(r, t), T(r, t )  f(r, t), appearing in these equations may be considered 
to first order in s to be the value of that quantity at the point r in the reference 
configuration at time t. If these equations are to be solved they must be completed 
by the addition of a constitutive relation defining the Lagrangian incremental stress 
T(r, t) in terms of s(r, t )  and To(r). 

3. The linearized perfectly elastic constitutive relation 

Define the infinitesimal deformation tensor at the fixed material particle r to be 
Vs(r, t). If the material comprising the Earth is assumed to be perfectly elastic, then 
the stress T(r, t) at the material particle r depends only on the value of the infinitesimal 
deformation tensor Vs(r, t )  at r and on the entropy (or temperature) at r. Assume 
that the deformation under consideration occurs isentropically and furthermore that 
the relation between T(r, t )  and Vs(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  may be linearized. In that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcase the components 
of T(r, t )  relative to an arbitrary Cartesian axis system 11, 12, e3 in the uniformly 
rotating reference frame may be expressed in terms of the components of Vdr, t) in 
the following manner 

The coefficients rijkr(r) will be called the first set of linear isentropic elastic coefficients; 
it is clear from (13) that they are the Cartesian components of a fourth-order tensor. 
Since T(r, t) is symmetric, 

There are thus 21 independent components C&). 

= rijk18kSI* (13) 

ri jkl  = rj ikl  (14) 
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Elastic dislocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheory 36 1 

Now define the strain tensor a(r, t) and the infinitesimal rotation tensor o(r, t) 
and there are only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA54 independent components rijkI(r). 
at the material particle r by the usual relations 

The incremental stress T(r, t) at the material particle r consists of two parts; one 
part may be called the elastic stress E(r, t) and depends only on the strain a(r, t), the 
other part arises because the infinitesimal rotation o(r, t) acts to rotate the initial 
static stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo@. It may be shown that to first order in s, T(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 )  may be written in 
terms of a(r, t) and o(r, t) in the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ti, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E f j  + O f k  &/o - wkj  (16) 

where the elastic stress E(r, t) is by assumption linearly related to the strain a(r, t). 

The total stress at the material particle r is given by 

Ti: 4- Ti, = TI: 4- + aif - Tiko a k j .  (18) 

The final two terms on the right-hand side of equation (18) represent to first order 
in s the Cartesian components of the rotated static stress tensor at the material 
particle r. The coefficients B,&) in (17) will be called the second set of linear 
isentropic elastic coefficients; these are also the Cartesian components of a fourth- 
order tensor. Since a(r, t )  is symmetric, the satisfy the symmetry relations 

Bf jk l  = BjikI = Bf j Ik  (19) 

and there are only 36 independent components Bfju(r). The elastic coefficients 
rijk1(r) may be expressed in terms of the elastic coefficients Bijk1(r) from (13), (16) 
and (17) by the relation 

ri jk1 = B I j k I + ~ ( T f ? 6 j I +  Tj?6 i I -TI :6 jk -q : s Ik )  (20) 

where 6, are the Cartesian components of the second-order identity tensor I. 
A consideration of the second law of thermodynamics for a perfectly elastic 

medium allows one to deduce a further relation among the elastic coefficients 
BffiI(@, namely 

BIjkI-BkIi j  = TkrO6,j- Tf:6kI* (21) 

It is thus convenient to define a third set of linear isentropic elastic coefficients 
cijkl(r) by the relation 

Bljk1  = cfjkl+*(G? TI: ski). (22) 

The coefficients cijkI(r) are also the Cartesian components of a fourth-order tensor; 
furthermore 

c f j k l  = cjfkl  = Cf j Ik  = ckIf l .  (23) 
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362 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW e n  

The relation (16) between T(r, t) and a(r, t) and o(r, t) may finally be written in 
the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Tij  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C i j k l  Ok1+!dTklo akl>sl j -$Ti;  O k k + O i k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATk:- Tiko O k j .  (24) 

In the case of a purely hydrostatic initial stress T,(r) = -po(r)I, (24) reduces to 

Tij  = E i j  = ci jkl  O k l  (25) 

which is the familiar linearized isentropic stress-strain relation involving 21 independent 
elastic coefficients. Hence (24) may be rewritten in terms only of the deviatoric part 
T o @ )  of the initial static stress 

Equation (24) or (26) is the most general form of the linearized perfectly elastic 
constitutive relation which must be used in order to complete the equations of 
motion (11) and (10) or (12). 

In general the elastic properties of an arbitrary perfectly elastic material will have 
to be described in terms of the 21 independent linear isentropic elastic coefficients 
cijk.(r). It is customary in almost all applications to treat the material comprising the 
Earth as an isotropic elastic medium. In that case the elastic coefficients c i j k l ( r )  

may be expressed in terms of only two parameters, the isentropic bulk modulus K(r) 
and the isentropic rigidity ,u(r). 

C i j k l  = ( K - - 3 P )  6 i j 6 k i  + p ( s i k 6 j i + 6 i l  (27) 

The equations (l l), (10) and (24) or alternatively (ll), (12) and (26) must be 
satisfied at all interior points r of the undeformed reference configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,  subject 
to certain boundary or continuity conditions on the undeformed boundary aV. The 
next section will consider the linearization of the exact elastic-gravitational boundary 
and continuity conditions on the deformed boundary W ( t )  in order to yield the 
appropriate conditions on the undeformed boundary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Boundary conditions 

Denote the unit outward normal to the initial undeformed surface dV at the 
position of the material particle r by 5(r), and denote the corresponding unit outward 
normal to the deformed surface W ( t )  by A(r, t). The elastic-gravitational motion 
s(r, t), &(r, t) of the body V must satisfy the following exact continuity conditions on 
the deformed boundary W ( t )  at all times. First of all, the three quantities s(r,t), 
&(r, t), and 5(r, t) .V&(r, t) must be continuous at all points r across the deformed 
boundary aV(t) .  There is also a continuity condition on the surface stress or traction 
which must be given special attention in the case of an elastic configuration with an 
initial static stress field To@). 

Consider an arbitrary small simply connected surface element d A  centred on an 
arbitrary material particle r located on the undeformed surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaV at time t = 0. At 
time t the material particles comprising this surface element, now denoted by dA(t),  
will have moved to a new location in space and the unit outward normal to the 
surface element will have changed from A(r) at time t = 0 to A(r, t) at time t (see 
Fig. 1). The net force FdA(t) exerted on this surface element dA(t)  by the total stress 
field T,(r)+T(r, t) may be written in the form of a surface integral over the surface 
element d A  (t ) . 
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Elastic dislocation theory 363 

FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Schematic diagram of the motion s(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  of an infinitesimal surface element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dA(t). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The exact boundary condition on the surface stress or traction may be expressed by 
the requirement that this net force surface integral p d A ( t )  must be continuous across 
W(r) when taken over any arbitary surface element dA(t). 

It is desirable to reduce these exact continuity conditions to corresponding con- 
tinuity conditions across the undeformed boundary av; this is done by linearization. 
To first order in s, both s(r, t) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(r, t )  must be continuous across the undeformed 
boundary dK The linearization of the continuity condition on B -V+, gives rise to the 
condition that B(r) .V4,(r, t) +4nGp,(r) h(r) -s(r, t) must be continuous across the 
undeformed boundary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa V. 

Now consider the linearization of the right-hand side of (28). To first order in s, 
it may be shown that h(r, t) dA( t )  on the deformed surface W ( t )  may be related to 
h(r) d A  on the corresponding undeformed surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaV by the relation 

The dilatation term in (29) arises from the stretching of the surface element dA(t)  and 
the other term arises from the deflection of the normal B(r, t ) .  Using (29) and using 
the linearized form (24) for T(r, t), one can transform the surface integral (28) over 
the patch dA(t)  into a surface integral over the corresponding undeformed patch dA.  
Carrying out this transformation, the net force acting on a deformed surface element 
dA( t )  may be written, to first order in s 

where 

T i j = C l j k l  a k I + a i &  Tkjo- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx? wkj+$flkk qt+!!Tk? ak16i j -  s f .  (31) 

Equation (30) expresses the net force on an arbitrary deformed surface element 
dA( t )  in terms of a surface integral taken over the corresponding undeformed surface 
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364 F. A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW e n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdA. Since d A  is an arbitrary element on the undeformed surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaV, 
and since h(r) .T,(r) is already continuous, the linearized surface traction continuity 
condition is equivalent to the point-wise condition that h(r) *T(r, t )  be continuous at 
all points r of dV.  

It is clear from the derivation that the surface under consideration need not 
necessarily be the external boundary surface av, and that in fact all of the linearized 
continuity conditions must be satisfied at all undeformed welded material surfaces 
within the body zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. In summary the linearized continuity conditions which must be 
applied at all points r of the undeformed boundary surface aV (or of any internal 
material discontinuity surface) are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s (r, t )  continuous 

6(r) -T(r, t )  continuous 
(note: since the external surface av is a free surface, 

h(r) .T(r, t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= o on av.) 
cfJ1 (r, t )  continuous 

h(r) -VcfJl(r, t 1 +4nGp,(r) h(r) as@, t )  continuous. 

The tensor T(r, t), whose Cartesian components are given in equation (31), will 
be called the incremental pseudo-stress tensor; it is in fact the incremental part of the 
Piola-Kirchoff stress tensor which is discussed in most modem texts on continuum 
mechanics (e.g. Eringen 1967; Malvern 1969). Equation (31) may also be written in 
the more convenient form 

rj = h j k l  sI (33) 
where 

= cfjkl  6kl + q? + Tiko 6 j l -  q k o  6 f l  - q: sjk + q: 6ik)* (34) 

The coefficients A i j k r ( r )  are the components of a fourth-order tensor defined at all 
points r of the undeformed reference configuration; from (34) it can be shown that 
these components satisfy the symmetry relation 

h j k l  = Aklf j .  (35) 
There are in general 27 independent coefficients A i j k i ( r ) ,  corresponding to 21 

independent c f j k l ( r )  and six independent Ti:@). Note that the incremental pseudo- 
stress tensor is not symmetric, in fact 

For the special case of a hydrostatic initial stress To(r) = -po(r) I, the incremental 
pseudo-stress tensor takes the form 

Tf j  = cfjkI aki-PO(ak s k d f j - a j  sI). (37) 
Likewise in this special case, equation (34) defining the coefficients At&) reduces to 

Since po(r) is necessarily continuous across any material surface in the body V ,  the 
condition that h(r)*T(r, t )  be continuous across any welded boundary reduces in the 
case of a purely hydrostatic initial stress to the familiar condition that h(r) .E(r, t )  be 
continuous. Note however that if one wishes to com Ute the force exerted on an 

and (37). 

I\ijkI = ci jkkl-PO(Gij6kI-8iI  6jk)* 

arbitrary surface element by the stress field -po(r) I+ .F (r, t) then one must use (30) 
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Elastic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdislocation theory 365 

5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlternative form of equations of motion 

It is convenient to recast the linearized equations of motion, equations (lo), in a 
form in which the incremental pseudo-stress tensor T(r, t) appears explicitly. This is 
accomplished by merely regrouping certain terms in (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0); the resulting equivalent 
equations are in fact simpler than (10); namely zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p o  a,2s+2p0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, s = - P o  v41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-po s .V[V(4,+I1/)]+V .T+f. (38) 

The equations (38) are the form of the equations of motion obtained by Biot (1965) 
by applying Newton’s second law of motion to an arbitrary material element and 
then transforming the resulting surface and volume integrals to equivalent integrals 
over the undeformed configuration of this material element by linearization. 

Under the assumptions that the Earth model V is initially in a steady-state 
equilibrium configuration and that the material comprising the Earth model V is a 
perfectly elastic continuum, any small isentropic elastic-gravitational disturbance 
s(r, t), 41(r, t) away from equilibrium must satisfy the linearized equations of motion 
(38) and (1 1) together with the linearized perfectly elastic constitutive relation (33) 
at all interior points r of the undeformed reference configuration. 

6. Rayleigh’s variational principle 

It is possible to obtain a variational principle from which the equations (38), (11) 
and (33) together with the corresponding continuity or boundary conditions (32) 
may be derived. Biot (1965) shows how this variational principle may be deduced 
from general strain energy considerations, but in order to do so he is forced to consider 
second order quantities in the definition of the elastic strain. The approach taken 
here is to derive a slightly different variational principle directly from the linearized 
equations of motion; in this way any consideration of second-order quantities may 
be avoided. The resulting variational principle applies only to the force-free situation 
( f (r, t) = 0), and is in fact Rayleigh’s principle governing the small oscillations of an 
arbitrary mechanical system. 

Define the Fourier transforms of the various !%st order quantities s(r, t ) ,  41(r, t )  
p 1  (r, t), T(r, t), T(r, t), and f (r, t) in the usual manner, e.g. 

exp (- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiot) s(r, t ) .  

- m  

(39) 

Now for a fixed value of the frequency o, let Y be the vector space consisting of all 
twice-continuously differentiable vector fields s(r, a) defined throughout the un- 
deformed earth model volume V. For any two members s(r,o) and s’(r,w) of 9 
define an inner product on Y as 

(s‘, s) = dV [Po@) s‘(r, o) -s*(r, w)] 
V 

where * denotes the complex conjugate, 
Now consider the Fourier-transformed versions of the linearized equations of 

motion (38) and (11) and of the linearized continuity conditions (32). Since there 
will be little danger of confusion, the symbols s, r$l, p i ,  T, T, and f will be used to 
denote both s(r, o), &(r, o), pl(r, a), T(r, w), T(r, a), and f (r, o) as well as s(r, t )  
$l(r,t), pl(r, t ) ,  T(r, t ) ,  T(r, t ) ,  and f (r, r). For brevity, the system of Fourier 
transformed equations (38) and (11) will be written henceforth in the convenient 
operator notation 

Hs = p o  oz s-2po i o n  x s+f. (41) 

4 
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366 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. W e n  

The linear integro-differential operator H is defined by 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo) and F(r, w) are given in terms of s(r, o) by the Fourier-transformed 
versions of equations (1 1) and (33). If the externally applied body force f (r, w) is 
set equal to zero, then equation (41) represents an eigenvalue equation in the inner 
product space Y for the linear operator H. The normal mode eigenfrequencies and 
eigenfunctions of the Earth model V may be determined by obtaining solutions to 
this eigenvalue problem. 

Now take the inner product of the equation (41) with another arbitrary member 
s'(r, o) of the inner product space 9; the result may be written 

( s ' , p o - l ~ s )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 ( ~ ' , s ) - 2 ~ ( ~ ' , i ~ x s ) + ( s ' , p o - 1  I). (43) 

Now since any linear operator L defined on an inner product space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 may be 
associated with a unique bilinear functional U(s',s) on 9 by the relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 ( s ' ,  s) = (s', Ls), equation (43) may be thought of (in the case f (r, o) = 0) as an 
algebraic relation between bilinear functionals U(s',s) defined on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. In order to 
indicate that the inner product terms on (43) are in fact bilinear functionals on 9, 
the following notation will be used 

Y(s', s) = (s', s) 

W(s', s) = (s', in x s) 

%(s', s) = (s', Po - Hs) 

Consider now the evaluation of the volume integral defining the bilinear functional 
#(s', s). 

~ ( s ' ,  s) = J d ~ [ - s ;  a, qi* +Po si) ai41* +Po SII sj* aiaj(40 +$)I. (45) 
V 

An application of Gauss's theorem yields 

#(s', s) = J d V [ d  j s i ' T j l *+Pos i 'a i41*  

V 

+Po si sj* ai a j ( 4 0  +$)I- J d~ nj[si' C~*I* (46) 
BV 

Now assuming that V 2 4 1  = 0 in E-V (where E is all of space), an application of 
Green's first identity gives the identity 
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Elastic dislocatioo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtheary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA367 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where for any vector function g, the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[g] denotes the jump discontinuity 
in g in going from inside zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV to outside zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. Adding (47) to (46) one obtains the most 
convenient final form for the bilinear functional &‘(s’, s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X ( S ’ , S )  = B(s‘ ,s)+Y(s‘ ,s)+@(s‘ ,s)-W,(s’ ,s)  

where 

and where 

gI(s’, s) = d A  n, (si) 7jt* - [dl‘(&+h*+P0 s,*)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1. 
OV 

In terms of the bilinear functionals d(s’, s), S(s‘, s), @(s’, s), and Wl(s’, s) defined by 
equations (44), (49), and (50), equation (43) may now be rewritten 

Now consider the special case of equation (51) where the applied body force 
f (r, o) is taken to be zero and where s’(r, o) is taken to be the same as s(r, 0); in this 
case equation (51) reduces to 

o2 9 ( s ,  s) - 2oW(s, s) - B(s, s) - q s ,  s) - @(s, s) + W1(s, s) = 0. (52) 

Now if s(r, o) in equation (52) is a normal mode eigenfunction of the Earth model V 
associated with the eigenvalue o, then s(r, o) satisfies the free surface natural boundary 
conditions (32) on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, and hence Wl(s, s) = 0. Thus if s(r, o) is a normal mode eigen- 
function, then one can write 

o2 Y(s, s) - 2WW(S, s) - d(s, s) - Y(s, s) - @(s, s) = 0. (53) 

Equation (53) is Rayleigh’s variational principle for the rotating, elastic-gravitational 
equilibrium configuration V. The term 0 2 9 - ( s , s )  is twice the kinetic energy of a 
disturbance s(r, w )  = s(r) exp (iot), while the terms B(s, s) + Y(s, s) + @(s, s) taken 
together are twice the elastic-gravitational potential energy of the same disturbance. 
The physical significance of each of these potential energy terms is clear from 
equations (49): the term B(s, s) is twice the incremental elastic strain energy, the term 
Y(s,s) is twice the gravitational potential energy due to self-gravitation, and the 
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368 F. A. Dahlen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(s, s) is twice the incremental work done against the initial body force potential 
$o(r)+Jl(r). The Coriolis term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW(s, s) appears in (53) because of the uniform 
rotation R of the Earth model V. 

The variational principle which is contained in equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(53) states that if s(r, w )  
is a normal mode eigenfunction associated with frequency w, then the bilinear 
functional of s on the left-hand side of (51) is stationary with respect to an arbitrary 
small variation 6s(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). The proof of this variational principle is immediate since 
all of the bilinear functionals which appear in equation (53) are Hermitian symmetric, 

i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 
I 

9-(s ’ ,  s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 9- * (s ,  s‘) 

W(S’, s) = W*(s, s’) 

B(s’, s) = b*(s, s’) 

q s ’ ,  s) = a*(s, s’) 

@(s’, s) = @*(s, s‘). 

(54) 

The functionals S(s,‘ s), 3(s’, s), and @(s‘, s) are Hermitian symmetric by inspection 
and it is a simple matter to show that W(s’, s) is Hermitian symmetric as well. The 
incremental elastic strain energy bilinear functional b(s’, s) is Hermitian symmetric 
by virtue of the symmetry relation (35). If one takes the first variation of equation (53) 
with respect to s, one obtains immediately the elastic-gravitational normal mode 
eigenvalue equation 

Hs = po o2 s - 2p0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwin x s. (55)  

7. Normal mode perturbation theory 

Dahlen (1968) has given a similar derivation of Rayleigh’s variational principle 
governing the small elastic-gravitational oscillations of a perfectly elastic, uniformly 
rotating Earth model with an initial static stress field To@. Unfortunately that 
treatment contained an error in the specification of the continuity condition on the 
incremental surface traction, and thus the derivation of Rayleigh’s principle given 
there is invalid. The correct treatment has been given above and the correct form of 
Rayleigh’s principle is equation (53) where the various bilinear functions are defined 
by equations (49). 

Dahlen (1968) proceeded to utilize Rayleigh’s principle in order to compute the 
small changes in the eigenfrequencies o and normal mode eigenfunctions s(r, w) of 
an Earth model V as a result of specified small changes in the parameters describing 
the Earth model. The correct form of Rayleigh’s principle should be used to do this 
rather than the incorrect version given in the previous paper. For this purpose, 
Rayleigh‘s principle as given in equations (53) and (49) is not a particularly convenient 
one; it is necessary to first rearrange the various terms slightly. Some applications of 
Gauss’s theorem are all that is needed to show that the sum of potential energy 
bilinear forms b(s‘, s) + Y(s’, s) + @(s’, s) may be rewritten 

b ( s ’ , s ) + 3 ( s ’ , s ) + @ ( s ’ , s )  = . r ( s ’ , s ) + Y ~ s ’ , s ) + ~ ( s ‘ , s ) + ~ o ( ~ ’ ,  9) 
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Elastic dislocation theory 369 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s',s) = r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ + p o a , + ( s ; a i s , " + s i * a i S ~ - S , I d , s , * - . ~ j * d , s i ' )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V 

i +PO s i 's j *a id j+ l  

g(s ' ,  s) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdv[+tl:(s,'djd, si*+s&* 8,dk Si)-Si) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdjd& s&* 
V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I - 5 i *  d j  d& s&' + ai sk' d j  sk* - a& s i r  d& S j * ) ]  

Wo(S', s) = d A  nj[+Tij0((si' d k  S&* +s i *  i?k s,'-Sk' d& S l *  -S&*  d k  Si')]. s 
Equation (51) may thus be rewritten as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o2 9-(s',s)-220W(s', s ) - Y ( s ' ,  5)-Y(s',s)-B(s',s) 

-Wo(S ' ,S)+W1(S ' ,  s)+(s', po- ' f )  = 0 (58) 
and Rayleigh's principle equation (53) may be rewritten as 

o2 ~ ( s , s ) - 2 ~ ~ ( s 7 s ) - Y ( s , s ) - Y ( s , s ) - B ( s , s )  = 0. (59) 
The various terms in this rearranged version of Rayleigh's principle have now been 
grouped in a manner which is convenient for normal mode perturbation theory. 
Note that the bilinear functional Y(s', s) contains all terms linear in the centrifugal 
potential t,h(r), while the bilinear functional B(s', s) contains all terms linear in the 
deviatoric initial stress To@). If aV is a free surface then A.To(r) = 0 on aV and 

The correction to the normal mode perturbation theory is now straightforward. 
The final result is that equation (17) in Dahlen (1968) defining the first-order pertur- 
bation matrix elements Ri j  should be replaced by 

a , ( s ' , S )  = 0. 

R ,  = 6 V ( S i ,  s,) - oz s q , ,  s,) + 2onK(s,, Sj)  + Y(Si, Sj)  +B(s,, s,) (60) 

where W ( s ' , s )  is defined in equation (a), Y ( s ' , s )  and B(s',s) are defined in 
equations (57), and S V ( s ' ,  s) and W ( s ' ,  s) are given by 

6Y(s', s) = 1 nv [6p, si) S i * ]  

i 
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370 F. A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADahlea zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Note that all of the bilinear functionals ST@’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6Y(s ’ ,  s), W(s’, s), Y(s’, s), and 
9 ( s ’ , s )  as now defined are by inspection Hermitian symmetric separately. The 
incorrect expressions for the matrix elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ,  given in Dahlen (1968) are correct 
for the special case of a hydrostatic initial stress To@) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -po(r)I, and hence the 
treatment of the eigenfrequency perturbations due to the Earth’s rotation and ellip- 
ticity is unaffected by the correction pointed out here. 

8. The reciprocal and reciprocity relations 

Consider again in the Fourier-transform domain an elastic-gravitational response 
s(r,w), +l(r,w) of the Earth model V to an externally applied body force f ( r ,a) .  
The equations of motion relating s(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo) and &(r, o) to f (r, o) are equations (41) 
which are rewritten here 

H s  = poo2s-2poo inxs+f .  (41) 

Consider at the same time the response s’(r, o), 
to another external body force f ’(r, a). 

w) of the same Earth model V 

Hs’ = po a2 s' -2po coin x s’ +f  ’. (62) 

Now taking the inner product of s’(r, o) with equation (41) and the inner product of 
s(r, o) with equation (62), one obtains respectively 

o2 J ( s ’ ,  s) - 2aW(s’, s) - &(s’, s) - S(s‘, s) - @(s’, s) 

m2 Y(s, s’) -2WW(S, 5’) - &(s, 9’) - q s ,  s’) - @(s, s’) 

+ W ~ ( S ‘ ,  s)+(s’, p0-l f )  = 0 (63) 

a1 (s, s’) + (s, PO- ’  f ‘) = 0. (64) 

Now taking the complex conjugate of equation (64) and utilizing the fact that 
J(s ‘ ,  s), W(s’, s), &(s‘, s), S(s‘, s), and @(s‘, s) are all Hermitian symmetric bilinear 
forms, one obtains the result 

(s‘,p0-I f)+a,(s’,s) = (s,p,-1f’)*+W1(s,s’)*. (65) 

Equation (65) is the Betti reciprocal theorem (Love 1927) for a uniformly rotating, 
self-gravitating elastic configuration with an arbitrary initial static stress field To(r). 
Written out in full, equation (65) is 

The Betti reciprocal theorem, given here in the frequency domain, is a global relation 
between any two possible but different solutions to the dynamic elastiogravitational 
equations of motion (38). 

Consider now the special case where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdV is a free surface so that both W,(s’,s) 
and W,(s, s’) are equal to zero. Furthermore take the body force f (r, t )  to be a unit 
point force acting at time s and point x = (x1,x2,x3) in the 9, direction, and take 
f ’(r, r) to be a unit impulsive point force acting at time s’ and point x’ = (q’, x2’, x3‘) 
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Elastic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdislocation theory 37 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, direction; i.e. 

f (r,t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$d(r-x)s(t-s) 

f’(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  = 9,6(r-x‘)d(t-s’) 

where 6(r - x) denotes 6(rl - xl) b(r2 - xz) d(r3 - x3). Use the notation sp4(x, s; x‘, s’) 
to denote the 9p component of the elastic-gravitational displacement response at the 
point (x,s) due to an instantaneous point force acting in the P, direction at the 
point (x’,~’). Using the convolution theorem to transform to the time domain, 
equation (66) for this special case of the free response of the Earth model V to a unit 
impulsive point force takes the form 

spQ(x, s; X‘, s‘) = sqp(x’, -s‘; x, -s)*. (68) 

Equation (68) is a special case of Helmholtz’s reciprocity theorem in classical 
mechanics (Whittaker 1936), and the above argument merely confirms that it remains 
valid in the initially stressed, self-gravitating Earth under consideration. 

9. Introduction of a fault surface: continuity conditions 

Now assume that one wishes to determine the elastic-gravitational disturbance 
s(r, t), &(r, t) in I/ produced not by an externally applied body force but rather 
produced by a prescribed tangential displacement discontinuity across a fault surface 
Z, embedded in V;  The introduction of a prescribed tangential displacement dis- 
continuity into an otherwise perfectly elastic Earth model V is intended of course to 
serve as a kinematical model of the earthquake faulting process. When there is an 
initial static stress field To@) in the Earth model V, it is necessary to use some care in 
deriving the physically meaningful continuity conditions across the fault surface Z,. 

Consider then the introduction of a fault surface X, with boundary curve aZ, 
into the initially undeformed or reference configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. Points (in the reference 
configuration) located on this fault surface Zo will be denoted by r,; the unit normal 
to Xo at a point r, will be denoted by fio(r0) (the usual convention will be followed 
and fi, is taken to point out of the positive side of Z,). The fault surface Z, may or 
may not intersect the surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaV of the earth model (i.e. in set-theoretic language, 
aZ, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnaV may or may not be empty). Since Z, is a fault surface, the elastic- 
gravitational displacement s(ro, t) will be double-valued on X,. The jump discon- 
tinuity in displacement [s(ro, t ) ] :  will be taken to be an arbitrarily prescribed 
function on Z,, except that [s(r,, t ) ] :  must be zero on the boundary aZ, -aZo n dV.  
This paper will furthermore only consider tangentid displacement dislocations across 
Zo(fio(ro) -[s(ro, t)]’ = 0 for all points ro on Z,). 

The fault surface Z, is thus a surface embedded in V upon which the jump dis- 
continuity in tangential displacement [s(ro, t)] is taken to be a prescribed function. 
Consider now the other continuity conditions which must be imposed on the fault 
surface Z,. Since the displacement discontinuity is purely tangential, the continuity 
conditions involving the incremental gravitational potential &(r0, t) will be the same 
as those appropriate to a welded boundary, equations (32). However, because of the 
relative motion [s(ro, t)]’ of the material on one side of the fault surface Zo with 
respect to the material on the other side, the normal stress continuity condition across 
Z, differs from that appropriate to a welded boundary. Let dA,+ be an arbitrary 
patch centred on a point ro- on the positive side of Z,, and take dA,- (centred on 
ro-) to be such that at time t ,  dA,+(t)  = dA,-( t )  (see Fig. 2). Linearization of the 
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372 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. A. Dahlen 

FIG. 2. Schematic diagram of the motion s(ro+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  and s(ro-, t )  of surface elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dAo+ ( t )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdAo- ( t )  on either side of a fault surface Co ( t ) .  The patches dAo+ ( t )  
and dAo- ( t )  are chosen to coincide at time t, so that ro+ +s(ro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+, t )  = lo- +s(ro-, 1) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

exact continuity condition at time t leads to the condition 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ~ ~ o ~ o ~ ~ o + ~ ~ t ~ o ~ ~ o + ~ + ~ ~ ~ o + Y  01 

= f ~ ~ 0 ~ 0 ~ ~ 0 - ~ ~ ~ ~ 0 ~ ~ 0 - ~ + ~ ~ ~ 0 - ,  01. 

dAo + 

dAo-  

In order to obtain a continuity condition, it is iirst necessary to transform the surface 
integral over the patch dAo- to a surface integral over the arbitrary patch dAo+. 
The resulting continuity condition is most conveniently written as a relation giving 
the discontinuity in the normal pseudo-stress tensor [6,(ro) *T(ro, t)]' in terms of 
the prescribed displacement discontinuity [s(ro, t ) ]? .  This relation is 

[fio(ro) mro, t>l' = vzo *{[s(ro, 01: fio(r0) *To(ro)} 

vzo = v o  - fio(r0) [fio(ro) -Val. 

(70) 

(71) 

where Vzo is the surface gradient operator on the surface Zo, defined by 

The quantity on the right-hand side of equation (70) is the surface divergence of the 
second-order tangent tensor field [s(ro, t ) ] ?  fio(ro) .To(ro) defined on Zo. Written in 
terms of Cartesian components with respect to the uniformly rotating Cartesian axis 
system Bi, B2, B3, equation (70) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[n," qi] Z = [a,' -nko n," a:]{ isk] t nj T,;}. (72) 
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Elastic dislocation theory 373 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Note that because of the appearance of the surface gradient operator Vzo, the dis- 
continuity [6,(r,) .T(r,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ) ] ?  is completely determined in terms of the prescribed dis- 
placement dislocation [s(ro, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ) ] :  on c,. 

In  summary, the continuity conditions which must be applied across the fault 
surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZo are: 

[s(ro, t ) ]? prescribed (except that 6o(ro) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- [s(ro, t)]’ = 0 and 

[s(ro, t)]’ = 0 on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdc,-dZ, n 8 ~ )  

[$I@,, t)l’ = 0 

[ W O )  -VA(rO, t ) + 4 7 6 d r J  M O )  *s(ro, t)If = 0 

[fio(ro) *T(r0, t) lz = Vzo W r 0 ,  01: fio(ro) -To(ro>) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj (73) 

10. The Volterra dislocation relation 

The continuity conditions, equations (73), will be taken to be a complete kine- 
matical description of the earthquake faulting process in an otherwise perfectly 
elastic Earth model V. A representation theorem for this boundary value problem 
can be obtained through a specific application of the Betti reciprocal relation (66). 
First note that the derivation of equation (66) is virtually unchanged if the volume V 
and surface Wof  integration are not the actual volume V and surface aV of the 
Earth model. For this specific application consider a volume of integration V minus 
a small interior volume element V, with surface avo. Denote the unit inward normal 
of V, (the unit outward normal of V -  V,; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee Fig. 3) by 8,. The material properties 
of the elastic-gravitational continuum comprising V are assume to be continuous 
across zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAavo. For this volume of integration, equation (66) in the frequency domain is 
altered to 

The fact that Vz41 = 4nGp1 instead of zero inside of V, necessitates a slight alter- 
ation in the use of Green’s first identity in equation (47), and this gives rise to the 
lack of a [ 11 in the surface integrals over avo in (74). Now let the volume V, shrink 
to zero in such a way that the surface aV, collapses upon itself to become the fault 
surface Z,, with the unit normal 6, (see! Fig. 3). If at the same time the external 
surface i3V is assumed to be a free surface, equation (74) reduces to 
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374 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. A. Dnhlca zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 3. Schematic diagram of an imaginary interior volume element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVo in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV which 
is allowed to shrink to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzero in such a way that a Vo collapses on to the fault plane Zo. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Equation (75) is a relation between any two arbitrary combinations s(r, w), +l(r, w), 
f (r, w), and s’(r, w), 41’(r, w), f ‘(r, w) of Fourier-transformed variables in the Earth 
model V, provided both combinations satisfy the free surface boundary conditions 
(32) on the external surface dV.  

In order to derive the desired representation theorem, take the primed variables 
s’(r, t), &’(r, t), T’(r, t) to describe the response of the Earth model V to the faulting 
on Xoy and take the unprimed variables sp(r, t; x, s), q51p(r, t ;  x, s), Tp(r, t ;  x, s) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe 
the response at the point (r, t) to a unit impulsive point force f (r, t) acting in an un- 
faulted Earth model in the direction 9, and at the point (x, s). Since f (r, t )  is assumed 
to be acting in an unfaulted medium, the various discontinuities [s(ro, t ) ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 , [+1 (To, t ) ] : ,  
[do(ro) -V+l(roy t)+4nGpo(ro) 6o(ro) *s(ro, t ) ] : ,  and [do(ro) -‘&oy t ) ] :  are all zero 
across Z,; the continuity conditions across Xo satisfied by the primed variables are 
equations (73). Making these substitutions, and once again utilizing the convolution 
theorem to transform to the time domain, equation (75) for this special case takes 
the form 

- w  ro 

-:ip(ro, - t ;  x, -s>mn,o(ro) %;boy t ) l3.  (76) 

Equation (76) is a time domain representation theorem which allows one to determine 
the response s’(x, t) of the Earth model V in terms of a prescribed applied body force 
f ’(r, t) throughout the volume V, and in terms of prescribed discontinuities in the 
displacement [s’(ro, t , ]? and the normal pseudo-stress [6o(ro) -To’(roy t)] ’ across a 
fault plane Zo. 

The discontinuity [6o(ro) .To’(ro, t ) ] :  may be written, using (70) or (72), in terms 
of the prescribed discontinuity [s(ro, t)]’ ,and its contribution to the surface integral 
in equation (76) may be put in a more convenient form using the extension of Gauss’s 
theorem to curved surfaces (Spivak 1965). Let 6(ro) denote the unit vector tangent 
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Elastic dislocation theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, and normal to aZ, at ro and pointing out of Z,. Then 

JdA,{f,'(r,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- t ;  x, -s)lnj%o) qlYr0, t ) l 9  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TO 

375 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd L O { b k ( r O ) [ s L ( r O ,  t)]' n;(rO) q ? ( r O )  $i'(rO, - t ;  x, -s)> (77) 

azo 

Now [s'(ro, t ) ]?  = 0 on dZ,-aZ, n aV and h,(ro) -To@,) = 0 on ax so the line 
integral over axo vanishes, even if Z, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaV intersect. Substituting equation (77) 
into (76) one obtains the representation theorem in the final form. 

Define a new incremental stress tensor Gijp(ro, - t; x, -s) and a new fourth order 
isentropic elastic tensor &jk&) by 

GijP(rO,  - t ;  x, - s) = Z i j k l ( r O )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat s?(rO, - 2; x, - s) (78) 
where 

Z l j k l  = A j i k l  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq? 8 i k  

= Cijkl+'&(Ti:bkl+ T k ? b i j -  T i k 0 8 j l +  q k 0 8 i I -  Ti :b jk+ q l o b i k ) .  (79) 

The final form of the desired representation may then be written in the form 

- m  V 

- m  LO 

Equation (80) provides an explicit representation of the elastic-gravitational dis- 
placement response s'(x, t) of the Earth model V to an applied body force f '(r, t) and 
to a prescribed tangential displacement discontinuity [s'(ro, t ) ]? on a fault surface 
Z,. For the case where there is no applied body force f '(r, t ) ,  equation (80), reduces 
to 

In 

sc)(x, s) = dt 1 dAo n:(ro){Eijp(ro, - t ;  x, -s)[sl)(ro, t ) ] ? }  . (81) 
-m  4 

Equation (81) is the appropriate extension to the case under consideration here of the 
fundamental relation of elastic dislocation theory, commonly called the Volterra 
dislocation relation. 

For the special case where the initial static stress is purely hydrostatic, 
To@,) = -po(ro)I, everywhere on the fault surface Z,, the above relations can be 
reduced considerably. For that case Z i j k & )  reduces to c i j k & )  and thus 
Gijp(rO, - t ;  x, -s) reduces to the elastic stress EijP(ro, -t; x, -s); the Volterra 
relation thus takes the simpler form 

m 

s,,'(x, s) = dt 1 d A o n ~ ( r o ) { ~ i , p ( r o ,  - t ;  x, -s)[syl(ro, t ) ]? } .  (82) 
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376 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This is the form of the Volterra relation previously deduced (for this case only) by 
a faulty argument and subsequently utilized by Dahlen (1971) to study the excitation 
of the Chandler wobble by earthquakes. 

11. Body force equivalents 

The argument used by Burridge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Knopoff (1964) may be used to derive body 
force equivalents to the prescribed discontinuity [s'(r,, t)] across the fault surface 
X,. Note that for the case where X, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaV have no points in common, one may 
write ako$lp(ro, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ;  x, -s) in the form 

s (83) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAak zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 sI * P  (r,, - t ;  x, - 8 )  = - dV[ak6(r-ro):IP(r,, -t; X,S>J. 

V 

Substituting (78) and (83) into (80), one obtains the result 

dV[?!P(r, - t ;  x, -s)][h'(r, t)+el'(r, t)] (84) 
- m  v 

where 

t )  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 d A O  n:(rO){ak6(r-rO) Zijkl(rO)[s/(rO, t)121* (85) 

It is clear from equation (84) that the dynamic elastic-gravitational effect of the 
prescribed tangential displacement discontinuity [s'(r,, t ) ]  2 across the fault surface 
X, is exactly the same as the effect of the purely hypothetical introduction of an extra 
applied body force e'(r, t) given by equation (85) into an unfaulted medium. It can 
be shown that equation (85) giving the equivalent body forces is valid also for the 
case where the fault surface Zo intersects the external surface aV of the Earth model. 
The expression (85 )  for the equivalent body forces is similar to that given by Burridge 
& Knopoff (1964) for the case of zero initial stress; the only difference is that in this 
case the fourth order elastic tensor &jk,(ro) given in (79) appears instead of cljkl(r0). 

Note in particular that as in the case discussed by Burridge & Knopoff (1964), the 
body force equivalents depend only upon the kinematical prescription of the source 
and upon the elastic properties (including the initial stress To(',)) on the fault surface 
itself. The expression (85) for the equivalent body forces e'(r, t) reduces to the 
equivalent expression of Burridge & Knopoff (1964) not only for the case of zero 
initial stress, but also for the case where the initial stress is purely hydrostatic 
To(ro) = -po(ro) I, since in that case &jkl(rO) = Cijkl(r0). 

It is a simple matter to show that the equivalent body forces e'(r, t) defmed by 
equation (85) exert no net force or torque on the Earth model V. The total force 
acting on the entire Earth model V is obtained by integration over I/. 

ZO 

Now 

1 n~[a,6(r-r,>] = J dAnk6(r-r,) = o 
i av 

if Z, and aV have no points in common. Hence the total equivalent force acting on 
V is at all times zero; this result is also valid for the case where Z, and aV intersect. 
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Elastic dislocation theory 377 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA2, k,, is an arbitrary Cartesian axis system with origin 0, then the net 
moment about the point 0 of the equivalent body force distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe’(r, t) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~ , ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Jnv[rxe’(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ) l c ~ .  (87) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V 

Denoting the component of M , ( t )  about the axis 9,,, x 9, by Mm:(t), one has 

But for the case where Z, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdV do not intersect 

and from (79), this is zero. Hence the net torque exerted on V by the equivalent 
forces e’(r, t) is at all times zero; this result as well may also be demonstrated for the 
case where E, and dV intersect. 

12. An infinitesimal fault surface 

Consider the special case of an infinitesimal, non-propagating fault surface Z, 
whose total area A, is very small compared to the dimensions of any inhomogeneities 
in the Earth model V. Such a model is likely to be a sufficiently good approximation 
for many applications, e.g. studies of the excitation of the normal modes ofthe Earth 
model V (Gilbert 1971) or of the teleseismic radiation field. For this case the 
expression (85) for the equivalent body forces e’(r, t) may be written 

el’(r, t )  = n:(rO){ak6(r-rO) Ef jk l ( rO) [ s , ‘ ( rO ,  t)l’> (9 1) 

where ro is the hypocentre or location of the infinitesimal fault surface Z, and where 
[s‘(r,, t ) ] ?  now represents the averaged tangential displacement discontinuity across 
that surface. Specializing further, let the elastic properties of the medium in the 
vicinity of the source be isotropic so that the elastic coefficients Cfjkl(r,) may be 
expressed in terms of the compressibility K ,  = K(rO) and the rigidity po = p(ro) by 
equation (27). Up until now the Cartesian axis system 9,, 92, 9, utilized for com- 
putation has been completely arbitrary. Now for simplicity take P,, 9,, 9, to be a 
hypocentral co-ordinate system with its origin 0 at the point ro and with 9, along 
fi,,(ro) and 9, along the direction of slip on the fault. 
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In this case the only non-zero 

hydrostatic, To(',) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -po(ro)I. In this case equation (91) reduces to 

are Z13kI(ro). 
Consider first the case where the initial static stress at the hypocentre is perfectly 

The equivalent force system for this case, equation (93), is thus the familiar double 
couple with each couple having a net moment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, A, As, (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). This result was 
first obtained by Burridge and Knopoff (1964) for the case of zero initial stress, and 
has since received a great deal of application. The earthquake moment, defined as 
as p, A, As,, has become an almost routinely measured parameter used to describe 
and characterize individual earthquakes. The above argument establishes that the 
familiar double couple equivalent force (93) is dynamically equivalent to an infinite- 
simal tangential displacement dislocation even in the presence of an initial static 
stress field, so long as the initial stress at the hypocentre is purely hydrostatic, 

If the initial stress at the hypocentre is not purely hydrostatic, then there are 
additional equivalent body forces e'(r, t) which must be added to the system (93) in 
order to properly model a point tangential displacement dislocation. Denote the 
deviatoric initial stress at the hypocentre zo(ro) simply by 2,. The additional equivalent 
body forces e'(r, 1 )  in the presence of such a deviatoric initial hypocentral stress are 

To(r0) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Po@,) I. 

FIG. 4. Left: point tangential displacement dislocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the presence of an initial 
hydrostatic pressure po.  Right: equivalent double couple of individual moment 

PO Ao ASO. 
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The equations (94) are an explicit list of the additional ef(r,  t )  expressed in terms 
of the hypocentral deviatoric stress components ziio, and resolved along the Cartesian 
ax is  vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9,, 92, 9,. As written, these additional equivalent body forces appear to 
consist of a combination of three double couples and three linear vector dipoles (see 
Fig. 5). In the next section, it will be shown how a more suitable choice of a hypo- 
central Cartesian axis system allows one to simplify this representation. 

Burridge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Knopoff (1964) go on to list the body force equivalents in the case of 
zero initial stress for a number of other simple dislocation models, e.g. for various 
propagating ruptures. This could also be done now for the more general case of 
propagating ruptures in an elastic-gravitational medium with an initial static stress. 
The results of such an exercise are exactly what one would expect. No new features zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 5. The additional equivalent forces in the presence of a deviatoric initial 
hypocentric stress with Cartesian components qJo. 
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appear; propagating tangential displacement dislocations are dynamically equivalent 
to propagating equivalent force systems. Such examples will not be discussed 
explicitly here. 

13. The dislocation moment tensor 

Consider once again the expression (91) giving the body forces ef(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt )  equivalent 
to a point tangential displacement dislocation in an arbitrary Cartesian axis system 
I,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%*, I,. Let eo(ro) be a unit vector in the direction of slip on the fault zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that 

[s’(ro, t ) ] !  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAso(t)  C(ro). (95) 

Equation (91) may be rewritten in the form 

where 

The coefficients Mk,(ro, t) are the nine Cartesian components of a second order 
tensor M(ro, t )  which will be called the dislocation moment tensor. Because of the 
symmetry relation = &j&, the dislocation moment tensor is symmetric 

Mkl(rO, t )  = Mlk(rO, t ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(98) 

Rewritten in invariant notation, equation (96) takes the form 

e’@, t )  = -M(ro, t )  .VG(r-ro). (99) 

The dislocation moment tensor, whose Cartesian components are given in equation 
(97), is the extension to this more general case of an initial static stress of the tensor 
previously called by Kostrov (1970) the tensor of moments and by Gilbert (1971) 
the action tensor. The symmetry (98) of the dislocation moment tensor is a direct 
consequence of the fact that a point tangential displacement dislocation does not 
exert a net torque on the Earth model V. 

It can be seen from (79) that in general &,kl(ro) f Zjfkl(rO), but that this symmetry 
relation is satisfied for the case where the initial static stress is purely isotropic, 
To(ro) = -po(ro)I. Inspection of equation (91) or (97) thus reveals that in the 
latter case, there exists for a point tangential displacement dislocation an inherent 
ambiguity between the unit normal 60 and the unit vector Co in the direction of slip, 
but that there is no such ambiguity in the general case Xl,kl(ro) # Z,w(ro). This 
ambiguity is the well-known fault plane-auxiliary plane ambiguity encountered in 
first motion focal mechanism studies, and it is of some interest to observe that in 
general the existence of a non-isotropic initial stress ro(ro) serves to remove the 
ambiguity. 

Since the dislocation moment tensor M(ro,t) is symmetric, it may always be 
reduced to its principal axes. If one chooses the principal axes or eigenvectors of 
M(ro, t )  as Cartesian co-ordinate axes in (91) or (96), it is clear that the equivalent 
body forces ef(r, t )  resolved in that axis system will appear to consist of three unequal 
mutually perpendicular vector dipoles. The algebraic determination of this canonical 
equivalent force representation in terms of the hypocentral deviatoric stress com- 
ponents Tf; is straightforward and will not be discussed here. 
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14. Some remarks on the derivation 

The main result of this paper is equation (85), giving the equivalent body forces 
e’(r, t) which must be applied to an Earth model V in order to produce an elastic- 
gravitational response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs’@, t), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&’@, t) equivalent to that produced by a tangential 
displacement dislocation across a fault surface Z,. This result could not unfortunately 
be obtained without laying considerable preliminary groundwork, namely the 
linearized theory of elastic-gravitational deformation in the presence of an initial 
static stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo@). In the interest of brevity, and in an attempt to keep the derivation 
as direct and uncluttered as possible, two difficulties which arise in the course of the 
argument have been overlooked. The existence and the resolution of these two 
difficulties will be very briefly discussed here. 

The first difficulty is in fact an apparent flaw in the argument as given; it occurs in 
the application of the Betti reciprocal theorem (66) to obtain the Volterra dislocation 
relation (80) and (81), and in particular in the specification of the body force f (r, t) 
to be a unit impulsive point force. Such a unit impulsive point force will of course in 
general exert a net force and torque on the Earth model V giving rise to rigid body 
translations and rotations, and for that reason the response sp(r, - t; x, - s) to this 
applied force cannot be uniquely determined (Love 1927). Since Volterra’s relation 
(81) is supposed to be a specific representation of the response s’(x, s) to a tangential 
displacement dislocation in terms of sP(r, - t; x, - s), it is clear that Volterra’s relation 
in the simple form (81) cannot be entirely correct. The resolution of this apparent 
difficulty is straightforward. A slightly more careful examination of the argument 
leading from (66) to (81) reveals that in general Volterra’s relation (81) can be used 
to determine explicitly almost zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall of the response s’(x, s), but that a certain correction 
must be applied by requiring that a tangential displacement dislocation cannot give 
rise to a net rigid body translation or rotation of the earth model V. For example, for 
the case of a spherically symmetric earth model V, Volterra’s relation may be used to 
determine all of s‘(x, s) except for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 1 vector spherical harmonic contribution; 
the I = 1 terms constitute a special case which must be treated separately by requiring 
that there be no net rigid body motion. This type of situation has been amply discussed 
in the past in at least three different contexts (Ben-Menahem 8z Singh 1968; Dahlen 
1971; Cathles 1971; Farrell 1971), and it does not seem worthwhile here to go into 
any detail regarding the precise nature of the necessary considerations. The important 
thing is that equation (85) giving the equivalent body forces e’(r, t) will not be affected 
by any such considerations. Thisis clear because of the fact, demonstrated above, 
that the equivalent body forces e‘(r, t), in contrast to the unit impulsive point force 
f (r, t), do not exert a net force or torque on the earth model V. 

The second difficulty is not an apparent flaw in the present argument, but is 
rather a problem which arises in any attempt to extend the argument to an Earth 
model which is not everywhere solid (e.g. to an Earth model which has a fluid core 
and/or which is partially covered by fluid oceans). The extension to this more general 
case is not entirely trivial for the following reason. The continuity conditions (32) 
apply only to a welded boundary (in particular they do not apply to a fluid-solid 
boundary, where there can be tangential slip), and in the course of the argument, 
particularly when using Gauss’s theorem, the conditions (32) were assumed to apply 
throughout V except on Z,. If one wishes to extend the argument to an Earth model 
V with a fluid core, then additional surface integral terms over the undeformed core- 
mantle boundary surface arise in expressions like equations (51) and (53), Rayleigh’s 
principle. It may however be shown that the existence of these additional terms in 
Rayleigh’s principle does not give rise to any extra terms in the Volterra dislocation 
relation (80) or (81), and thus the equivalent body forces e’(r,t) in (85) are also 
unaffected. This is clear since for this purely theoretical (i.e. non-numerical) appli- 
cation, it is perfectly reasonable to take as a model V of the Earth a completely solid 
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elastic continuum, but with a very low rigidity core, in which case the derivation as 
given is applicable. The principal situation in which the consideration of these 
additional core-mantle boundary terms will be necessary for a complete treatment is 
in any future attempt to utilize normal mode perturbation theory to discuss the effect 
of lateral inhomogeneities (especially non-hydrostatic undulations of the core- 
mantle interface) on the Earth’s free oscillations. Since it may be shown that there 
are in fact no additional terms in the case of a purely hydrostatic initial stress, Dahlen’s 
(1968) results for the normal modes of a rotating, hydrostatic ellipsoidal Earth model 
are unaffected. Madariaga (1971) has given a thorough and systematic discussion of 
the free oscillations of laterally heterogeneous Earth models, but he at the outset 
simply neglected (probably justifiably) all terms involving the initial deviatoric static 
stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto@), including the extra core-mantle boundary terms mentioned here. 

15. Concluding remarks 
The body forces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe’(r, t)  equivalent to a given arbitrary tangential seismic dis- 

location are thus given by equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(85),  even for a fault surface X o  located in the 
solid portion of a partially fluid earth, i.e. one with a fluid core and/or oceans. The 
equivalent body forces are independent of the initial hydrostatic pressure po(ro) at 
points ro on the fault surface, but they do depend on the magnitude and orientation 
of the initial deviatoric stress zo(ro) on the fault surface. For the case of an infinite- 
simal tangential dislocation, the precise nature of the dependence on the components 
.ru(ro) is indicated in equation (94). Theoretically, the results presented here would 
allow one to deduce information about the magnitude and orientation of the initial 
deviatoric stress To(ro) at the hypocentre of an earthquake directly from a consider- 
ation of the geometry of the resulting elastic-gravitational displacement field. The 
possibility of using data about the geometric or spatial variation of the seismic dis- 
placement field to directly measure hypocentral stresses is presently being investigated, 
but it is clear that although it is a theoretical possibility, it will be very difficulty to 
implement. The reason is that the relative contribution of the terms which depend 
directly on the hypocentral stress zo(ro) is of the order .ro/p0, and for reasonable 
values of the deviatoric stresses (say a few hundred bars), this ratio is very small 
(about In this sense, the results presented here may almost be viewed as 
negative results. Until the various phenomena which act to degrade the earthquake- 
radiated elastic-gravitational displacement field (e.g. crustal and upper mantle in- 
homogeneities) are better understood, it will be difficult to utilize purely geometrical 
measurements to deduce any information about hypocentral deviatoric stresses. The 
estimates of hypocentral stresses which have been obtained in the past have been 
deduced by a study of the time or spectral behaviour of the displacement field at a 
single seismographic location. For example, Wyss (1970) and others have shown how 
a comparison of the spectral amplitudes of seismic waves at high frequencies with 
those at low frequencies can be used to deduce the so-called apparent stress (defined 
as the seismic efficiency times the average stress) at an earthquake focus. If the 
difficulties associated with measuring the required data with sufficient accuracy can 
be overcome, then the techniques described here could be used to determine the 
actual deviatoric hypocentral stresses, not merely the apparent stresses. 
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